
Model of Human Error Probability based on  
dual-phase approach for learning process in  
cognitive-oriented tasks
F. Facchini *, S. Digiesi, G. Mummolo
Department of Mechanics, Mathematics and Management,
Polytechnic University of Bari, Bari, Italy

New accidents or incidents due to human error 
do not “just happen” and in most of the cases the 
cause relies not only on human incompetence or 
negligence [1]. In scientific literature the Human Er-
ror Probability (HEP) is defined, in case of discrete 
tasks, as the number of errors divided by the number 
of opportunities for making errors. The HEP is a key 
element in system accidents and disasters, especially 
in high-risk fields, such as industrial plants, nuclear 
plants, and aerospace. According to Health and Safe-
ty Executive agency (HSE), the errors can be classi-
fied in two categories. The first category includes the 

so-called “slips or lapses” errors: they are considered 
“actions that were not as planned” or unintended ac-
tions. These kinds of errors occur during the com-
pletion of a familiar task and include slips (e.g. press-
ing the wrong button or reading the wrong gauge) and 
lapses (e.g. forgetting to carry out a step in a known 
procedure). Therefore, they cannot be avoided by 
means of training, but an improved workplace design 
can reduce their likelihood and provide a more er-
ror tolerant system. The second category of errors 
includes the errors of judgement or decision-making, 
so-called “mistakes”. They occur when the worker 
accomplishes the wrong action believing it to be right. 
In most cases, a mistake occurs in situations where 

Human Error Probability (HEP) is a key element in the chain of events that could lead 
up to system accidents and despite the efforts of recently studies to evaluate the human  
reliability, many of the limitations and problems have not yet been solved. The model  
proposed tries to overcome these limitations by means of a method that combines the  
advantages of a dual-phase learning approach with that of a multi-attribute utility analysis, in 
accordance with Dar-El’ s theory. Results of numerical simulations show the effectiveness of 
the model in quantifying, over time, the HEP and in evaluating the human task error prone-
ness by varying the work breaks schedule.
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the worker does not know the correct way of carrying 
out a task either because it is a new task or because 
he is not properly trained, or both [2]. Recent studies 
showed that in industrial sectors more than 80% of 
defects due to assembly and visual inspection tasks 
depend on human behaviour [3]. The human errors 
can be the root cause of serious individual injuries 
and catastrophic accidents in industry as well as in 
urban areas [4]. According to Purpura (2013), the 
human error and unsafe behaviour accounts for 90% 
of all accidents in work environment [5]. Last report 
on aviation safety performance, published by the 
International Air Transport Association, shows that 
most of the airplane accidents (approximately the 
80%) are due to human errors (e.g. pilots, air traffic 
controllers, mechanics, etc.) and only the 20% per-
cent are due to machine failures [6]. The IChemE 

Loss Prevention Bulletin identified sixteen different 
causes (table 1), related to workers behaviour, that 
can originate an accident in workplaces. Consistently 
whit the classification provided, the report accounts 
almost 50% of the examined accidents originated by 
“poor concentration, inattention, fatigue” (see tab. 
1) and approximately 15% by unsafe worker oper-
ation and psychological causes [7]. Therefore, high 
human reliability is considered essential for ensur-
ing the safe and reliable operation of complex sys-
tems as well as to ensure proper organizational and 
management strategy [8].  The Human Reliability 
(HR) is defined as the probability that an individu-
al, a team or a human organization accomplishes an 
activity under variable constraints, due to different 
circumstances, within a certain period of time [9].

There are many internal and external factors 
able to affect the human reliability (fig. 1): internal 
factors are related to characteristics of the individu-
al worker such as training, knowledge, experience 
as well as the age of the worker [10]. External fac-
tors affecting the human reliability include all as-
pects related to the typology of the tasks carried 
out (e.g. procedures, load and task complexity, 
etc.) as well as the work environment characteris-
tics (e.g. ergonomics, work organization, etc.) [11]. 

The Human Reliability Assessment (HRA) al-
lows, on the basis of the workers behaviour and 
of the work environment, to evaluate the occur-
rence probability of human-related failure events 
in the designed scenarios. Traditional HRA meth-
ods are based on different approaches applicable 
in different industrial tasks, according to the ty-
pology of tasks to be performed (physical or cog-
nitive oriented), level of tasks-complexity, oper-
ator capabilities as well as workplace conditions.

ID Cause ID Cause

#01 Technical Deficiency #09 Poor training/instruction

#02 Design Error #10 Poor communication / co-ordination

#03 Change which was not thoroughly examined #11 Decision of superiors concerning technical matters

#04 Unforeseen, unknown #12 Decision of superiors concerning organization

#05 Worker/Operator works in an unsafe manner #13 Physiological, psychological causes

#06 Toleration by the supervisor #14 Poor concentration, inattention, fatigue

#07 Lack of supervision #15 Remaining risk

#08 No use or improper use of work permits #16 Unknown or undetermined causes

Table 1. Cause of accident in workplace

Figure 1. External (      ) and Internal (       ) factors that affect 
the human reliability
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The existing scientific literature offers a wide 
range of statistical models for analysing and predict-
ing the human reliability. According to Calixto et al. 
(2013), the HRA methods can be classified in three 
main groups: the first (1970-1990) is known as the 
first human reliability methods generation, which fo-
cuses on human error probabilities and operational 
human errors, by considering the worker like a me-
chanical component [12].  In most of these methods, 
such as Technique for Human Error Rate Prediction 
(THERP), Human Error Assessment and Reduction 
Technique (HEART), and Human Cognition Reli-
ability (HCR), the HEP is evaluated on the basis of 
the characteristics of the task assigned to the opera-
tor, and its value is obtained in accordance with the 
Performance Shaping Factors (PSF), quantifying the 
impact on the human performance of environmental 
factors [13].  The second human reliability methods 
generation (1990-2005) is focused on the human per-
formance considering the cognitive processes based 
on factors like workload, stress, sociological issues, 
psychological issues, illness, etc. Under this perspec-
tive, the second generation methods, such as A Tech-
nique for Human Error Analysis (ATHEANA), the 
Cognitive Reliability and Error Analysis Method 
(CREAM), and the Méthode d’ Evaluation de la 
Realisation des Missions Operateur pour la Surete 
(MERMOS) provide a qualitative evaluation of the 
operator’s behaviour in an integrated system Men–
Technology–Organisation [14]. Finally, the third 
human reliability methods generation (from 2005 
until today) includes methods focused on the hu-
man performance in relations with an artificial work 
environment (e.g. Probabilistic Cognitive Simulator 
for HRA Studies (PROCOS), Connectionism As-
sessment of Human Reliability (CAHR), etc.). These 
methods provide a dynamic model that allows re-
producing the human decisions and actions in work 
environment by means of simulation (virtual envi-
ronment and virtual performers) and/or simulators 
of virtual environment with human performers [15]. 

In scientific literature several studies are avail-
able focusing on the application of the first, second, 
and third generation methods.  Zhang, et al. (2019) 
developed a dynamic human reliability assessment 
approach, known as Predicted Mean Vote-Cogni-
tive Reliability and Error Analysis Method (PMV-
CREAM), aiming at evaluating the cognitive actions 
of oceanauts during the procedures required by 
deep-sea missions. The results showed that the mod-
el allows to estimate the Cognitive Failure Probabil-
ity (CFP) in order to avoid human error in deep-sea 
research, thereby preventing injury and loss of life 

during undersea job [16]. Shirali et al. (2019) adopt-
ed a CREAM Bayesian Network (BN) approach in 
a control room of a petrochemical plant in order to 
identify the HEP and to overcome the limitations due 
to variable relationship between operator and control 
mode [17]. An HRA model in rail transport field 
has been developed in order to identify the specif-
ic risk due to repetitive tasks taking into account the 
data uncertainty [18, 19]. Starting from this model, 
the authors developed a specific PSF able to support 
the HEP identification in railway operations [18]. 
Margiotta et al. (2016) consider the human reliability 
one of the most important elements for evaluating 
the human performance, and at this aim introduce 
innovative wearable wireless systems of control to be 
adopted [20]. A model based on Dynamic Bayesian 
approach has been developed by Abaei et al. (2019) 
to evaluate the HR in daily tasks in offshore opera-
tions, and results obtained showed that the HEP in 
marine operations increases towards the end of op-
erational days, and the high variation in human re-
liability is mainly dependent on weather conditions 
[21]. A new methodology based on revised HEART 
has been developed by Islam et al. (2017) to assess 
and quantify the potential human errors in different 
marine environmental and operational conditions. 
The application of the developed methodology on 
the maintenance procedures of a marine engine ex-
haust turbocharger on an offshore oil and gas facil-
ities confirms that extreme weather, extreme work-
place temperature, high ship motion, high level of 
noise and vibration and work overload and stress 
increase the likelihood of human error as well as of 
potential accidents [22]. In 2017, Falcone et al. intro-
duced a hybrid model that integrates the advantages 
of the methodologies HEART, Standardized Plant 
Analysis Risk-Human (SPAR-H) and Success Likeli-
hood Index Method (SLIM) in order to evaluate the 
impact of all environmental and behavioural factors 
on the decisions and the actions of operators in case 
of accidents and disasters. Results obtained from the 
analysis of a real case study provide an empirical and 
a theoretical contribution referring to the framework 
used to detect human error, evaluating the workers’ 
reliability under emergency conditions [23]. A model 
for assessing the probability of human errors in re-
configurable manufacturing systems based on tasks 
characteristics, work environment as well as workers 
capabilities has been developed using the multi-attri-
bute utility analysis by Elmaraghy et al. (2008). The 
developed model has been validated in a real indus-
trial case. The multi-attribute utility analysis, on the 
basis of the Elmaraghy’ s model, evaluates the HEP 
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independently of time. The attributes considered al-
low identifying the HEP neglecting the effect due to 
‘time-dependent’ phenomena like fatigue, forgetting, 
learning, etc [24]. Consistently with this lack, Givi 
et al. (2015) introduced a Learning-Forgetting-Fa-
tigue-Recovery Model (LFFRM) where the HEP de-
pends on two ‘time-dependent’ utility functions [25]: 

(1) Normalised Fatigue Score (NFS),  
 related to the accumulated fatigue  
 over time (F) and considering the residual  
 fatigue after a break (R);

(2) Normalised Learning Score (NLS),  
 given by the rate between the time  
 required to perform the n-th repetition  
 of a given task (tx) and the time required to  
 perform the first repetition of the  
 same task (T1).

In scientific literature, starting from the work of 
Wright (eq. 1) [26] many models have been defined 
in order to describe the dynamic variability of the 
task completion time due to the learning effects. 

  tx = T1 • x  (1)

where x is the cumulative number of tasks com-
pleted and LR identifies the learning rate (0<LR<1). 
With the increase of the LR-value it is reduced the 
workers’ learning ability.

According to Dar-El et al. (1995) [27] there is ev-
idence that the model of Wright tends to underesti-
mate the execution time of a manual repetitive task 
when early data are adopted, and when execution 
time data related to a relevant number of tasks com-
pleted are considered, the estimates obtained for the 
performance at the first repetition, y(1), and for the 
LR-value tend to be underestimated. The Authors 
addressed this discrepancy to the dual nature of each 
task, jointly consisting of a cognitive and a motor part, 
both subjected to the learning phenomenon. Cogni-
tive and motor learning affect workers behaviour in 
different time period during the work shift and with 
different magnitude, so as the resulting reduction of 
the task completion times cannot be described by 
means of a single and constant (over the work shift) 
LR. Therefore, a dual-phase learning model is intro-
duced in order to consider both cognitive and motor 
aspect related to the task under investigation. The 
dual-phase model considers that in early stages of 
learning, the operator mainly uses cognitive skill to 
perform the task correctly, i.e. following instructions, 
remembering the sequence of operations, developing 

the correct method, etc. As experience is gained in 
executing the task, the time spent on cognitive activity 
is sharply reduced and the performance is dominat-
ed by motor learning. According to considerations 
made for dual-phase learning model, it is possible to 
claim that the observed curve is given by the sum of 
a cognitive and a motor learning curves.Consistently 
with this approach, tx depends on the times required 
for the first cycle under cognitive (tc(1)) and motor 
(tm(1)) conditions and by learning constants under 
cognitive (bc) and motor conditions (bm), as showed 
in eq. 2. 

 tx = tc
(1) • x-bc + tm

(1) • x-bm        (2)

Cognitive learning proves to affect workers be-
haviour in the early cycles and with a higher mag-
nitude of that of motor learning, which becomes 
predominant for large number of repetitions. As a 
consequence, in case of manual task (low cognitive 
content task- e.g. push a button, tighten and unscrew 
the same screws, plug-in the same connections, etc.) a 
low reduction of task completion time (tx) with the in-
crease of the number of tasks completed is observed. 
The results of the study are quite intuitive: indeed, 
it is very hard to reduce over time a repetitive task 
characterized mainly from physical exertions. On the 
contrary, the completion time of a task with a high 
cognitive content is subjected to high reduction, since 
it does not depend on manual movements hard to be 
optimized beyond certain limits with learning and it 
is less subjected to muscle fatigue. 

In absence of experimental data and considering 
a workload mainly characterized by cognitive-ori-
ented repetitive tasks (e.g. visual inspection, signal 
recognition and interpretation, complex object ma-
nipulation, etc.) the dual-phase model provides a re-
liable estimation of tx if compared to other available 
models. 

Although on the basis of the literature review 
conducted it is possible to claim that there are differ-
ent approaches available allowing to provide a good 
guide on how to evaluate the human reliability, there 
are still aspects to be discussed in-depth. In particular 
three main aspects required further investigations:

(1) the existing approaches are not capable  
 to predict when the error occurs, considering  
 the impact due to possible changes over time  
 (e.g. physical and mental fatigue, work break  
 schedule, cognitive workloads, etc.);

(2) the existing models allows to evaluate the  
 HEP according to tasks characteristics, work  

log(LR)
log(2)



35Facchini et al.

International Journal of Industrial Engineering and Management Vol 11 No 1 (2020)

 environment and workers capabilities,  
 neglecting the effects due to ‘time-dependent’  
 aspects; in the Learning-Forgetting- 
 Fatigue-Recovery these effects are  
 considered, but independently from tasks  
 characteristics, work environment, and  
 workers capabilities;

(3) the available models are hard to be  
 implemented in different contexts.

The model proposed in this paper tries to over-
come these limitations in case of cognitive-oriented 
tasks by means of a method that combines the ad-
vantages of the dual-phase approach with the advan-
tages of a multi-attribute utility analysis. A model in 
accordance with the dual-phase approach proposed 
by [26] allowing to estimate dynamic variability of the 
HEP over time has been developed. In the model, 
the effects due to fatigue and of recovery as well as of 
learning and forgetting are considered. 

The mathematical model developed on the basis 
of multi-attribute analysis proposed by [24] allows to 
identify the HEP at the beginning of the work shift 
(t=0). Starting from HEP value at t=0 and considering 
the work environment, the task complexity, and the 
worker skill level as well as the work break schedule, 
the model allows identifying the dynamic variability 
of the HEP over time. 

The remainder of this paper is organized as fol-
lows: the model is introduced in section 2; discussion 
of results obtained by applying the model to three 
different work rest schedules are in section 3; conclu-
sions of this work are in section 4.

Notation adopted in the model is listed  
below:

HEP(t), HEP(0)  human error probability  
   for time t>0 and t=0,  
   respectively;
U(t), U(0)  human error utility  
   function for time t>0  
   and t=0, respectively;
ux, uy, uz  utility functions due to  
   task error proneness (x),  
   worker characteristics  
   (y), and work  
   environment (z);
wx, wy, wz  relative weights of ux, uy,  

   and uz (wx+wy+wz = 1);
NLS, NFS  normalised learning  
   and fatigue score,  
   respectively;
wl, wf   relative weights of NLS  
   and NFS (wl+wf = 1);
α, β   constants multiplier as  
   defined in (Givi et al.,  
   2015);
tx, T1   time required to perform  
   the n-th repetition of a  
   task and the first  
   repetition of the same  
   task, respectively;
F(t), Fmax  accumulated fatigue over  
   time and maximum  
   accumulated fatigue,  
   respectively;
R   residual fatigue after  
   break;
λ   severity index of the  
   work performed (0 – 1  
   ranging);
μ   worker’s recovery rate  
   index (0 – 1 ranging);
τ   length of the break.

The model developed allows identifying the 
HEP over time (HEP(t)) on the basis of the follow-
ing approaches: the multi-attribute utility analysis, 
introduced by Elmaraghy et al. (2008), evaluates the 
HEP(0) considering the time-independent aspects. 
In this case, the HEP(0) depends on human error 
utility function (eq. 3) where U(0) is the weighted av-
erage of the overall utility functions ux, uy, uz (eq. 4). 
Each utility function is obtained through an in-depth 
assessment of the task error proneness (e.g. difficul-
ty, diversity/coupling between task/s, etc.), worker(s) 
characteristics (i.e. professional and personal capa-
bilities) as well as work environment (e.g. physical 
work environment, frequency of reconfiguration, 
etc.). More details on the evaluation procedure can 
be found in [24].

HEP(0) = 10E(6log(U(0)))     (3)

U(0) = wx • ux + wy • ux + wy • ux   (4)

Givi et al. (2015) evaluated the human error utility 
function over time by means of the Learning-Forget-
ting-Fatigue-Recovery Model (LFFRM) [25]; this ap-
proach is mainly focused on time-dependent aspects, 
consistent with the following equations:

2. Methodology and Model  
application
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U(t) = wl •  NLS • α + wf • NFSβ   (5)

NLS =         (6)

NFS =      (7)

The dual-phase approach for learning process in 
cognitive-oriented tasks developed is based on the 
jointly adoption of the multi-attribute utility analysis 
and of the LFFRM model. The model assumes that 
for task characterized by a predominant cognitive ac-
tivity with cycle time less than 5 minutes, the time 
required to perform the first repetition of the task 
can be considered tx = T1. Under these assumptions, 
the accumulated fatigue (F(t)) at the beginning of the 
work shift (t=0) can be considered null. Therefore, 
in accordance with equations 6 and 7, the values 
of NLS and NFS will be 1 and 0, respectively. The 
U(0) evaluated under these conditions through the 
multi-attribute utility analysis (eq. 4), can be matched 
with the utility function of LFFRM (eq. 5). As a re-
sult, given α and β values, it is possible identifying wl 
and wf values by eq. 5. 

For t>0, evaluating the generic working cycle (i), 
the values of tx, F(t), and Fmax can be identified in 
accordance with the dual-phase approach and LF-
FRM (eqs. 2, 8-9). Since wl and wf parameters are 
known (their values do not change over time), the 
model developed allows identifying the human error 
utility function (U(t)) and the human error probabili-
ty (HEP(t)) over time (eqs. 5-10).

F(ti) = R(ti-1) + (1-R(ti-1))(1-eλti)  (8)

R(ti) = F(ti-1) e-μτi      (9)

HEP(t) = 10E(6log(U(0))) (10)

Even if the model is based on approaches that 
consider both cognitive and motor tasks, it is intend-
ed for application on high-cognitive content tasks 
(e.g. visual inspections, vigilance tasks, scheduling 
activities, complex manually assembled, etc.). In the 
model, motor aspects are also taken into account 
since they are part of tasks independently from their 
cognitive load. Consistently, cognitive learning con-
stant (bc) values greater than twice of the motor learn-
ing constant (bm) have been considered. This is con-
sistent with cognitive-oriented tasks, characterized by 
high values of the LR. [28]. 

Finally, it is possible to claim that the model ap-
plication allows identifying the HEP values for each 
t-values, considering the type of task performed, the 
worker characteristic, the work environment as well 
as the effect due to learning-forgetting and fatigue-re-
covery phenomena.

A numerical case study is developed in order to 
evaluate the effectiveness of the model. Consistently 
with this target, three different work break schedules 
(WBSs) are considered (fig. 2). The WBSs, identi-
fied with three different IDs (i.e. (i), (ii), and (iii)), are 
characterized by different length and frequency of 
rests in the work shift, but in all cases the cumulated 
work and break time for each work shift is the same 
(work-time 460 [min]; rest-time 50 [min]).

In order to compare the results of the model 
with an experimental case, the tasks considered are 
referred to an assembly of intake manifold, activity 
already evaluated by [24]. Tasks details and output of 
the Multi-attribute utility analysis (t = 0) are showed 
in tab. 2.

The values assumed for tasks and worker’s char-
acteristics (tab. 2) are estimated in accordance with 

Figure 2. Work and rest time, in the work shift, of WBSs evaluated

3. Results and Discussion

tx

F(t)

T1

Fmax



37Facchini et al.

International Journal of Industrial Engineering and Management Vol 11 No 1 (2020)

the experiments of Dar-el et al. (1995), in which the 
manual assembly operations were performed by 
graduate and under-graduate workers with an age 
ranging from 22 to 34 years. 

On the basis of the input parameters, the mod-
el allows identifying the dynamic value of HEP over 
time (see fig. 3) by varying the WBS. It is possible to 
observe that the HEP% is maximum, for all WBSs, 
at the beginning of the work shift (fig. 2). This value 
is consistent with results of multi-attribute utility anal-
ysis and does not depend on learning and/or fatigue 
effects. A decrease of HEP% is observed in the first 
part of the work shift (around 100 minutes), since in 
this time period the worker’s performance is mainly 
affected by learning phenomenon. In other words, in 
the first part of the work shift the worker, by optimiz-
ing the tasks required for parts assembly, is able to 
reduce the task completion time. After that, once the 
tasks execution time is not further improvable (‘ben-
efit’ due to learning effects are heavily reduced), the 

worker performance is mainly affected by the fatigue 
phenomenon and the HEP% increases over time. 
Under these conditions, the length and the frequency 
of breaks allow modifying the HEP% variation over 
time. In particular, the results of the model showed 
that if on one hand the breaks reduce the HEP%, on 
the other hand the recovery effect decreases during 
the work shift. When the fatigue effect prevails on 
the worker performance, the HEP% tends to faster 
growth after each break. Consistently with this obser-
vation, the ‘benefit’ due to recovery time, i.e. the re-
duction of HEP% during the breaks, is less effective 
over time. The evidence of this effect is showed by 
the increase of the curve slope after each break in 
fig. 3.

As far as concern the three WBSs considered 
(tab. 3), the lowest average HEP% (during the work 
shift) is observed in case (i), although the standard 
deviation in case (ii) is smaller than other WBSs.

Figure 3. HEP% curve over time, adopting different WBS

Table 2. Model input parameters

Tasks and Worker characteristics Multi-attribute utility analysis (t = 0)

T1 [s] 240 λ 0.2 ux 0.536 wx 0.429

α 0.8 μ 0.5 uy 0.494 wy 0.143

β 0.8 tc
(1) / tm

(1) 3.605 uz 0.506 wz 0.429

bc 0.521

bm 0.186

Task description: the part to be assembled is unloaded from a trolley and a visually inspection for proper installation of all components is accom-
plished, then eight captive fasteners and one manifold absolute pressure sensor (to be placed to lower shell) are manually assembled. Finally, part 
is placed on transfer chute. 
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Changing the input parameters (e.g. severity of 
task to be performed, speed of recovery,  worker’s 
learning rate, etc.) as well varying the frequency and 
the duration and the numbers of the breaks, the 
model allows identifying in every cases the dynamic 
variability of the HEP % and the time window (in the 
work shift) characterized by highest/lowest worker’s 
reliability values. 

The results obtained are consistent with the ex-
perimental case proposed by Elmaraghy et al. (2008). 
Moreover, the trend of HEP% is consistent with re-
sults of the application of LFFRM in an experimen-
tal case (Givi et al., 2015). The WBS identified as 
optimal by the model is in accordance with recently 
studies on work-rest policies, aiming at improving the 
workers’ well-being [29].

Results of the study carried out showed that it is 
possible to evaluate the HEP over time on the basis 
of task, worker and workplace characteristics. The 
approach adopted allows considering the effect of 
fatigue and of recovery on HEP due to breaks in the 
work-shift. The results achieved are in accordance 
with existing evaluations and show the effect of differ-
ent WBS schedule on the HEP variability over time. 
Considering the three research questions introduced 
in the first section, it is possible to claim that the mod-
el developed allows to predict the error probability 
in cognitive task varying worker’s and task’s char-
acteristics and WBS adopted. The jointly adoption 
of multi-attribute utility analysis and LFFRM mod-
el allows to consider both ‘time-dependent’ aspects 
(e.g. learning, forgetting, fatigue, etc.) and aspects in-
dependently on time (e.g. task characteristics, work-
place design, etc.) providing a dynamic evaluation 
of HEP over time. Finally, the model is easy to be 
implemented when compared with existing models 
in scientific literature. In the present study a sim-
ple VBA routine has been adopted to estimate the 
HEP% over time. The reliability and effectiveness of 
the model has been tested by applying it in an in-
dustrial case, already faced in other scientific works. 
The comparison showed that the results obtained by 
the model defined are consistent with the results ob-

tained in other experimental case studies.  
The approach developed is focused on cognitive, 

rather than physical, tasks, therefore the flexibility 
of the model could be improved including the ef-
fect due to physical efforts on HEP, in order to ex-
tend the adoption of the method proposed to more 
complex scenarios. Moreover, specific guidelines or 
database could be required in order to support the 
user in identifying the proper values to be assigned to 
each input parameters depending on the case under 
investigation.
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