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Abstract

We deal with the Dirichlet problem for general quasilinear elliptic equations over
Reifenberg flat domains. The principal part of the operator supports natural
gradient growth and its x-discontinuity is of small-BMO type, while the lower
order terms satisfy controlled growth conditions with x-behaviour modeled by
Morrey spaces. We obtain a Calderón–Zygmund type result for the gradient of
the weak solution by proving that the solution gains Sobolev–Morrey regularity
from the data of the problem.
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1. Introduction

The regularity problem is one of the central topics in the general theory
of PDEs. Its main goal is to establish how the smoothness of the data of a
given differential problem influences the regularity of a solution, obtained under
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very general circumstances. Once having better smoothness, powerful tools of
functional analysis apply to infer finer properties of the solution and the problem
itself. The importance of these issues is even more evident if dealing with
discontinuous differential operators over domains with non-smooth boundaries
when many of the classical analysis techniques fail.

In the present paper we study the regularity problem in Sobolev–Morrey
spaces for quasilinear divergence form elliptic equations. We are interested
in obtaining an optimal Calderón-Zygmund type theory in such spaces under
minimal assumptions to impose on the discontinuous nonlinearities and on the
non-smooth underlying domain. We deal, precisely, with the Dirichlet problem{

div
(
a(x, u,Du) + b(x, u)

)
= c(x, u,Du) in Ω

u = 0 on ∂Ω
(1.1)

over bounded n-dimensional domains Ω and where the nonlinear terms a, b and
c are given by suitable Carathéodory maps.

We suppose that the generally non-smooth boundary of Ω is sufficiently
flat in the sense of Reifenberg that means, roughly speaking, ∂Ω is well approxi-
mated by hyperplanes at each point and at each scale. This is a sort of “minimal
boundary regularity” ensuring the validity of the main geometric analysis re-
sults in Ω, and it has proved to be a natural assumption to be required on ∂Ω
when dealing with regularity problems for divergence form PDEs. In particular,
C1-smooth and Lipschitz continuous boundaries (with small Lipschitz constant)
belong to that class, but the category of Reifenberg flat domains extends beyond
these common examples and contains sets with rough fractal boundaries such
as the Helge von Koch snowflake (see [17]).

The principal part a(x, u,Du) of the differential operator is supposed to
be elliptic, measurable in x and it supports natural gradient growth, that is,
a(x, u,Du) behaves as |Du|m−1 with m > 1. The most notable, by now classical,
example is given by the m-Laplacian |Du|m−2Du, but our results apply also
to A(x, u)|Du|m−2Du with a suitable elliptic matrix A and to more general
operators which do not possess necessarily a variational structure. As for the
lower order terms b and c, these are subject to controlled growth conditions

|b(x, u)| ≤ O
(
ϕ(x) + |u|

m∗(m−1)
m

)
,

|c(x, u,Du)| ≤ O
(
ψ(x) + |u|m

∗−1 + |Du|
m(m∗−1)

m∗
)
,

with the Sobolev conjugate m∗ of m, and suitable Lebesgue integrable functions
ϕ and ψ. It is worth noting that the growth requirements on the nonlinearities in
(1.1) are indispensable in order to give sense of the concept of a weak solution
u ∈ W 1,m

0 (Ω) to (1.1), but these are very far from being sufficient to ensure
better integrability of the gradient than that in Lm(Ω).

The importance of studying discontinuous problems of the type (1.1) over
rough domains is justified by the fact that these arise naturally in mathematical
models of real-world systems over media with fractal geometry such as blood
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vessels, composite materials and semiconductor devices, the internal structure
of lungs, clouds, bacteria growth, optimal control of stock markets and the
economic applications of the non-smooth variational analysis (see [11, 14]). The
x-discontinuity of a(x, u,Du), instead, could be regarded to crack ruptures of
the media, such as small multipliers of the Heaviside step function for instance.

We are interested here of the case when ϕ and ψ control the x-behaviour of
b and c in terms of the Morrey spaces Lp,λ(Ω) and Lq,µ(Ω), respectively, with
exponents satisfying (m − 1)p + λ > n and mq + µ > n. Assuming that the
discontinuity with respect to x in a(x, u,Du) is measured in terms of smallness
of the bounded mean oscillation (BMO) seminorm, and that ∂Ω is Reifenberg
flat, we prove that the problem (1.1) supports the Calderón–Zygmund property
in the Sobolev–Morrey functional scales. In other words, the gradient of each
W 1,m

0 (Ω) weak solution to (1.1) gains better Lebesgue and Morrey integrability
from ϕ and ψ, both strictly defined by n,m and the exponents p, λ, q and µ.
As a consequence, Hölder continuity up to the boundary follows for the weak
solution with optimal exponent expressed in terms of n,m, p, λ, q and µ.

This article is a natural outgrowth of the papers [5] and [10] where weak
solutions to the equation div a(x,Du) = div

(
|F|m−2F

)
were considered. In

particular, [5] provides gradient estimates in weighted Lebesgue spaces, while
in [10] weighted Lorentz bounds have been proved for the gradient. In the
both cases, gradient estimates in Morrey spaces do follow. Here we extend the
results from [5, 10] to more general class of differential operators by analysing
the exact influence of the lower order terms on the resulting Morrey regularity
of the gradient. In that sense, our results generalize also these from [14] and
[2], where the W 1,2

0 (Ω)-regularity problem was studied for semilinear elliptic
operators, a(x, u,Du) = aij(x, u)Dju, with ϕ and ψ taken in Lebesgue or in
Morrey spaces, respectively.

The first step to prove the main result (Theorem 2.2) is ensured by our recent
paper [4] (see the announcement in [3] also), where (1.1) has been studied in
very rough domains satisfying a sort of variational capacity thickness condition
and where only measurability with respect to x is required in a(x, u,Du). Since
the Reifenberg flat domains satisfy the thickness condition, the restrictions im-
posed on the exponents p, λ, q and µ, and the results from [4] guarantee that
each W 1,m

0 (Ω) weak solution to (1.1) supports the Gehring–Giaquinta–Modica
property, that is, u ∈ W 1,m0(Ω) with m0 ∈ (m,m + ε). Moreover, a De Giorgi
type result holds in the sense that u is globally bounded and Hölder contin-
uous up to ∂Ω with some exponent α ∈ (0, 1). At this point the composition
A(x, ξ) = a(x, u(x), ξ) turns out to have small BMO seminorm in x that allows
to apply the recent regularity results from [5] to the problem (1.1). Making use
of the mapping properties of Riesz potential in Morrey spaces, we apply a boot-
strapping procedure to improve the rate of the Lebesgue integrability of Du,
after that a similar approach improves also the Morrey exponent of the gradient.
A central role in this approach is played by the growth assumptions imposed on
the nonlinearities as well as by the restrictions on the exponents p, λ, q and µ,
which turn out to be also optimal as shown in [4]. In the particular case when
λ = µ = 0, Theorem 2.2 implies Calderón–Zygmund property for (1.1) also in
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the framework of the classical Sobolev scales.

2. Hypotheses and Main Results

Throughout the paper, we will use standard notations and will assume that
the functions and sets considered are measurable.

We denote byBρ(x) (or simplyBρ if there is no ambiguity) the n-dimensional
open ball with center x ∈ Rn and radius ρ. The Lebesgue measure of a mea-
surable set E ⊂ Rn will be denoted by |E| while, for any integrable function u
defined on a set A, its integral average is given by

uA := −
∫
A

u(x) dx =
1

|A|

∫
A

u(x) dx.

We will denote by C∞0 (Ω) the space of infinitely differentiable functions over
a bounded domain Ω ⊂ Rn with compact support contained in that domain,
and Lp(Ω) stands for the standard Lebesgue space with a given p ∈ [1,∞]. The
Sobolev space W 1,p

0 (Ω) is defined, as usual, by the completion of C∞0 (Ω) with
respect to the norm

‖u‖W 1,p(Ω) := ‖u‖Lp(Ω) + ‖Du‖Lp(Ω)

for p ∈ [1,∞).
Given s ∈ [1,∞) and θ ∈ [0, n], the Morrey space Ls,θ(Ω) is the collection

of all functions u ∈ Ls(Ω) such that

‖u‖Ls,θ(Ω) := sup
x0∈Ω, ρ>0

(
ρ−θ

∫
Bρ(x0)∩Ω

|u(x)|s dx

)1/s

<∞.

The space Ls,θ(Ω) equipped with the norm ‖ · ‖Ls,θ(Ω) is a Banach space and
the limit cases θ = 0 and θ = n give rise, respectively, to Ls(Ω) and L∞(Ω).

For 0 < α < n, the Riesz potential Iαf of a locally integrable function f on
Rn is defined by

(Iαf)(x) :=
1

cα

∫
Rn

f(y)

|x− y|n−α
dy

with a constant cα, expressed in terms of the Euler Γ-function

cα = πn/22α
Γ(α/2)

Γ((n− α)/2)
.

In what follows we will consider a bounded domain Ω ⊂ Rn with n ≥ 2, the
boundary ∂Ω of which is Reifenberg flat in the sense of the following definition.

Definition 2.1. The domain Ω is said to be (δ,R)-Reifenberg flat if there exist
positive constants δ and R with the property that for each x0 ∈ ∂Ω and each
ρ ∈ (0, R) there is a local coordinate system {x1, · · · , xn} with origin at the point
x0 such that

Bρ(x0) ∩ {x : xn > ρδ} ⊂ Bρ(x0) ∩ Ω ⊂ Bρ(x0) ∩ {x : xn > −ρδ}. (2.1)
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Let us note that in the above definition R could be taken 1 by the scaling
invariance, while (2.1) makes sense for 0 < δ < 2−n−1 (see [17]). The Reifen-
berg flatness means that the boundary ∂Ω is well approximated by hyperplanes
at every point and at every scale and it is a sort of a “minimal regularity re-
quirement” to impose on ∂Ω to ensure the validity in Ω of the main natural
properties of the geometric analysis. In particular, (2.1) holds in the cases of
C1-smooth, or Lipschitz continuous boundaries with small Lipschitz constant,
and domains with Reifenberg flat boundaries satisfy the known (A)-property of
Ladyzhenskaya and Ural’tseva (cf. [14, 2]).

Turning back to the Dirichlet problem (1.1), the nonlinearities considered
are given by the Carathéodory maps a : Ω × R × Rn → Rn, b : Ω × R → Rn
and c : Ω × R × Rn → R, where a(x, z, ξ) =

(
a1(x, z, ξ), · · · , an(x, z, ξ)

)
and

b(x, z) =
(
b1(x, z), · · · , bn(x, z)

)
. We suppose moreover that a(x, z, ξ) is differ-

entiable with respect to ξ and Dξa is a Carathéodory map.
Throughout the paper, m > 1 and the following structure and regularity

conditions on the data will be assumed:
• Uniform ellipticity: There exists a constant γ > 0 such that{

γ|ξ|m−2|η|2 ≤ 〈Dξa(x, z, ξ)η, η〉,
|a(x, z, ξ)|+ |ξ||Dξa(x, z, ξ)| ≤ γ−1|ξ|m−1

(2.2)

for a.a. x ∈ Ω, all (z, ξ) ∈ R× Rn and all η ∈ Rn.
• Controlled growth conditions: There exist a constant Λ > 0 and non-

negative functions ϕ ∈ Lp,λ(Ω) with p > m
m−1 , λ ∈ [0, n) and (m− 1)p+ λ > n,

and ψ ∈ Lq,µ(Ω) with q > max
{

1, mn
mn+m−n

}
, µ ∈ [0, n) and mq + µ > n, such

that |b(x, z)| ≤ Λ
(
ϕ(x) + |z|

m∗(m−1)
m

)
,

|c(x, z, ξ)| ≤ Λ
(
ψ(x) + |z|m∗−1 + |ξ|

m(m∗−1)
m∗

) (2.3)

for a.a. x ∈ Ω and all (z, ξ) ∈ R× Rn. Here, m∗ is the Sobolev conjugate of m
that is given by

m∗ =

{
nm
n−m if m < n,

arbitrary large number > m if m ≥ n.
(2.4)

• Local uniform continuity: For eachM > 0 there is a nondecreasing function
σM : R+ → R+ with limt→0+ σM (t) = 0 such that

|a(x, z1, ξ)− a(x, z2, ξ)| ≤ σM (|z1 − z2|)|ξ|m−1 (2.5)

for a.a. x ∈ Ω, all z1, z2 ∈ [−M,M ] and all ξ ∈ Rn.
• (δ,R)-vanishing property: For each constant M > 0 there exist RM > 0

and δM > 0 such that

sup
z∈[−M,M ]

sup
0<ρ≤RM

sup
y∈Rn

−
∫
Bρ(y)

Θ
(
a;Bρ(y)

)
(x, z) dx ≤ δM . (2.6)
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Here the function Θ is defined by

Θ
(
a;Bρ(y)

)
(x, z) := sup

ξ∈Rn\{0}

|a(x, z, ξ)− aBρ(y)(z, ξ)|
|ξ|m−1

, (2.7)

where aBρ(y)(z, ξ) is the integral average of a(x, z, ξ) in the variables x for the
fixed (z, ξ) ∈ R× Rn, that is,

aBρ(y)(z, ξ) = −
∫
Bρ(y)

a(x, z, ξ) dx.

It is clear that (2.6) requires a sort of small-BMO behaviour of a(x, z, ξ) with
respect to x and it is automatically satisfied when a(·, z, ξ) is continuous or
VMO in Ω.

A typical example of a nonlinear differential operator satisfying the above
hypotheses is that given by a(x, z, ξ) = A(x, z)|ξ|m−2ξ where A(x, z) ∈ L∞(Ω×
R), A(x, z) ≥ γ > 0 and A(·, z) is of small-BMO for all z.

Recall that a function u ∈ W 1,m
0 (Ω) is called weak solution to the Dirichlet

problem (1.1) if∫
Ω

((
a(x, u(x), Du(x))+b(x, u(x))

)
·Dv(x) (2.8)

+c(x, u(x), Du(x))v(x)
)
dx = 0

for each test function v ∈ W 1,m
0 (Ω). It is worth noting that the convergence of

the integrals involved in (2.8) for all admissible u and v is ensured by (2.2) and
(2.3) under the sole assumptions p ≥ m

m−1 and q ≥ mn
mn+m−n when m < n, q > 1

if m = n, q ≥ 1 if m > n.
In what follows, given any two exponents s > 1 and θ ∈ (0, n), we set

s∗θ =

{
(n−θ)s
n−θ−s if s+ θ < n,

arbitrary large number if s+ θ ≥ n
(2.9)

for the Sobolev–Morrey conjugate of s.
We will use in the sequel the omnibus phrase “known quantities” which

means that a given constant depends on the data in hypotheses (2.2)–(2.6),
which include n, m, m∗, γ, Λ, p, λ, q, µ, ‖ϕ‖Lp,λ(Ω), ‖ψ‖Lq,µ(Ω), diam Ω, δ, R,
σM , RM and δM , and the letter C will stand for a generic constant, depending
on known quantities, which may vary within the same formula.

The main results of the paper is the following

Theorem 2.2. Suppose (2.2), (2.3), (2.5) and (2.6), and let u ∈ W 1,m
0 (Ω) be

a weak solution to the Dirichlet problem (1.1).
There exists a small δ0 > 0 such that if Ω is (δ,R)-Reifenberg flat and

a(x, z, ξ) is (δ,R)-vanishing in the sense of (2.6) with δ < δ0, then

u ∈ L∞(Ω) ∩W 1,(m−1)r(Ω) with r = min{p, q∗µ}.
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Moreover, the gradient Du belongs to an appropriate Morrey space,

Du ∈ L(m−1)r,ν(Ω) with ν = min

{
r(λ− n)

p
+ n,

r(µ− n)

q∗µ
+ n

}
.

Indeed, in the particular case λ = µ = 0 when ϕ ∈ Lp(Ω) with (m− 1)p > n
and ψ ∈ Lq(Ω) with mq > n, we get Du ∈ L(m−1)r(Ω) where r = min{p, q∗}.
Thus Theorem 2.2 provides a Calderón–Zygmund property in Sobolev spaces
for the weak solutions to (1.1), extending this way the semilinear result from
[14] to more general quasilinear elliptic equations.

An immediate consequence of Theorem 2.2, Proposition 3.3, (m−1)p+λ > n
and mq + µ > n is the following global Hölder continuity of the weak solutions
to (1.1).

Corollary 2.3. Under the assumptions of Theorem 2.2, each W 1,m
0 (Ω)-weak

solution to (1.1) is Hölder continuous in Ω,

u ∈ C0,min{1− n−λ
(m−1)p

,1− n−µ−q
(m−1)q}(Ω).

As shown in Lemma 3.8 below, thanks to (2.2) and (2.3), the weak solutions
of (1.1) own always some Hölder continuity. What Corollary 2.3 gives is the
exact Hölder exponent defined by the hypotheses imposed on the data ϕ and ψ.
In particular, when m > n, we have automatically u ∈ W 1,m

0 (Ω) ⊂ C1−n/m(Ω)
by the Sobolev imbedding and the Morrey lemma, while

min

{
1− n− λ

(m− 1)p
, 1− n− µ− q

(m− 1)q

}
> 1− n

m

now and thus Corollary 2.3 ensures better Hölder continuity for the solution.
At this end, it is worth noting that, even if we are mainly dealing with

regularity issues here, the W 1,m
0 (Ω)-weak solvability of (1.1) can be obtained by

standard techniques, such as Galerkin or Minty–Browder methods (see [9, 8]),
under the above hypotheses, and imposing additional assumptions on the lower
order terms to ensure the desired coercivity of the left-hand side of (2.8) (see
also [12, 13] for some particular existence results).

3. Auxiliary results

For the sake of completeness, we present here some auxiliary assertions to
be used in the proof of Theorem 2.2.

3.1. Basic facts about Morrey spaces

Proposition 3.1. (Embeddings between Morrey spaces, [15]) For arbitrary
s′, s′′ ∈ [1,∞) and θ′, θ′′ ∈ [0, n), one has

Ls
′,θ′(Ω) ⊆ Ls

′′,θ′′(Ω)

if and only if

s′ ≥ s′′ ≥ 1 and
s′

n− θ′
≥ s′′

n− θ′′
.
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Proposition 3.2. (Mapping properties of Riesz potentials, [1, Theorem 3.1])
Let s ∈ (1,∞) and θ ∈ [0, n). Then the Riesz potential I1 is bounded from
Ls,θ(Ω) into Ls

∗
θ ,θ(Ω), that is,

‖I1f‖Ls∗θ,θ(Ω)
≤ C(n, s, θ,Ω)‖f‖Ls,θ(Ω).

As already mentioned above, a Reifenberg flat domain supports the (A)-
property of Ladyzhenskaya and Ural’tseva (cf. [14, 2]), whence [6, Lemma 3.III,
Lemma 3.IV] give the next result.

Proposition 3.3. (Regularity of functions with gradients in Morrey spaces)
Assume that Ω is a Reifenberg flat domain and let u ∈ W 1,s(Ω) with Du ∈
Ls,θ(Ω), θ ∈ [0, n). Then

(1) If s+ θ < n then u ∈ L
ns
n−s ,

nθ
n−s (Ω) ⊂ Ls,θ+s(Ω) with

‖u‖Ls,θ+s(Ω) ≤ ‖u‖L ns
n−s ,

nθ
n−s (Ω)

≤ C(n, s, θ, ∂Ω)
(
‖u‖Ls(Ω) + ‖Du‖Ls,θ(Ω)

)
.

(2) If s+ θ = n then u ∈ Ls′,θ′(Ω) for any s′ <∞ and any θ′ < n, and

‖u‖Ls′,θ′ (Ω) ≤ C(n, s, θ, ∂Ω)
(
‖u‖Ls(Ω) + ‖Du‖Ls,θ(Ω)

)
.

(3) If s+ θ > n then u ∈ C0,α(Ω) with α = 1− n−θ
s and

sup
Ω

|u(x)|+ sup
x,y∈Ω, x 6=y

|u(x)− u(y)|
|x− y|α

≤ C(n, s, θ, ∂Ω)
(
‖u‖Ls(Ω) + ‖Du‖Ls,θ(Ω)

)
.

3.2. Nonlinear elliptic equations

Consider the following Dirichlet problem{
div
(
A(x,Du(x))

)
= div

(
|F(x)|m−2F(x)

)
in Ω

u = 0 on ∂Ω,
(3.1)

where F = (f1, · · · , fn) ∈ Lm(Ω,Rn) is a given vector-valued function and the
nonlinearity A(x, ξ) together with DξA(x, ξ) are Carathéodory maps satisfying
the following conditions{

γ|ξ|m−2|η|2 ≤ 〈DξA(x, ξ)η, η〉,
|A(x, ξ)|+ |ξ||DξA(x, ξ)| ≤ γ−1|ξ|m−1.

(3.2)

According to the Minty–Browder method, (3.1) possesses a unique weak solution
u ∈W 1,m

0 (Ω) and
‖Du‖Lm(Ω) ≤ C‖F‖Lm(Ω)

with a constant C depending only on γ, n, m and Ω ([16, Chapter 2]).
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Definition 3.4. We say that the vector field A(x, ξ) is (δ,R)-vanishing if there
exist δ,R > 0 such that

sup
0<ρ≤R

sup
y∈Rn

−
∫
Bρ(y)

Θ
(
A;Bρ(y)

)
(x) dx ≤ δ,

where

Θ
(
A;Bρ(y)

)
(x) = sup

ξ∈Rn\{0}

|A(x, ξ)−ABρ(y)(ξ)|
|ξ|m−1

.

As consequence of the weighted Lp(Ω)-theory, we have the following result
regarding gradient Morrey regularity of the weak solution to (3.1).

Lemma 3.5. (see [5]) For each s ∈ (m,∞) and each θ ∈ [0, n), there ex-
ist a small positive constant δ and a constant C, depending on γ, n, m, s,
θ and Ω, such that if A is (δ,R)-vanishing, Ω is (δ,R)-Reifenberg flat and
F ∈ Ls,θ(Ω,Rn), then the unique weak solution u ∈ W 1,m

0 (Ω) of the problem
(3.1) satisfies Du ∈ Ls,θ(Ω) and

‖Du‖Ls,θ(Ω) ≤ C‖F‖Ls,θ(Ω).

3.3. (δ,R)-vanishing properties of superposition operators

Lemma 3.6. Under the assumptions (2.5) and (2.6), for each u ∈ C0(Ω)
the composition A(x, ξ) := a(x, u(x), ξ) is (δ,R)-vanishing with δ = δM +
2σM (ωu(RM )), R = RM , M = ‖u‖L∞(Ω) and ωu(·) is the modulus of conti-
nuity of the function u.

Proof. Set M = ‖u‖L∞(Ω) and take R = RM as given by (2.6). Let x, y ∈ Rn,
0 < ρ ≤ R, |x− y| < ρ and ξ ∈ Rn \ {0}. In view of triangle inequality, we have∣∣A(x, ξ)−ABρ(y)(ξ)

∣∣ ≤ |a(x, u(x), ξ)− a(x, u(y), ξ)|
+
∣∣aBρ(y)(u(y), ξ))−ABρ(y)(ξ)

∣∣
+
∣∣a(x, u(y), ξ)− aBρ(y)(u(y), ξ))

∣∣
=: J1 + J2 + J3.

Since |u| ≤M in Ω, the local uniform continuity (2.5) gives

J1 = |a(x, u(x), ξ)− a(x, u(y), ξ)| ≤ σM (|u(x)− u(y)|)|ξ|m−1,

whence
J1 ≤ σM (|u(x)− u(y)|)|ξ|m−1 ≤ σM (ωu(R))|ξ|m−1

by employing the modulus of continuity of u, and the properties of the function
σM .
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In a similar manner one has

J2 ≤ −
∫
Bρ(y)

|a(x̃, u(y), ξ)− a(x̃, u(x̃), ξ)| dx̃

≤ −
∫
Bρ(y)

σM (|u(y)− u(x̃)|)|ξ|m−1dx̃

≤ σM (ωu(R))|ξ|m−1,

while
J3 ≤ Θ

(
a;Bρ(y)

)
(x, u(y))|ξ|m−1

with Θ given in (2.7).
Therefore we have

Θ
(
A;Bρ(y)

)
(x) ≤ Θ

(
a;Bρ(y)

)
(x, u(y)) + 2σM (ωu(R))

and

−
∫
Bρ(y)

Θ
(
A;Bρ(y)

)
(x) dx ≤ −

∫
Bρ(y)

Θ
(
a;Bρ(y)

)
(x, u(y)) dx+ 2σM (ωu(R))

≤ δM + 2σM (ωu(R))

as consequence of (2.6). �

3.4. Hölder continuity of solutions to general nonlinear equations

The following two results regard the weak solutions to general quasilinear el-
liptic equations without any regularity requirements on the principal term with
respect to the variable x. These are classical when ϕ and ψ are only Lebesgue
integrable functions, that is, when λ = µ = 0, and are due to Gehring, Gi-
aquinta and Modica ([7, Chapter V]) and Ladyzhenskaya and Uralt’seva ([8,
Chapter IV]), respectively. In the case when ϕ and ψ belong to Morrey spaces,
Lemmas 3.7 and 3.8 have been proved in [4] and announced in [3] for very
general domains Ω with thick enough complements. The last means that ∂Ω
satisfies a sort of variational capacity density condition which is surely fulfilled
when ∂Ω supports the (A)-property of Ladyzhenskaya and Uralt’seva, that is,
it holds automatically also for Reifenberg flat domains.

The first result claims gradient integrability improvement for the weak so-
lutions to (1.1) in the spirit of Gehring–Giaquinta–Modica, whereas the second
one gives their global boundedness and Hölder continuity.

Lemma 3.7. ([3, Lemma 2.2]) Assume (2.2), (2.3), let Ω be a (δ,R)-Reifenberg
flat domain and u ∈W 1,m

0 (Ω) a weak solution to the Dirichlet problem (1.1).
Then there exists an exponent m0 > m such that Du ∈ Lm0(Ω) and

‖Du‖Lm0 (Ω) ≤ C

with a constant C depending on known quantities and on ‖Du‖Lm(Ω) in addition.
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Actually, Lemma 3.7 has been proved in [4] in the case m ≤ n but a careful
look of the proof shows that it works also when m > n under the assumption of
(δ,R)-Reifenberg flatness of Ω.

Lemma 3.8. ([3, Theorems 2.1, 3.1]) Assume (2.2), (2.3) and let Ω be a (δ,R)-
Reifenberg flat domain.

Then each W 1,m
0 (Ω)-weak solution of the Dirichlet problem (1.1) is essen-

tially bounded and globally Hölder continuous in Ω. Precisely,

sup
x∈Ω

|u(x)|+ sup
x,y∈Ω, x 6=y

|u(x)− u(y)|
|x− y|α

≤ H,

with exponent α ∈ (0, 1) and constant H > 0 depending on known quantities
and on ‖Du‖Lm(Ω).

Indeed, if m > n then Lemma 3.8 is a trivial consequence of the Morrey lemma
and the W 1,p-extension properties of the Reifenberg flat domains.

4. Proof of the main results

Without loss of generality, we assume that the solution u and the data ϕ
and ψ are extended as zero outside Ω.

The essential boundedness of the weak solutions to (1.1), u ∈ L∞(Ω), follows
from Lemma 3.8.

Fix now the solution u ∈W 1,m
0 (Ω)∩L∞(Ω) into the nonlinear terms of (1.1)

and define

A(x, ξ) := a(x, u(x), ξ), B(x) := −b(x, u(x)), f(x) := c(x, u(x), Du(x)).

Let Γ(x − y) be the normalized fundamental solution of the Laplace operator
and set

N f(x) :=

∫
Ω

Γ(x− y)f(y) dy

for the Newtonian potential with density f. Since f ∈ Lmin{q, m∗
m∗−1}(Ω) by

(2.3), the Newtonian potential is well-defined, N f ∈ W 2,min{q, m∗
m∗−1}(Ω) and

∆
(
N f(x)

)
= f(x) for a.a. x ∈ Ω as it follows from the Caldeón–Zygmung

theorem. Thus, defining

F(x) := D
(
N f(x)

)
=

∫
Ω

DxΓ(x− y)f(y) dy = C(n)

∫
Ω

x− y
|x− y|n

f(y) dy,

it is clear that div F(x) = f(x) for a.a. x ∈ Ω.
With the setting

F(x) :=

{
|B(x) + F(x)|

2−m
m−1

(
B(x) + F(x)

)
if |B(x) + F(x)| > 0,

0 if |B(x) + F(x)| = 0,
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we have
|F|m−2F = B + F

and (1.1) can be rewritten into{
div
(
A(x,Du(x))

)
= div

(
|F(x)|m−2F(x)

)
in Ω

u = 0 on ∂Ω.
(4.1)

The term A(x, ξ) is (δ,R)-vanishing as consequence of Lemma 3.6, and it satis-
fies (3.2) because of (2.2) and Lemma 3.8. Further on, it follows from (2.3)

|F(x)| ≤ C

∫
Ω

|f(y)|
|x− y|n−1 dy

≤ C

∫
Ω

1

|x− y|n−1

(
1 + ψ(y) + |Du(y)|

m(m∗−1)
m∗

)
dy

= C
(

(I11)(x) + (I1ψ)(x) +
(
I1|Du|

m(m∗−1)
m∗

)
(x)
)

and therefore

|F(x)|m−1 ≤ C
(

1 + ϕ(x) + (I1ψ)(x) +
(
I1|Du|

m(m∗−1)
m∗

)
(x)
)

(4.2)

with C depending on known quantities and on ‖Du‖Lm(Ω) in addition.

Step 1: In this step, we will show that the weak solution u ∈ W 1,m
0 (Ω) of

(1.1) improves the gradient summability to u ∈W 1,(m−1)r(Ω), that is,

|Du|m−1 ∈ Lmin{p,q∗µ}(Ω).

Employing the better gradient integrability result from Lemma 3.7, we may
assume

|Du|m−1 ∈ Ls(Ω)

for some s ∈ [ m0

m−1 ,∞). This is equivalent to |Du|
m(m∗−1)

m∗ ∈ L
(m−1)m∗
m(m∗−1)

s(Ω) and
Proposition 3.2 yields

I1|Du|
m(m∗−1)

m∗ ∈ L
(

(m−1)m∗
m(m∗−1)

s
)∗

(Ω) ≡ L
(

(m−1)m∗
m(m∗−1)

s
)∗
,0

(Ω). (4.3)

If (m−1)m∗

m(m∗−1)s < n, then(
(m− 1)m∗

m(m∗ − 1)
s

)∗
=

(m− 1)m∗ns

mn(m∗ − 1)− (m− 1)m∗s
≥ (m− 1)m∗ns

mn(m∗ − 1)−m0m∗

because of (m− 1)s ≥ m0. Defining

τ0 :=
(m− 1)m∗n

mn(m∗ − 1)−m0m∗
,

12



we have

τ0 =
(m− 1)m∗n

(m− 1)m∗n+ (n−m)m∗ − nm− (m0 −m)m∗
> 1

since m0 > m, (n−m)m∗ ≤ mn and

m0m
∗

m(m∗ − 1)
≤ (m− 1)m∗

m(m∗ − 1)
s < n.

Therefore, (
(m− 1)m∗

m(m∗ − 1)
s

)∗
≥ τ0s > s. (4.4)

Further on, (2.3) and Proposition 3.2 yield

I1ψ ∈ Lq
∗
µ,µ(Ω) (4.5)

whence
|F|m−1 ∈ Lmin{p,q∗µ,τ0s}(Ω)

as consequence of (2.3) and (4.2)− (4.4). Noting that

min{p, q∗µ, τ0s} >
m

m− 1
,

Lemma 3.5, applied to (4.1), implies

|Du|m−1 ∈ Lmin{p,q∗µ,τ0s}(Ω).

To proceed further, we take s = sk = τk0
m0

m−1 for k = 0, 1, 2, . . . .
Keeping in mind Lemma 3.7, we iterate the above procedure finite times

until sk ≥ min
{
p, q∗µ,

(m∗−1)mn
m∗(m−1)

}
, getting this way

|Du|m−1 ∈ Lmin
{
p,q∗µ,

(m∗−1)mn
m∗(m−1)

}
(Ω).

In particular, if (m∗−1)mn
m∗(m−1) ≥ min{p, q∗µ}, then |Du|m−1 ∈ Lmin{p,q∗µ}(Ω) and we

obtain the claim of Step 1.

If instead (m∗−1)mn
m∗(m−1) < min{p, q∗µ} then |Du|m−1 ∈ L

(m∗−1)mn
m∗(m−1) (Ω) and we

take s = (m∗−1)mn
m∗(m−1) that gives (m−1)m∗

m(m∗−1)s = n. Let us concentrate therefore to

the case (m−1)m∗

m(m∗−1)s ≥ n. Choosing the Sobolev conjugate as(
(m− 1)m∗

m(m∗ − 1)
s

)∗
= min{p, q∗µ},

we get
|F|m−1 ∈ Lmin{p,q∗µ}(Ω)
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as consequence of (2.3), (4.3) and (4.5), and thus we have

|Du|m−1 ∈ Lmin{p,q∗µ}(Ω).

Setting hereafter r := min{p, q∗µ}, we have Du ∈ L(m−1)r(Ω) that is u ∈
W 1,(m−1)r(Ω).

Step 2: To obtain the Morrey regularity of Du as claimed in Theorem 2.2,
we assume that |Du|m−1 ∈ Lr,θ(Ω) for some θ ∈ [0, n). This is equivalent to

|Du|
m(m∗−1)

m∗ ∈ L
(m−1)m∗
m(m∗−1)

r,θ(Ω) and Proposition 3.2 yields

I1|Du|
m(m∗−1)

m∗ ∈ L
(

(m−1)m∗
m(m∗−1)

r
)∗
θ
,θ

(Ω). (4.6)

If (m−1)m∗

m(m∗−1)r < n− θ, we have(
(m− 1)m∗

m(m∗ − 1)
r

)∗
θ

=
(n− θ)(m− 1)m∗r

(n− θ)m(m∗ − 1)− (m− 1)m∗r
> r

with the last inequality following by the hypotheses imposed on p and q. Thus,
Proposition 3.1 gives

L

(
(m−1)m∗
m(m∗−1)

r
)∗
θ
,θ

(Ω) ⊂ Lr,n+r−(n−θ)m(m∗−1)
(m−1)m∗ (Ω).

Further on, set

τ1 :=
n(m−m∗) + rm∗(m− 1)

m∗(m− 1)
, τ2 :=

m(m∗ − 1)

(m− 1)m∗
.

Keeping in mind r > m
m−1 and (n−m)m∗ ≤ mn, we get

τ1 =
n(m−m∗) + rm∗(m− 1)

m∗(m− 1)
>
n(m−m∗) +m∗m

m∗(m− 1)

=
mn−m∗(n−m)

m∗(m− 1)
≥ 0.

On the other hand, it is clear that

τ2 =
m(m∗ − 1)

(m− 1)m∗
> 1

as consequence of m∗ > m, and therefore straightforward calculations show

n+ r − (n− θ)m(m∗ − 1)

(m− 1)m∗
=
n(m−m∗) + rm∗(m− 1)

m∗(m− 1)
+ θ

m(m∗ − 1)

(m− 1)m∗

= τ1 + τ2θ > θ.

Thus, we obtain

I1|Du|
m(m∗−1)

m∗ ∈ Lr,τ1+θτ2(Ω).
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Arguing in the same manner as in step 1 above, one has

|F|m−1 ∈ L
r,min

{
τ1+θτ2,

λ−n
p r+n,µ−n

q∗µ
r+n

}
(Ω)

whence, applying the Lemma 3.5 once again, we have

|Du|m−1 ∈ L
r,min

{
τ1+θτ2,

λ−n
p r+n,µ−n

q∗µ
r+n

}
(Ω).

To proceed further, we first take θ = 0 to get

|Du|m−1 ∈ L
r,min

{
τ1,

λ−n
p r+n,µ−n

q∗µ
r+n

}
(Ω).

If τ1 ≥ min
{
λ−n
p r + n, µ−nq∗µ

r + n
}

then we are done. Otherwise, |Du|m−1 ∈
Lr,τ1(Ω) and we repeat the above procedure with θ = τ1, obtaining thus

|Du|m−1 ∈ L
r,min

{
τ1+τ1τ2,

λ−n
p r+n,µ−n

q∗µ
r+n

}
(Ω)

⊂ L
r,min

{
τ1τ2,

λ−n
p r+n,µ−n

q∗µ
r+n

}
(Ω).

At this point we let θ = θk = τ1τ
k
2 for k = 1, 2, . . . and iterate the above

procedure. This gives

|Du|m−1 ∈ L
r,min

{
τ1+τ1τ

k
2 ,
λ−n
p r+n,µ−n

q∗µ
r+n

}
(Ω)

⊂ L
r,min

{
τ1τ

k
2 ,
λ−n
p r+n,µ−n

q∗µ
r+n

}
(Ω).

We choose now k so large to have

τ1τ
k
2 ≥ min

{
λ− n
p

r + n,
µ− n
q∗µ

r + n, n− (m− 1)m∗

m(m∗ − 1)
r

}
,

getting this way

|Du|m−1 ∈ L
r,min

{
λ−n
p r+n,µ−n

q∗µ
r+n,n− (m−1)m∗

m(m∗−1)
r

}
(Ω).

If

n− (m− 1)m∗

m(m∗ − 1)
r ≥ min

{
λ− n
p

r + n,
µ− n
q∗µ

r + n

}
then

|Du|m−1 ∈ L
r,min

{
λ−n
p r+n,µ−n

q∗µ
r+n

}
(Ω)

and this completes the proof of Theorem 2.2.
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If instead

n− (m− 1)m∗

m(m∗ − 1)
r < min

{
λ− n
p

r + n,
µ− n
q∗µ

r + n

}
then

|Du|m−1 ∈ Lr,n−
(m−1)m∗
m(m∗−1)

r(Ω)

and we take θ = n− (m−1)m∗

m(m∗−1)r that gives

(m− 1)m∗

m(m∗ − 1)
r = n− θ.

So, consider now the case

(m− 1)m∗

m(m∗ − 1)
r ≥ n− θ

when

|Du|m−1 ∈ Lr,θ(Ω) ⊂ Lr,n−
(m−1)m∗
m(m∗−1)

r(Ω).

Remembering (4.6), we choose the Sobolev–Morrey conjugate as

(
(m− 1)m∗

m(m∗ − 1)
r

)∗
n− (m−1)m∗

m(m∗−1)
r

=
nr − (m−1)m∗

m(m∗−1)r
2

n−min
{
λ−n
p r + n, µ−nq∗µ

r + n
} ,

that gives

I1|Du|
m(m∗−1)

m∗ ∈ L

nr− (m−1)m∗
m(m∗−1)

r2

n−min

{
λ−n
p

r+n,
µ−n
q∗µ

r+n

} ,n− (m−1)m∗
m(m∗−1)

r

(Ω)

⊂ L
r,min

{
λ−n
p r+n,µ−n

q∗µ
r+n

}
(Ω).

Moreover,

ϕ+ I1ψ ∈ L
r,min

{
λ−n
p r+n,µ−n

q∗µ
r+n

}
(Ω),

whence

|F|m−1 ∈ L
r,min

{
λ−n
p r+n,µ−n

q∗µ
r+n

}
(Ω)

as consequence of (4.2). Applying Lemma 3.5 once again, we have

|Du|m−1 ∈ L
r,min

{
λ−n
p r+n,µ−n

q∗µ
r+n

}
(Ω)

which gives the claim of Theorem 2.2 also in this case. �
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