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HESSIAN ESTIMATES IN WEIGHTED LEBESGUE SPACES FOR

FULLY NONLINEAR ELLIPTIC EQUATIONS

SUN-SIG BYUN, MIKYOUNG LEE, AND DIAN K. PALAGACHEV

Abstract. We prove global regularity in weighted Lebesgue spaces for the

viscosity solutions to the Dirichlet problem for fully nonlinear elliptic equa-
tions. As a consequence, regularity in Morrey spaces of the Hessian is derived

as well.

1. Introduction

The paper deals with the following Dirichlet problem for fully nonlinear elliptic
equations

(1.1)

{
F (D2u,Du, u, x) = f(x) in Ω,

u = 0 on ∂Ω,

where Ω is a bounded domain in Rn with n ≥ 2. Here, F = F (X, z, s, x) is a
real valued Carathéodory function defined on S(n) × Rn × R × Ω, where S(n) is
the set of n × n real symmetric matrices ordered in the usual way: X ≥ 0 when
〈Xξ, ξ〉 ≥ 0 for all ξ ∈ Rn, where 〈·, ·〉 is the Euclidean inner product, and Y ≥ X
means Y −X ≥ 0. We assume that F is uniformly elliptic with ellipticity constants
λ and Λ, that is, there exist constants λ and Λ with 0 < λ ≤ Λ <∞ such that

(1.2) λ‖Y ‖ ≤ F (X + Y, z, s, x)− F (X, z, s, x) ≤ Λ‖Y ‖,
for all X,Y ∈ S(n), Y ≥ 0, z ∈ Rn, s ∈ R and almost all x ∈ Ω, and where
‖Y ‖ := sup|x|=1 |Y x| that is equal to the maximum eigenvalue of Y whenever
Y ≥ 0.

Due to the discontinuous dependence on x of the nonlinear term F, the right
notion of solution to the problem (1.1) would be that of function taken in a Sobolev
space W 2,p that satisfies the equation in a strong or viscosity sense and which
vanishes identically on ∂Ω. It was L. Caffarelli the first to derive in the seminal
paper [2] interior a priori W 2,p-estimates for the solutions of (1.1) for all p ≥ n,
and these led to significant progress in the general study of fully nonlinear elliptic
equations. By adapting the approach of Caffarelli, L. Wang developed in [20] the
W 2,p-regularity theory of nonlinear parabolic equations. The restriction p ≥ n in
[2] is due to the Aleksandrov–Bakel’man–Pucci maximum principle which turned
out to be crucial in Caffarelli’s approach. By using weak reverse Hölder inequalities,
L. Escauriaza extended in [10] the results from [2] to the range p > n−ε with a small
ε > 0 depending on the ellipticity constants of the nonlinear operator considered.
Recently, employing the techniques from [2] and [10], N. Winter derived in [21]
boundary (and thus also global) W 2,p-a priori estimates for the solutions of (1.1),
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and proved W 2,p-solvability results as well. In the works cited, it is supposed that
the nonlinear term F supports linear growths with respect to D2u, Du and u (see
(2.1) below), while its behaviour in x is controlled in terms of small bounded mean
oscillation (BMO) category. Just for the sake of completeness, let us note the papers
[7, 15] where W 2,n-solvability has been proved for Dirichlet and oblique derivative
problems for quasilinear elliptic equations with quadratic gradient growths and
where the discontinuity of the principal coefficients is measured in terms of vanishing
mean oscillation (VMO).

The general aim of the present paper is to extend the results of Winter [21] to
the settings of weighted Sobolev spaces. More precisely, the functional framework
we are dealing with is the space W 2,p

w (Ω), with a weight w taken in an appropriate
Muckenhoupt class. Our goal is to prove that, under appropriate hypotheses on
the data, for each f ∈ Lpw(Ω) there exists a unique strong solution u ∈ W 2,p

w (Ω) of
(1.1) that satisfies the estimate

(1.3) ‖u‖W 2,p
w (Ω) ≤ c‖f‖Lpw(Ω)

with a positive constant c independent of u. Similar problem for linear second order
elliptic operators has been already studied in [1].

It is worth noting at the very beginning that, thanks to the deep self-improving
property of the Muckenhoupt weights, f ∈ Lpw(Ω) implies f ∈ Lp̃(Ω) with appro-
priate p̃ (cf. Remark 2.5) for which all the hypotheses of the Winter work [21] hold
true. This ensures existence of a unique W 2,p̃(Ω)-viscosity solution of (1.1), that
is also W 2,p̃(Ω)-strong solution as proved in [4]. This way, our task reduces to the
proof of fine regularity of the Hessian, given by (1.3). Our approach to proving (1.3)
is based on the suitable properties of the Hardy-Littlewood maximal operator and
the Muckenhoupt weights. To be more concrete, we employ the reverse doubling
property of the weights to estimate the power decay for the weighted measure of
the upper level sets for the Hessian, and derive the interior and boundary W 2,p es-
timates in the settings of weighted Sobolev spaces by applying the boundedness of
the maximal operator on the weighted Lebesgue spaces. In particular, the reverse
Hölder property of the weights plays a significant role in inducing the weighted Lp

bound for the gradient of the solution u.
Indeed, taking the trivial weight w ≡ 1, our results reduce to that of Winter

[21] in the unweighted case. Further on, an appropriate power of the characteristic
function of a ball is a Muckenhoupt weight as known from [9]. We combine this
fact with our main result in order to get regularity in Morrey spaces Lp,µ for the
Hessian of the strong solution to (1.1). Thus, we prove that f ∈ Lp,µ(Ω) implies
D2u ∈ Lp,µ(Ω) which leads, by the known properties of functions with Morrey
regular gradients, to better integrability and even Hölder continuity of the gradient
of u.

The paper is organized as follows. In the next section we list the hypotheses
on the nonlinearity F and the weight w, and state our main result (Theorem 2.4).
Section 3 collects the basic tools employed in the proof of Theorem 2.4 with the
corresponding auxiliary results. The bound (1.3) is then proved by establishing
interior and boundary weighted estimates for the Hessian and using standard flat-
tening and covering arguments. In Section 4 we state and prove the regularity in
Morrey spaces of the second derivatives of solutions to (1.1), and the corresponding
finer smoothness of the gradient.



FULLY NONLINEAR EQUATIONS IN WEIGHTED LEBESGUE SPACES 3

2. Assumptions and main result

We start this section with some standard notations that will be used throughout
the paper. For a point y = (y1, . . . , yn) ∈ Rn and a real number r > 0, let
Br(y) = {x ∈ Rn : |x−y| < r} and B+

r (y) = Br(y)∩{xn > 0}. We write Br = Br(0)
and B+

r = B+
r (0) for the sake of simplicity. For a function u : Rn → R, we denote

the gradient of u by Du = (D1u, · · · , Dnu), and its Hessian by D2u = (Diju) ,

where Diu = Dxiu = ∂u
∂xi

, Diju = Dxixju = ∂2u
∂xi∂xj

for i, j = 1, · · · , n. For a locally

integrable function g : U → R with a bounded set U ⊂ Rn, we denote the mean
value of g on U by

ḡU :=

∫
−
U

g(x) dx =
1

|U |

∫
U

g(x) dx.

2.1. Viscosity solution. Let us now discuss the structure conditions to be im-
posed on F : S(n) × Rn × R × Ω → R. Let 0 < λ ≤ Λ. We introduce the Pucci
extremal operators P−,P+ associated with λ,Λ that are defined as follows: for
X ∈ S(n),

P−(X,λ,Λ) := λ
∑
ei>0

ei + Λ
∑
ei<0

ei and P+(X,λ,Λ) := λ
∑
ei<0

ei + Λ
∑
ei>0

ei,

where ei are the eigenvalues of X.
The basic structure conditions on F (X, z, s, x) that we always assume in this

paper are:

(2.1)


F is nonincreasing in s, F (0, 0, 0, x) = 0,

P−(X − Y, λ,Λ)− κ1|z − z̃| − κ2|s− s̃|
≤ F (X, z, s, x)− F (Y, z̃, s̃, x)

≤ P+(X − Y, λ,Λ) + κ1|z − z̃|+ κ2|s− s̃|

for all X,Y ∈ S(n), z, z̃ ∈ Rn, s, s̃ ∈ R, x ∈ Ω and with constants κ1, κ2 ≥ 0. It
is obvious that the above condition (2.1) with z = z̃ and s = s̃ coincides with the
uniform ellipticity of F as given in (1.2).

Now we recall the definition of viscosity solutions that will be treated throughout
the paper. Let us consider the equation

(2.2) F (D2u,Du, u, x) = f in Ω.

We will always assume that F in (2.2) satisfies the structure conditions (2.1).

Definition 2.1. Let F be continuous in X, z, s and measurable in x. Suppose q > n
2

and f ∈ Lqloc(Ω). A function u ∈ C(Ω) is called an Lq-viscosity solution of (2.2) if
the following two conditions hold:

(a) For all ϕ ∈W 2,q
loc (Ω) whenever ε > 0, O ⊂ Ω is open and

F
(
D2ϕ(x0), Dϕ(x0), u(x0), x0

)
≤ f(x0)− ε a.e. in O,

u− ϕ cannot attain a local maximum in O.
(b) For all ϕ ∈W 2,q

loc (Ω) whenever ε > 0, O ⊂ Ω is open and

F
(
D2ϕ(x0), Dϕ(x0), u(x0), x0

)
≥ f(x0) + ε a.e. in O,

u− ϕ cannot attain a local minimum in O.
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In the above definition, the function ϕ is called a test function. We note that
the restriction on q in Definition 2.1, i.e. q > n

2 , ensures that the test function

ϕ ∈W 2,q
loc (Ω) is continuous because W 2,q

loc (Ω) is imbedded into C(Ω). Moreover, it is
pointwise twice differentiable almost everywhere by the classical result of Calderón
and Zygmund [6]; see [4, Theorem 3.6] and [8] for more details.

If F and f are continuous in all variables and the text function ϕ ∈ C2(Ω) in
Definition 2.1, we say that u is a C-viscosity solution of (2.2). Note that whenever
F and f are continuous in all variables, the C-viscosity solutions of (2.2) are Lq-
viscosity solutions of (2.2); see [4, Proposition 2.9].

For f ∈ Lqloc(Ω), we say that u is an Lq-strong solution of (2.2) if u ∈ W 2,q
loc (Ω)

and the equation (2.2) holds almost everywhere in Ω. It is easy to see (cf. [4,
Lemma 2.6, Remark 2.7]) that if u is an Lq-strong solution, then it is also Lq-

viscosity solution and vice versa, if u ∈W 2,q
loc (Ω) is an Lq-viscosity solution, then it

is Lq-strong solution.

2.2. Muckenhoupt weights. We introduce the Muckenhoupt classes Aq, 1 ≤
q < ∞, and their basic properties, to be used in the sequel. Let w be a weight,
that is, a locally integrable nonnegative function on Rn that takes values in (0,∞)
almost everywhere. We identify the weight w with the measure

w(E) =

∫
E

w(x) dx

for measurable sets E ⊂ Rn. Given 1 ≤ q < ∞, a weight w is said to be of class
Aq, w ∈ Aq, if there exists a constant A ≥ 1 such that for all balls B ⊂ Rn,

(2.3)

(∫
−
B

w(x) dx

)(∫
−
B

w(x)
−1
q−1 dx

)q−1

≤ A

when 1 < q <∞, or

(2.4)

∫
−
B

w(x) dx ≤ A ess inf
B

w(x)

when q = 1. The smallest constant A for which (2.3) (or (2.4)) is fulfilled is denoted
by [w]q and is called the Aq constant of w.

There is an alternate way of defining the Aq class. For any integrable function g
and any ball B ⊂ Rn, w ∈ Aq with 1 ≤ q <∞ if and only if there exists a constant
c ≥ 1 such that

(2.5) (ḡB)q ≤ c

w(B)

∫
B

gqw dx <∞.

The smallest constant c for which (2.5) holds is the same as the Aq constant of
w. The Aq condition is invariant under translation, dilation and multiplication by
a positive scalar. Each Aq-weight satisfies the doubling property, i.e., there exists
a constant c > 0 such that w(B2r(y)) ≤ cw(Br(y)) for every y ∈ Rn and r > 0.
Moreover, the classes Aq are monotone in q : Aq1 ⊂ Aq2 for q1 ≤ q2.

The next two results collect the most important properties of the Aq-weights.

Lemma 2.2 (Reverse doubling property). Let w ∈ Aq for some q ∈ (1,∞),
and let D be a measurable subset of a ball B ⊂ Rn. Then there exist two positive
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constants γ1, γ2 depending only on n, q and [w]q such that

1

[w]q

(
|D|
|B|

)q
≤ w(D)

w(B)
≤ γ1

(
|D|
|B|

)γ2
.

Lemma 2.3 (Self-improving property). Let w ∈ Aq for some q ∈ (1,∞). Then
there exists a sufficiently small constant ε̃ = ε̃(n, q, [w]q) > 0 such that w ∈ Aq−ε̃.

Suppose that w ∈ Aq with 1 < q < ∞ and Ω is a bounded domain in Rn. The
weighted Lebesgue space Lqw(Ω) consists of all measurable functions g on Ω such
that the norm

‖g‖Lqw(Ω) :=

(∫
Ω

|g|qw dx

)1/q

is finite. We define the weighted Sobolev space W 2,q
w (Ω), 1 < q < ∞, as the set of

functions g ∈ Lqw(Ω) with weak derivatives Dαg ∈ Lqw(Ω) for |α| ≤ 2. The norm of
g in W 2,q

w (Ω) is then given by

‖g‖W 2,q
w (Ω) :=

∑
|α|≤2

∫
Ω

|Dαg|q w dx

1/q

.

We refer the reader to [16, 18, 19] for the proofs of Lemmas 2.2 and 2.3 and also
for further properties of the classes Aq and the relevant weighted Lebesgue and
Sobolev spaces.

2.3. Main result. To measure the oscillation of the function F with respect to
x, we define

βF (x, y) := sup
X∈S(n)\{0}

|F (X, 0, 0, x)− F (X, 0, 0, y)|
‖X‖

,

and set β(x, y) = βF (x, y) for the sake of simplicity.

Theorem 2.4 (Main Theorem). Assume that F (X, z, s, x) satisfies the structure
conditions (2.1) and that it is convex in X. Let p ∈ (n0,∞) where n0 := n− ε0 for
some ε0 = ε0(Λ

λ , n, κ1,diam(Ω)) > 0 and w ∈ A p
n0
. Suppose that ∂Ω ∈ C1,1 and

f ∈ Lpw(Ω). Then there exists a small δ = δ(n, λ,Λ, p, w, ∂Ω) > 0 such that if

(2.6) sup
x0∈Ω̄, 0<r≤r0

(∫
−
Br(x0)∩Ω

β(x, x0)n dx

)1/n

≤ δ

for some r0 > 0, then the problem (1.1) has a unique viscosity solution u ∈W 2,p
w (Ω),

satisfying the estimate

(2.7) ‖u‖W 2,p
w (Ω) ≤ c ‖f‖Lpw(Ω)

with a positive constant c = c(n, λ,Λ, κ1, κ2, p, w, ∂Ω,diam(Ω), r0).

The small constant ε0 ∈ (0, n2 ) which appears in the statement of Theorem 2.4 is
the same as in [21], and it is related to fundamental estimates of Green’s functions
obtained by Fabes and Stroock [11]; see [4, 17] for more details. Hereafter, for
simplicity, we denote n0 := n− ε0.
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Remark 2.5. It follows from Lemma 2.3 that if w ∈ A p
n0

then w ∈ A p
n0
−ε̃ for

some small constant ε̃ = ε̃(n, λ,Λ, p, [w] p
n0

) > 0. This way, (2.5) yields(∫
−
B

|f |
n0p
p−n0 ε̃ dx

) p
n0
−ε̃

≤ c

w(B)

∫
B

|f |
n0p
p−n0 ε̃

·
(
p
n0
−ε̃

)
w dx =

c

w(B)

∫
B

|f |pw dx,

whence ∫
B

|f |
n0p
p−n0 ε̃ dx ≤ c

(
‖f‖Lpw(B)

) n0p
p−n0 ε̃ |B|w(B)

−n0
p−n0 ε̃

for any ball B ⊂ Rn. Therefore, standard covering arguments give

(2.8) ‖f‖
L

n0p
p−n0 ε̃ (Ω)

≤ c‖f‖Lpw(Ω)

for some c = c(n, λ,Λ, p, [w] p
n0
,diam(Ω)) > 0, that means f ∈ Lpw(Ω) implies

f ∈ L
n0p
p−n0 ε̃ (Ω). It is clear that n0p

p−n0ε̃
> n0 and hence, by virtue of [21, Theorem

4.6], there exists a unique viscosity (or strong) solution u ∈ W 2,
n0p
p−n0 ε̃ (Ω) of (1.1)

with

‖u‖
W

2,
n0p
p−n0 ε̃ (Ω)

≤ c‖f‖
L

n0p
p−n0 ε̃ (Ω)

.

Consequently, the existence of a unique L
n0p
p−n0 ε̃ -viscosity solution to (1.1) is already

guaranteed by (2.8).

3. Weighted W 2,p-estimates

3.1. Preliminaries. We recall that for a locally integrable function g : Rn → R,
the Hardy-Littlewood maximal function of g is defined by

Mg(y) = sup
r>0

1

|Br(y)|

∫
Br(y)

|g(x)| dx,

at each point y ∈ Rn. If g is defined on a bounded set U ⊂ Rn, then MUg =
M(χUg), where χU stands for the characteristic function of U.

One of the central tools in proving Theorem 2.4 is the following result, known
Muckenhoupt’s theorem, which states that the Hardy-Littlewood maximal operator
is bounded from Lqw into itself, with 1 < q <∞, if and only if w ∈ Aq; see [13, 16, 19]
for the proof and details. For g ∈ Lqw(Rn) with 1 < q <∞,Mg is meaningful from
the fact that Lqw(Rn) ⊂ L1

loc(Rn).

Lemma 3.1. Suppose w ∈ Aq with 1 < q < ∞. Then there exists a constant
c = c(n, q, [w]q) > 0 such that

(3.1)

∫
Rn

(Mg)
q
w dx ≤ c

∫
Rn
|g|qw dx

whenever g ∈ Lqw(Rn). Conversely, if (3.1) holds for every g ∈ Lqw(Rn), then
w ∈ Aq.

We also need the following standard property, which comes from classical mea-
sure theory; see [3, 18].
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Lemma 3.2. Suppose that g is a nonnegative measurable function in a bounded
domain U ⊂ Rn. Let η > 0 and M > 1 be constants and w be a weight in Rn. Then
for 0 < q <∞,

g ∈ Lqw(U) if and only if S :=
∑
k≥1

Mqkw
(
{x ∈ U : g(x) > ηMk}

)
<∞

and moreover

c−1S ≤ ‖g‖q
Lqw(U)

≤ c(w(U) + S),

where c > 0 is a constant depending only on η, M and q.

We now introduce some objects that will be also employed. A function P is
called a paraboloid with opening M if

(3.2) P (x) = l0 + l(x)± M

2
|x|2,

where M is a positive constant, l0 is a constant and l is a linear function. Note
that P is convex in the case + of (3.2) and concave in the case − of (3.2). Let U
be a bounded domain in Rn. Set V ⊂ U and M > 0. For a continuous function u
in U, we define

GM (u, V ) :=

{
x0 ∈ V :

there is a concave paraboloid P with opening M such
that P (x0) = u(x0) and P (x) ≤ u(x) for any x ∈ V

}
and AM (u, V ) := V \ GM (u, V ). We analogously define GM (u, V ) and AM (u, V ) by

using convex paraboloids. We also define GM (u, V ) := GM (u, V ) ∩ GM (u, V ) and

AM (u, V ) := AM (u, V ) ∩ AM (u, V ). Set now

Θ(u, V )(x) := inf{M > 0: x ∈ GM (V )},
Θ(u, V )(x) := inf{M > 0: x ∈ GM (V )},
Θ(u, V )(x) := sup{Θ(u, V )(x),Θ(u, V )(x)}.

The following lemma which will be used to prove Theorem 3.4 below gives that the
Lpw norm of the Hessian of u in U can be controlled by the Lpw norm of Θ(u, U).

Lemma 3.3. Let 1 < p <∞ and u be a continuous function in a bounded domain
U ⊂ Rn. For a positive constant r, we define

Θ(u, r)(x) := Θ(u, U ∩Br(x))(x) for x ∈ U.

If Θ(u, r) ∈ Lpw(U), then we have D2u ∈ Lpw(U) and

(3.3) ‖D2u‖Lpw(U) ≤ 2‖Θ(u, r)‖Lpw(U).

Proof. Using the same approach as in the proof of Proposition 1.1 in [3], we deduce
that ∣∣∣∣∫

U

uϕij dx

∣∣∣∣ ≤ 2

∫
U

|Θ(u, r)||ϕ| dx = 2

∫
U

|Θ(u, r)| |ϕ|w
1
p w−

1
p dx

≤ 2‖Θ(u, r)‖Lpw(U)‖ϕ‖Lp′
w∗ (U)

for any ϕ ∈ C∞c (U) and any indices i, j. Here p′ is the conjugate exponent of p,

p′ = p
p−1 , and w∗ = w

−1
p−1 . Therefore, we obtain D2u ∈ Lpw(U) with the bound

(3.3). �
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3.2. Interior and boundary weighted estimates. In this subsection, we es-
tablish interior and boundary W 2,p estimates for the solutions of the fully nonlinear
elliptic equation (1.1) in the settings of weighted Sobolev spaces. For the sake of
simplicity, we still denote n0 := n− ε0. Here, the constant ε0 > 0 depends only on
Λ
λ , n, and κ1, since we are dealing with the local estimates.

Theorem 3.4. Let p ∈ (n0,∞) and w ∈ A p
n0
. Set p̃ := n0p

p−n0ε̃
for some ε̃ =

ε̃(n, λ,Λ, p, [w] p
n0

) > 0.

(i) Assume that F (X, z, s, x) satisfies the structure conditions (2.1) in B1 and
it is convex in X. Suppose f ∈ Lpw(B1). Then there exists a small δ =
δ(n, λ,Λ, p, w) > 0 such that if

sup
x0∈B1, 0<r≤r0

(∫
−
Br(x0)

β(x, x0)n dx

)1/n

≤ δ

for some r0 > 0, then for any bounded Lp̃-viscosity solution u of

F (D2u,Du, u, x) = f(x) in B1,

we have that u ∈W 2,p
w (B 1

2
) with the estimate

(3.4) ‖u‖W 2,p
w (B 1

2
) ≤ c

(
‖f‖Lpw(B1) + ‖u‖L∞(B1)

)
,

for some positive constant c = c(n, λ,Λ, κ1, κ2, p, w, r0).
(ii) Assume that F (X, z, s, x) satisfies the structure conditions (2.1) in B+

1 and
it is convex in X. Suppose f ∈ Lpw(B+

1 ). Then there exists a small δ =
δ(n, λ,Λ, p, w) > 0 such that if

sup
x0∈B+

1 , 0<r≤r0

(∫
−
Br(x0)∩B+

1

β(x, x0)n dx

)1/n

≤ δ

for some r0 > 0, then for any bounded Lp̃-viscosity solution u of

(3.5)

{
F (D2u,Du, u, x) = f in B+

1 ,
u = 0 on B1 ∩ {xn = 0},

we have that u ∈W 2,p
w (B+

1
2

) with the estimate

(3.6) ‖u‖W 2,p
w (B+

1
2

) ≤ c
(
‖f‖Lpw(B+

1 ) + ‖u‖L∞(B+
1 )

)
,

for some positive constant c = c(n, λ,Λ, κ1, κ2, p, w, r0).

Since the proof of the interior weighted estimate (3.4) is analogous to that of
(3.6), we only show the boundary estimate (3.6) in Theorem 3.4.

In order to derive (3.6), we need power decay estimates for the weighted measure
of At; see (3.8) in Lemma 3.7. Hereafter, for simplicity, we write Q+

1 := Qn−1
1 ×

(0, 1), where

Qn−1
1 := {x ∈ Rn−1 : max

1≤i≤n−1
|xi| < 1}.

We first recall the following lemma that can be found in [21]; see [21, Lemma 2.15]
for its proof and more details.
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Lemma 3.5. Assume that F (X, 0, 0, x) satisfies the structure conditions (2.1) in
B+

14
√
n

, and it is convex in X. Furthermore, F and f are supposed to be continuous

in all variables. Let u ∈ C0(Ω) be a C-viscosity solution of

(3.7)

{
F (D2u, 0, 0, x) = f in B+

14
√
n
,

u = 0 on B14
√
n ∩ {xn = 0},

with ‖u‖L∞(B+

14
√
n

) ≤ 1. Then there is a constant M = M(n, λ,Λ) > 1 such that for

any ε ∈ (0, 1), there exists δ = δ(n, λ,Λ, ε) ∈ (0, 1) such that if ‖f‖Ln0 (B+

14
√
n

) ≤ δ

and (∫
−
Br(x0)∩B+

14
√
n

β(x, x0)n dx

)1/n

≤ δ

for any x0 ∈ B+
14
√
n

and r > 0, then for k = 0, 1, 2, . . . we have∣∣∣AMk+1(u,B+
14
√
n
) ∩Q+

1

∣∣∣
≤ ε
∣∣∣ (AMk(u,B+

14
√
n
) ∩Q+

1

)
∪ {x ∈ Q+

1 : M(fn0)(x) ≥ (c0M
i)n0}

∣∣∣
for some constant c0 = c0(n, λ,Λ, ε) > 0.

Remark 3.6. Since the convexity of the function F in X guarantees C1,1 inte-
rior and boundary estimates for solutions of the homogeneous equations from [3,
Theorem 6.6] and [14, Proposition 2.4], we assume the convexity of F in X instead
of the C1,1 estimates as the hypothesis of Lemma 3.5 above; see [3, Remark 1 in
Chapter 7] for more details.

By means of the properties of the Muckenhoupt weights, especially Lemma 2.2,
we can obtain the next result from Lemma 3.5.

Lemma 3.7. Under the same assumptions as in Lemma 3.5, we further suppose
w ∈ A p

n0
. Then there is a constant M = M(n, λ,Λ) > 1 such that for any ε ∈ (0, 1),

there exists δ = δ(n, λ,Λ, p, w, ε) ∈ (0, 1) such that if ‖f‖Ln0 (B+

14
√
n

) ≤ δ and

(∫
−
Br(x0)∩B+

14
√
n

β(x, x0)n dx

)1/n

≤ δ

for any x0 ∈ B+
14
√
n

and r > 0, then for k = 0, 1, 2, · · · we have

w
(
AMk(u,B+

14
√
n
) ∩Q+

1

)
(3.8)

≤ εkw(Q1) +

k−1∑
i=0

εk−iw
({
x ∈ Q+

1 : M(fn0)(x) ≥ (c0M
i)n0

})
for some constant c0 = c0(n, λ,Λ, ε) > 0.

Proof. Let ε ∈ (0, 1) be given and choose δ = δ(n, λ,Λ, γ1, γ2, ε) as in Lemma 3.5,

with ε replaced by
(
ε
γ1

) 1
γ2
, where γ1, γ2 are the constants depending on n, pn0

, and
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[w] p
n0

from Lemma 2.2. We set

D := AMk+1(u,B+
14
√
n
) ∩Q+

1 ,

E :=
(
AMk(u,B+

14
√
n
) ∩Q+

1

)
∪
{
x ∈ Q+

1 : M(fn0)(x) ≥ (c0M
i)n0

}
for k = 0, 1, 2, . . . . Then Lemma 3.5 gives

|D| ≤
(
ε

γ1

) 1
γ2

|E|.

It follows from Lemma 2.2 that

w (D)

w(E)
≤ γ1

(
|D|
|E|

)γ2
≤ γ1

(
ε

γ1

) 1
γ2
·γ2

= ε,

and hence, we find that

w
(
AMk+1(u,B+

14
√
n
) ∩Q+

1

)
≤ εw

(
AMk(u,B+

14
√
n
) ∩Q+

1

)
+ εw

({
x ∈ Q+

1 : M(fn0)(x) ≥ (c0M
i)n0

})
for k = 0, 1, 2, . . . . Iterating this estimate, we finally obtain the desired estimate
(3.8). �

We are ready now to prove the main result of this subsection. As mentioned
before, we only derive the boundary weighted W 2,p estimates (3.6) in Theorem 3.4.

To do this, by virtue of Lemma 3.3, it suffices to show that Θ(u,B+
1
2

) ∈ Lpw(B+
1
2

)

with

(3.9) ‖Θ(u,B+
1
2

)‖Lpw(B+
1
2

) ≤ c,

for some positive constant c depending only on n, λ,Λ, and w, via the standard
normalization procedure. It is clear that

w
(
{x ∈ B+

1
2

: Θ(u,B+
1
2

)(x) > t}
)
≤ w

(
At(u,B+

1
2

)
)
,

for t > 0, and so we see that

SΘ :=
∑
k≥1

Mpkw
(
{x ∈ B+

1
2

: Θ(u,B+
1
2

)(x) > t}
)
≤
∑
k≥1

Mpkw
(
At(u,B+

1
2

)
)
.

for some universal constant M > 1 given in Lemma 3.7. Therefore, if we show that

(3.10)
∑
k≥1

Mpkw
(
AMk(u,B+

1
2

)
)
<∞,

then Lemma 3.2 would imply Θ(u,B+
1
2

) ∈ Lpw(B+
1
2

) with∫
B+

1
2

|Θ(u,B+
1
2

)(x)|pw(x) dx ≤ c
(
w(B+

1
2

) + SΘ

)
,

where the constant c depends only on M and w. This way, it will be sufficient to
get (3.10) in order to prove (3.6) in Theorem 3.4.
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Proof of Theorem 3.4 (ii) . We only need to derive the desired estimate (3.6) for
the problem (3.5) without dependence on the terms of Du and u, thanks to the
structure conditions of the operator F and the properties of the weight w. More
preciously, we first consider f̃(x) := F (D2u, 0, 0, x). From the structure conditions

(2.1), we have that |f̃(x)| ≤ κ1|Du(x)|+ κ2|u(x)|+ |f(x)| for a.e. x ∈ B+
1 .

Since w ∈ A p
n0
, we use the reverse Hölder property of w in [12, Theorem 9.25],

which gives that there exists γ = γ(n, λ,Λ, p, [w] p
n0

) > 0 such that w1+γ ∈ A p
n0
.

Then, given g ∈ Lp (1+ 1
γ )(U), one has∫

U

|g|pw dx ≤
(∫

U

|g|p (1+ 1
γ ) dx

) γ
1+γ

(∫
U

w1+γ dx

) 1
1+γ

,

for any bounded subset U of Rn, which implies that Lp (1+ 1
γ )(U) ↪→ Lpw(U). There-

fore, applying interior W 1,p̃ estimates in [17, Theorem 2.1] and boundary W 1,p̃

estimates in [21, Theorem 3.1] with q := p
(

1 + 1
γ

)
by choosing δ sufficiently small,

the standard covering argument allows us to discover that Du ∈ Lpw(B+
2
3

) with

‖Du‖Lpw(B+
2
3

) ≤ c ‖Du‖
L
p (1+ 1

γ )(B+
2
3

)

≤ c
(
‖f‖Lp̃(B+

1 ) + ‖u‖L∞(B+
1 )

)
≤ c

(
‖f‖Lpw(B+

1 ) + ‖u‖L∞(B+
1 )

)
.

Recalling [17, Corollary 1.6], we observe that u is an Lp̃-viscosity solution of

F (D2u, 0, 0, x) = f̃(x) in B+
1 .

Accordingly, if the resulting estimate (3.6) is derived for equation (3.5) without
dependence on the terms of Du and u, we infer that

‖u‖W 2,p
w (B+

1
2

) ≤ c

(
‖f̃‖Lpw(B+

2
3

) + ‖u‖L∞(B+
2
3

)

)
(3.11)

≤ c

(
‖f‖Lpw(B+

2
3

) + ‖Du‖Lpw(B+
2
3

) + ‖u‖L∞(B+
2
3

)

)
≤ c

(
‖f‖Lpw(B+

1 ) + ‖u‖L∞(B+
1 )

)
.

Furthermore, it suffices to establish the estimate (3.11) for a C-viscosity solution
u of {

F (D2u, 0, 0, x) = f in B+
1 ,

u = 0 on B1 ∩ {xn = 0},
under the additional assumption that F and f are continuous in x, using the same
approximation procedure as in the proof of [21, Theorem 4.3].

In order to obtain the estimate (3.11), let us first fix x0 ∈ B 1
2
∩ {xn = 0} and

choose a small constant r such that 0 < r < 1
28
√
n
, which will be determined later.

Then we define ũ(x) := 1
Kr2u(rx+ x0) and w̃(x) = w(rx+ x0), where

K := r2−np δ−1‖f‖Lpw(B+

14r
√
n

(x0)) + ‖u‖L∞(B+

14r
√
n

(x0))

and δ = δ(n, λ,Λ, p, w, ε) ∈ (0, 1) is the same as in Lemma 3.7 and ε will be taken

later. Then we observe that ũ is a viscosity solution of F̃ (D2ũ, 0, 0, x) = f̃ in B8
√
n,



12 SUN-SIG BYUN, MIKYOUNG LEE, AND DIAN K. PALAGACHEV

where

F̃ (X,x) :=
1

K
F (KX, rx+ x0) and f̃(x) :=

1

K
f(rx+ x0).

It is clear that w̃ ∈ A p
n0
, F̃ has the same structure conditions as F, βF̃ = βF ,

and F̃ (X,x) is also convex in X. Moreover, it is easy to see that

‖ũ‖L∞(B+

14
√
n

) ≤ 1.

As in (2.8), we obtain that

(3.12) ‖f̃‖Ln0 (B+

14
√
n

) ≤ c‖f̃‖Lpw̃(B+

14
√
n

) ≤ cδ,

for some c = c(n, p, w, r) > 0. Hence, all the hypotheses of Lemma 3.7 are satisfied.
Let M = M(n, λ,Λ) and c0 = c0(n, λ,Λ, ε) be the same constants as in Lemma

3.7, and take ε such that Mpε = 1
2 . Then Lemma 3.7 leads to

w̃
(
AMk(ũ, B+

14
√
n
) ∩Q+

1

)
(3.13)

≤ εkw̃(Q1) +

k−1∑
i=0

εk−iw̃
(
{x ∈ Q+

1 : M(f̃n0)(x) ≥ (c0M
i)n0}

)
.

Note that w̃ ∈ A p
n0

and |f̃ |n0 ∈ L
p
n0

w̃ (B+
14
√
n
). Then it follows from (3.1) and (3.12)

that M(|f̃ |n0) ∈ L
p
n0

w̃ (B+
14
√
n
) with

‖M(|f̃ |n0)‖
L

p
n0
w̃ (B+

14
√
n

)
≤ c‖|f̃ |n0‖

L

p
n0
w̃ (B+

14
√
n

)
= c‖f̃‖n0

Lpw̃(B+

14
√
n

)
≤ c

for some constant c = c(n, p, w, r) > 0. Therefore, Lemma 3.2 yields that∑
k≥1

Mpkw̃
(
{x ∈ Q+

1 : M(f̃n0)(x) ≥ (c0M
i)n0}

)
≤ c.

Accordingly, we obtain from (3.13) that∑
k≥1

Mpkw̃
(
AMk(ũ, B+

14
√
n
) ∩Q+

1

)
≤
∑
k≥1

Mpkεkw̃(Q1)

+
∑
k≥1

Mpk
k−1∑
i=0

εk−iw̃
(
{x ∈ Q+

1 : M(f̃n0)(x) ≥ (c0M
i)n0}

)
≤ w̃(Q1)

∑
k≥1

(Mpε)k

+

∑
j≥1

(Mpε)j

∑
i≥0

Mpiw̃
(
{x ∈ Q+

1 : M(f̃n0)(x) ≥ (c0M
i)n0}

)
≤ (w̃(Q1) + c)

∑
k≥1

(
1

2

)k
≤ c,
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by the choice of ε, and hence, we see ‖D2ũ‖Lpw̃(B+
1
2

) ≤ c, which implies

(3.14) ‖D2u‖Lpw(B+
r
2

(x0)) ≤ c
(
r2−np δ−1‖f‖Lpw(B+

14r
√
n

(x0)) + ‖u‖L∞(B+

14r
√
n

(x0))

)
.

On the other hand, we can also establish the interior estimate

(3.15) ‖D2u‖Lpw(B r
2

) ≤ c
(
r2−np δ−1‖f‖Lpw(B8r

√
n) + ‖u‖L∞(B8r

√
n)

)
in a similar way that we have derived (3.14) applying the weighted version of [3,
Lemma 7.12] instead of Lemma 3.7. Indeed, this weighted version can be discovered
from [3, Lemma 7.12] using Lemma 2.2 in the same way as in the proof of Lemma
3.7.

Take r sufficiently small so that B+
1
2

can be covered by finite number of half balls

B+
r (x0) for x0 ∈ B 1

2
∩ {xn = 0} and balls Br(x0) for x0 ∈ B+

1
2

. Then, from the

boundary estimate (3.14), along with the interior estimate (3.15), we finally obtain
the desired estimate (3.11). �

3.3. Global weighted estimates. We now prove the main result, Theorem 2.4,
via the standard flattening and covering arguments applying the interior and bound-
ary estimates from Theorem 3.4.

Proof of Theorem 2.4. We first recall Remark 2.5 to see that there exists a unique
Lp̃-viscosity solution u of (1.1), where p̃ := n0p

p−n0ε̃
for some small constant ε̃ =

ε̃(n, λ,Λ, p, [w] p
n0

) > 0. We can also obtain the existence of Lp̃-viscosity solutions

of (1.1) by using the same approximation argument as in the proof of [21, Theorem
4.6]. Moreover, Theorem 2.10 in [4] gives the uniqueness of solutions to (1.1).
Therefore, we only need to derive the estimate (2.7).

Let us fix a point x0 ∈ ∂Ω. We now flatten the boundary near x0 and apply
the boundary estimate (3.6). From the assumption ∂Ω ∈ C1,1, there exist a neigh-
borhood N of x0 and a C1,1-diffeomorphism Φ: N → B1 such that Φ(x0) = 0
and Φ(N ∩ Ω) = B+

1 . We set Ψ := Φ−1 and then x = Ψ(y). Now we define
ũ(y) = u(Ψ(y)) and w̃(y) = w(Ψ(y)). Then it is clear that w̃ ∈ A p

n0
and we observe

that ũ is an Lp̃-viscosity solution of{
F̃ (D2ũ, Dũ, ũ, y) = f̃ in B+

1 ,
ũ = 0 on B1 ∩ {xn = 0},

where

F̃ (X, z, s, y) := F
(
DΦT ◦ΨXDΦ ◦Ψ + (z DijΦ ◦Ψ)1≤i,j≤n , z DΦ ◦Ψ, s,Ψ(y)

)
and f̃(y) := f(Ψ(y)). Note that F̃ is convex in X and F̃ (0, 0, 0, y) = 0. Moreover,

we see that βF̃ (x, x0) ≤ c(Φ)βF (Ψ(x),Ψ(x0)) and F̃ is uniformly elliptic with el-
lipticity constants λ c(Φ),Λ c(Φ). Therefore all the hypotheses of Theorem 3.4 (ii)
are satisfied, and so we apply Theorem 3.4 (ii) to obtain the estimate

‖ũ‖W 2,p
w̃ (B+

1
2

) ≤ c
(
‖f̃‖Lpw̃(B+

1 ) + ‖ũ‖L∞(B+
1 )

)
.
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Turning back to the x-variables, we then deduce that

‖u‖W 2,p
w (Ψ(B+

1
2

)) ≤ c
(
‖f‖Lpw(Ψ(B+

1 )) + ‖u‖L∞(Ψ(B+
1 ))

)
≤ c

(
‖f‖Lpw(Ω) + ‖u‖L∞(Ω)

)
.

From this estimate, along with the interior bound (3.4) in Theorem 3.4, the standard
covering arguments lead to

(3.16) ‖u‖W 2,p
w (Ω) ≤ c

(
‖f‖Lpw(Ω) + ‖u‖L∞(Ω)

)
.

At this point, the desired estimate (2.7) follows from the uniqueness property
of the homogeneous equation. Indeed, if (2.7) is not true, there exist sequences
{uk}∞k=1 and {fk}∞k=1 such that uk is a Lp̃-viscosity solution of{

F (D2uk, Duk, uk, x) = fk in Ω,
uk = 0 on ∂Ω,

satisfying

(3.17) ‖uk‖W 2,p
w (Ω) > k‖fk‖Lpw(Ω) for any k ≥ 1.

Without loss of generality, we may suppose that ‖uk‖W 2,p
w (Ω) = 1. Then it follows

from (3.17) that

‖fk‖Lpw(Ω) <
1

k
−→ 0 as k →∞.

Moreover, there exist a subsequence of {uk}∞k=1, which is still denoted by {uk}∞k=1

and a function v ∈ W 2,p
w (Ω) such that uk ⇀ v weakly in W 2,p

w (Ω) as k →∞. Note
that W 2,p

w (Ω) ↪→ W 2,p̃(Ω) ↪→↪→ C0(Ω) from (2.8) and the fact that p̃ > n
2 . Then

uk converges strongly to v in C0(Ω), and hence we observe that v is a Lp̃-viscosity
solution of

(3.18)

{
F (D2v,Dv, v, x) = 0 in Ω,

v = 0 on ∂Ω,

by applying [21, Proposition 1.5]. Accordingly, we have v ≡ 0 by the uniqueness of
strong solutions to (3.18) from [4, Theorem 2.10]. However, (3.16) implies

1 = ‖uk‖W 2,p
w (Ω) ≤ c

(
‖fk‖Lpw(Ω) + ‖uk‖L∞(Ω)

)
−→ 0 as k →∞,

which is a contradiction. This completes the proof. �

4. Regularity in Morrey spaces and Hölder continuity of the
gradient

We first recall the definition of the Morrey spaces. The Morrey space Lq,µ(Ω)
with 1 < q < ∞ and 0 < µ < n is defined as the set of all measurable functions
g ∈ Lq(Ω) for which the norm

‖g‖Lq,µ(Ω) :=

(
sup

y∈Ω,ρ>0

1

ρµ

∫
Bρ(y)∩Ω

|g(x)|q dx

)1/q

is finite. Moreover, we define the space W 2,q,µ(Ω) as the Banach space of func-
tions belonging to the classical Sobolev space W 2,q(Ω) and having second order
derivatives lying in the Morrey space Lq,µ(Ω). A natural norm in this space is given
by

‖g‖W 2,q,µ(Ω) := ‖g‖Lq(Ω) + ‖D2g‖Lq,µ(Ω).
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The following is an outgrowth of our main result, Theorem 2.4.

Theorem 4.1. Assume the hypotheses on F and ∂Ω given in Theorem 2.4. In
addition, suppose that f ∈ Lp,µ with p ∈ (n0,∞) and µ ∈ (0, n). There exists a
small constant δ = δ(n, λ,Λ, p, µ,Ω, ∂Ω) > 0 so that if (2.6) is satisfied for some
r0 > 0, then the second derivative of the solution u to the problem (1.1) belongs to
Lp,µ(Ω) with the estimate

(4.1) ‖u‖W 2,p,µ(Ω) ≤ c ‖f‖Lp,µ(Ω) ,

for some positive constant c = c(n, λ,Λ, κ1, κ2, p, µ, ∂Ω,diam(Ω), r0).

Proof. We first extend f by zero outside Ω and fix arbitrary x0 ∈ Ω and r > 0. Let
χBr(x0) denote a characteristic function of Br(x0). It follows from [9, Proposition
2] that if σ ∈ (0, 1) then (

MχBr(x0)(x)
)σ ∈ A1.

Therefore, since p
n0
> 1, we have by the monotonicity of the classes Aq that(

MχBr(x0)(x)
)σ ∈ A1 ⊂ A p

n0

with
[(
MχBr(x0)(x)

)σ]
p
n0

= c(n, n0, p, σ).

Let us fix an arbitrary σ ∈ (µn , 1). We apply Theorem 2.4 to discover that there
exists a constant δ = δ(n, λ,Λ, p, ∂Ω) > 0 such that if (2.6) is satisfied, then∫

Br(x0)∩Ω

|D2u|p dx =

∫
Ω

|D2u|p
(
χBr(x0)

)σ
dx(4.2)

≤
∫

Ω

|D2u|p
(
MχBr(x0)

)σ
dx

≤ c

∫
Ω

|f |p
(
MχBr(x0)

)σ
dx

for some constant c = c(n, λ,Λ, κ1, κ2, p, ∂Ω,diam(Ω), r0) > 0. We use now the
dyadic decomposition of Rn related to Br(x0),

Rn = B2r(x0) ∪

( ∞⋃
k=1

B2k+1r(x0)\B2kr(x0)

)
,

in order to obtain that

(4.3)

∫
Ω

|f |p
(
MχBr(x0)

)σ
dx =

∫
Rn
|f |p

(
MχBr(x0)

)σ
dx = I0 +

∞∑
k=1

Ik,

where

I0 :=

∫
B2r(x0)

|f |p
(
MχBr(x0)

)σ
dx

and

Ik :=

∫
B

2k+1r
(x0)\B

2kr
(x0)

|f |p
(
MχBr(x0)

)σ
dx.

It is clear that MχBr(x0)(x) ≤ 1 for a.a. x ∈ Rn and thus we have

(4.4) I0 ≤
∫
B2r(x0)

|f |p dx ≤ c(n)rµ‖f‖pLp,µ(Ω).
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Now we estimate Ik for k = 1, 2, . . . . Note that

0 <

∫
−
Bρ(x)

χBr(x0)(y) dy ≤ |Br(x0)|
|Bρ(x)|

=

(
r

ρ

)n
for each x ∈ B2k+1r(x0)\B2kr(x0) and for each ρ > (2k+1− 1)r. Then from the fact
that 2k+1 − 1 ≥ 2k − 1 ≥ 2k−1 for any k ≥ 1, it follows that∫

−
Bρ(x)

χBr(x0)(y) dy ≤
( r

2k−1r

)n
=

1

2n(k−1)
,

which implies(
MχBr(x0)(x)

)σ
=

(
sup
ρ>0

∫
−
Bρ(x)

χBr(x0)(y) dy

)σ
≤ 1

2σn(k−1)
.

Accordingly, we deduce that

Ik ≤
1

2σn(k−1)

∫
B

2k+1r
(x0)\B

2kr
(x0)

|f |p dx

(4.5)

≤ 1

2σn(k−1)

∫
B

2k+1r
(x0)

|f |p dx =
(2k+1r)µ

2σn(k−1)

(
1

(2k+1r)µ

∫
B

2k+1r
(x0)

|f |p dx

)
≤ 2(µ+σn)+(µ−σn)krµ‖f‖pLp,µ(Ω).

Having in mind (4.4) and (4.5), and remembering the choice of σ ∈ (µn , 1), (4.3)
becomes∫

Ω

|f |p
(
MχBr(x0)

)σ
dx = I0 +

∞∑
k=1

Ik

≤ c(n)rµ‖f‖pLp,µ(Ω) + 2(µ+σn)rµ‖f‖pLp,µ(Ω)

∞∑
k=1

2(µ−σn)k

≤ crµ

( ∞∑
k=0

2(µ−σn)k

)
‖f‖pLp,µ(Ω)

≤ crµ‖f‖pLp,µ(Ω),

whence ∫
Br(x0)∩Ω

|D2u|p dx ≤ c
∫

Ω

|f |p
(
MχBr(x0)

)σ
dx ≤ crµ‖f‖pLp,µ(Ω).

By dividing the both side above by rµ and taking the supremum with respect to
x0 ∈ Ω and r > 0, we obtain D2u ∈ Lp,µ(Ω) with the desired estimate (4.1). �

Since p > n
2 , we have Hölder continuity of the solution to problem (1.1) by the

Sobolev imbedding theorem. However, employing the known properties of functions
with Morrey regular gradient (cf. [5, Lemmas 3.III and 3.IV]), Theorem 4.1 allows
to get better integrability and even Hölder continuity of the gradient for appropriate
values of p and µ. Precisely,

Corollary 4.2. Under the assumptions of Theorem 4.1, let u ∈ W 2,p,µ(Ω) be the
viscosity solution of the problem (1.1). Then
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(1) Du ∈ L
np
n−p ,

nµ
n−p (Ω;Rn) ⊂ Lp,p+µ(Ω;Rn) if p+ µ < n;

(2) Du ∈ Lp′,µ′(Ω;Rn) for each p′ <∞ and each µ′ < n, if p+ µ = n;

(3) Du ∈ C0,1−n−µp (Ω;Rn) if p+ µ > n.
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