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Abstract: This work introduces a process to optimize the design of a down-conversion mixer using
an innovative strategy based on the gm/ID methodology. The proposed process relies on a set of
technology-oriented lookup tables to optimize the trade-off between gain, power dissipation, noise,
and distortion. The design is implemented using a 0.13 µm CMOS technology, and to the best of our
knowledge, it possesses the best (post-layout simulation) figure of merit (FOM) among the works
presented in literature. The FOM is defined as the product of gain and third-order intercept divided
the product between average noise figure and power dissipation. Finally, the core of the mixer takes
only 31 µm by 28 µm and it draws a current of 1 mA from the 1.5 V DC supply.
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1. Introduction

The down-conversion mixer is a critical block in the design of systems based on the software-defined
radio (SDR) architecture. Due to technology limits of the analog to digital converters (ADC), the RF
signals at high frequency cannot be directly sampled. The mixer is, thus, a key component to perform the
down-conversion of the antenna signal at intermediate frequencies compatible with commercial ADCs.

In literature, several approaches were introduced to maximize the mixer performance. For example,
Wei et al. [1] use a folded topology to diminish the transistors stacked on top of each other. With a
folded structure, the circuit can employ a lower supply voltage, however, it requires an extra current
source that has the negative effect of reducing both gain and bandwidth. MacEachern et al. [2] propose
a topology that relies on the charge injection method. Their approach allows to improve both gain and
linearity, however, it has the drawback that requires a significantly higher bias current and hence it
worsens power consumption. Seo et al. [3] exploit a switched biasing technique for the tail current
source that results in a substantial reduction of the noise figure. Unfortunately, this benefit comes
at the expenses of a significantly larger supply voltage and power dissipation than the traditional
Gilbert’s cell. Hence, these approaches utilize very complicated hardware solutions to maximize the
performance of the mixer. This work presents the design approach followed to optimize the circuit of a
conventional double-balanced Gilbert mixer cell (Figure 1).

This architecture is very common in homodyne (also known as direct-conversion) receivers
because it exhibits a favorable port-to-port isolation factor and negligible even harmonic distortion [4].
Unfortunately, the presence of three MOS transistor pairs on top of each other calls for a relatively
large supply voltage to keep them operating in saturation.

As illustrated in Figure 1, the RF voltage is fed into the stage consisting of the transistors M1 and
M2. The transistors M3–M6, perform RF voltage-to-current conversion and switch the polarity of the
RF inputs at the LO frequency rate. In theory, given the symmetry of the circuit, any common-mode
RF and LO frequency component at the output should be zero.
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This paper aims to extend the Jespers and Murmann gm/ID-based approach [5,6] to optimize
the design of a double-balanced mixer based on the Gilbert cell. A new set of lookup tables were
computed to take into account the performance of the mixer in the three MOSFET inversion regions.
With these new set of lookup tables, the designer is able to maximize the overall performance of the
basic cell without introducing complex circuit solutions. The reported mixer was used in the design of
the positioning system reported in [6–9].
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Figure 1. Double-balanced Gilbert cell mixer.

The rest of the paper is arranged as follow. Section 2 introduces the methodology we applied to
overcome the inaccuracies associated with the traditional square law model of the MOSFET devices.
Section 3 describes the design methodology introduced to maximize the performance of the Gilbert
cell. Section 4 presents the results achieved and compares them with other works presented in the
literature. Finally, Section 5 provides a set of conclusions and closes the paper.

2. Theoretical Background

The traditional approach to design analog circuits is based on modeling the drain current ID of
MOSFET devices in saturation region with the following square law Equation (1)

ID =
1
2

µCox
W
L
(VGS −VTH)

2
≡ ID,sat (1)

where µ is the mobility of the carriers in the inversion layer channel, Cox is the gate oxide capacitance,
W/L is the ratio between the width and the channel length of the MOSFET, VGS is the gate-source
voltage and, finally, VTH is the MOSFET threshold voltage. Given the continuous shrinking of the
channel length of the MOSFETs employed in today’s integrated circuits, Equation (1) becomes grossly
inaccurate. With the current nanometer channel lengths, several second-order effects are no longer
negligible and must be considered [10].

The typical models used for describing the behavior of nanoscale MOSFETs includes several
hundred parameters, thus, it is too complicated to come up with a simple analytical abstraction
that would be suitable for analog circuit design. When VGS ≤ VTH (sub-threshold operation) the
drain current does not go to zero as predicted by the square-law equation. The current in and near
sub-threshold takes an exponential form. This is because the MOSFET acts as if it was a lateral BJT.
In sub-threshold (also known as weak inversion) the current is mainly dominated by its diffusion
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component (rather than its drift component) and as a result, it has an expression that resembles closely
the current equation of a BJT [11] (Figure 2):

ID = I0 e
q(VGS−VTH)

mkT

(
1− e−

qVDS
kT

)
I0 , µCox

W
L (m− 1)

(
kT
q

)2
(2)

where k is the Boltzman constant, q is the electronic charge measured in Coulomb, T is the temperature,
and m is a coefficient accounting for how the body effect at the drain end of the channel affects the
control of the charge in the channel. The coefficient m (also known as the subthreshold factor) is
process dependent and it typically varies between 1.3 and 1.7. [12].
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In weak inversion, the current available to drive any capacitive load is quite small so the MOSFET
consumes very little power, but it can be quite slow. In addition, the definition of VTH is problematic.
On the contrary, if the transistor operates in strong inversion it consumes more power but exhibits
the best performance in terms of speed. The operation between strong and weak inversion is called
moderate inversion and due to the growing demand for low supply voltage applications, it has become
more and more attractive. In moderate inversion, the MOSFET achieves the best tradeoff between
speed and DC-power consumption. Unfortunately, no simple analytical equation exists for the drain
current of a MOSFET in moderate inversion. The EKV model [13], the BSIM model [14], the ACM
model [15], and the PSP model [16] on which most simulation tools rely are too complicated for
hand analysis.

Using a table-based procedure like the gm/ID methodology is more effective. It allows the ability
to achieve accurate results with a very limited number of design iterations. This method consists of
generating a set of lookup tables starting from the DC-analysis of the transistor. Each table computes a
different width-independent figure of merit (FOM), closely linked to the design specifications (e.g.,
transit frequency, intrinsic gain, transconductance efficiency, current density, and relative capacitances).
The design process consists in choosing the inversion level of the MOSFETs so that the figures of merit
extracted, and the W/L ratios associated with each transistor are able to meet the required design
specifications [6,10]. The gm/ID ratio, also known as the transconductance efficiency or gain-power
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efficiency, is a proxy for the inversion level the transistor. Using, for simplicity, the square-law model,
for a MOSFET operating in saturation region, the transconductance gm is defined as:

gm = µnCox
W
L
(VGS −VTH) =

2ID

(VGS −VTH)
. (3)

Hence the gm over ID ratio depends only on the overdrive voltage VOV = VGS – VTH.

gm

ID
=

2
VOV

. (4)

In other words, setting the gm/ID ratio is equivalent to setting the operating region of the MOSFET.
For values of gm/ID between 5 S/A and 8 S/A the MOSFET is in strong inversion. For gm/ID in the
range between 20 S/A and 25 S/A the MOSFET is in weak inversion. The choice of the inversion level is
essentially determined by the trade-off between speed (transit frequency, fT = gm/CGG), intrinsic gain
(gm/gDS), and gain-power efficiency (gm/ID) and it depends on the target application.

The key feature that makes the table-based design approach suggested so effective is that all
FOMs are width independent. If for sake of simplicity we resort again to the square-law, we note that:

fT =
gm

CGG
≈

3
2
µVOV

L2

gm
gDS
≈

2
λVOV

ID
W =

µCox
2L V2

OV.

(5)

In strong inversion (low gm/ID ratio) the transistor exhibits higher speed than in weak inversion,
but the intrinsic gain is lower, and the power dissipation is higher (to obtain a given value of gm the
drain current required is higher than in weak inversion). In weak inversion, that is, for a large gm/ID

ratio, the intrinsic gain increases, while the fT decreases. This is due to the corresponding increase
of the width of the transistor its total intrinsic capacitances. Finally, the drain current decreases for
increasing values of gm/ID, which means that the DC power consumption drops. The region in the
middle between strong and weak inversion is called moderate inversion and usually gives a good
compromise in terms of speed, gain, and power consumption.

Figure 3 shows the graphs for transit frequency, intrinsic gain and current density versus gm/ID for
the NMOS transistor from the IHP (Innovate for High-Performance Microelectronics) process [17–22]
used for implementing the mixer. The curves are sketched for the minimum channel lengths (L = and
for a drain-source voltage, VDS, equal to half the DC-power supply, VDD. The gm/ID design method is
both scalable and easily adaptable to the design of different target systems. These charts represent the
starting point for implementing the design. The design flow proposed provides the designer with
the flexibility to start by choosing any of the tabulated figures of merit as his primary objective and
then proceed by systematically extracting all other features depending on the specific performances to
be optimized.

3. Design Optimization

For Gilbert’s cell (Figure 1), given the desired value of the load resistance, RL, the mixer gain (Av)
is determined by the transconductance value (gm) of the transistors M1 and M2:

Av �
( 2
π

)
gmRL. (6)

The traditional design approach starts from Equation (6) by first computing the gm necessary to
obtain the desired gain and then choosing the width W and channel length L of the MOSFETs using
the square law Equation (7):

gm =

√
2µCoxWID

L
, (7)
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where Cox is the oxide capacitance of the MOSFET and theµ the mobility of the carriers. The bias current
supplied by the tail current source (IBIAS) is split equally among the transistors in the transconductance
stage (TS). Similarly, the current flowing through M1 and M2 is evenly split between the transistors in
the switching stage (SS):

IBIAS = 2× ID(TS), ID(SS) = 2× ID(TS). (8)

Unfortunately, in today’s nanometer integrated circuits, the behavior of the MOS transistors
does not follow the square-law model. For this reason, in the approach we advocate, the W/L ratio
of the transistors is chosen using gm/ID-based lookup tables. The algorithm used to optimize the
sizing of the transistors considers the devices in the switching stage and the transconductance stage
separately. The algorithm allows exploring a larger solution space to find the optimal bias point
that meets design specifications, by separately sweeping the gm/ID of the two stages. The proposed
algorithm is composed of the eight steps represented in Figure 4.Electronics 2019, 8, x FOR PEER REVIEW 5 of 13 
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Step 1. To be able to run the framework, we must, first of all, generate Jespers and Murmann’s
lookup tables (LUTs) for the MOS transistors of the 0.13 µm process used to design the circuit (these
LUTs are denoted in Figure 4 with the name “process LUTs”). A graphical view of these lookup tables
is provided in Figure 3.

Step 2. Given the desired design specs. (i.e., gain and load resistance), Equation (6) can be used to
derive the value of gm.

Step 3. Once the value of gm is found, the algorithm sweeps gm/ID in the whole feasible range
(i.e., from 5 S/A to 25 S/A) and computes the associated currents ID(SS) and ID(TS).

Step 4. Given Jesper and Murmann’s lookup table of the current density (ID/W vs. gm/ID) the
algorithm extracts W(SS) and W(TS) for all values of gm/ID explored. To maximize the speed of the mixer
the length L of all transistors is set to the minimum value (130 nm) allowed by the technology used to
implement the circuit [20,21].

Step 5. The algorithm performs a systematic analysis of the mixer’s performances. For each bias
point it computes the DC-power consumption, it checks that all transistors operate in saturation and it
prunes any unfeasible solution.

Step 6. For each point that represents a feasible solution, the algorithm computes the gain of
the mixer and then discards any point that exhibits a gain that does not meet the specifications.
This procedure is repeated for the noise figure and the third-order intercept of the mixer. The system
performance metrics computed in this step are captured and stored in the form of lookup tables (these
LUTs are denoted in Figure 4 with the name “system LUTs”).

Step 7. Given the solution space computed in the last step, to compute the best bias point of the
circuit, an overall figure of merit (FOM) is introduced.

Step 8. The algorithm returns the best circuit bias point to be used to design the down-conversion
mixer, by looking up the solution (i.e., the value of gm/ID) corresponding the maximum value of
the FOM.

Several performance metrics can be used to define the FOM of the circuit. The designer can choose
the one he prefers without performing any software modification. In facts, the algorithm computes
the FOM value by simply exploring the lookup tables related to the system performance (conversion
gain, noise figure, and so on). In our design, to obtain the best balance between the various parameters
specified, we defined the following figure of merit (FOM):

FOM =
G[dB]·IIP3[mW]

NF[dB]PDC[mW]
(9)

where G is the gain, IIP3 is the input third-order intercept, NF is the average noise figure and PDC is
the power dissipation. The definition of the FOM is up to the designer and it is based on the target
application of the mixer. Once the lookup tables for the performance metrics of the system (gain,
noise figure, etc.) are generated the designer select the figure of merit as a function of the relative
importance of the various performance metrics.

4. Results

The supply current drained by the mixer should be of less than 2 mA with a 1.5 V voltage.
The desired gain had to be greater than 10 dB with a load of 500 Ohms, and the IIP3 had to be better
than −5 dB. The circuit performances were validated for a LO sine wave with a frequency of 5.7 GHz
and a maximum power of 0 dBm.

Figure 5 summarizes the feasible solutions (red color) obtained by the algorithm. From this figure,
it is possible to observe that the transistors in the transconductance stage (TS) should be biased with a
gm/ID between 5 S/A and 13 S/A while the transistors in the switching stage (SS) can be biased at any
gm/ID level.
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Figure 6a provides the curve characterizing the input third-order intercept of the mixer. Given that
the MOSFETs in the switching state must be biased with a gm/ID in the range between 5 S/A and
10 S/A, we note that as the bias point of the transistors in the transconductance stage passes from
strong to weak inversion, the IIP3 decays linearly. Moreover, we note that biasing the transistors of the
switching stage in weak inversion, the IIP3 behavior can be approximated by a parabolic function with
a local maximum for gm/ID(SS) of 20 S/A. The IIP3 curve has been computed using two tones, one at
5.8 GHz and the other one at 5.85 GHz. Figure 6b sketches the curve characterizing the average noise
figure of the mixer. The average is taken over the ultra-wide bandwidth (UWB) frequencies range
(3.1 ÷ 10.6 GHz). Imposing that the SS transistors are biased in strong inversion, we note that as the
transistors in the TS pass from strong to moderate inversion the noise figure decreases exponentially
and approaches a value that is less than 12 dB. The curve illustrating the mixer gain is reported in
Figure 6c. The gain in the mixer can be approximated by a parabolic function in both gm/ID directions.
Biasing the transistors of both stages in moderate inversion, the mixer exhibits an absolute maximum
gain of 13.5 dB. Figure 6d shows the mixer’s power consumption. As expected from the circuit analysis
of the mixer [4], the power dissipation of the transconductance stage is dominant over the power
dissipation of the switching stage. From Figure 6, we note that the power is approximately constant
along the SS axis, while along the TS axis it exhibits an exponential roll-off as gm/ID increases.

Finally, the FOM as a function of gm/ID(TS) and gm/ID(SS) ratios is presented in Figure 7. Note that
the FOM presents a local maximum when biasing the TS in moderate inversion and the SS between
moderate and weak inversion.

The algorithm returns as an optimal solution the FOM corresponding to gm/ID(SS) = 18 S/A and
gm/ID(TS) = 10.5 S/A. The jittery nature of the FOM curve is a result of the irregular behavior of both
the IIP3 and the noise figure. To avoid this problem, the FOM can be re-defined introducing weighting
coefficients in the formula. The introduction of weighting coefficients also allows the designer to
drive the optimization process to favor one or more performances based on the target application.
For example, in the case of the mobile market, power consumption is more critical than IIP3 and so it
is possible to introduce a coefficient in the FOM expression that induces the algorithm to maximize
power performance more than other performances.

Figure 8 reports the post layout performances of the double-balanced mixer designed with the
proposed method. With a LO power of 0 dBm, the post-layout mixer gain is about 11 dB. This corresponds
to a loss of about 2 dB compared with the theoretical gain expected. The main reason lies in the
parasitics introduced by the bias current source physical implementation. Similarly, the post-layout
IIP3 is −3.1 dBm lower than the ideal value of 2.8 dBm. In terms of power dissipation, with a voltage
supply of 1.5V, the mixer-core consumes only 2.1 mW. Although the performance in post-layout
simulations are worse than the theoretical values expected, they still exceed the design specification
and therefore validate the proposed design approach.
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To assess the quality of our design we compared its performances with the performances of
other CMOS Gilbert mixers found in literature. Using the proposed approach (see Table 1) our
mixer achieves the best (post-layout simulation) FOM. Unfortunately, since not all references state
unequivocally whether their figures come from measurements or simulation, a fair comparison is
problematic. This result is obtained using a traditional double-balanced circuit architecture and did
not require the introduction of any of the dedicated topological improvements that can be found
in literature. Nevertheless, the proposed approach is completely general and if desired it can be
easily extended to other circuit architectures that have the potential to improve a mixer performance.
The final layout of the mixer’s core is sketched in Figure 9. The mixer-core measures less than 21 µm
by 31 µm (bonding pads and baluns excluded).Electronics 2019, 8, x FOR PEER REVIEW 11 of 13 
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Table 1. Comparison of the Gilbert cell mixers performance.

Reference Technology Gain
[dB]

IIP3
[dBm]

NF avg
[dB]

PDC
[mW] FOM

[3] 0.13 µm 8 −3 11.2 5.57 0.12
[23] 0.18 µm 10 4 10 10 0.16
[24] 0.13 µm 8.95 −2.2 11.4 3.7 0.16
[25] 0.13 µm 21 −1.8 15.7 18.3 0.06
[26] 0.18 µm 13.5 −3.25 21.22 7.2 0.06
[27] 0.18 µm 20.4 −4.6 12.2 5.44 0.11
[28] 0.13 µm 13.4 - - 52 -

This Work 0.13 µm 11.24 −3.1 11.6 2.1 0.32

5. Conclusions

A new optimization approach is introduced and applied to the design of a down-conversion mixer
based on the Gilbert cell. The algorithm implemented allows reducing the iteration time required to
optimize the design of the circuit by providing a series of lookup tables that can be explored to obtain
the best circuit bias point meeting the specification. The main advantage of the proposed methodology
is that if the design specifications vary, only the FOM needs to be changed. As a result, redesigning the
mixer takes a significantly shorter amount of time. In facts, the lookup tables are generated only the
first time and can be subsequently re-used for any different set of design specifications.

The results demonstrate that the mixer designed with the proposed framework is able to achieve
the best tradeoff in overall performance without the need for using any complex ad-hoc circuit
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topologies present in literature. However, if desired the method can be extended also to more complex
circuits to possibly allow to further improve the overall performance of mixers.
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C.T. and G.A.; review and editing, C.T. and G.A.; software setup, G.C.; resource administration, G.C.
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