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Abstract: Remote sensing has been recognized as the main technique to extract land cover/land use 
(LC/LU) data, required to address many environmental issues. Therefore, over the years, many 
approaches have been introduced and explored to optimize the resultant classification maps. 
Particularly, index-based methods have highlighted its efficiency and effectiveness in detecting 
LC/LU in a multitemporal and multisensors analysis perspective. Nevertheless, the developed 
indices are suitable to extract a specific class but not to completely classify the whole area. In this 
study, a new Landsat Images Classification Algorithm (LICA) is proposed to automatically detect 
land cover (LC) information using satellite open data provided by different Landsat missions in 
order to perform a multitemporal and multisensors analysis. All the steps of the proposed method 
were implemented within Google Earth Engine (GEE) to automatize the procedure, manage 
geospatial big data, and quickly extract land cover information. The algorithm was tested on the 
experimental site of Siponto, a historic municipality located in Apulia Region (Southern Italy) using 
12 radiometrically and atmospherically corrected satellite images collected from Landsat archive 
(four images, one for each season, were selected from Landsat 5, 7, and 8, respectively). Those 
images were initially used to assess the performance of 82 traditional spectral indices. Since their 
classification accuracy and the number of identified LC categories were not satisfying, an analysis 
of the different spectral signatures existing in the study area was also performed, generating a new 
algorithm based on the sequential application of two new indices (SwirTirRed (STRed) index and 
SwiRed index). The former was based on the integration of shortwave infrared (SWIR), thermal 
infrared (TIR), and red bands, whereas the latter featured a combination of SWIR and red bands. 
The performance of LICA was preferable to those of conventional indices both in terms of accuracy 
and extracted classes number (water, dense and sparse vegetation, mining areas, built-up areas 
versus water, and dense and sparse vegetation). GEE platform allowed us to go beyond desktop 
system limitations, reducing acquisition and processing times for geospatial big data. 

Keywords: satellite open data; big data; vegetation indices; urban indices; land cover classification 
 

1. Introduction 

Accurate maps of land cover/land use (LC/LU) distribution are essential to gather information 
which is useful in many land management and environmental monitoring tasks. Therefore, over the 
last 15 years [1], several products have been generated to face the growing demands for related maps, 
using different approaches. Among these, the remote sensing technique has been an invaluable 
source of LC/LU information [2,3]. However, most of the satellite-derived maps covering the whole 
world have a coarse resolution, not suitable to describe the true Earth heterogeneity and urban and 
agricultural landscapes. For instance, the Global Land Cover product (GLC2000) carried out by the 
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European Commission’s Joint Research Center (JRC) in 2000, the Globcover product realized by the 
European Space Agency, and the Moderate-resolution Imaging Spectroradiometer (MODIS) 
Collection 5 Land Cover database show a resolution of about 1 km at the equator (larger at higher 
latitudes) [4,5], 300 m [6,7], and 500 m [8], respectively. The 300-m global Climate Change Initiative 
Land Cover (CCI-LC) maps covering the period from 1992 to 2015 were utilized to assess the quality 
of the unchanged training sample pixels in five time periods. The Global Land Cover 
Characterization database (GLCC), produced by the effort between the U.S. Geological Survey 
(USGS), University of Nebraska Lincoln (UNL), and the JRC [9], shows a resolution of 1 km as well. 
Recent research activities have shown that, due to their coarse resolution, most of the listed datasets 
are not reliable over urban and agricultural areas since they show substantial disagreement with each 
other and with national statistics [1,10,11]. A much smaller number of high-resolution LC/LU maps, 
based on the available Landsat data, were generated at large scale and at various timescales as well. 
Nevertheless, such maps were produced for forestry purposes and, consequently, they do not report 
LC/LU information [12]. Similarly, Landsat data were also applied to provide contemporary data on 
human population distributions in Africa, Asia, and the Americas (WorldPop project) [13]. Only three 
Landsat-based global land cover maps are currently available: Finer Resolution Observation and 
Monitoring of Global Land Cover (FROM-GLC) by [14], GlobeLand30 by [15], and Normalized Urban 
Areas Composite Index (NUACI) derived maps by [16]. FROM-GLC and GlobeLand30 provide 
LC/LU information for the years of 2000 and 2010. Conversely, [16] provided LC/LU maps for the 
period 1990-2010 at five-year intervals. The situation changes at a continental, national, and regional 
scale, where Landsat and Sentinel images were widely used in many applications [17–24].  

Landsat archive has provided a limitless well of information since 1972, freely available and 
accessible and, consequently, suitable for describing Earth surface features. However, as underlined 
by [18], Landsat satellite implies three main challenges: 

(1) Dealing with a low number of useful images: Just satellite images with minimal cloud cover 
are acceptable. Thus, the amount of adequate data depends on the weather conditions of the 
experimental site. Consequently, areas characterized by a high rainfall, such as tropical and 
subtropical regions, show a lower number of available adequate images; 

(2) Identifying an efficient platform suitable for large image data processing; and 
(3) Developing adequate image classification methods with satisfactory performance. 
The introduction of Google Earth Engine (GEE) (https://earthengine.google.org), a cloud 

processing platform designed and developed over the last years by Google, offered a large number 
of available tools to face the first two issues [25]). As emphasized by [26], GEE integrates a data 
catalogue, continuously updated and composed of publicly available geospatial datasets, which may 
be consulted by users through the application programming interface (API). Therefore, operators can 
handle hundreds of data sources simultaneously and detect their quality and usefulness to meet their 
purposes. Moreover, nearly 6000 scenes belonging to active missions are integrated into GEE 
catalogue daily. As well as private data, such scenes can be processed by applying a set of complex 
and advanced algorithms implemented in GEE environment, exploiting its excellent computational 
power. Unlike desktop software, it involves many processors in running custom algorithms, 
speeding the process up considerably, and deleting the problems linked to the storage, the 
processing, and the analysis of a large volume of geospatial data [25]. For example, [12] tracked forest 
cover changed over a period of 12 years (2000–2012) at global scale by analyzing 654,178 Landsat 7 
scenes (707 terabytes) on GEE platform. The milestone was achieved in 100 h, while a standard 
desktop computer would have taken nearly 1,000,000 h to meet the same needs. In addition, GEE is 
more flexible than the software commonly applied to process geospatial data, such as Environment 
for Visualizing Images (ENVI) and Earth Resources Data Analysis System (ERDAS) Imagine, since 
users can implement their own custom codes. Although its potentialities are enormous, GEE is still 
in development and, consequently, many existing algorithms have not been programmed and 
integrated into the platform yet [25]. Moreover, its great versatility sets it as the standard to deal with 
the third challenge implied by Landsat satellite and to carry out several classification approaches 
introduced over the years.  
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Basically, the classification algorithms are grouped into two categories: Unsupervised and 
supervised approaches. The former aggregates the pixels of an image in classes by analyzing the 
similarity of attributes, without any analyst's contribution [16]. Such methods are commonly applied 
when the knowledge about the land cover is scarce. By contrast, the operators’ work is a key factor 
for the second group: they identify some training areas to coach the algorithms and to assign each 
pixel of the images in a specific category [22]. Although the first approaches are completely 
automatized, they are extremely time consuming since they require operator input to improve the 
accuracy of a classification map. However, supervised classification is not error-free either and the 
analyst has to refine the outcomes. 

Among the several methodologies developed to extract LC/LU information belonging to both 
groups, index-based approach method [27], maximum likelihood supervised classification (ML) [28], 
machine learning algorithms (MLAs) [29] and object-based image analysis (OBIA) approach [30–33] 
are the most popular. Yet, each of them shows some strengths and weakness [34]. Although the index-
based approach allows us to reduce the amounts of components and to classify a large area in a short 
time, several indices must be applied to detect the different LC/LU classes since each of them is aimed 
at distinguishing just one category [35]; for instance, vegetation indices are intended to identify 
"green areas" and so on. ML is recognized as one of the simplest algorithms to implement and to 
interpret [36], but its results are not satisfying without introducing a large amount of training areas 
since, because of insufficient a priori information, it assumes an equal a priori probability for each 
land cover classes [29]. Completely opposite are the MLAs, which comprise different approaches, 
such as artificial neural networks [37], support vector analysis (SVA) [38], and random forests (RF) 
[39]. Nevertheless, although these algorithms are efficient [40] and show more accurate results than 
the other conventional methods [29,41], MLAs are difficult to be implemented since, generally, a large 
volume of parameters must be fixed [40]. Moreover, MLAs tend to over-fit data [40]. There are some 
exceptions since each MLA shows peculiar traits and reveals different performances. Conversely to 
the other approaches included in the MLA group, SVA requires a smaller number of data training 
[42] and RF does not over-fit data due to the law of large numbers and allows us to reduce training 
dataset size with the consequent increment of overall error [43]. In contrast to the other methods, 
OBIA classification is based on the integration of spectral and geomorphological factors, which 
increase the accuracy of the resultant classification map [44]. Nevertheless, its outcomes look really 
promising if medium- or fine-resolution data are used as input [45]. 

Thus, none of the listed techniques allows us to generate optimal outcomes in all conditions. 
Therefore, the approach to apply should be selected considering multiple aspects, such as data type, 
spatial resolution, accuracy, operator skills, speed, classifier interpretability, and knowledge of 
ground truths. In [13], it showed that an index-based classification approach is efficient and effective 
for automatically extracting LC/LU information in multitemporal and multisensory analysis 
perspectives. The index-based approach involves the combination of two or more spectral bands, in 
order to classify Earth's features. Each coverage, indeed, showed a specific spectral signature, 
commonly recognized as their fingerprint, according to their ability of absorbing, transmitting, and 
reflecting the energy [28]. Thus, properly integrating particular wavelengths, distinctive of a specific 
element, allows us to detect LC/LU classes. Although several indices have been introduced in 
literature, we are still lacking an index-based method suitable for classifying the whole study area by 
using different Landsat satellite images. In fact, each index is based on the integration of different 
spectral bands in order to address a specific need and to extract a certain LC/LU class [46–49].  

The objective of this paper is to introduce a new classification algorithm to process Landsat 
images (Landsat Images Classification Algorithm: LICA) in GEE environment to automatically 
extract LC/LU information. This method was implemented after the analysis of the performance of 
82 indices, commonly applied in literature, to detect land cover classes processed in a more efficient 
way and by increasing the accuracy of final results. LICA is composed by the computation of two 
new indices, SwirTirRed (STRed index) and SwiRed, introduced in this paper for the first time: The 
former aimed to detect water, mining areas, and sparse and dense vegetation while, the latter, built-
up areas. LICA reliability was tested on the pilot site of Siponto using 12 Landsat images, belonging 
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to missions 5, 7, and 8, as input data. Those images were acquired in different seasons and years, 
covering a period of about 17 years, in order to demonstrate that it produces a baseline information 
suitable for performing multitemporal, multiseasons, and multisensory change detection analysis.  

2. Materials and Methods  

2.1. Study Area  

The method was tested along the coastline of Siponto in the Apulian Region (Southern Italy), 
studying an area bordered by the Mediterranean relief of Gargano to the north, the marshland to the 
south, the Candelaro estuary river and the Adriatic Sea to the west and east, respectively (Figure 1). 
The area, located about 2 km far from the city center of Manfredonia, was selected as an experimental 
site both because of its historical relevance and the changes suffered by its landscape over the years. 
This choice allowed us to test the performance of the proposed algorithm and to assess its accuracy 
on a zone characterized, over the years, by different features, configurations, and issues, such as the 
erosion process. 

 

Figure 1. Study area. 

Founded in 194 BC, Siponto became a crucial commercial and maritime hub during the Roman 
period, as proven by the Archaeological Park of Siponto. Its relevance gradually slackened as a result 
of the depopulation process that followed the swamping of its seaport and two devastating 
earthquakes in 1223 and 1255. From then on, as highlighted by [49], its territory was essentially 
earmarked to agricultural purposes, exploiting the dense network of irrigation ditches available in 
that environment. This trend was only inverted over the last few years as tourism started to develop, 
being encouraged by the beauty of the local landscape and favorable climate conditions. These 
elements were not the only triggering factors of the soil erosion process suffered by this area. The 
construction of the new port in Margherita di Savoia in 1952 was, in fact, currently recognized as its 
main cause [50]. Although such problems are well known and about 80% of the shoreline 
conservation activities performed in the Apulia Region have addressed the investigated area, erosion 
issues are still not solved [50]. 
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2.2. Landsat Image Classification Algorithm (LICA) 

Classification methods allowed us to generate thematic maps, assigning each pixel to the proper 
belonging class. As proposed by [46], an index-based approach was efficient to quickly reveal LC/LU 
classes from satellite images and, therefore, in this case, it was preferred to other classification 
approaches. By mixing spectral bands’ information, spectral indices are able to bring out Earth's 
features capacity in absorbing, reflecting, and transmitting the energy [51]. For this purpose, 82 
consolidated indices, commonly applied in literature, were computed to extract LC/LU information 
(Table 1). Twenty-six of them were selected to detect bare soil and built-up areas, while the remaining 
56, called vegetation indices (VIs), were aimed at identifying vegetation. Conventional indices were 
tested to bring out the potentiality of the strongest and weakest bands in extracting land cover types 
by verifying their reliability in the area under investigation. While all the algorithms were easy to 
implement, just three of them provided accurate results, i.e., Optimized Soil Adjusted Vegetation 
Index (OSAVI) [52] (Equation (1)), Green Optimized Soil Adjusted Vegetation Index (GOSAVI) [53] 
(Equation (2)), and Normalized Difference Bareness Index (version 2) (NDBaI2) [54] (Equation (3)).  𝑂𝑆𝐴𝑉𝐼 =  1.16 × (𝑁𝐼𝑅 − 𝑅)𝑁𝐼𝑅 + 𝑅 + 0.16  (1) 

𝐺𝑂𝑆𝐴𝑉𝐼 =  𝑁𝐼𝑅 − 𝐺𝑁𝐼𝑅 + 𝐺 + 0.16 (2) 

𝑁𝐷𝐵𝑎𝐼2 =  𝑆𝑊𝐼𝑅1 − 𝑇𝐼𝑅1𝑆𝑊𝐼𝑅1 + 𝑇𝐼𝑅1 (3) 

where NIR is the near-infrared band, R is the red component, G is the green band, SWIR and TIR are 
the shortwave infrared and the thermal infrared bands. The first two indices (OSAVI and GOSAVI) 
are included in the VIs group and, consequently, they are suitable for classifying dense and sparse 
vegetation. Conversely, NDBaI2 can correctly classify a higher number of categories: Built-up areas, 
mining areas, water, bare soil, and dense and sparse vegetation. 

Considering the number of LC/LU classes detected by each index and their best overall accuracy 
(Table 1), NDBaI2 appeared as the most reliable index and was consequently used as the starting 
point to develop LICA procedures. NDBaI2 is based on the combination of SWIR1 and TIR1 
(Equation (3)) and, therefore, this led us to believe that those bands should be the most essential to 
classify the whole study areas. This consideration was also supported by literature review since 
LC/LU classes are strongly affected by TIR [48] and SWIR, usually applied to distinguish bare soil 
and built-up areas [55,56]. Moreover, SWIR also allowed us to distinguish sparse and dense 
vegetation because of its dependency from the amount of water content in leaves [50,51]. Then, [57–
59] enhanced the importance of the red band since it is linked to the energy absorbed by chlorophyll. 
In addition, these data were also integrated with the information retrieved through the spectral 
signatures’ examination of each LC/LU category existing in the study area (Figure 2). SWIR1 band 
showed a great difference among mining areas, water, and sparse and dense vegetation. On the 
contrary, TIR1 displayed different values among water, bare soil, mining, and built-up areas (Figure 
2). In addition, Figure 2 enhances the contribution of red band as well to distinguish water, bare soils, 
mining, and built-up areas. 
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Table 1. Main commonly used classification indices listed in alphabetical order. Indices in bold show 
the best performance. LC/LU column describes the land cover/land use classes detected from each 
index. OA column reports the best overall accuracy of each index. LC/LU, land cover/land use; OA: 
overall accuracy; W, water; DV, dense vegetation; SV, sparse vegetation; MA, mining areas; BS, bare 
soil; BUA: built-up area; *, water mask is required; -:, no classes were detected. 

Spectral Index Citation LC/LU OA 
(%) Spectral Index Citation LC/LU OA 

(%) 
Aerosol Free Vegetation 

Index version 1.6 
(AFRI1.6) 

[60] DV, SV 72.24 
Modification of normalized 

difference water index  
(MNDWI) 

[90] W, BUA 74.62 

Aerosol Free Vegetation 
Index version 2.1 

(AFRI2.1) 
[60] DV, SV 86.02 

Modified Nonlinear 
Vegetation Index 

(MNLI) 
[91] W, DV, SV 77.40 

Atmospherically resistant 
vegetation 

index 
(ARVI) 

[61] W, DV, SV, 
BUA, BS 59.97 

Modified 
Soil Adjusted Vegetation 

Index 2 
(MSAVI2) 

[92] W, DV, SV, 
BUA, BS 83.30 

Adjusted Soil Brightness 
Index 

(ASBI)* 
[62] DV, SV  66.70 Misra Soil Brightness Index 

(MSBI) [93] W, DV, SV, 
BUA, BS 78.56 

Ashburn Vegetation Index 
(AVI) [63] W 99.78 Modified Simple Ratio 

(MSR) [94] W, DV, SV, 
BUA, BS 67.03 

Automated Water Extraction 
Index 

(AWEI) 
[64] W, DV, SV, 

BUA, MA, BS 68.04 
Misra Yellow Vegetation 

Index 
(MYVI) 

[93] - - 

Automated Water Extraction 
Index (shadow version) 

(AWEIsh) 
[64] W, BUA 91.46 New Built-up Index 

(NBI)* [95] DV, SV, 
BUA, MA, BS  71.46 

Build-area extraction index 
(BAEI)* [65] DV, SV, BUA 63.60 

Normalized Difference Bare 
Land Index 

(NBLI)* 
 

[96] DV, SV, 
BUA, MA, BS  75.51 

Biophysical Composition 
Index 
(BCI) 

[66] W, DV, SV 68.23 New Built-up Index 
(NBUI) [97] W, DV, SV 76.39 

Built-up Land Features 
Extraction 

Index 
(BLFEI) 

[67] W, DV, SV, 
BUA, BS 72.03 Normalized Canopy Index 

(NCI) [98] W, BUA 78.34 

Bare Soil Index 
(BSI)* [68] DV, SV  73.62 

Normalized Difference 
Bareness Index 

(NDBaI) 
[54] W, DV, SV, 

BUA, MA, BS 67.93 

Built-up land 
(BUI) [69] W, DV, SV 69.81 

Normalized Difference 
Bareness Index (version 2) 

(NDBaI2) 
[54] W, DV, SV, 

BUA, MA, BS 82.59 

Combinational Biophysical 
Composition Index 

(CBCI) 
[70] DV, SV 67.22 

Normalized Difference Built-
up Index 
(NDBI) 

[99] DV, SV 71.14 

Green Chlorophyll Index 
(CI) [71] W, DV, SV 68.40 

Normalized Difference 
Impervious Surface Index 

(NDISI) 
[100] W, MA 97.60 

Davies-Bouldin index 
(DBI) [72] W, DV, SV, 

BUA, BS 70.59 
Normalized Difference 

Moisture Index 
(NDMI)* 

[101] DV, SV  73.47 

Dry Bare-Soil Index 
(DBSI)* [73] DV, SV  68.47 

Normalized Difference 
Tillage Index 

(NDTI)* 
[102] DV, SV  71.57 

Simple Difference Indices 
(DVI) [74] W, DV, SV 69.85 Normalized Difference 

Vegetation Index (NDVI) [56] W, DV, SV, 
BUA, BS 73.24 

Enhanced Built-up and 
Bareness Index 

(EBBI) 
[75] W, DV, SV 64.93 

Normalized Difference Water 
Index 

(NDWI) 
[103] W, DV, SV, 

BUA, BS 73.54 

Enhanced Normalized 
Difference 

Impervious Surfaces Index 
(ENDISI) 

[76] DV, SV BUA, 
MA 67.55 Non-Linear Index 

(NLI) [104] W, DV, SV 76.63 

Enhanced Vegetation Index 
(EVI) [77] W, DV, SV, 

BUA, BS 58.59 
Optimized Soil Adjusted 

Vegetation Index 
(OSAVI) 

[52] W, DV, SV 88.84 

Green Atmospherically 
Resistant Vegetation 

Index 
(GARI) 

[78] W, DV, SV, 
BUA, BS 69.78 

Renormalized Difference 
Vegetation Index 

(RDVI) 
[105] W, DV, SV 77.34 
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“Ghost cities” Index 
(GCI) [79] W, DV, SV, 

BUA, BS 71.26 Ratio Vegetation Index 
(RVI) [106] W, DV, SV, 

BUA, BS 72.30 

Green Difference Vegetation 
Index 

(GDVI) 
[80] W, DV, SV 70.59 

Soil-Adjusted Vegetation 
Index 

(SAVI) 
[107] W, DV, SV 72.04 

Global Environment 
Monitoring Index 

(GEMI) 
[81] W, DV, SV 67.74 Soil Brightness Index 

(SBI) [108] W, BUA, MA 80.27 

Green leaf index 
(GLI) [82] DV, SV 66.70 

Specific Leaf Area 
Vegetation Index 

(SLAVI) 
[109] W, DV, SV 83.56 

Green Normalized Difference 
Vegetation Index 

(GNDVI) 
[78] W, DV, SV, 

BUA, BS 72.48 Simple Ratio 
(SR) [110] W, DV, SV 68.93 

Green Optimized Soil 
Adjusted Vegetation Index 

(GOSAVI) 
[53] W, DV, SV 89.89 

Transformed difference 
vegetation index 

(TDVI) 
[111] W 99.81 

Green-Red Vegetation Index 
(GRVI) [83] W, DV, SV, 

BUA, BS 71.26 Triangular Greenness Index 
(TGI) [112] - - 

Green Soil Adjusted 
Vegetation Index 

(GSAVI) 
[53] W, DV, SV, 

BUA, BS 73.91 
Triangular 

Vegetation Index 
(TVI) 

[113] W, DV, SV 74.15 

Green 
Vegetation Index 

(GVI)* 
[84] DV, SV, BUA  57.30 Urban Index 

(UI) [114] BUA 76.66 

Built-up Index 
(IBI) [85] DV, SV 74.75 

 Visible 
Atmospherically 
Resistant Index 

(VARI) 

[115] W, DV, SV 68.34 

Infrared Percentage 
Vegetation Index 

(IPVI) 
[86] W, DV, SV, 

BUA, BS 69.10 
Visible-Band Difference 

Vegetation Index 
(VDVI) 

[116] DV, SV 66.70 

Modified Bare Soil Index 
(MBSI) [70] W, DV, SV 73.22 

Vegetation Index of Biotic 
Integrity 
(VIBI) 

[117] DV, SV 66.57 

Modified Chlorophyll 
Absorption Ratio Index1 

(MCARI1) 
[87] DV, SV 64.28 

Wide Dynamic Range 
Vegetation Index 

(WDRVI) 
[118] W, DV, SV 78.87 

Modified Chlorophyll 
Absorption Ratio Index 

(MCARI2) 
[87] W, DV, SV, 

BUA, BS 82.24 Water index 2015 
(WI2015) [119] W 99.81 

MERIS Global Vegetation 
Index 

(MGVI) 
[88] W, DV, SV 76.88 

Worldview Improved 
Vegetative Index 

(WV-VI) 
[120] W, DV, SV, 

BUA, BS 75.47 

Modification of Normalized 
Difference Snow Index 

(MNDSI) 
[89] W, MA 76.55 

Yellow 
Stuff Index 

(YVI)* 
[121] DV, SV  66.70 
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Figure 2. Spectral signature of each class detected in the study area. The x and y axes report the 
original Landsat bands (Landsat 7 -  Enhanced Thematic Mapper Plus (ETM+) and the surface 
reflectance, respectively, where 1 is band 1 (blue), 2 is band 2 (green), 3 is band 3 (red), 4 is band 4 
(near infrared), 5 is band 5 (shortwave infrared 1), 6 is band 6 (thermal infrared), and 7 is band 7 
(shortwave infrared 2). 

Therefore, SWIR, TIR, and R were integrated to classify water, mining areas, and sparse and 
dense vegetation. Conversely, just SWIR and R were combined to detect built-up areas. The first 
index, called SwirTirRed index (STRed index), is reported in Equation (4). The second one, named 
SwiRed index, is described by Equation (5). 𝑆𝑇𝑅𝑒𝑑 𝑖𝑛𝑑𝑒𝑥 =  𝑆𝑊𝐼𝑅1 + 𝑅 − 𝑇𝐼𝑅1𝑊𝐼𝑅1 + 𝑅 + 𝑇𝐼𝑅1  (4) 

𝑆𝑤𝑖𝑅𝑒𝑑 𝑖𝑛𝑑𝑒𝑥 =  𝑆𝑊𝐼𝑅1 − 𝑅𝑆𝑊𝐼𝑅1 + 𝑅 (5) 

The workflow of Landsat Images Classification Algorithm (LICA) is reported in Figure 3. 

 
Figure 3. Landsat Images Classification Algorithm (LICA) classification workflow. 
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LICA is generated by the sequential computation of the two introduced new indices (STRed and 
SwiRed index) on the outcome of a cloud masking procedure, performed on atmospherically 
corrected Landsat images. Once their implementation was completed, thresholds to identify each 
LC/LU class were set (Table 2) and the resultant maps were merged. Figure 3 describes the suggested 
workflow to be set. 

Table 2. Range value of LICA to extract the different land cover classes. 

Land Cover Class Range value (SwiRed) 
Built- up areas  0 < value < 0.22 

Land Cover Class Range value (STRed) 
Water value < −0.5 

Dense vegetation −0.05 < value < −0.07 
Sparse vegetation 0.07 < value < 0.00 

Mining areas  Value > 0.45 

2.3. Database Construction in GEE Platform 

GEE (https://earthengine.google.com/) is a cloud computing environment designed and released 
by Google in the last few years to overcome desktop platforms’ limitations related to the storage and 
the management of a huge amount of geospatial data [25]. Such a platform is characterized by a 
dedicated high-performance computing (HPC) infrastructure that provides an interactive developing 
environment directly connected to the available open data, such as Landsat and Sentinel images 
archive, as well as digital elevation models, vector, socio-economic, topographic, and climate layers 
sets [20]. Therefore, these data can be directly downloaded both in raw and preprocessed format, 
minimizing their acquiring and processing time, in GEE platform. To meet the purpose of our 
research, 12 scenes covering a period of 17 years, from 2002 to 2019, radiometrically and 
atmospherically corrected, belonging to LANDSAT missions 5, 7, and 8, referring to the experimental 
area of Siponto, were selected (Table 3). Particularly, four images were collected for each mission, 
each of them belonging to a different season (winter, spring, summer, and fall). The collected images 
were provided in the Universal Transverse Mercator (UTM) projection and the World Geodetic 
System (WGS84) datum. 

Table 3. Selected Landsat data description. ETM+, enhanced thematic mapper; TM, thematic mapper; 
OLI-TIRS, operational land imager - thermal infrared. 

ID Landsat Satellite 
Mission Sensor Landsat Images Acquisition 

Date 
Average Cloud 

Cover (%) 
1 

Landsat 7 ETM+ 

LE07_L1TP_188031_20020121_20170213 21 January 2002 4 
2 LE07_L1TP_188031_20020801_20170213 01 August 2002 6 
3 LE07_L1TP_189031_2002127_20170128 27 October 2002 1 
4 LE07_L1TP_188031_20030414_20170126 14 April 2003 4 

1 

Landsat 5 TM 

LT05_L1TP_188031_20110207_20161010 07 February 
2011 1 

2 LT05_L1TP_188031_20110327_20161209 27 March 2011 16 
3 LT05_L1TP_189031_20110825_20161008 25 August 2011 0 
4 LT05_L1TP_188031_20111005_20161005 05 October 2011 1 

1 

Landsat 8 OLI-
TIRS 

LC08_L1TP_188031_20171208_20171223 08 December 
2017 1.69 

2 LC08_L1TP_189031_20180812_20180815 12 August 2018 8.1 

3 LC08_L1TP_188031_20180922_20180928 22 September 
2018 2.41 

4 LC08_L1TP_188031_20190925_201911017 17 March 2019 19.46 

As shown in Table 3, cloud cover information was also considered: Only scenes characterized 
by a cloud cover value lower than 20% were taken into account in the data selection phase. Where 
needed, clouds were subsequently masked through the adoption of proper filters, based on the 
exploitation of the information provided by the quality assessment (QA) band, already implemented 
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in GEE, as suggested by [122] and [123]. In this way, the cloudy pixels were rendered transparent 
and, therefore, excluded from further algorithm implementation. 

On the contrary, selected images were not orthorectified since the geometric accuracy provided 
by USGS was satisfactory. Therefore, the developed classification algorithm was directly computed 
on the outcome of the cloud cover masking procedure, as described in the workflow reported in 
Figure 3. Landsat archive analysis, cloud masking process, and all the further processing phases were 
performed on the cloud, exploiting GEE interactive environment. 

2.4. Implementation of Classification Indices and LICA in GEE 

Once the images were downloaded and preprocessed, the JavaScript application programming 
interface (API), implemented in the GEE, was used to integrate the spectral bands and estimate the 
indices, commonly used in literature to classify satellite images. In Section 2.2 the calculated indices 
were described in detail. The documentation for combining spectral bands is reported at 
https://developers.google.com/earth-engine (accessed 2 September 2019). Subsequently, the 
proposed workflow (Figure 3) for automatically classifying Landsat images was implemented and 
LICA images were then generated. Class distinctions were obtained using LICA thresholds (Table 2). 

2.5. Strategies to Evaluate the Accuracy  

A multitemporal reference dataset based on a stratified random sampling point was generated 
to assess the accuracy of the proposed approach [124,125]. A total of 11,245 pixels as testing samples, 
proportionally distributed in each class according to their extension, were selected. Therefore, 1328 
pixels were used to verify the accuracy of water, 492 pixels for built-up areas, 151 pixels for mining 
areas, 3165 pixels for mining areas, and 755 and 924 pixels were implemented to verify the accuracy 
of sparse and dense vegetation categories, respectively. Subsequently, a manual interpretation was 
performed to label samples according to their allocation. Samples were overlapped on the 
corresponding original Landsat data, manually interpreted in order to detect land cover information, 
and assigned to a specific class. This procedure was separately implemented on each resultant 
classification map.  

The metrics of overall accuracy (OA), producer's accuracy (PA), and user's accuracy (UA) were 
next computed to perform a per-pixel accuracy assessment of classification procedure outcomes 
[29,126–129]. OA, PA, and UA showed a value between 0 and 1: The higher the values, the better the 
accuracy.  

Finally, the performance of the introduced algorithm was compared to the one achieved by each 
index commonly applied in literature to verify its advantages and disadvantages. 

3. Results 

3.1. Classification Results 

This section is dedicated to the classification procedure outcomes obtained through the 
application of indices consolidated in literature (Figures 4–6) and the proposed LIC algorithm 
(Figures 7 and 8). Traditional indices didn't show satisfying results, except for OSAVI, GOSAVI, and 
NDBaI2, which were presented. Moreover, since their performance was similar for all the Landsat 
missions considered, for the sake of brevity, just the outcomes generated from the processing of 
Landsat 8 (17 March 2019) are reported. 

OSAVI algorithm distinguishes three classes (water, and dense and sparse vegetation) (Figure 
4). Nevertheless, the classification was not accurate since some misclassified pixels could be 
pinpointed between dense and sparse vegetation, as highlighted on the right side of Figure 4. This 
means that it cannot correctly detect different types of vegetation, its density, or health status. This is 
confirmed by analyzing the accuracy of its performance, reported in the following section (see Section 
3.2).  



Remote Sens. 2020, 12, 1201 11 of 26 

 

 
Figure 4. Optimized Soil Adjusted Vegetation Index (OSAVI) classification outcome for Landsat 8 
(image acquired on 17 March 2019). On the right, zoomed images with some misclassifications. 

GOSAVI algorithm demonstrated a similar trend, as it could only distinguish three classes 
(water, and dense and sparse vegetation) as well. Like OSAVI, it presented some misclassified pixels, 
reported on the right side of Figure 5, yet it did not show problems in classifying dense and sparse 
vegetation. This improvement was due to the introduction of a green band in the OSAVI computation 
to register the information of leaf pigments. The observed issues were related to water detection. Its 
classification accuracy is reported in Section 3.2. 

 

Figure 5. Green Optimized Soil Adjusted Vegetation Index (GOSAVI) classification outcome for 
Landsat 8 (image acquired on 17 March 2019). On the right, zoomed images with some 
misclassifications. 

In contrast to OSAVI and GOSAVI, NDBai2 allowed us to detect more classes: In addition to 
water, and dense and sparse vegetation, mining areas and built-up areas were also distinguished 
(Figure 6). Despite the improved performance, its accuracy was lower and some issues were detected 
on the resultant map: Built-up areas were generally classified as mining areas, whereas dense 
vegetation was confused with sparse vegetation and water (Figure 6). This was confirmed by its 
confusion matrix (see Section 3.2) 
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Figure 6. Normalized Difference Bareness Index 2 (NDBaI2) classification outcome for Landsat 8 
(image acquired on 17 March 2019). On the right, zoomed images with some misclassifications. 

As described in Section 2.2, LICA consisted of two different steps: The former intended to 
classify water, mining areas, and dense and sparse vegetation (Figures 7–9); the latter aimed at 
identifying built-up areas (Figures 10–12). The first phase was performed by applying the new STRed 
index, while in the second phase the novel SwiRed index was implemented. Thus, the resultant maps 
of the proposed algorithm provided information on the same number of classes retrieved by NDBaI2 
(Figure 13). However, LICA showed higher accuracy than NDBaI2, as demonstrated through the 
confusion matrix described in the following section, since misclassified pixels were drastically 
reduced. 

 

Figure 7. SwirTiRed index (STRed) classification outcome for Landsat 5 (image acquired on 27 March 
2011). On the right, zoomed images with some misclassifications. 
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Figure 8. SwirTiRed index (STRed) classification outcome for Landsat 5 (image acquired on 5 October 
2011). On the right, zoomed images with some misclassifications. 

 

Figure 9. SwirTiRed index (STRed) classification outcome for Landsat 7 (image acquired on 14 April 
2003). On the right, zoomed images with some misclassifications. 

 

Figure 10. SwiRed index (SwiRed) classification outcome for Landsat 8 (image acquired on 17 March 
2019). On the right, zoomed images with some misclassifications. 
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Figure 11. SwiRed index (SwiRed) classification outcome for Landsat 5 (image acquired on 5 October 
2011). On the right, zoomed images with some misclassifications. 

 

Figure 12. SwiRed index (SwiRed) classification outcome for Landsat 7 (image acquired on 14 April 
2003). On the right, zoomed images with some misclassifications. 
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Figure 13. Landsat Images Classification Algorithm (LICA) classification outcome for Landsat 8 
(image acquired on 17 March 2019), Landsat 7 (image acquired on 6 April 2003), Landsat 5 (image 
acquired on 27 March 2011). 

3.2. Accuracy Assessment  

Tables 4–12 provide OA, UA, and PA of resultant classification maps obtained through the 
computation of OSAVI, GOSAVI, and NDBIaI2 on the 12 atmospherically corrected Landsat data. On 
the contrary, just the best OA related to the outcomes generated by the remaining 78 indices are 
shown in Table 1. Although the best OA value was quiet high for the three indices (88.91, 89.89, and 
82.59, respectively), their accuracy matrices bring out the difficulties encountered in classifying the 
study area, e.g., OSAVI incorrectly identified sparse vegetation pixels; similarly, NDBIaI2 can just 
detect 30% of pixels included in built-up areas. Therefore, although their results were satisfying, they 
cannot be used to extract accurate information related to the land cover of the experimental area. 

Table 4. OA, PA, and UA obtained through the application of Optimized Soil Adjusted Vegetation 
Index (OSAVI) on the data acquired by Landsat 7 mission. UA, user’s accuracy; PA, producer’s 
accuracy; OA, overall accuracy. 

 L7—21 January 2002 L7—14 April 2003 L7—01 August 2002 L7—27 October 2002 
Land Cover Class PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) 

Water 95.79 100.00 95.04 100.00 90.11 98.99 95.60 99.24 
Dense Vegetation 79.57 87.40 72.38 86.21 70.97 98.05 95.56 45.84 
Sparse Vegetation 73.89 89.78 90.55 81.91 25.14 33.96 49.30 67.03 

Not classified 100.00 78.38 100.00 92.28 91.13 62.43 79.47 98.17 
Mining Areas / / / / / / / / 

Bare Soil / / / / / / / / 
Built-up areas / / / / / / / / 

OA (%) 87.83 88.84 74.02 78.23 
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Table 5. OA, PA, and UA obtained through the application of Optimized Soil Adjusted Vegetation 
Index (OSAVI) on the data acquired by Landsat 5 mission. UA, user’s accuracy; PA, producer’s 
accuracy; OA, overall accuracy. 

 L5—07 February 2011 L5—27 March 2011 L5—25 August 2011 L5—05 October 2011 
Land Cover Class PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) 

Water 95.05 93.35 89.73 100.00 90.30 99.05 66.30 96.02 
Dense Vegetation 64.16 53.27 66.49 78.44 48.54 93.55 80.54 69.00 
Sparse Vegetation 35.36 58.67 76.25 81.06 43.05 51.90 67.92 80.36 

Not classified 92.21 70.75 100.00 71.88 81.90 40.89 93.83 72.77 
Mining Areas / / / / / / / / 

Bare Soil / / / / / / / / 
Built-up areas / / / / / / / / 

OA (%) 68.71 84.84 72.44 77.98 

Table 6. OA, PA, and UA obtained through the application of Optimized Soil Adjusted Vegetation 
Index (OSAVI) on the data acquired by Landsat 8 mission. UA, user’s accuracy; PA, producer’s 
accuracy; OA, overall accuracy. 

 L8—08 December 2008 L8—12 August 2018 L8—22 September 
2018 L8—17 March 2019 

Land Cover Class PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) 
Water 99.13 100.00 98.19 99.85 89.01 99.53 97.30 100.00 

Dense Vegetation 76.93 75.39 59.09 91.95 86.49 96.60 80.85 73.47 
Sparse Vegetation 22.91 52.00 27.34 51.27 81.74 82.82 55.04 71.57 

Not classified 99.46 70.60 99.81 65.33 93.98 83.79 100.00 79.54 
Mining Areas / / / / / / / / 

Bare Soil / / / / / / / / 
Built-up areas / / / / / / / / 

OA (%) 81.41 81.00 88.91 83.56 

Table 7. OA, PA, and UA obtained through the application of Green Optimized Soil Adjusted 
Vegetation Index (GOSAVI) on the data acquired by Landsat 7 mission. UA, user’s accuracy; PA, 
producer’s accuracy; OA, overall accuracy. 

 L7—21 January 2002 L7—14 April 2003 L7—01 August 2002 L7—27 October 2002 
Land Cover Class PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) 

Water 96.34 100.00 96.70 100.00 86.26 100.00 96.15 97.22 
Dense Vegetation 60.57 88.48 70.22 91.18 70.97 93.12 86.69 44.79 
Sparse Vegetation 65.78 83.83 94.67 76.05 18.23 39.05 52.09 71.39 

Not classified 100.00 70.57 89.16 95.52 97.21 59.50 83.09 97.50 
Mining Areas / / / / / / / / 

Bare Soil / / / / / / / / 
Built-up areas / / / / / / / / 

OA (%) 82.86 87.74 73.57 79.12 

Table 8. OA, PA, and UA obtained through the application of Green Optimized Soil Adjusted 
Vegetation Index (GOSAVI) on the data acquired by Landsat 5 mission. UA, user’s accuracy; PA, 
producer’s accuracy; OA, overall accuracy. 

 L5—07 February 2011 L5—March 27 2011 L5—25 August 2011 L5—05 October 2011 
Land Cover Class PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) 

Water 94.32 100.00 95.73 100.00 93.56 58.46 74.91 97.61 
Dense Vegetation 60.04 43.51 63.98 88.15 52.30 89.29 81.71 54.40 
Sparse Vegetation 25.03 35.39 89.31 81.74 43.05 40.25 59.62 85.87 

Not classified 59.51 52.17 99.58 100.00 90.26 43.90 95.41 77.60 
Mining Areas / / / / / / / / 

Bare Soil / / / / / / / / 
Built-up areas / / / / / / / / 

OA (%) 55.22 89.89 76.37 78.82 
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Table 9. OA, PA, and UA obtained through the application of Green Optimized Soil Adjusted 
Vegetation Index (GOSAVI) on the data acquired by Landsat 8 mission. UA, user’s accuracy; PA, 
producer’s accuracy; OA, overall accuracy. 

 L8—08 December 2008 L8—12 August 2018 L8—22 September 
2018 L8—17 March 2019 

Land Cover Class PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) 
Water 99.49 100.00 98.19 100.00 90.84 98.41 99.81 100.00 

Dense Vegetation 75.62 75.29 59.72 89.02 84.80 89.64 92.88 63.74 
Sparse Vegetation 40.50 24.23 25.20 43.56 75.00 87.34 17.94 61.86 

Not classified 99.46 66.95 100.00 66.31 97.95 84.62 100.00 99.74 
Mining Areas / / / / / / / / 

Bare Soil / / / / / / / / 
Built-up areas / / / / / / / / 

OA (%) 79.32 80.89 89.15 80.35 

Table 10. OA, PA, and UA obtained through the application of Normalized Difference Bareness Index 
(version 2) (NDBIaI2) on the data acquired by Landsat 7 mission. UA, user’s accuracy; PA, producer’s 
accuracy; OA, overall accuracy. 

 L7—21 January 2002 L7—14 April 2003 L7—01 August 2002 L7—27 October 2002 
Land Cover Class PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) 

Water 95.24 100.00 97.07 100.00 87.55 100.00 95.24 100.00 
Dense Vegetation 69.89 54.32 81.48 95.14 41.94 50.61 89.11 79.78 
Sparse Vegetation 19.62 51.75 52.36 75.66 69.34 60.19 26.84 27.27 

Not classified / / / / / / / / 
Mining Areas 30.96 92.55 77.58 94.78 90.20 95.04 64.77 95.25 

Bare Soil 94.35 63.88 87.17 62.54 91.33 79.71 69.31 64.17 
Built-up areas 27.18 31.98 41.04 37.04 31.79 48.44 46.15 46.88 

OA (%) 66.89 76.10 76.23 66.61 

Table 11. OA, PA, and UA obtained through the application of Normalized Difference Bareness Index 
(version 2) (NDBIaI2) on the data acquired by Landsat 5 mission. UA, user’s accuracy; PA, producer’s 
accuracy; OA, overall accuracy. 

 L5—07 February 2011 L5—27 March 2011 L5—25 August 2011 L5—05 October 2011 
Land Cover Class PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) 

Water 96.89 100.00 90.59 100.00 82.49 100.00 84.25 100.00 
Dense Vegetation 86.56 53.91 74.73 73.42 62.97 45.47 53.70 54.55 
Sparse Vegetation 54.76 84.42 38.24 65.05 78.63 78.63 48.11 57.41 

Not classified / / / / / / / / 
Mining Areas 56.86 99.32 86.27 98.65 84.71 99.08 82.56 97.89 

Bare Soil 93.81 89.17 92.13 59.38 92.50 83.88 79.33 58.56 
Built-up areas 28.21 26.19 16.92 31.43 42.82 38.66 34.87 45.26 

OA (%) 78.95 75.07 80.28 61.55 

Table 12. OA, PA, and UA obtained through the application of Normalized Difference Bareness Index 
(version 2) (NDBIaI2) on the data acquired by Landsat 8 mission. UA: UA, user’s accuracy; PA, 
producer’s accuracy; OA, overall accuracy. 

 L8—08 December 2008 L8—12 August 2018 L8—22 September 
2018 L8—17 March 2019 

Land Cover Class PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) 
Water 98.55 100.00 100.00 99.93 93.77 99.03 96.72 100.00 

Dense Vegetation 91.53 57.10 32.45 70.41 39.86 77.12 98.89 80.93 
Sparse Vegetation 27.48 50.30 69.59 62.02 36.96 48.60 37.59 71.83 

Not classified / / / / / / / / 
Mining Areas 41.96 100.00 81.18 99.04 74.02 99.52 79.92 100.00 

Bare Soil 93.72 87.34 93.36 80.67 88.88 32.16 30.14 39.25 
Built-up areas 29.74 39.27 26.41 32.54 20.00 38.31 70.19 23.10 

OA (%) 80.20 82.59 66.31 72.04 

Tables 13–15 describe the UA, PA, and AO of STRed index computed on the images acquired by 
Landsat 7, 5, and 8, respectively. STRed index performance was satisfying since the OA was higher 
than 80.95 for all the selected images. Moreover, UA and PA showed a satisfying value for all the 
data as well, regardless of the sensors and period under investigation. Indeed, their value was higher 
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than 62.93 with the exception of UA (54.57) for the dense vegetation class extracted from the data 
acquired on 21 January 2002 (Landsat 7) (Table 13). 

Table 13. OA, PA, and UA obtained computing STRed on the images acquired by Landsat 7 mission. 
UA, user’s accuracy; PA, producer’s accuracy; OA, overall accuracy. 

 L7—21 January 2002 L7—14 April 2003 L7—01 August 2002 L7—27 October 2002 
Land Cover Class PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) 

Water 95.79 97.39 98.80 100.00 98.35 100.00 99.15 96.88 
Sparse Vegetation 85.75 69.37 72.56 92.81 62.98 74.51 92.95 93.78 
Dense Vegetation 76.76 54.57 98.66 89.84 75.65 69.52 84.08 76.41 

Mining areas 81.57 100.00 75.11 99.41 97.65 88.25 46.44 97.18 
Not classified 85.67 95.78 99.73 80.62 89.66 72.90 61.93 83.63 

OA (%) 86.49 94.30 80.95 87.73 

Table 14. OA, PA, and UA obtained computing STRed on the images acquired by Landsat 5 mission. 
UA, user’s accuracy; PA, producer’s accuracy; OA, overall accuracy. 

 L5—07 February 
2011 

L5—27 March 
2011 

L5—25 August 
2011 

L5—05 October 
2011 

Land Cover 
Class PA (%) UA (%) PA 

(%) UA (%) PA 
(%) UA (%) PA (%) UA (%) 

Water 99.27 98.91 98.72 100.00 94.86 99.62 97.38 100.00 
Sparse 

Vegetation 81.40 90.78 91.45 95.65 89.69 94.63 68.64 55.10 

Dense 
Vegetation 80.11 80.54 98.31 91.26 84.94 78.99 96.04 82.20 

Mining areas 69.80 99.44 98.67 99.11 87.45 100.00 94.22 99.53 
Not classified 99.32 80.87 99.31 97.17 99.47 89.61 86.83 78.42 

OA (%) 87.88 97.76 93.20 85.83 

Table 15. OA, PA, and UA obtained accuracy computing STRed on the images acquired by Landsat 
8 mission. UA, user’s accuracy; PA, producer’s accuracy; OA, overall accuracy. 

 L8—08 December 2008 L8—12 August 2018 L8—22 September 2018 L8—17 March 2019 
Land Cover Class PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) 

Water 98.63 97.92 97.68 100.00 98.65 100.00 99.43 100.00 
Sparse Vegetation 94.21 97.93 89.59 87.13 69.29 72.73 93.53 98.64 
Dense Vegetation 86.28 92.92 73.01 74.72 73.74 86.13 99.17 93.93 

Mining areas 84.51 96.53 82.75 98.60 61.56 100.00 98.22 97.79 
Not classified 99.55 56.08 99.53 79.52 100.00 53.04 98.89 99.19 

OA (%) 93.33 87.93 85.08 98.71 

UA, PA, and AO of SwiRed index computed on the images acquired by Landsat 7, 5, and 8, 
respectively, are shown in Tables 16–18, respectively. SwiRed index shows satisfying outcomes as 
well. Indeed, the OA observed was higher than 85%, while UA and PA were on average equal to 
72.56, except for the built-up areas extracted by Landsat5 on 25 August 2011 (58.21). 

Table 16. OA, PA, and UA obtained computing SwiRed index on the images acquired by Landsat 7 
mission. UA, user’s accuracy; PA, producer’s accuracy; OA, overall accuracy. 

 L7—21 January 2002 L7—14 April 2003 L7—01 August 2002 L7—27 October 2002 
Land Cover Class PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) 

Built-up areas 72.82 82.75 90.45 73.77 74.10 74.10 80.00 83.88 

Not classified 98.27 96.05 93.88 89.07 97.88 97.32 97.55 97.20 
OA (%) 91.31 89.28 92.77 94.30 
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Table 17. OA, PA, and UA obtained computing SwiRed index on the images acquired by Landsat 5 
mission. UA, user’s accuracy; PA, producer’s accuracy; OA, overall accuracy. 

 L5—07 February 2011 L5—27 March 2011 L5—25 August 2011 L5—05 October 2011 
Land Cover Class PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) 

Built-up areas 77.44 71.79 76.11 72.56 58.21 87.04 86.11 79.81 
Not classified 93.90 93.97 97.43 90.50 98.07 93.09 97.37 97.43 

OA (%) 91.03 89.80 94.00 95.56 

Table 18. OA, PA, and UA obtained computing SwiRed index on the images acquired by Landsat 8 
mission. UA, user’s accuracy; PA, producer’s accuracy; OA, overall accuracy. 

 L8—08 December 2008 L8—12 August 2018 L8—22 September 2018 L8—17 March 2019 
Land Cover Class PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) 

Built-up areas 76.92 84.73 72.56 77.70 85.00 72.26 74.78 80.51 

Not classified 97.69 98.07 78.81 96.01 97.49 93.73 97.73 92.74 
OA (%) 94.71 85.31 91.40 91.20 

4. Discussion 

This paper proposed a new classification algorithm to automatically extract LC/LU information 
from Landsat satellite open data: Landsat Images Classification Algorithm (LICA). Although no 
classification method showed optimal performances in all conditions, the index-based method was 
efficient and robust in detecting LC/LU classes in a short time using satellite images provided by 
several sources, as highlighted by [32]. Therefore, the index classification method was selected as the 
benchmark approach to develop the Landsat Images Classification Algorithm, introduced in this 
paper. LICA integrates two new indices, namely STRed and SwiRed, obtained by combining ad hoc 
spectral bands in order to classify the whole study area. As shown in Section 2.2, the selected bands 
were chosen by examining the literature review describing the role of each spectral band [44–46], the 
performance of 82 widely spread indices (listed in Table 1), and the specific spectral signature of each 
class existing in the study area, revealed in the experimental area under investigation. Therefore, the 
former index integrated Swir, Tir, and Red bands (Equation (4)), identifying water, mining areas, and 
sparse and dense vegetation (Figure 7); the latter, instead, combined Swir and Red bands (Equation 
(5)), distinguishing built-up areas (Figure 8). LICA was tested on 12 satellite images related to the 
experimental site of Siponto, an historical municipality in the Apulian Region, Southern Italy (Figure 
1). One image for each season was selected from three Landsat missions (5, 7, and 8) for a total of 12 
images. The 82 conventional indices were applied to the study area as well. Among them, just three 
traditional indices showed quite satisfying outcomes: OSAVI (Figure 4), GOSAVI (Figure 5), and 
NDBaI2 (Figure 6). However, the first two indices (OSAVI and GOSAVI) could just distinguish water, 
and sparse and dense vegetation, while the third, in addition to those, also identified built-up, bare 
soil, and mining areas. Their outcomes are confrontable with that one obtained by other research 
activities. OSAVI and GOSAVI belong to the vegetation indices (VIs) category and, therefore, they 
are aimed at identifying vegetation class [52,53]. VIs group is composed by many indices, which must 
be chosen according to the environmental features since each of them is suitable for meeting a specific 
purpose [130]. Commonly, Vis combining visible and NIR bands show a better sensitivity in detecting 
green areas [130]. This paper confirmed these assumptions; indeed, both GOSAVI and OSAVI 
integrated visible and NIR bands. Moreover, GOSAVI showed a higher accuracy than OSAVI, thanks 
to the introduction of the green band, which is more sensitive to the presence and vitality of 
vegetation [130]. Conversely, NDBaI was proposed to discriminate different LC/LU categories even 
if it showed some difficulties in recognizing the bare rock areas and in distinguishing agricultural 
from urban areas in the zones where the urban heat phenomenon is serious [131]. Therefore, it was 
partially modified and NDBaI2 was introduced to improve its performance. Here, both of them were 
able to classify the whole study area, even if the best OA of NDBaI2 (82.59) was higher than NDBaI 
OA (67.93) (Table 1). Nevertheless, NDBaI2’s accuracy was strongly influenced by its difficulties in 
distinguishing built-up areas and sparse vegetation (Tables 10-12) in all the collected images. The 
Automated Water Extraction Index (AWEI) was able to discriminate the different kinds of categories 
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as well as NDBaI and NDBaI2, but its accuracy was considerably lower than NDBaI2 OA value. The 
worst performance was shown by Misra Yellow Vegetation Index (MYVI) [93] and Triangular 
Greenness Index (TGI) [112] since they were not able to discriminate any LC/LU categories in the 
experimental site (Table 1). MYVI was based on empirical methods without considering atmosphere-
soil-vegetation interactions. Therefore, it was particularly affected by soil brightness, encountering 
some difficulties in extracting land cover information [130]. Although TGI was proposed to assess 
vegetation zones, it was strongly affected by the scale and by chlorophyll content, showing promising 
results only applying high-resolution images as input. This resulted in its inability in identifying 
vegetation using medium-resolution data provided by Landsat missions [132]. Moreover, although 
Automated Water Extraction Index (shadow version) (AWEIsh) and Ashburn Vegetation Index (AVI) 
had really high overall accuracy, equal to 91.46 and 99.78, respectively, they could detect a few of 
LC/LU classes: The former detected water and built-up areas, the latter detected only water. 

In view of their performance, NDBAI2 was chosen as a base to develop the new algorithm. Thus, 
NDBaI2 and the proposed algorithm were the only ones able to extract the maximum number of 
LC/LU classes with a high overall accuracy. Moreover, LICA went beyond NDBaI2’s limitations: Both 
STRed and SwiRed showed a higher OA than NDBaI2, solving the issues encountered by the last one 
in classifying built-up areas and sparse vegetation (Tables 13–18). This was due to the introduction 
of R band, required to improve index performance in detecting vegetated areas since R is sensitive to 
the energy absorbed by chlorophyll [52]. Moreover, SWIR and TIR1 bands were also combined to 
distinguish bare soil and built-up areas [53]. This resulted in an optimal OA of STRed and SwiRed, 
equal to 94.71% and 97.76%, respectively. Besides maximizing the number of categories to be detected 
and improving classification accuracy, LICA was designed in order to be applied on all Landsat 
missions, equipped with different sensors, so that multisensors, multitemporal, and multiseason 
analyses, which are essential in environmental monitoring and planning management, could be 
performed. Moreover, users can apply the whole algorithm or just one of the two proposed indices, 
according its needs.  

To automatize LC/LU extraction, the algorithm was implemented in GEE environment, a new 
platform recently designed by Google (https://earthengine.google.com/). Thanks to its parallel 
processing capacity, already shown in previous research activities [20], LIC algorithms can be run in 
a few minutes, even if computation times increase with the amount of data to be handled. Therefore, 
using GEE allowed overcoming desktop system limitations due to excessive processing time needed 
to process geospatial big data. This paper confirmed the great potentiality of the GEE platform in 
processing geospatial big data, as already shown in previous research works [18–20,113]. 

5. Conclusions 

In this study, an automated algorithm for extracting land cover information from multitemporal 
and multisensors open data in the GEE platform was introduced. The procedure did not need any 
external training datasets, which are time consuming (collection time must be considered) and may 
be affected by human errors. On the contrary, LICA used the integration of two novel indices (STRed 
and SwiRed) which allowed us to analyze land covers from Landsat images, maximizing the number 
of classes to be extracted and increasing classification accuracy, compared to the conventional indices 
commonly applied in literature. Landsat images were selected to test LICA in order to exploit the 
huge amount of open data available from 1972 and ensuring its reliability in multitemporal and 
multisensors analyses in order to provide information that could be used to perform land cover 
change analyses, which are essential to guide future planning strategies. 

All computational steps were implemented in the GEE cloud computing platform, thereby 
avoiding the necessity of excessive desktop processing power to handle geospatial big data and 
automating the whole procedure. Therefore, the integration of the LIC algorithm and GEE 
environment allowed us to quickly extract accurate land cover information. Thus, adopting the 
proposed method helps to provide more contemporary information while also reducing costs, 
acquisition, and processing times. 
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