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Abstract: Electrohydraulic servovalves are widely used for precise motion control in aerospace and
other industries due to their high accuracy and speed of response. However, commercial two-stage
servovalves have several undesirable characteristics, such as the power consumption caused by the
quiescent flow (internal leakage) in the pilot stage, and the complexity and high number of parts
of the torque motor assembly, which affect the cost and the speed of manufacture. The solution
to these problems can help to reduce costs, weight and power consumption, and enhance the
reliability and reproducibility as well as the performance of these valves. For these reasons, this paper
proposes a novel configuration for the pilot stage: it is composed of two normally closed two-way
two-position (2/2) valves actuated by two piezo-electric ring benders; the opening and closing of the
two piezo-valves can generate a differential pressure to be used to control the displacement of the
main spool. In this way, there is negligible quiescent flow when the main stage is at rest; in addition,
the torque motor and all its components are removed. To assess the performance of this novel pilot
stage concept, a prototype of the piezo-valve has been constructed and tested. The experimental
results indicate that the response speed of the new piezo-valve is very high. Furthermore, a numerical
model is employed to show that, by adjusting specific parameters, the performance of the piezo-valve
can be further improved, so that the valve can be fully opened or closed in less than 5 ms.

Keywords: servovalves; internal leakage; piezoelectric actuators; ring bender

1. Introduction

The architectures of commercially available two-stage servovalves have not substantially changed
for many years, since they can provide high reliability and excellent dynamics [1]. Most valves make use
of either a double nozzle-flapper pilot stage or a deflector jet pilot stage depending on the applications,
the former being more used in industrial applications, whilst the latter is more frequently used in
aircrafts [2]. Regardless of the pilot stage, the main stage is usually a spool valve in which the main
spool is actuated by a differential pressure generated at its extremities by the pilot stage. In this way,
very high actuation forces are generated, providing fast respond speeds and capability of shearing chips
that might be jammed between the metering edges [2]. The force levels developed are much higher than
proportional valves or on/off valves using solenoids to directly drive the spool [3–10], which results in
a much faster response and higher shear forces. These characteristics have led to widespread use of
these servovalve designs, which are fundamental components in closed-loop electro-hydraulic motion
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control systems demanding high performance levels, both in industrial and aeronautical applications.
In the latter field, for instance, two stage servo-valves are used for engine fuel control, brake and
steering control, and for primary flight controls (actuation of elevators, ailerons and rudders), the total
number of valves being about 40 on a typical airliner.

However, even though these architectures have been widely used and have not been substantially
changed for many years, they present some week points that are still unsolved, such as:

(1) The pilot stage requires a quiescent flow rate to work, to be referred to as the internal leakage of
the pilot stage (note that the overall internal leakage is the sum of this contribution and a second
contribution given by the internal leakage in the main stage). Although it is small compared to
the nominal flow rate of a valve, the internal leakage in the pilot stage is continuous and constant
regardless of the opening degree of the main stage, thus causing unwanted power consumption
during operation [1,2].

(2) The electromagnetic torque motor assembly is also a major issue associated with these valves
because it is composed of many sensitive mechanical and electrical parts that penalise simplicity,
set-up, duration of manufacture and manufacturing costs. Of these components, the flexure
tube, used to support the flapper while separating the torque motor from the hydraulic fluid,
is the most critical. Indeed, it needs to be manufactured very accurately to ensure the stiffness
required [1,2]. Moreover, the flapper-flexure tube system is very sensitive to vibration, and a
valve may experience fatigue failure of the flexure tube due to excessive bending under vibration,
in addition to the fact that the oscillations of the flapper caused by external noise may result in a
change of the valve output [1,2].

To date, research studies in the scientific literature have mainly been focused on the reduction of
the complexity of servovalves (namely, solutions to drawback 2 previously explained). In particular, a
promising research field aims to replace the electromagnetic torque motor assembly with piezoelectric
actuators, thus reducing complexity and manufacturing costs [2]. Different types of piezoelectric
actuators have been used to directly drive the main stage spool or to drive the flapper, jet pipe or
deflector jet in the pilot stage [11–21], showing that the idea of using a piezo-electric actuator to drive
a servovalve is feasible and promising. One of the commercially available piezoelectric actuators
that has been used for this purpose is the stack-type, in which several piezo elements are joined
together to form a multi-layer actuator [11–13]; in parallel to piezo-stacks actuators, also amplified
piezo-stack actuators, which can provide higher displacement but lower forces, have been proposed to
replace the torque motors in servovalves [14–16]. However, both piezo-stack actuators and amplified
piezo-stack actuators seem to be too heavy and large to be employed in servovalves, which must
be compact and light, especially for applications in aircraft. As an alternative to stack actuators,
lighter piezo-actuators, such as rectangular benders, have been employed in novel designs to drive the
pilot stage of servovalves in place of the torque motor [17–19]; in this case, the main deficit is the very
low actuation forces obtained with these actuators.

Instead, the most promising solution for these applications seems to be “the ring bender”, which is
a flat annular piezo-disc deforming in a concave or convex fashion depending on the polarity of
the applied voltage, providing a very good compromise between actuation force and displacement,
while being sufficiently compact for this type of applications. In this regard, in [20,21], two ring
benders, mounted in tandem to provide redundancy, were used in place of the torque motor to drive
the flapper in a double flapper-nozzle pilot stage. The preliminary results obtained in [20,21] prove
the feasibility, in terms of actuation forces, displacement and dimensions, of using ring benders as
actuators for the pilot stages of servovalves.

As alternatives to piezo-electric actuators, giant magneto-strictive materials (GMMs) have been
proposed to be used for the actuation of servovalves. These new actuators, appeared in recent years, can
change their shape and length under the influence of an external magnetic field, thus producing strain
with very fast response speed and large forces [22]. In [23], a deflector-jet servovalve using a GMM



Energies 2020, 13, 671 3 of 24

was developed; instead, in [24] a GMM was used to drive a flapper-nozzle servovalve. Other examples
of application of GMMs in servovalves are provided in [25,26]. As for piezo-stack actuators, the main
problem associated with GMMs appears to be the large dimensions of these actuators, too bulky to be
implemented in commercial servovalves.

All the above-mentioned research studies have had the objective of reducing the complexity of
servovalves. However, to date the problem concerning the internal leakage (drawback 1 previously
explained) has not been addressed in the scientific literature, apart from the work presented in [27],
in which a small spool actuated by a ring bender was employed for the pilot stage in order to minimise
the internal leakage of the pilot stage.

In this scenario, the present research aims at developing a novel configuration for the pilot stage
by using piezo-electric ring benders. The proposed architecture is capable of reducing both the overall
internal leakage when the main spool is in the neutral position and the complexity of the pilot stage,
because the torque motor and all the associated components are removed. The novel valve concept,
with all the associated advantages, is thoroughly described in the following section.

2. Materials and Methods

2.1. Novel Servovalve Concept

Figure 1 shows a representation of a typical four-way three-position (4/3) double nozzle-flapper
servovalve. This valve, along with the deflector jet servovalve (which has a very similar operating
principle), is the most-used two-stage servovalve design by virtue of the strong points explained in the
introduction [2].
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As shown in Figure 1a, when the main spool is not modulating flow, the coils of the torque
motor are not excited, and the flapper is in the central position between the two nozzles. Although
no flow is sent to the actuator, a quiescent flow of oil is needed trough the two nozzles in order to
maintain the same pressure at the spool extremities. When it is needed to modulate flow (Figure 1b),
the coils are excited, and the generated magnetic field makes the flapper rotate from the central position
towards one of the two nozzles according to the input current. The flapper movement creates a
pressure difference between the extremities of the main spool, which is forced to move. While moving,
the spool drags the feedback spring, which creates a restoring torque on the flapper assembly. The
spool continues moving until the restoring torque equals the torque exerted by the torque motor.
In place of this mechanical feedback, some valves have electrical feedback obtained by means of
linear variable differential transformers (LVDTs). As already mentioned in the introduction, this pilot
stage architecture is very complex in addition to causing continuous power consumption due to the
quiescent flow (internal leakage) which is continuous and constant regardless of the spool position.

This architecture is well established, and its performance parameters are widely known [2]. The
quiescent flow in the pilot stage, also known as tare leakage, can vary depending on the operating
pressure and on the size of the valve, and it can be as high as 0.73 L/min for commercially available
units [2].

Figure 2 shows the proposed valve design. Each piezo-valve is a very simple two-way two-position
(2/2) valve that has the advantage of being normally closed, which means that the ring bender stops
the oil flow when the spool is at null. This can represent a huge improvement in terms of power
consumption compared to the typical configuration shown in Figure 1, since the quiescent flow becomes
negligible in the pilot stage when the main spool is at null, as shown in Figure 2a.
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In addition, the comparison between Figures 1 and 2 shows that, in the new configuration,
the torque motor and its critical components are removed, namely, the pole pieces, the armatures,
the flapper, the flexure tube and the feedback spring. In place of these components, two ring benders
and two closure members are needed, along with a linear variable differential transformer (LVDT) for
a closed loop control.

The assembly of the torque motor, flapper, flexure tube and feedback spring, which is an expensive
system in terms of cost and manufacturing time, is no longer needed in the proposed configuration.
The novel concept also avoids the problem concerning the fatigue failure of the flexure tube due to
excessive bending under vibration, and the possible change in the valve output due to the oscillations
of the flapper caused by external noise.

The feasibility of the proposed solution was already demonstrated in reference [28], employing a
simulation model of the full valve concept. The simulations showed that this valve architecture has a
high potential in terms of response speed, in addition to minimising the internal leakage.

The good results achieved in [28] prompted the authors of the present work to construct a
prototype of one of the two 2/2 normally closed piezo-valves representing the novel pilot stage concept.
The prototype was tested in a hydraulic test rig located at the Fluid Power Laboratory of the Centre of
Power Transmission and Motion Control (PTMC) of the University of Bath. The prototype and the test
rig are described in the next section.

2.2. Valve Prototype and Hydraulic Test Rig

The valve prototype and the test rig were constructed and assembled in order to test one of the
two piezo-valves modulating the pressure at the main spool extremities. The test rig reproduces the
right part (or, equivalently, the left part) of the valve concept shown in Figure 2, being composed of the
following elements: supply line (P), fixed restriction, piezo-valve and chamber comprised between the
fixed restriction, the spool end and the piezo-valve. A schematic representation and a photograph of
the test rig are shown in Figure 3a,b, respectively. The supply line is composed of a volumetric pump
(1), a non-return valve (2), a pressure relief valve (3) and an accumulator (4). A pressure transducer (5)
is positioned upstream of the restriction (6), whose area can be changed manually. This restriction
represents the fixed restriction shown in Figure 2, with the difference that, in the test rig, its flow area
can be adjusted. The pressure drop across the restriction is measured by a second pressure transducer
(7). After the restriction (6), the oil can enter the piezo-valve, whose components are positioned inside
a case (8). An adjuster (9) is mounted inside the valve body through a nut so that the position of
the nozzle (10) can be varied with respect to the closure member (11). In this way, it is possible to
provide the ring bender with a pre-compression to close the valve effectively. The closure member
(11) is inserted through the hole of the ring bender (12), and the latter is fixed to the valve body using
elastomers o-rings (13). This choice secures the mechanical integrity of the ring bender while deforming
inside the valve. The position of the closure element (therefore, the displacement of the ring bender)
is measured through an eddy current sensor (14). Another adjustable mechanical stop (15) is also
employed in order to allow the maximum displacement of the ring bender (i.e., the maximum opening
of the valve) to be regulated. The pressure of the oil discharged from the piezo-valve is measured by a
pressure transducer (16).

Note that the volume comprised between the restriction (6) and the nozzle (10) represents
the volume of Figure 2 comprised between the fixed restriction, the spool end and the nozzle of
the piezo-valve.

The picture of the test rig (Figure 3b) shows the pressure transducer (5), the variable restrictor (6),
the pressure transducer (7), the valve case (8), the adjusters (9) and (15) and the pressure transducer (16).
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An external PC and a LabVIEW code are used to control the test rig and to acquire the signals
from the transducers with a sample frequency of 10 kHz. The control signal is a control voltage (from
−5 V to +5 V) sent to the amplifier, which transforms this signal into a high voltage signal (from −100 V
to +100 V) applied to the ring bender. The pressure transducers are strain gages with a measurement
error lower than 1% of the full scale (100 bar). Both the amplifier and the ring bender (model CMBR07)
were purchased from the manufacturer Noliac [29]. The characteristics of the ring bender (as provided
by the manufacturer) and the main geometrical parameters are reported in Table 1. The tests were
performed using ISO VG 32 hydraulic oil at a temperature of approx. 50 ◦C (oil density = 851 kg/m3

and viscosity = 22.0 cSt).

Table 1. Main geometrical parameters of the test rig (+ denotes opening direction; − denotes closing
direction).

Parameter Value

Outer diameter of the ring bender 40 mm
Inner diameter of the ring bender 8 mm

Height of the ring bender 0.7 mm
Maximum theoretical displacement of the ring bender ±185 µm

Maximum theoretical force of the ring bender ±13 N
Operating voltage of the ring bender ±100 V

Diameter of the nozzle (10) 1 mm
Equivalent length of the oil chamber between the

restriction (6) and the nozzle (10) 60 mm

Equivalent diameter of the oil chamber between the
restriction (6) and the nozzle (10) 20 mm

Area of the restriction (6) Variable
Mass of the moving parts of the piezo-valve (closure

member, ring-bender, o-rings) 90 g

It must be noted that the aim of this experimental activity has been to evaluate the effectiveness of
the piezo-valve in terms of response speed of the ring bender, pressure change at point (7) and leakage.
At this point of the experimental study, the minimisation of the volume of the valve case (8) is not
important for a fluid dynamic study of the valve. Instead, for commercial designs, the volume of the
case can be reduced to ensure compactness and low weight; this is not a difficult task, considering that
the ring bender is very small (it has a diameter of 4 cm and a height of 0.7 mm), and the case can have
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similar dimensions, provided that the closure member is designed as compact as possible. The effect of
the mass of the closure member upon the valve performance will be assessed in the final section of
this paper.

2.3. Numerical Model of the Piezo-Valve

A numerical model simulating the test rig shown in Figure 3, and hence, the right part (or,
equivalently, the left part) of the valve concept shown in Figure 2, has been developed. The equations
of the numerical model, which have been implemented into the Simscape Fluids environment [30],
are described in the following. The symbolism shown in Figure 3 is used to describe the numerical model.

A picture of the Simscape model is given in Figure 4. The pump, pressure relief valve and
accumulator are simulated through a “Hydraulic pressure source”, which is an ideal source of
hydraulic energy able to maintain a specific pressure at its outlet regardless of the flow rate consumed
by the system [30].
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The pressure drop from the supply line (4) to the pressure transducer (5), and across the variable
restrictor (6), is simulated using the orifice equation [2,30,31]:

q = CDAr

√
2∆p
ρ0

, (1)

where q is the volumetric flow rate, CD is the discharge coefficient, Ar is the restriction area, ∆p is the
pressure drop and ρ0 is the fluid density at atmospheric conditions.

The volume of oil comprised between the restriction (6) and the nozzle (10) is simulated using a
block named “Constant Volume Hydraulic Chamber”. Using this block, a chamber of volume V0 with
rigid walls is simulated and the fluid compressibility is taken into account. The volume of the chamber
in the experimental set-up is evaluated as the volume of a cylinder with equivalent diameter D0 and
overall length L0. The following equation is applied [30,31]:

qc =
Vo

E
dp
dt

, (2)
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where p is the absolute pressure and qc indicates the volumetric flow rate through the chamber
computed with reference to ρ0. The actual bulk modulus E is calculated as follows:

E = Eo
1 + ε(

p0
p )

1/γ

1 + ε
p0

1/γ

γ p(γ+1)/γ Eo

, (3)

where E0 is the pure liquid bulk modulus, γ is the gas-specific heat ratio (γ = 1.4), ε is the relative gas
content at atmospheric pressure and p0 is the atmospheric pressure [28,30].

The hydraulic part of the piezo-valve is simulated using the orifice Equation (1), in which the orifice
area is evaluated as Ar = πdx, where d is the diameter of the nozzle (10) and x is the displacement of
the ring bender with respect to the nozzle tip. The displacement x of the ring bender is determined
according to the equilibrium of the actuation force and the resistant forces acting on the closure system,
as follows:

Frb + F f low −m0
..
x−Crb

.
x− krb(x + x0) = 0, (4)

where Frb denotes the force exerted by the ring bender having stiffness krb, Crb is the damping
coefficient of the moving parts (ring bender, o-rings and closure member) having mass m0, x0 is
the pre-compression obtained through the adjuster (9) and F f low is the flow force acting on the ring
bender [28]. Considering that the flow exiting the piezo valve can be assumed radial, the flow forces
acting on the ring bender can be estimated by the following simplified equation [28]:

F f low = (p7 − pT)
Πd2

4
, (5)

where p7 and pT are the absolute pressure at point (7) and the absolute discharge pressure, respectively.
The ring bender displacement is limited by two stops that restrict its motion between the upper

and lower bounds. Each stop is represented as a spring combined with a damper. A force Fstop acts on
the ring bender when the maximum or minimum displacement is reached:

Fstop = Kstop(xmax − x) + Cstop
d
dt
(xmax − x) f or x ≥ xmax, (6a)

Fstop = Kstop(xmin − x) + Cstop
d
dt
(xmin − x) f or x ≤ xmin, (6b)

where Kstop and Cstop are the spring stiffness and damping of the stop, respectively, with xmax and xmin

denoting the maximum and minimum displacement of the ring bender [30].
Piezoelectric hysteresis is considered by implementing the Bouc-Wen hysteresis model, described

and used in [28]:
dn
dt

= αdv
dVamp

dt
− β

∣∣∣∣∣∣dVamp

dt

∣∣∣∣∣∣n− δdVamp

dt
|n|, (7)

where n is the hysteresis nonlinear term, α, β and δ are tuning parameters employed to match the
hysteresis model to experimental data (the values from [27,28] are used) and Vamp is the output voltage
of the amplifier (ranging from −100 V to 100 V). The hysteresis non-linear term allows the force of the
ring bender Frb to be expressed as a function of the output voltage of the amplifier, as follows:

Frb= Kd,v
(
Vamp − n

)
, (8)

where Kd,v is the ring bender maximum force divided by the maximum operating voltage, which
represents the ring bender conversion factor (namely, from amplified voltage to force).
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The amplifier is simulated by using a second order transfer function [27,28]:

Vamp =
Kaωn,0

2

s2 + 2ξωn,0s +ωn,02 Vc, (9)

where Vc is the control voltage that is supplied to the amplifier (from −5 V to 5 V), Ka is the gain of the
amplifier (Ka = 20), ωn,0 is the natural frequency of the amplifier (ωn,0 = 1400 rad/s) and ξ is the
damping factor of the amplifier (ξ = 1.5). In addition, to model the current limit (Imax), the rate of
change of the amplified voltage is limited according to the following equation [27,28]:

dVamp

dt
=

Imax

C
, (10)

where C is the capacitance.
The simulations were performed using the values for the operating parameters reported in Table 2.

Some of the parameters shown in Table 2 are known data (such as oil characteristics, supply and return
pressure, length and diameter of the oil chamber, ring bender characteristics, diameter of the nozzle,
mass of the moving parts, maximum current and capacitance of the amplifier). Other parameters
were tuned to match the experimental results. Specifically, the restrictor areas have been tuned to
obtain the same pressure drops, i.e., from the pump to point (5) and across the variable restrictor (6);
the properties of the mechanical stops (stop damping coefficient and stop stiffness) have been tuned
to obtain the same bouncing behaviour when the closure member hits the mechanical stops; finally,
the amplifier parameters (natural frequency and damping factor) have been set to obtain the same
transient as the measured amplified voltage. Concerning the discharge coefficients, their values have
been set under the hypothesis of turbulent flow. The dynamic system was solved by computing its
states at successive time steps over a specified time span. The time step was taken equal to 10−4 s,
in order to have a good accuracy.

Table 2. Parameters assumed for the simulations.

Component Parameter Symbol Value

Oil
Density ρ0 851 kg/m3

Relative gas content ε 0.01

Supply line (from
accumulator 4 to point 5)

Supply pressure p4 71 bar/51 bar
Fictitious restriction area Ar,4−5 4 mm2

Discharge coefficient CD,4-5 0.7

Variable restrictor (6) Restriction area Ar,6 0.42 mm2

Discharge coefficient CD,6 0.7

Oil chamber volume (from
restriction 6 to nozzle 10)

Equivalent diameter Do 20 mm
Equivalent length Lo 60 mm

Piezo valve

Ring bender conversion factor (force
over voltage) Kd,v 0.13 N/V

Diameter of the nozzle (10) d 1 mm
Discharge coefficient CD,v 0.65

Mass of the moving parts m0 90 g
Damping coefficient Crb 26 Ns/m
Ring bender stiffness krb 70,000 N/m

Pre-compression of the ring bender x0 50 µm
Stop damping coefficient Cstop 500 Ns/m

Stop stiffness Kstop 107 N/m
Maximum displacement of the ring bender xmax None
Minimum displacement of the ring bender xmin 0

Discharge line Pressure pT 1 bar

Amplifier

Natural frequency ωn,0 1400 rad/s
Damping factor ξ 1.5

Maximum current Imax 1A
Capacitance C 2 × 1740 nF

Gain of the amplifier Ka 20
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3. Results

In this section, the experimental results are discussed and compared with the numerical predictions
in order to provide a validation of the numerical model.

Afterwards, the validated numerical model is used to show that, by acting on some geometrical
parameters, the performance of the proposed piezovalve can be enhanced.

3.1. Experimental Results and Comparison with the Numerical Model

Tests were performed on the test rig shown in Figure 3. Some of the more significant experimental
results are here commented upon and compared with the numerical predictions obtained with the
numerical model described in Section 2.3. For the sake of clarity, the tests presented here are named test
1, test 2, test 3, test 4 and test 5. The symbolism used in this section refers to the test rig representation
of Figure 3.

The first experimental test (test 1) was performed with atmospheric pressure inside the valve and
with the adjusters (9) and (15) being kept far from the closure member (11) in order to observe the
behaviour of the ring bender without mechanical stops and with no pressure. An input sine voltage
having 5 V amplitude and 1 Hz frequency was delivered to the amplifier, which transformed this
signal into a high voltage signal having 100 V amplitude with the same frequency.

Figure 5a provides the measured amplified voltage (blue line) and the numerical one (red curve)
together with the input voltage (black line), showing that there is a very good agreement between the
numerical prediction and the experimental value.
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The amplified voltage of Figure 5a applied to the ring bender caused the latter to move inside the
valve case without mechanical stops, thus reaching the maximum displacement in both directions.
Figure 5b reports the amplified voltage on the x axis and the corresponding ring bender displacement
on the y axis. The blue curve refers to the experimental data and the red curve to the numerical results.
In this test, the displacement is measured from the neutral position of the ring bender when no voltage
is applied. Figure 5b clearly shows the hysteresis of the ring bender: for a given value of the amplified
voltage, two values of the displacement are possible, depending on the history of the displacement.
It is noteworthy that the model employed for the simulation of the hysteresis is reliable, providing,
overall, a good correspondence with the experimental hysteresis.

After this preliminary test focused on the hysteresis, step tests were performed, with the oil
temperature being kept around 50 ◦C. These tests consisted in sending a step voltage to the amplifier,
which, in turn, sent a corresponding amplified step voltage to the ring bender. The resulting
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displacement of the ring bender was measured along with the pressure at points (5) and (7) of Figure 3.
In these tests, the displacement of the ring bender is measured from the nozzle tip (10).

In the first of the step tests considered in this analysis (here denoted by “test 2”), the supply
(absolute) pressure was kept equal to 71 bar (namely, 70 bar relative), and the absolute pressure at the
outlet of the valve was about 1 bar. The ring bender was pre-compressed with x0 = 50 µm by acting
on the adjuster (9); instead, the other adjuster (15) was kept far from the closure member, so that no
mechanical stop was imposed to the maximum opening of the ring bender. The control voltage (input
voltage from the PC to the amplifier) was changed from −5 V to +5 V, which produced an amplified
voltage step from −100 V to +100 V. Figure 6a shows the control signal (black line) and the amplified
voltage (orange dashed line) measured during this test; the simulated amplified voltage is also plotted
as a green dashed line. The good correspondence between the experimental amplified voltage and the
numerical one demonstrates, once more, the good accuracy achieved with the numerical model and
the good choice of the parameters used for the simulation of the amplifier (see Table 2).
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Figure 6a also shows the displacement of the ring bender experimentally measured during “test
2” (blue curve); correspondingly, the simulated displacement is plotted as a red curve. When −100 V
was applied to the ring bender, the latter applied a blocking force of about −13 N to the nozzle (10)
without moving (because it was pre-compressed). In contrast, when +100 V was applied, the ring
bender moved from the nozzle, thus opening the valve with a force of about +13 N. One can observe
that the simulated displacement matches the experimental one; this very good agreement confirms the
reliability of the numerical model. Moreover, Figure 6a shows that, because there is not a mechanical
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stop in the opening direction, the ring bender oscillates producing overshoots and undershoots until
reaching a stable position. Finally, one can notice that the rise time is very fast, since the time required
for the displacement to rise from 10% to 90% of its final value is less than 5 ms.

Figure 6b shows the comparison among the experimental pressures at points (5) and (7) and the
corresponding numerical predictions, regarding “test 2”. As shown by this graph, the initial pressures
measured at point (5) and point (7) were the same, namely, 71 bar, because the valve was initially
closed by the ring bender. When the ring bender opened the valve, the pressure at port (7) very
quickly decreased down to about a half of the supply pressure (this pressure drop was achieved by
adjusting the variable restrictor (6)), reaching 90% of the minimum value within 5 ms. The comparison
between the experimental data and numerical predictions is very good, especially concerning the
pressure at point (7). With regard to the pressure at point (5), the numerical model is not able to
reproduce the oscillations present in the experimental signal; this might be due to inertia effects of the
oil comprised between the supply line and point (5). However, what is important in this analysis is the
good prediction of the pressure at point (7), because this pressure signal is the one to be used for the
control of the main spool.

A second step test is now described; this test, to be referred to as “test 3”, is the continuation of
“test 2”, in that, after reaching the maximum opening shown in Figure 6a, the valve was closed by
changing the input signal to the amplifier from +5 V to −5 V. The amplified voltages (experimental data
corresponding to the orange dashed line; numerical data corresponding to the green dashed line) are
reported in Figure 7a. Again, there is a good agreement between the experimental measurement and
the numerical predictions in terms of amplified voltage, even though a slight delay is noticed in the
experimental signal when the amplified voltage is approaching the minimum value (−100 V). However,
this effect can be considered negligible since both the experimental and the numerical voltage reach a
very high level of amplification (i.e., about −90 V) at the same time, which corresponds to a very high
level of force (namely, about −12 N).

Figure 7a also shows the comparison between the experimental displacement obtained in “test 3”
(blue curve) and the corresponding numerical one (red curve): this graph again confirms the reliability
of the numerical model, given the very good agreement between the two curves. Moreover, the very
good performance of the valve is again proved by the very short time taken by the ring bender to close
the valve (less than 5 ms). In this case, no oscillations are present, because the nozzle (10) acts as a
mechanical stop for the ring bender. In contrast, one can observe that the ring bender bounces back
after hitting the nozzle; overall, this bouncing behaviour is well reproduced by the simplified Equation
(6b).

Figure 7b shows the pressure trends measured and predicted at points (5) and (7) in “test 3”.
In addition to noticing, once again, the good accuracy of the numerical model, one can notice that the
ring bender perfectly achieves its task, namely, it fully closes the valve, and the pressure at point (7)
is brought back to its initial value of 71 bar very quickly. Because this pressure level is maintained
over time, this means that the quiescent flow is negligible, thus achieving the main goal of this work,
namely, a remarkable reduction of the overall internal leakage.

The same tests as those shown in Figures 6 and 7 were done for a different inlet pressure, namely,
51 bar. In particular, Figure 8 shows the step test performed with an amplified voltage step from
−100 V to +100V for a supply pressure of 51 bar, to be referred to as “test 4”; instead, Figure 9 shows
the step test performed with an amplified voltage step from +100 V to −100V for a supply pressure of
51 bar, to be referred to as “test 5”. The graphs again show the comparison between experimental data
and numerical predictions in terms of amplified voltage, ring bender displacement and pressures at
points (5) and (7).
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The graphs of Figures 8 and 9 confirm both the high accuracy of the numerical model and the
very fast response of the valve. The comparison between Figures 6a and 8a shows that the ring bender
reached a higher displacement, namely, about 150 micron, for 71 bar inlet pressure, whereas about 140
micron was reached for 51 bar inlet pressure. This is due to the fact that the higher pressure acting on
the nozzle causes a greater flow force pushing the ring bender in the opening direction, according to
Equations (6a) and (6b).

It is noteworthy that, with respect to the experimental data, the numerical model slightly advances
the pressure rise at point (7) when the valve is closed; conversely, it slightly delays the pressure drop at
point (7) when the valve is opened. However, in both cases, this difference is very low, being of the
order of 1 ms. Moreover, these two effects compensate each other, therefore, the numerical model is
capable of providing a good overall prediction of the valve performance. The difference between the
experimental data and numerical predictions can be attributed to the assumed model of the hysteresis
of the ring bender and to the hypothesis of neglecting, in the numerical model, the elasticity of the
hoses employed in the experimental set-up.
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Finally, Figure 10 shows, on the same graph, the displacement and the pressure at point (7)
measured during repeated opening and closing procedures of the valve, for a supply pressure of 71
bar. This graph is instrumental in pointing out that, when the valve is closed, the pressure at point (7)
is constant and equal to the supply pressure over time. This confirms that the quiescent flow (internal
leakage) is negligible when the valve is closed, otherwise a pressure decrease would be noticed at
point (7).
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3.2. Numerical Analysis of the Piezo-Valve

A numerical analysis is provided in this section to prove that, by properly acting on some
geometrical parameters, the valve concept can be profitably applied for the control of a main stage
spool valve. To this end, the effects of some geometrical parameters are considered, and the results are
critically discussed. Again, the symbolism used in this section refers to the test rig representation of
Figure 3.

At first, the effects of the volume of the chamber comprised between the restrictor (6) and the nozzle
(10) are assessed. As already mentioned, in the experimental prototype, this volume is equivalent to a
cylinder having a diameter D0 ' 20 mm and a length L0 ' 60 mm. Instead, in commercially available
two stage servovalves, this volume is much lower to ensure fast response of the main spool. To assess
the effects of reducing this volume, this analysis considers five cylindrical volumes, having diameters
D = K D0 and lengths L = K L0, with K = 1, 0.8, 0.6, 0.4, 0.2. The five cases are here compared in terms
of simulated displacement of the ring bender and pressure at point (7), since these parameters are
representative of the valve performance.

Figure 11a shows the ring bender displacement simulated for D = K D0 and L = K L0, with K = 1,
0.8, 0.6, 0.4, 0.2 and for an amplified step voltage from −100 V to +100 V (supply pressure = 71 bar). It is
noteworthy that the reduction of the volume causes a reduction of the oscillations; however, for K = 0.4
and K = 0.2, the simulated trends of the displacement are very similar, which means that a further
reduction of the volume will barely change the results. The effects of the volume reduction are also
important in terms of the pressure drop at point (7): as shown in Figure 11b, smaller oil volumes cause
the pressure to drop more quickly. This is particularly important for the actuation of a main spool: by
reducing the oil volume in the system, the pressure at the spool ends will change more quickly, and the
performance of the valve will be enhanced.
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Figure 11. Ring bender displacement with enlargement (a) and pressure at point 7 with enlargement
(b), simulated for an amplified voltage from −100 V to +100 V and for different volumes of the chamber
comprised between the restriction (6) and the nozzle (10), having diameter D = K D0 and length L = K
L0, with K = 1, 0.8, 0.6, 0.4, 0.2 (supply pressure = 71 bar).
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Similarly, Figure 12a shows the ring bender displacement simulated for D = K D0 and L = K
L0, with K = 1, 0.8, 0.6, 0.4, 0.2, for a negative amplified voltage step from +100 V to −100 V. In
contrast to the previous case (positive voltage step from −100 V to +100 V), the simulated trends of
the displacement are almost identical, which means that the change in the volume does not affect the
displacement. However, as shown in Figure 12b, the change in volume has a remarkable effect on the
pressure rise at point (7), because lower volumes cause the compressibility effects to be less important.
For this reason, it is important to reduce the volume of the chamber comprised between the variable
restrictor (6) and the valve nozzle (10) to improve the performance of the valve. However, also in this
case, the difference between k = 0.2 and k = 0.4 is almost negligible, so that a further reduction of the
volume will be unimportant.
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Figure 12. Ring bender displacement with enlargement (a) and pressure at point 7 with enlargement
(b), simulated for an amplified voltage from +100 V to −100 V and for different volumes of the chamber
comprised between the restriction (6) and the nozzle (10), having diameter D = K D0 and length L = K
L0, with K = 1, 0.8, 0.6, 0.4, 0.2 (supply pressure = 71 bar).

Another parameter that can be optimised to further improve the performance of the valve is the
mass of the moving parts. In the prototype, this mass was about 90 g, mainly due to the material
and geometry of the closure member, which also comprised a nut. A reduction of the dimensions
and weight of the closure member would not be a difficult task for an optimised implementation of
this novel architecture. Therefore, to assess the effects of this parameter, this analysis considers five
values for the mass, namely, m = K m0, with K = 1, 0.8, 0.6, 0.4, 0.2 (with m0 denoting the mass of the
prototype). The diameter and length of the volume comprised between the restriction (6) and the
nozzle (10) are taken equal to D = 0.6 D0 and L = 0.6 L0. The five cases are again compared in terms of
simulated displacement of the ring bender and pressure at point (7).

Figure 13a shows the different trends of the displacement simulated for m = K m0, with K = 1, 0.8,
0.6, 0.4, 0.2 and for a positive amplified step voltage from −100 V to +100 V. It is noteworthy that the
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oscillations around the set point are remarkably reduced by reducing the mass of the moving parts.
Moreover, lower values of the mass slightly increase the slope of the transient curve due to the lower
inertia; as a result, a lower mass allows the maximum displacement to be stably reached in a shorter
time. The beneficial effect of reducing the mass of the moving parts is also evident by analysing the
simulated pressure drop at point (7), as shown in Figure 13b. It can be noticed that lower values of the
mass make the pressure reach a stable value more quickly than higher values of the mass.
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Figure 13. Ring bender displacement with enlargement (a) and pressure at point 7 with enlargement
(b), simulated for an amplified voltage from −100 V to +100 V and for different values of the mass of
the moving parts: m = K m0, with K = 1, 0.8, 0.6, 0.4, 0.2 (supply pressure = 71 bar, D = 0.6 D0 and
L = 0.6 L0).

Similarly, Figure 14a shows the ring bender displacement simulated for m = K m0, with K = 1,
0.8, 0.6, 0.4, 0.2, for a negative amplified voltage step from +100 V to −100 V. A difference is noticed
in the final part of these curves. Indeed, a lower mass causes the ring bender to bounce back with
lower intensity after hitting the nozzle and to provide a slightly faster response due to the lower inertia.
Moreover, Figure 14b shows that lower values of the mass cause the pressure at point (7) to increase
slightly faster.
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Figure 14. Ring bender displacement with enlargement (a) and pressure at point 7 with enlargement
(b), simulated for an amplified voltage from −100 V to +100 V and for different values of the mass of
the moving parts: m = K m0, with K = 1, 0.8, 0.6, 0.4, 0.2 (supply pressure = 71 bar, D = 0.6 D0 and
L = 0.6 L0).

In conclusion, the effects of the mass reduction of the moving parts can be beneficial for the valve
performance, especially during the opening phase of the ring bender, because oscillations can be
reduced and the stable maximum opening can be reached more quickly.

As a final analysis, the effects of the amplifier characteristics on the performance of the piezo-valve
are investigated. Specifically, different values of the natural frequency of the amplifier are considered,
namely, ωn = k ωn,o with K = 1, 1.2, 1.4, 1.6, 1.8 and ωn,o = 1400 rad/s (which is the natural frequency
of the amplifier employed in the experimental activity). In this analysis, the diameter and length of
the volume comprised between the restriction (6) and the nozzle (10) are taken equal to D = 0.6 D0

and L = 0.6 L0, while the mass is taken equal to m = 0.6 m0. Figure 15a shows the obtained trends of
the amplified voltage (from −100 V to +100 V) and of the displacement. These graphs reveal that the
increase in the natural frequency causes a faster rise of the amplified voltage and, as a result, a faster
ring bender displacement. Because of this, the pressure at point (7) decreases more quickly for higher
values of the natural frequency, as shown in Figure 15b.
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Similarly, Figure 16a shows the amplified voltage and the ring bender displacement simulated for
ωn = k ωn,o with K = 1, 1.2, 1.4, 1.6, 1.8, but, in this case, for a negative amplified voltage step from
+100 V to −100 V. Again, faster amplified voltage trends are predicted for higher values of the natural
frequency; instead, in terms of displacement and pressure rise, there is only a slight improvement for
higher values of the natural frequency.

Overall, this numerical analysis has shown that the valve performance can be enhanced by
reducing the volume of oil in the system, by reducing the mass of the moving parts and by increasing
the natural frequency of the amplifier. In these conditions, the response time of the valve is very fast,
with less than 5 ms being needed to fully close and open the valve.

This response time is comparable with commercially available pilot stages, but with the advantage
of having minimised the quiescent flow needed for the valve operation. This represents a huge
improvement in terms of power consumption, because, with the proposed configuration, the quiescent
flow is negligible when the valve is at rest (namely, when the main spool is in the central position). The
power consumption, avoided with the proposed solution when the valve is at rest, can be estimated as
follows:

Pa =
q f (pp − pT)

ηp
(11)

where q f is the quiescent flow in the pilot stage of commercially available units (see Figure 1), pp and
pT are the supply and discharge pressure, respectively, and ηp is the pump efficiency. In order to
estimate the power consumption, reference values can be used. For example, for an inlet pressure
pp = 70 bar, the quiescent flow in commercially available units can be as high as q f = 0.43 l/min
(as occurs in Moog type 30 series 35 double nozzle-flapper servovalves [2,32]). Instead, for an inlet
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pressure pp = 210 bar, the quiescent flow in commercially available units can be increased up to q f =

0.73 L/min (again, as occurs in Moog type 30 series 35 double nozzle-flapper servovalves [2,32]). Using
a discharge pressure pT = 1 bar and a pump efficiency ηp= 0.7, the avoided power consumption
is Pa ≈ 0.07 kW in the first case (pp = 70 bar and q f = 0.43 L/min), and Pa ≈ 0.36 kW in the second
case (pp = 210 bar and q f = 0.73 L/min). Considering that, in many applications, there are several
valves working together and they can be in the rest position most of the time [33], one could deduce
that the energy consumption avoided with the proposed solution can be remarkable in industrial and
aeronautical applications.

Energies 2019, 12, x FOR PEER REVIEW 20 of 24 

 

Figure 15. Amplified voltage and ring bender displacement (a) and pressure at point 7 with 
enlargement (b), simulated for an amplified voltage from −100 V to +100 V and for different values of 
the natural frequency of the amplifier: 𝜔  = k 𝜔 ,  with K = 1, 1.2, 1.4, 1.6, 1.8 (supply pressure = 71 
bar, D = 0.6 D0 and L = 0.6 L0, m = 0.6 m0). 

Similarly, Figure 16a shows the amplified voltage and the ring bender displacement simulated 
for 𝜔  = k 𝜔 ,  with K = 1, 1.2, 1.4, 1.6, 1.8, but, in this case, for a negative amplified voltage step 
from +100 V to −100 V. Again, faster amplified voltage trends are predicted for higher values of the 
natural frequency; instead, in terms of displacement and pressure rise, there is only a slight 
improvement for higher values of the natural frequency. 

 
(a) 

  

(b) 

Figure 16. Amplified voltage and ring bender displacement (a) and pressure at point 7 with 
enlargement (b), simulated for an amplified voltage from +100 V to −100 V and for different values of 
the natural frequency of the amplifier: 𝜔  = k 𝜔 ,  with K = 1, 1.2, 1.4, 1.6, 1.8 (supply pressure = 71 
bar, D = 0.6 D0 and L = 0.6 L0, m = 0.6 m0). 

Overall, this numerical analysis has shown that the valve performance can be enhanced by 
reducing the volume of oil in the system, by reducing the mass of the moving parts and by increasing 
the natural frequency of the amplifier. In these conditions, the response time of the valve is very fast, 
with less than 5 ms being needed to fully close and open the valve. 

This response time is comparable with commercially available pilot stages, but with the 
advantage of having minimised the quiescent flow needed for the valve operation. This represents a 
huge improvement in terms of power consumption, because, with the proposed configuration, the 
quiescent flow is negligible when the valve is at rest (namely, when the main spool is in the central 
position). The power consumption, avoided with the proposed solution when the valve is at rest, can 
be estimated as follows: 𝑃 = 𝑞  (𝑝 −  𝑝 )𝜂  (11)
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(b), simulated for an amplified voltage from +100 V to −100 V and for different values of the natural
frequency of the amplifier: ωn = k ωn,o with K = 1, 1.2, 1.4, 1.6, 1.8 (supply pressure = 71 bar, D = 0.6 D0

and L = 0.6 L0, m = 0.6 m0).

4. Conclusions

This paper provides a novel architecture for the pilot stage of two-stage servovalves based on
the use of piezo-electric actuators. In the proposed solution, the pilot stage is composed of two small
(normally closed) 2/2 piezo-valves actuated by ring benders, which are compact elements providing
good displacement and actuation forces. This novel configuration has the potential to overcome two
main problems occurring in servovalves, namely, the complexity and the high quiescent flow (internal
leakage) of the pilot stage. To assess the validity of the proposed solution, an experimental prototype
of the 2/2 piezo-valve was constructed and experimentally tested in a hydraulic test rig. The test rig
reproduces the entire pilot stage for one side of the proposed valve architecture, being composed of the
supply line, fixed restriction, piezo-valve and chamber between the fixed restriction, the spool end
and the piezo-valve. In this way, the performance of the proposed architecture can be determined by
measuring the time intervals taken to open and close the valve as well as to change the pilot pressure
(namely, pressure at point 7 of the test rig).
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The step tests performed on the test rig show that the piezo-valve has a high potential in terms of
response speed, since the time required for the displacement and for the pressure to change from 10% to
90% of their final values is less than 5 ms. Repeated opening and closing procedures of the piezo-valve
also show that the pilot pressure is maintained constant and equal to the supply pressure over time
when the valve is closed, thus, proving that the quiescent flow is negligible compared to commercial
units. The experimental data have also been used to validate a numerical model developed employing
Simscape Fluids. This model has been used to show that, by acting on some crucial parameters, such
as the volume of oil in the system, the mass of the moving parts and the natural frequency of the
amplifier, the performance of the piezo-valve can be further improved.

Finally, a calculation procedure has been used to estimate that the power loss avoided thanks
to the considerable reduction of the quiescent flow when the main valve is at rest can be as high as
0.36 kW.
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Nomenclature

Ar Restriction area [mm2]
C Capacitance [nF]
CD Discharge coefficient
Crb Damping coefficient of the moving parts [Ns/m]
Cstop Damping coefficient hard stop [Ns/m]
D Diameter of the hydraulic chamber [mm]
D0 Diameter of the hydraulic chamber of the prototype [mm]
d Diameter of the piezo valve orifice [mm]
E Bulk modulus [N/m2]
E0 Pure liquid bulk modulus [N/m2]
Fflow Flow force [N]
Frb Actuation force of the ring bender [N]
Imax Maximum current [A]
K Proportional factor
Ka Gain of the amplifier
Kd,v Ring bender conversion factor [N/V]
Krb Spring stiffness of the ring bender [N/m]
Kstop Stiffness of the hard stop [N/m]
L Length of the hydraulic chamber [mm]
L0 Length of the hydraulic chamber of the prototype [mm]
m Mass of the moving parts [kg]
m0 Mass of the moving parts of the prototype [kg]
n Hysteresis non-linear term [V]
p Absolute pressure [N/m2]
p0 Atmospheric pressure [N/m2]
q Volumetric flow rate [m3/s]
Vamp Voltage from the amplifier [V]
Vc Control voltage [V]
x Ring bender displacement [mm]
xmax Maximum displacement of the ring bender [mm]
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xmin Minimum displacement of the ring bender [mm]
x0 Pre-compression [mm]
α Parameter for the hysteresis formula
β Parameter for the hysteresis formula
γ Ratio of the specific heats
δ Parameter for the hysteresis formula
ε Relative gas content at atmospheric pressure
ξ Damping factor of the amplifier
ρ0 Fluid density at atmospheric conditions [kg/m3]
ωn Natural frequency of the amplifier [rad/s]
ωn,0 Natural frequency of the experimental amplifier [rad/s]
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