Repository Istituzionale dei Prodotti della Ricerca del Politecnico di Bari

Hessian estimates in weighted Lebesgue spaces for fully nonlinear elliptic equations

This is a pre-print of the following article

Original Citation:
Hessian estimates in weighted Lebesgue spaces for fully nonlinear elliptic equations / Byun, Sun-Sig; Lee, Mikyoung; Palagachev, Dian K.. - In: JOURNAL OF DIFFERENTIAL EQUATIONS. - ISSN 0022-0396. - STAMPA. - 260:5(2016), pp. 4550-4571. [10.1016/j.jde.2015.11.025]

Availability:
This version is available at http://hdl.handle.net/11589/59921 since: 2021-03-10
Published version
DOI:10.1016/j.jde.2015.11.025

Terms of use:
(Article begins on next page)

HESSIAN ESTIMATES IN WEIGHTED LEBESGUE SPACES FOR FULLY NONLINEAR ELLIPTIC EQUATIONS

SUN-SIG BYUN, MIKYOUNG LEE, AND DIAN K. PALAGACHEV

Abstract

We prove global regularity in weighted Lebesgue spaces for the viscosity solutions to the Dirichlet problem for fully nonlinear elliptic equations. As a consequence, regularity in Morrey spaces of the Hessian is derived as well.

1. Introduction

The paper deals with the following Dirichlet problem for fully nonlinear elliptic equations

$$
\left\{\begin{array}{rlrl}
F\left(D^{2} u, D u, u, x\right) & =f(x) & & \text { in } \quad \Omega \tag{1.1}\\
u & =0 & \text { on } \partial \Omega
\end{array}\right.
$$

where Ω is a bounded domain in \mathbb{R}^{n} with $n \geq 2$. Here, $F=F(X, z, s, x)$ is a real valued Carathéodory function defined on $S(n) \times \mathbb{R}^{n} \times \mathbb{R} \times \Omega$, where $S(n)$ is the set of $n \times n$ real symmetric matrices ordered in the usual way: $X \geq 0$ when $\langle X \xi, \xi\rangle \geq 0$ for all $\xi \in \mathbb{R}^{n}$, where $\langle\cdot, \cdot\rangle$ is the Euclidean inner product, and $Y \geq X$ means $Y-X \geq 0$. We assume that F is uniformly elliptic with ellipticity constants λ and Λ, that is, there exist constants λ and Λ with $0<\lambda \leq \Lambda<\infty$ such that

$$
\begin{equation*}
\lambda\|Y\| \leq F(X+Y, z, s, x)-F(X, z, s, x) \leq \Lambda\|Y\| \tag{1.2}
\end{equation*}
$$

for all $X, Y \in S(n), Y \geq 0, z \in \mathbb{R}^{n}, s \in \mathbb{R}$ and almost all $x \in \Omega$, and where $\|Y\|:=\sup _{|x|=1}|Y x|$ that is equal to the maximum eigenvalue of Y whenever $Y \geq 0$.

Due to the discontinuous dependence on x of the nonlinear term F, the right notion of solution to the problem (1.1) would be that of function taken in a Sobolev space $W^{2, p}$ that satisfies the equation in a strong or viscosity sense and which vanishes identically on $\partial \Omega$. It was L. Caffarelli the first to derive in the seminal paper [2] interior a priori $W^{2, p}$-estimates for the solutions of (1.1) for all $p \geq n$, and these led to significant progress in the general study of fully nonlinear elliptic equations. By adapting the approach of Caffarelli, L. Wang developed in [20] the $W^{2, p}$-regularity theory of nonlinear parabolic equations. The restriction $p \geq n$ in [2] is due to the Aleksandrov-Bakel'man-Pucci maximum principle which turned out to be crucial in Caffarelli's approach. By using weak reverse Hölder inequalities, L. Escauriaza extended in [10] the results from [2] to the range $p>n-\epsilon$ with a small $\epsilon>0$ depending on the ellipticity constants of the nonlinear operator considered. Recently, employing the techniques from [2] and [10], N. Winter derived in [21] boundary (and thus also global) $W^{2, p}$ - a priori estimates for the solutions of (1.1),

[^0]and proved $W^{2, p}$-solvability results as well. In the works cited, it is supposed that the nonlinear term F supports linear growths with respect to $D^{2} u, D u$ and u (see (2.1) below), while its behaviour in x is controlled in terms of small bounded mean oscillation (BMO) category. Just for the sake of completeness, let us note the papers $[7,15]$ where $W^{2, n}$-solvability has been proved for Dirichlet and oblique derivative problems for quasilinear elliptic equations with quadratic gradient growths and where the discontinuity of the principal coefficients is measured in terms of vanishing mean oscillation (VMO).

The general aim of the present paper is to extend the results of Winter [21] to the settings of weighted Sobolev spaces. More precisely, the functional framework we are dealing with is the space $W_{w}^{2, p}(\Omega)$, with a weight w taken in an appropriate Muckenhoupt class. Our goal is to prove that, under appropriate hypotheses on the data, for each $f \in L_{w}^{p}(\Omega)$ there exists a unique strong solution $u \in W_{w}^{2, p}(\Omega)$ of (1.1) that satisfies the estimate

$$
\begin{equation*}
\|u\|_{W_{w}^{2, p}(\Omega)} \leq c\|f\|_{L_{w}^{p}(\Omega)} \tag{1.3}
\end{equation*}
$$

with a positive constant c independent of u. Similar problem for linear second order elliptic operators has been already studied in [1].

It is worth noting at the very beginning that, thanks to the deep self-improving property of the Muckenhoupt weights, $f \in L_{w}^{p}(\Omega)$ implies $f \in L^{\tilde{p}}(\Omega)$ with appropriate \tilde{p} (cf. Remark 2.5) for which all the hypotheses of the Winter work [21] hold true. This ensures existence of a unique $W^{2, \tilde{p}}(\Omega)$-viscosity solution of (1.1), that is also $W^{2, \tilde{p}}(\Omega)$-strong solution as proved in [4]. This way, our task reduces to the proof of fine regularity of the Hessian, given by (1.3). Our approach to proving (1.3) is based on the suitable properties of the Hardy-Littlewood maximal operator and the Muckenhoupt weights. To be more concrete, we employ the reverse doubling property of the weights to estimate the power decay for the weighted measure of the upper level sets for the Hessian, and derive the interior and boundary $W^{2, p}$ estimates in the settings of weighted Sobolev spaces by applying the boundedness of the maximal operator on the weighted Lebesgue spaces. In particular, the reverse Hölder property of the weights plays a significant role in inducing the weighted L^{p} bound for the gradient of the solution u.

Indeed, taking the trivial weight $w \equiv 1$, our results reduce to that of Winter [21] in the unweighted case. Further on, an appropriate power of the characteristic function of a ball is a Muckenhoupt weight as known from [9]. We combine this fact with our main result in order to get regularity in Morrey spaces $L^{p, \mu}$ for the Hessian of the strong solution to (1.1). Thus, we prove that $f \in L^{p, \mu}(\Omega)$ implies $D^{2} u \in L^{p, \mu}(\Omega)$ which leads, by the known properties of functions with Morrey regular gradients, to better integrability and even Hölder continuity of the gradient of u.

The paper is organized as follows. In the next section we list the hypotheses on the nonlinearity F and the weight w, and state our main result (Theorem 2.4). Section 3 collects the basic tools employed in the proof of Theorem 2.4 with the corresponding auxiliary results. The bound (1.3) is then proved by establishing interior and boundary weighted estimates for the Hessian and using standard flattening and covering arguments. In Section 4 we state and prove the regularity in Morrey spaces of the second derivatives of solutions to (1.1), and the corresponding finer smoothness of the gradient.

2. Assumptions and main result

We start this section with some standard notations that will be used throughout the paper. For a point $y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$ and a real number $r>0$, let $B_{r}(y)=\left\{x \in \mathbb{R}^{n}:|x-y|<r\right\}$ and $B_{r}^{+}(y)=B_{r}(y) \cap\left\{x_{n}>0\right\}$. We write $B_{r}=B_{r}(0)$ and $B_{r}^{+}=B_{r}^{+}(0)$ for the sake of simplicity. For a function $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$, we denote the gradient of u by $D u=\left(D_{1} u, \cdots, D_{n} u\right)$, and its Hessian by $D^{2} u=\left(D_{i j} u\right)$, where $D_{i} u=D_{x_{i}} u=\frac{\partial u}{\partial x_{i}}, D_{i j} u=D_{x_{i} x_{j}} u=\frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}$ for $i, j=1, \cdots, n$. For a locally integrable function $g: U \rightarrow \mathbb{R}$ with a bounded set $U \subset \mathbb{R}^{n}$, we denote the mean value of g on U by

$$
\bar{g}_{U}:=f_{U} g(x) d x=\frac{1}{|U|} \int_{U} g(x) d x
$$

2.1. Viscosity solution. Let us now discuss the structure conditions to be imposed on $F: S(n) \times \mathbb{R}^{n} \times \mathbb{R} \times \Omega \rightarrow \mathbb{R}$. Let $0<\lambda \leq \Lambda$. We introduce the Pucci extremal operators $\mathcal{P}^{-}, \mathcal{P}^{+}$associated with λ, Λ that are defined as follows: for $X \in S(n)$,

$$
\mathcal{P}^{-}(X, \lambda, \Lambda):=\lambda \sum_{e_{i}>0} e_{i}+\Lambda \sum_{e_{i}<0} e_{i} \text { and } \mathcal{P}^{+}(X, \lambda, \Lambda):=\lambda \sum_{e_{i}<0} e_{i}+\Lambda \sum_{e_{i}>0} e_{i}
$$

where e_{i} are the eigenvalues of X.
The basic structure conditions on $F(X, z, s, x)$ that we always assume in this paper are:

$$
\left\{\begin{array}{l}
F \text { is nonincreasing in } s, F(0,0,0, x)=0 \tag{2.1}\\
\mathcal{P}^{-}(X-Y, \lambda, \Lambda)-\kappa_{1}|z-\tilde{z}|-\kappa_{2}|s-\tilde{s}| \\
\quad \leq F(X, z, s, x)-F(Y, \tilde{z}, \tilde{s}, x) \\
\quad \leq \mathcal{P}^{+}(X-Y, \lambda, \Lambda)+\kappa_{1}|z-\tilde{z}|+\kappa_{2}|s-\tilde{s}|
\end{array}\right.
$$

for all $X, Y \in S(n), z, \tilde{z} \in \mathbb{R}^{n}, s, \tilde{s} \in \mathbb{R}, x \in \Omega$ and with constants $\kappa_{1}, \kappa_{2} \geq 0$. It is obvious that the above condition (2.1) with $z=\tilde{z}$ and $s=\tilde{s}$ coincides with the uniform ellipticity of F as given in (1.2).

Now we recall the definition of viscosity solutions that will be treated throughout the paper. Let us consider the equation

$$
\begin{equation*}
F\left(D^{2} u, D u, u, x\right)=f \quad \text { in } \Omega \tag{2.2}
\end{equation*}
$$

We will always assume that F in (2.2) satisfies the structure conditions (2.1).
Definition 2.1. Let F be continuous in X, z, s and measurable in x. Suppose $q>\frac{n}{2}$ and $f \in L_{\mathrm{loc}}^{q}(\Omega)$. A function $u \in C(\Omega)$ is called an L^{q}-viscosity solution of (2.2) if the following two conditions hold:
(a) For all $\varphi \in W_{\text {loc }}^{2, q}(\Omega)$ whenever $\epsilon>0, \mathcal{O} \subset \Omega$ is open and

$$
F\left(D^{2} \varphi\left(x_{0}\right), D \varphi\left(x_{0}\right), u\left(x_{0}\right), x_{0}\right) \leq f\left(x_{0}\right)-\epsilon \text { a.e. in } \mathcal{O},
$$

$u-\varphi$ cannot attain a local maximum in \mathcal{O}.
(b) For all $\varphi \in W_{\text {loc }}^{2, q}(\Omega)$ whenever $\epsilon>0, \mathcal{O} \subset \Omega$ is open and

$$
F\left(D^{2} \varphi\left(x_{0}\right), D \varphi\left(x_{0}\right), u\left(x_{0}\right), x_{0}\right) \geq f\left(x_{0}\right)+\epsilon \text { a.e. in } \mathcal{O},
$$

$u-\varphi$ cannot attain a local minimum in \mathcal{O}.

In the above definition, the function φ is called a test function. We note that the restriction on q in Definition 2.1, i.e. $q>\frac{n}{2}$, ensures that the test function $\varphi \in W_{\mathrm{loc}}^{2, q}(\Omega)$ is continuous because $W_{\mathrm{loc}}^{2, q}(\Omega)$ is imbedded into $C(\Omega)$. Moreover, it is pointwise twice differentiable almost everywhere by the classical result of Calderón and Zygmund [6]; see [4, Theorem 3.6] and [8] for more details.

If F and f are continuous in all variables and the text function $\varphi \in C^{2}(\Omega)$ in Definition 2.1, we say that u is $a C$-viscosity solution of (2.2). Note that whenever F and f are continuous in all variables, the C-viscosity solutions of (2.2) are L^{q} viscosity solutions of (2.2); see [4, Proposition 2.9].

For $f \in L_{\mathrm{loc}}^{q}(\Omega)$, we say that u is an L^{q}-strong solution of (2.2) if $u \in W_{\mathrm{loc}}^{2, q}(\Omega)$ and the equation (2.2) holds almost everywhere in Ω. It is easy to see (cf. [4, Lemma 2.6, Remark 2.7]) that if u is an L^{q}-strong solution, then it is also $L^{q_{-}}$ viscosity solution and vice versa, if $u \in W_{\mathrm{loc}}^{2, q}(\Omega)$ is an L^{q}-viscosity solution, then it is L^{q}-strong solution.
2.2. Muckenhoupt weights. We introduce the Muckenhoupt classes $A_{q}, 1 \leq$ $q<\infty$, and their basic properties, to be used in the sequel. Let w be a weight, that is, a locally integrable nonnegative function on \mathbb{R}^{n} that takes values in $(0, \infty)$ almost everywhere. We identify the weight w with the measure

$$
w(E)=\int_{E} w(x) d x
$$

for measurable sets $E \subset \mathbb{R}^{n}$. Given $1 \leq q<\infty$, a weight w is said to be of class $A_{q}, w \in A_{q}$, if there exists a constant $A \geq 1$ such that for all balls $B \subset \mathbb{R}^{n}$,

$$
\begin{equation*}
\left(f_{B} w(x) d x\right)\left(f_{B} w(x)^{\frac{-1}{q-1}} d x\right)^{q-1} \leq A \tag{2.3}
\end{equation*}
$$

when $1<q<\infty$, or

$$
\begin{equation*}
f_{B} w(x) d x \leq A \underset{B}{\operatorname{essinf}} w(x) \tag{2.4}
\end{equation*}
$$

when $q=1$. The smallest constant A for which (2.3) (or (2.4)) is fulfilled is denoted by $[w]_{q}$ and is called the A_{q} constant of w.

There is an alternate way of defining the A_{q} class. For any integrable function g and any ball $B \subset \mathbb{R}^{n}, w \in A_{q}$ with $1 \leq q<\infty$ if and only if there exists a constant $c \geq 1$ such that

$$
\begin{equation*}
\left(\bar{g}_{B}\right)^{q} \leq \frac{c}{w(B)} \int_{B} g^{q} w d x<\infty \tag{2.5}
\end{equation*}
$$

The smallest constant c for which (2.5) holds is the same as the A_{q} constant of w. The A_{q} condition is invariant under translation, dilation and multiplication by a positive scalar. Each A_{q}-weight satisfies the doubling property, i.e., there exists a constant $c>0$ such that $w\left(B_{2 r}(y)\right) \leq c w\left(B_{r}(y)\right)$ for every $y \in \mathbb{R}^{n}$ and $r>0$. Moreover, the classes A_{q} are monotone in $q: A_{q_{1}} \subset A_{q_{2}}$ for $q_{1} \leq q_{2}$.

The next two results collect the most important properties of the A_{q}-weights.
Lemma 2.2 (Reverse doubling property). Let $w \in A_{q}$ for some $q \in(1, \infty)$, and let D be a measurable subset of a ball $B \subset \mathbb{R}^{n}$. Then there exist two positive
constants γ_{1}, γ_{2} depending only on n, q and $[w]_{q}$ such that

$$
\frac{1}{[w]_{q}}\left(\frac{|D|}{|B|}\right)^{q} \leq \frac{w(D)}{w(B)} \leq \gamma_{1}\left(\frac{|D|}{|B|}\right)^{\gamma_{2}}
$$

Lemma 2.3 (Self-improving property). Let $w \in A_{q}$ for some $q \in(1, \infty)$. Then there exists a sufficiently small constant $\tilde{\epsilon}=\tilde{\epsilon}\left(n, q,[w]_{q}\right)>0$ such that $w \in A_{q-\tilde{\epsilon}}$.

Suppose that $w \in A_{q}$ with $1<q<\infty$ and Ω is a bounded domain in \mathbb{R}^{n}. The weighted Lebesgue space $L_{w}^{q}(\Omega)$ consists of all measurable functions g on Ω such that the norm

$$
\|g\|_{L_{w}^{q}(\Omega)}:=\left(\int_{\Omega}|g|^{q} w d x\right)^{1 / q}
$$

is finite. We define the weighted Sobolev space $W_{w}^{2, q}(\Omega), 1<q<\infty$, as the set of functions $g \in L_{w}^{q}(\Omega)$ with weak derivatives $D^{\alpha} g \in L_{w}^{q}(\Omega)$ for $|\alpha| \leq 2$. The norm of g in $W_{w}^{2, q}(\Omega)$ is then given by

$$
\|g\|_{W_{w}^{2, q}(\Omega)}:=\left(\sum_{|\alpha| \leq 2} \int_{\Omega}\left|D^{\alpha} g\right|^{q} w d x\right)^{1 / q}
$$

We refer the reader to $[16,18,19]$ for the proofs of Lemmas 2.2 and 2.3 and also for further properties of the classes A_{q} and the relevant weighted Lebesgue and Sobolev spaces.
2.3. Main result. To measure the oscillation of the function F with respect to x, we define

$$
\beta_{F}(x, y):=\sup _{X \in S(n) \backslash\{0\}} \frac{|F(X, 0,0, x)-F(X, 0,0, y)|}{\|X\|},
$$

and set $\beta(x, y)=\beta_{F}(x, y)$ for the sake of simplicity.
Theorem 2.4 (Main Theorem). Assume that $F(X, z, s, x)$ satisfies the structure conditions (2.1) and that it is convex in X. Let $p \in\left(n_{0}, \infty\right)$ where $n_{0}:=n-\epsilon_{0}$ for some $\epsilon_{0}=\epsilon_{0}\left(\frac{\Lambda}{\lambda}, n, \kappa_{1}, \operatorname{diam}(\Omega)\right)>0$ and $w \in A_{\frac{p}{n_{0}}}$. Suppose that $\partial \Omega \in C^{1,1}$ and $f \in L_{w}^{p}(\Omega)$. Then there exists a small $\delta=\delta(n, \lambda, \Lambda, p, w, \partial \Omega)>0$ such that if

$$
\begin{equation*}
\sup _{x_{0} \in \bar{\Omega}, 0<r \leq r_{0}}\left(f_{B_{r}\left(x_{0}\right) \cap \Omega} \beta\left(x, x_{0}\right)^{n} d x\right)^{1 / n} \leq \delta \tag{2.6}
\end{equation*}
$$

for some $r_{0}>0$, then the problem (1.1) has a unique viscosity solution $u \in W_{w}^{2, p}(\Omega)$, satisfying the estimate

$$
\begin{equation*}
\|u\|_{W_{w}^{2, p}(\Omega)} \leq c\|f\|_{L_{w}^{p}(\Omega)} \tag{2.7}
\end{equation*}
$$

with a positive constant $c=c\left(n, \lambda, \Lambda, \kappa_{1}, \kappa_{2}, p, w, \partial \Omega, \operatorname{diam}(\Omega), r_{0}\right)$.
The small constant $\epsilon_{0} \in\left(0, \frac{n}{2}\right)$ which appears in the statement of Theorem 2.4 is the same as in [21], and it is related to fundamental estimates of Green's functions obtained by Fabes and Stroock [11]; see [4, 17] for more details. Hereafter, for simplicity, we denote $n_{0}:=n-\epsilon_{0}$.

Remark 2.5. It follows from Lemma 2.3 that if $w \in A_{\frac{p}{n_{0}}}$ then $w \in A_{\frac{p}{n_{0}}-\tilde{\epsilon}}$ for some small constant $\tilde{\epsilon}=\tilde{\epsilon}\left(n, \lambda, \Lambda, p,[w]_{\frac{p}{n_{0}}}\right)>0$. This way, (2.5) yields

$$
\left(f_{B}|f|^{\frac{n_{0} p}{p-n_{0} \tilde{\epsilon}}} d x\right)^{\frac{p}{n_{0}}-\tilde{\epsilon}} \leq \frac{c}{w(B)} \int_{B}|f|^{\frac{n_{0} p}{p-n_{0} \tilde{\epsilon}} \cdot\left(\frac{p}{n_{0}}-\tilde{\epsilon}\right)} w d x=\frac{c}{w(B)} \int_{B}|f|^{p} w d x
$$

whence

$$
\int_{B}|f|^{\frac{n_{0} p}{p-n_{0} \epsilon}} d x \leq c\left(\|f\|_{L_{w}^{p}(B)}\right)^{\frac{n_{0} p}{p-n_{0} \epsilon}}|B| w(B)^{\frac{-n_{0}}{p-n_{0} \varepsilon}}
$$

for any ball $B \subset \mathbb{R}^{n}$. Therefore, standard covering arguments give

$$
\begin{equation*}
\|f\|_{L^{\frac{n_{0} p}{p-n_{0} \tilde{}}(\Omega)}} \leq c\|f\|_{L_{w}^{p}(\Omega)} \tag{2.8}
\end{equation*}
$$

for some $c=c\left(n, \lambda, \Lambda, p,[w]_{\frac{p}{n_{0}}}\right.$, $\left.\operatorname{diam}(\Omega)\right)>0$, that means $f \in L_{w}^{p}(\Omega)$ implies $f \in L^{\frac{n_{0} p}{p-n_{0} \tilde{\epsilon}}}(\Omega)$. It is clear that $\frac{n_{0} p}{p-n_{0} \tilde{\epsilon}}>n_{0}$ and hence, by virtue of [21, Theorem 4.6], there exists a unique viscosity (or strong) solution $u \in W^{2, \frac{n_{0} p}{p-n_{0} e}}(\Omega)$ of (1.1) with

$$
\|u\|_{W^{2, \frac{n_{0} p}{p-n_{0} \epsilon}(\Omega)}} \leq c\|f\|_{L^{\frac{n_{0} p}{p-n_{0} \epsilon}}(\Omega)} .
$$

Consequently, the existence of a unique $L^{\frac{n_{0} p}{p-n_{0} \tilde{\epsilon}}}$-viscosity solution to (1.1) is already guaranteed by (2.8).

3. Weighted $W^{2, p}$-estimates

3.1. Preliminaries. We recall that for a locally integrable function $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$, the Hardy-Littlewood maximal function of g is defined by

$$
\mathcal{M} g(y)=\sup _{r>0} \frac{1}{\left|B_{r}(y)\right|} \int_{B_{r}(y)}|g(x)| d x
$$

at each point $y \in \mathbb{R}^{n}$. If g is defined on a bounded set $U \subset \mathbb{R}^{n}$, then $\mathcal{M}_{U} g=$ $\mathcal{M}\left(\chi_{U} g\right)$, where χ_{U} stands for the characteristic function of U.

One of the central tools in proving Theorem 2.4 is the following result, known Muckenhoupt's theorem, which states that the Hardy-Littlewood maximal operator is bounded from L_{w}^{q} into itself, with $1<q<\infty$, if and only if $w \in A_{q}$; see $[13,16,19]$ for the proof and details. For $g \in L_{w}^{q}\left(\mathbb{R}^{n}\right)$ with $1<q<\infty, \mathcal{M} g$ is meaningful from the fact that $L_{w}^{q}\left(\mathbb{R}^{n}\right) \subset L_{\text {loc }}^{1}\left(\mathbb{R}^{n}\right)$.

Lemma 3.1. Suppose $w \in A_{q}$ with $1<q<\infty$. Then there exists a constant $c=c\left(n, q,[w]_{q}\right)>0$ such that

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}(\mathcal{M} g)^{q} w d x \leq c \int_{\mathbb{R}^{n}}|g|^{q} w d x \tag{3.1}
\end{equation*}
$$

whenever $g \in L_{w}^{q}\left(\mathbb{R}^{n}\right)$. Conversely, if (3.1) holds for every $g \in L_{w}^{q}\left(\mathbb{R}^{n}\right)$, then $w \in A_{q}$.

We also need the following standard property, which comes from classical measure theory; see $[3,18]$.

Lemma 3.2. Suppose that g is a nonnegative measurable function in a bounded domain $U \subset \mathbb{R}^{n}$. Let $\eta>0$ and $M>1$ be constants and w be a weight in \mathbb{R}^{n}. Then for $0<q<\infty$,

$$
g \in L_{w}^{q}(U) \text { if and only if } S:=\sum_{k \geq 1} M^{q k} w\left(\left\{x \in U: g(x)>\eta M^{k}\right\}\right)<\infty
$$

and moreover

$$
c^{-1} S \leq\|g\|_{L_{w}^{q}(U)}^{q} \leq c(w(U)+S)
$$

where $c>0$ is a constant depending only on η, M and q.
We now introduce some objects that will be also employed. A function P is called a paraboloid with opening M if

$$
\begin{equation*}
P(x)=l_{0}+l(x) \pm \frac{M}{2}|x|^{2} \tag{3.2}
\end{equation*}
$$

where M is a positive constant, l_{0} is a constant and l is a linear function. Note that P is convex in the case + of (3.2) and concave in the case - of (3.2). Let U be a bounded domain in \mathbb{R}^{n}. Set $V \subset U$ and $M>0$. For a continuous function u in U, we define
$\underline{\mathcal{G}}_{M}(u, V):=\left\{x_{0} \in V: \quad \begin{array}{c}\text { there is a concave paraboloid } P \text { with opening } M \text { such } \\ \text { that } P\left(x_{0}\right)=u\left(x_{0}\right) \text { and } P(x) \leq u(x) \text { for any } x \in V\end{array}\right\}$
and $\underline{\mathcal{A}}_{M}(u, V):=V \backslash \underline{\mathcal{G}}_{M}(u, V)$. We analogously define $\overline{\mathcal{G}}_{M}(u, V)$ and $\overline{\mathcal{A}}_{M}(u, V)$ by using convex paraboloids. We also define $\mathcal{G}_{M}(u, V):=\underline{\mathcal{G}}_{M}(u, V) \cap \overline{\mathcal{G}}_{M}(u, V)$ and $\mathcal{A}_{M}(u, V):=\underline{\mathcal{A}}_{M}(u, V) \cap \overline{\mathcal{A}}_{M}(u, V)$. Set now

$$
\begin{aligned}
& \underline{\Theta}(u, V)(x):=\inf \left\{M>0: x \in \underline{\mathcal{G}}_{M}(V)\right\}, \\
& \bar{\Theta}(u, V)(x):=\inf \left\{M>0: x \in \overline{\mathcal{G}}_{M}(V)\right\} \\
& \Theta(u, V)(x):=\sup \{\underline{\Theta}(u, V)(x), \bar{\Theta}(u, V)(x)\} .
\end{aligned}
$$

The following lemma which will be used to prove Theorem 3.4 below gives that the L_{w}^{p} norm of the Hessian of u in U can be controlled by the L_{w}^{p} norm of $\Theta(u, U)$.

Lemma 3.3. Let $1<p<\infty$ and u be a continuous function in a bounded domain $U \subset \mathbb{R}^{n}$. For a positive constant r, we define

$$
\Theta(u, r)(x):=\Theta\left(u, U \cap B_{r}(x)\right)(x) \text { for } x \in U
$$

If $\Theta(u, r) \in L_{w}^{p}(U)$, then we have $D^{2} u \in L_{w}^{p}(U)$ and

$$
\begin{equation*}
\left\|D^{2} u\right\|_{L_{w}^{p}(U)} \leq 2\|\Theta(u, r)\|_{L_{w}^{p}(U)} \tag{3.3}
\end{equation*}
$$

Proof. Using the same approach as in the proof of Proposition 1.1 in [3], we deduce that

$$
\begin{aligned}
\left|\int_{U} u \varphi_{i j} d x\right| & \leq 2 \int_{U}|\Theta(u, r) \| \varphi| d x=2 \int_{U}|\Theta(u, r)||\varphi| w^{\frac{1}{p}} w^{-\frac{1}{p}} d x \\
& \leq 2\|\Theta(u, r)\|_{L_{w}^{p}(U)}\|\varphi\|_{L_{w^{*}}^{p^{\prime}}(U)}
\end{aligned}
$$

for any $\varphi \in C_{c}^{\infty}(U)$ and any indices i, j. Here p^{\prime} is the conjugate exponent of p, $p^{\prime}=\frac{p}{p-1}$, and $w^{*}=w^{\frac{-1}{p-1}}$. Therefore, we obtain $D^{2} u \in L_{w}^{p}(U)$ with the bound (3.3).
3.2. Interior and boundary weighted estimates. In this subsection, we establish interior and boundary $W^{2, p}$ estimates for the solutions of the fully nonlinear elliptic equation (1.1) in the settings of weighted Sobolev spaces. For the sake of simplicity, we still denote $n_{0}:=n-\epsilon_{0}$. Here, the constant $\epsilon_{0}>0$ depends only on $\frac{\Lambda}{\lambda}, n$, and κ_{1}, since we are dealing with the local estimates.
Theorem 3.4. Let $p \in\left(n_{0}, \infty\right)$ and $w \in A_{\frac{p}{n_{0}}}$. Set $\tilde{p}:=\frac{n_{0} p}{p-n_{0} \tilde{\epsilon}}$ for some $\tilde{\epsilon}=$ $\tilde{\epsilon}\left(n, \lambda, \Lambda, p,[w]_{\frac{p}{n_{0}}}\right)>0$.
(i) Assume that $F(X, z, s, x)$ satisfies the structure conditions (2.1) in B_{1} and it is convex in X. Suppose $f \in L_{w}^{p}\left(B_{1}\right)$. Then there exists a small $\delta=$ $\delta(n, \lambda, \Lambda, p, w)>0$ such that if

$$
\sup _{x_{0} \in B_{1}, 0<r \leq r_{0}}\left(f_{B_{r}\left(x_{0}\right)} \beta\left(x, x_{0}\right)^{n} d x\right)^{1 / n} \leq \delta
$$

for some $r_{0}>0$, then for any bounded $L^{\tilde{p}}$-viscosity solution u of

$$
F\left(D^{2} u, D u, u, x\right)=f(x) \quad \text { in } B_{1}
$$

we have that $u \in W_{w}^{2, p}\left(B_{\frac{1}{2}}\right)$ with the estimate

$$
\|u\|_{W_{w}^{2, p}\left(B_{\frac{1}{2}}\right)} \leq c\left(\|f\|_{L_{w}^{p}\left(B_{1}\right)}+\|u\|_{L^{\infty}\left(B_{1}\right)}\right),
$$

for some positive constant $c=c\left(n, \lambda, \Lambda, \kappa_{1}, \kappa_{2}, p, w, r_{0}\right)$.
(ii) Assume that $F(X, z, s, x)$ satisfies the structure conditions (2.1) in B_{1}^{+}and it is convex in X. Suppose $f \in L_{w}^{p}\left(B_{1}^{+}\right)$. Then there exists a small $\delta=$ $\delta(n, \lambda, \Lambda, p, w)>0$ such that if

$$
\sup _{x_{0} \in B_{1}^{+}, 0<r \leq r_{0}}\left(f_{B_{r}\left(x_{0}\right) \cap B_{1}^{+}} \beta\left(x, x_{0}\right)^{n} d x\right)^{1 / n} \leq \delta
$$

for some $r_{0}>0$, then for any bounded $L^{\tilde{p}}$-viscosity solution u of

$$
\left\{\begin{array}{rll}
F\left(D^{2} u, D u, u, x\right)=f & \text { in } & B_{1}^{+} \\
u=0 & \text { on } \quad B_{1} \cap\left\{x_{n}=0\right\}
\end{array}\right.
$$

we have that $u \in W_{w}^{2, p}\left(B_{\frac{1}{2}}^{+}\right)$with the estimate

$$
\|u\|_{W_{w}^{2, p}\left(B_{\frac{1}{2}}^{+}\right)} \leq c\left(\|f\|_{L_{w}^{p}\left(B_{1}^{+}\right)}+\|u\|_{L^{\infty}\left(B_{1}^{+}\right)}\right)
$$

for some positive constant $c=c\left(n, \lambda, \Lambda, \kappa_{1}, \kappa_{2}, p, w, r_{0}\right)$.
Since the proof of the interior weighted estimate (3.4) is analogous to that of (3.6), we only show the boundary estimate (3.6) in Theorem 3.4.

In order to derive (3.6), we need power decay estimates for the weighted measure of \mathcal{A}_{t}; see (3.8) in Lemma 3.7. Hereafter, for simplicity, we write $Q_{1}^{+}:=Q_{1}^{n-1} \times$ $(0,1)$, where

$$
Q_{1}^{n-1}:=\left\{x \in \mathbb{R}^{n-1}: \max _{1 \leq i \leq n-1}\left|x_{i}\right|<1\right\}
$$

We first recall the following lemma that can be found in [21]; see [21, Lemma 2.15] for its proof and more details.

Lemma 3.5. Assume that $F(X, 0,0, x)$ satisfies the structure conditions (2.1) in $B_{14 \sqrt{n}}^{+}$, and it is convex in X. Furthermore, F and f are supposed to be continuous in all variables. Let $u \in C^{0}(\Omega)$ be a C-viscosity solution of

$$
\left\{\begin{array}{rcccc}
F\left(D^{2} u, 0,0, x\right) & = & f & \text { in } & B_{14 \sqrt{n}}^{+} \tag{3.7}\\
u & = & 0 & \text { on } & B_{14 \sqrt{n}} \cap\left\{x_{n}=0\right\},
\end{array}\right.
$$

with $\|u\|_{L^{\infty}\left(B_{14 \sqrt{n}}^{+}\right)} \leq 1$. Then there is a constant $M=M(n, \lambda, \Lambda)>1$ such that for any $\epsilon \in(0,1)$, there exists $\delta=\delta(n, \lambda, \Lambda, \epsilon) \in(0,1)$ such that if $\|f\|_{L^{n_{0}\left(B_{14 \sqrt{n}}^{+}\right)}} \leq \delta$ and

$$
\left(f_{B_{r}\left(x_{0}\right) \cap B_{14 \sqrt{n}}^{+}} \beta\left(x, x_{0}\right)^{n} d x\right)^{1 / n} \leq \delta
$$

for any $x_{0} \in B_{14 \sqrt{n}}^{+}$and $r>0$, then for $k=0,1,2, \ldots$ we have

$$
\begin{aligned}
& \left|\mathcal{A}_{M^{k+1}}\left(u, B_{14 \sqrt{n}}^{+}\right) \cap Q_{1}^{+}\right| \\
& \quad \leq \epsilon\left|\left(\mathcal{A}_{M^{k}}\left(u, B_{14 \sqrt{n}}^{+}\right) \cap Q_{1}^{+}\right) \cup\left\{x \in Q_{1}^{+}: \mathcal{M}\left(f^{n_{0}}\right)(x) \geq\left(c_{0} M^{i}\right)^{n_{0}}\right\}\right|
\end{aligned}
$$

for some constant $c_{0}=c_{0}(n, \lambda, \Lambda, \epsilon)>0$.
Remark 3.6. Since the convexity of the function F in X guarantees $C^{1,1}$ interior and boundary estimates for solutions of the homogeneous equations from [3, Theorem 6.6] and [14, Proposition 2.4], we assume the convexity of F in X instead of the $C^{1,1}$ estimates as the hypothesis of Lemma 3.5 above; see [3, Remark 1 in Chapter 7] for more details.

By means of the properties of the Muckenhoupt weights, especially Lemma 2.2, we can obtain the next result from Lemma 3.5.

Lemma 3.7. Under the same assumptions as in Lemma 3.5, we further suppose $w \in A_{\frac{p}{n_{0}}}$. Then there is a constant $M=M(n, \lambda, \Lambda)>1$ such that for any $\epsilon \in(0,1)$, there exists $\delta=\delta(n, \lambda, \Lambda, p, w, \epsilon) \in(0,1)$ such that if $\|f\|_{L^{n_{0}\left(B_{14 \sqrt{n}}^{+}\right)}} \leq \delta$ and

$$
\left(f_{B_{r}\left(x_{0}\right) \cap B_{14 \sqrt{ }}^{+}} \beta\left(x, x_{0}\right)^{n} d x\right)^{1 / n} \leq \delta
$$

for any $x_{0} \in B_{14 \sqrt{n}}^{+}$and $r>0$, then for $k=0,1,2, \cdots$ we have

$$
\begin{align*}
& w\left(\mathcal{A}_{M^{k}}\left(u, B_{14 \sqrt{n}}^{+}\right) \cap Q_{1}^{+}\right) \tag{3.8}\\
& \quad \leq \epsilon^{k} w\left(Q_{1}\right)+\sum_{i=0}^{k-1} \epsilon^{k-i} w\left(\left\{x \in Q_{1}^{+}: \mathcal{M}\left(f^{n_{0}}\right)(x) \geq\left(c_{0} M^{i}\right)^{n_{0}}\right\}\right)
\end{align*}
$$

for some constant $c_{0}=c_{0}(n, \lambda, \Lambda, \epsilon)>0$.
Proof. Let $\epsilon \in(0,1)$ be given and choose $\delta=\delta\left(n, \lambda, \Lambda, \gamma_{1}, \gamma_{2}, \epsilon\right)$ as in Lemma 3.5, with ϵ replaced by $\left(\frac{\epsilon}{\gamma_{1}}\right)^{\frac{1}{\gamma_{2}}}$, where γ_{1}, γ_{2} are the constants depending on $n, \frac{p}{n_{0}}$, and
$[w]_{\frac{p}{n_{0}}}$ from Lemma 2.2. We set

$$
\begin{aligned}
& D:=\mathcal{A}_{M^{k+1}}\left(u, B_{14 \sqrt{n}}^{+}\right) \cap Q_{1}^{+} \\
& E:=\left(\mathcal{A}_{M^{k}}\left(u, B_{14 \sqrt{n}}^{+}\right) \cap Q_{1}^{+}\right) \cup\left\{x \in Q_{1}^{+}: \mathcal{M}\left(f^{n_{0}}\right)(x) \geq\left(c_{0} M^{i}\right)^{n_{0}}\right\}
\end{aligned}
$$

for $k=0,1,2, \ldots$ Then Lemma 3.5 gives

$$
|D| \leq\left(\frac{\epsilon}{\gamma_{1}}\right)^{\frac{1}{\gamma_{2}}}|E|
$$

It follows from Lemma 2.2 that

$$
\frac{w(D)}{w(E)} \leq \gamma_{1}\left(\frac{|D|}{|E|}\right)^{\gamma_{2}} \leq \gamma_{1}\left(\frac{\epsilon}{\gamma_{1}}\right)^{\frac{1}{\gamma_{2}} \cdot \gamma_{2}}=\epsilon
$$

and hence, we find that

$$
\begin{aligned}
& w\left(\mathcal{A}_{M^{k+1}}\left(u, B_{14 \sqrt{n}}^{+}\right) \cap Q_{1}^{+}\right) \\
& \quad \leq \epsilon w\left(\mathcal{A}_{M^{k}}\left(u, B_{14 \sqrt{n}}^{+}\right) \cap Q_{1}^{+}\right)+\epsilon w\left(\left\{x \in Q_{1}^{+}: \mathcal{M}\left(f^{n_{0}}\right)(x) \geq\left(c_{0} M^{i}\right)^{n_{0}}\right\}\right)
\end{aligned}
$$

for $k=0,1,2, \ldots$ Iterating this estimate, we finally obtain the desired estimate (3.8).

We are ready now to prove the main result of this subsection. As mentioned before, we only derive the boundary weighted $W^{2, p}$ estimates (3.6) in Theorem 3.4.

To do this, by virtue of Lemma 3.3, it suffices to show that $\Theta\left(u, B_{\frac{1}{2}}^{+}\right) \in L_{w}^{p}\left(B_{\frac{1}{2}}^{+}\right)$ with

$$
\begin{equation*}
\left\|\Theta\left(u, B_{\frac{1}{2}}^{+}\right)\right\|_{L_{w}^{p}\left(B_{\frac{1}{2}}^{+}\right)} \leq c, \tag{3.9}
\end{equation*}
$$

for some positive constant c depending only on n, λ, Λ, and w, via the standard normalization procedure. It is clear that

$$
w\left(\left\{x \in B_{\frac{1}{2}}^{+}: \Theta\left(u, B_{\frac{1}{2}}^{+}\right)(x)>t\right\}\right) \leq w\left(\mathcal{A}_{t}\left(u, B_{\frac{1}{2}}^{+}\right)\right)
$$

for $t>0$, and so we see that

$$
S_{\Theta}:=\sum_{k \geq 1} M^{p k} w\left(\left\{x \in B_{\frac{1}{2}}^{+}: \Theta\left(u, B_{\frac{1}{2}}^{+}\right)(x)>t\right\}\right) \leq \sum_{k \geq 1} M^{p k} w\left(\mathcal{A}_{t}\left(u, B_{\frac{1}{2}}^{+}\right)\right)
$$

for some universal constant $M>1$ given in Lemma 3.7. Therefore, if we show that

$$
\begin{equation*}
\sum_{k \geq 1} M^{p k} w\left(\mathcal{A}_{M^{k}}\left(u, B_{\frac{1}{2}}^{+}\right)\right)<\infty \tag{3.10}
\end{equation*}
$$

then Lemma 3.2 would imply $\Theta\left(u, B_{\frac{1}{2}}^{+}\right) \in L_{w}^{p}\left(B_{\frac{1}{2}}^{+}\right)$with

$$
\int_{B_{\frac{1}{2}}^{+}}\left|\Theta\left(u, B_{\frac{1}{2}}^{+}\right)(x)\right|^{p} w(x) d x \leq c\left(w\left(B_{\frac{1}{2}}^{+}\right)+S_{\Theta}\right)
$$

where the constant c depends only on M and w. This way, it will be sufficient to get (3.10) in order to prove (3.6) in Theorem 3.4.

Proof of Theorem 3.4 (ii) . We only need to derive the desired estimate (3.6) for the problem (3.5) without dependence on the terms of $D u$ and u, thanks to the structure conditions of the operator F and the properties of the weight w. More preciously, we first consider $\tilde{f}(x):=F\left(D^{2} u, 0,0, x\right)$. From the structure conditions (2.1), we have that $|\tilde{f}(x)| \leq \kappa_{1}|D u(x)|+\kappa_{2}|u(x)|+|f(x)|$ for a.e. $x \in B_{1}^{+}$.

Since $w \in A_{\frac{p}{n_{0}}}$, we use the reverse Hölder property of w in [12, Theorem 9.25], which gives that there exists $\gamma=\gamma\left(n, \lambda, \Lambda, p,[w]_{\frac{p}{n_{0}}}\right)>0$ such that $w^{1+\gamma} \in A_{\frac{p}{n_{0}}}$. Then, given $g \in L^{p\left(1+\frac{1}{\gamma}\right)}(U)$, one has

$$
\int_{U}|g|^{p} w d x \leq\left(\int_{U}|g|^{p\left(1+\frac{1}{\gamma}\right)} d x\right)^{\frac{\gamma}{1+\gamma}}\left(\int_{U} w^{1+\gamma} d x\right)^{\frac{1}{1+\gamma}}
$$

for any bounded subset U of \mathbb{R}^{n}, which implies that $L^{p\left(1+\frac{1}{\gamma}\right)}(U) \hookrightarrow L_{w}^{p}(U)$. Therefore, applying interior $W^{1, \tilde{p}}$ estimates in [17, Theorem 2.1] and boundary $W^{1, \tilde{p}}$ estimates in [21, Theorem 3.1] with $q:=p\left(1+\frac{1}{\gamma}\right)$ by choosing δ sufficiently small, the standard covering argument allows us to discover that $D u \in L_{w}^{p}\left(B_{\frac{2}{3}}^{+}\right)$with

$$
\begin{aligned}
\|D u\|_{L_{w}^{p}\left(B_{\frac{2}{3}}^{+}\right)} & \leq c\|D u\|_{L^{p}\left(1+\frac{1}{\gamma}\right)_{\left(B_{\frac{2}{3}}^{+}\right)}} \\
& \leq c\left(\|f\|_{L^{\tilde{p}}\left(B_{1}^{+}\right)}+\|u\|_{L^{\infty}\left(B_{1}^{+}\right)}\right) \\
& \leq c\left(\|f\|_{L_{w}^{p}\left(B_{1}^{+}\right)}+\|u\|_{L^{\infty}\left(B_{1}^{+}\right)}\right) .
\end{aligned}
$$

Recalling [17, Corollary 1.6], we observe that u is an $L^{\tilde{p}}$-viscosity solution of $F\left(D^{2} u, 0,0, x\right)=\tilde{f}(x)$ in B_{1}^{+}.

Accordingly, if the resulting estimate (3.6) is derived for equation (3.5) without dependence on the terms of $D u$ and u, we infer that

$$
\begin{align*}
\|u\|_{W_{w}^{2, p}\left(B_{\frac{1}{2}}^{+}\right)} & \leq c\left(\|\tilde{f}\|_{L_{w}^{p}\left(B_{\frac{2}{3}}^{+}\right)}+\|u\|_{L^{\infty}\left(B_{\frac{2}{3}}^{+}\right)}\right) \tag{3.11}\\
& \leq c\left(\|f\|_{L_{w}^{p}\left(B_{\frac{2}{3}}^{+}\right)}+\|D u\|_{L_{w}^{p}\left(B_{\frac{2}{3}}^{+}\right)}+\|u\|_{L^{\infty}\left(B_{\frac{2}{3}}^{+}\right)}\right) \\
& \leq c\left(\|f\|_{L_{w}^{p}\left(B_{1}^{+}\right)}+\|u\|_{L^{\infty}\left(B_{1}^{+}\right)}\right)
\end{align*}
$$

Furthermore, it suffices to establish the estimate (3.11) for a C-viscosity solution u of

$$
\left\{\begin{array}{rcccc}
F\left(D^{2} u, 0,0, x\right) & = & f & \text { in } & B_{1}^{+} \\
u & = & 0 & \text { on } & B_{1} \cap\left\{x_{n}=0\right\}
\end{array}\right.
$$

under the additional assumption that F and f are continuous in x, using the same approximation procedure as in the proof of [21, Theorem 4.3].

In order to obtain the estimate (3.11), let us first fix $x_{0} \in B_{\frac{1}{2}} \cap\left\{x_{n}=0\right\}$ and choose a small constant r such that $0<r<\frac{1}{28 \sqrt{n}}$, which will be determined later. Then we define $\tilde{u}(x):=\frac{1}{K r^{2}} u\left(r x+x_{0}\right)$ and $\tilde{w}(x)=w\left(r x+x_{0}\right)$, where

$$
K:=r^{2-\frac{n}{p}} \delta^{-1}\|f\|_{L_{w}^{p}\left(B_{14 r \sqrt{n}}^{+}\left(x_{0}\right)\right)}+\|u\|_{L^{\infty}\left(B_{14 r \sqrt{n}}^{+}\left(x_{0}\right)\right)}
$$

and $\delta=\delta(n, \lambda, \Lambda, p, w, \epsilon) \in(0,1)$ is the same as in Lemma 3.7 and ϵ will be taken later. Then we observe that \tilde{u} is a viscosity solution of $\tilde{F}\left(D^{2} \tilde{u}, 0,0, x\right)=\tilde{f}$ in $B_{8 \sqrt{n}}$,
where

$$
\tilde{F}(X, x):=\frac{1}{K} F\left(K X, r x+x_{0}\right) \text { and } \tilde{f}(x):=\frac{1}{K} f\left(r x+x_{0}\right)
$$

It is clear that $\tilde{w} \in A_{\frac{p}{n_{0}}}, \tilde{F}$ has the same structure conditions as $F, \beta_{\tilde{F}}=\beta_{F}$, and $\tilde{F}(X, x)$ is also convex in X. Moreover, it is easy to see that

$$
\|\tilde{u}\|_{L^{\infty}\left(B_{14 \sqrt{n}}^{+}\right)} \leq 1
$$

As in (2.8), we obtain that

$$
\begin{equation*}
\|\tilde{f}\|_{L^{n_{0}\left(B_{14 \sqrt{n}}\right.}+}^{+} \leq c\|\tilde{f}\|_{L_{\tilde{w}}^{p}\left(B_{14 \sqrt{n}}^{+}\right)} \leq c \delta \tag{3.12}
\end{equation*}
$$

for some $c=c(n, p, w, r)>0$. Hence, all the hypotheses of Lemma 3.7 are satisfied.
Let $M=M(n, \lambda, \Lambda)$ and $c_{0}=c_{0}(n, \lambda, \Lambda, \epsilon)$ be the same constants as in Lemma 3.7, and take ϵ such that $M^{p} \epsilon=\frac{1}{2}$. Then Lemma 3.7 leads to

$$
\begin{align*}
& \tilde{w}\left(\mathcal{A}_{M^{k}}\left(\tilde{u}, B_{14 \sqrt{n}}^{+}\right) \cap Q_{1}^{+}\right) \tag{3.13}\\
& \quad \leq \epsilon^{k} \tilde{w}\left(Q_{1}\right)+\sum_{i=0}^{k-1} \epsilon^{k-i} \tilde{w}\left(\left\{x \in Q_{1}^{+}: \mathcal{M}\left(\tilde{f}^{n_{0}}\right)(x) \geq\left(c_{0} M^{i}\right)^{n_{0}}\right\}\right)
\end{align*}
$$

Note that $\tilde{w} \in A_{\frac{p}{n_{0}}}$ and $|\tilde{f}|^{n_{0}} \in L_{\tilde{w}}^{\frac{p}{n_{0}}}\left(B_{14 \sqrt{n}}^{+}\right)$. Then it follows from (3.1) and (3.12) that $\mathcal{M}\left(|\tilde{f}|^{n_{0}}\right) \in L_{\tilde{w}}^{\frac{p}{n_{0}}}\left(B_{14 \sqrt{n}}^{+}\right)$with

$$
\left\|\mathcal{M}\left(|\tilde{f}|^{n_{0}}\right)\right\|_{L_{\tilde{w}}^{\frac{p}{n_{0}}}\left(B_{14 \sqrt{n}}^{+}\right)} \leq c\left\||\tilde{f}|^{n_{0}}\right\|_{L_{\tilde{w}}^{\frac{p}{n_{0}}}\left(B_{14 \sqrt{n}}^{+}\right)}=c\|\tilde{f}\|_{L_{\tilde{w}}^{p}\left(B_{14 \sqrt{n}}^{+}\right)}^{n_{0}} \leq c
$$

for some constant $c=c(n, p, w, r)>0$. Therefore, Lemma 3.2 yields that

$$
\sum_{k \geq 1} M^{p k} \tilde{w}\left(\left\{x \in Q_{1}^{+}: \mathcal{M}\left(\tilde{f}^{n_{0}}\right)(x) \geq\left(c_{0} M^{i}\right)^{n_{0}}\right\}\right) \leq c
$$

Accordingly, we obtain from (3.13) that

$$
\begin{aligned}
& \sum_{k \geq 1} M^{p k} \tilde{w}\left(\mathcal{A}_{M^{k}}\left(\tilde{u}, B_{14 \sqrt{n}}^{+}\right) \cap Q_{1}^{+}\right) \\
& \quad \leq \\
& \quad \sum_{k \geq 1} M^{p k} \epsilon^{k} \tilde{w}\left(Q_{1}\right) \\
& \quad+\sum_{k \geq 1} M^{p k} \sum_{i=0}^{k-1} \epsilon^{k-i} \tilde{w}\left(\left\{x \in Q_{1}^{+}: \mathcal{M}\left(\tilde{f}^{n_{0}}\right)(x) \geq\left(c_{0} M^{i}\right)^{n_{0}}\right\}\right) \\
& \leq \\
& \quad \\
& \quad+\left(\sum_{j \geq 1}\left(M_{1}^{p} \epsilon\right)^{j}\right)\left(\sum_{i \geq 0}\left(M^{p} \epsilon\right)^{k}\right. \\
& \quad \leq\left(\tilde{w}\left(Q_{1}\right)+c\right) \sum_{k \geq 1}\left(\frac{1}{2}\right)^{k} \leq c,
\end{aligned}
$$

by the choice of ϵ, and hence, we see $\left\|D^{2} \tilde{u}\right\|_{L_{\tilde{w}}^{p}\left(B_{\frac{1}{2}}^{+}\right)} \leq c$, which implies

$$
\begin{equation*}
\left\|D^{2} u\right\|_{L_{w}^{p}\left(B_{\frac{r}{2}}^{+}\left(x_{0}\right)\right)} \leq c\left(r^{2-\frac{n}{p}} \delta^{-1}\|f\|_{L_{w}^{p}\left(B_{14 r \sqrt{n}}^{+}\left(x_{0}\right)\right)}+\|u\|_{L^{\infty}\left(B_{14 r \sqrt{n}}^{+}\left(x_{0}\right)\right)}\right) . \tag{3.14}
\end{equation*}
$$

On the other hand, we can also establish the interior estimate

$$
\begin{equation*}
\left\|D^{2} u\right\|_{L_{w}^{p}\left(B_{\frac{r}{2}}\right)} \leq c\left(r^{2-\frac{n}{p}} \delta^{-1}\|f\|_{L_{w}^{p}\left(B_{8 r \sqrt{n}}\right)}+\|u\|_{L^{\infty}\left(B_{8 r \sqrt{n}}\right)}\right) \tag{3.15}
\end{equation*}
$$

in a similar way that we have derived (3.14) applying the weighted version of [3, Lemma 7.12] instead of Lemma 3.7. Indeed, this weighted version can be discovered from [3, Lemma 7.12] using Lemma 2.2 in the same way as in the proof of Lemma 3.7.

Take r sufficiently small so that $B_{\frac{1}{2}}^{+}$can be covered by finite number of half balls $B_{r}^{+}\left(x_{0}\right)$ for $x_{0} \in B_{\frac{1}{2}} \cap\left\{x_{n}=0\right\}$ and balls $B_{r}\left(x_{0}\right)$ for $x_{0} \in B_{\frac{1}{2}}^{+}$. Then, from the boundary estimate (3.14), along with the interior estimate (3.15), we finally obtain the desired estimate (3.11).
3.3. Global weighted estimates. We now prove the main result, Theorem 2.4, via the standard flattening and covering arguments applying the interior and boundary estimates from Theorem 3.4.

Proof of Theorem 2.4. We first recall Remark 2.5 to see that there exists a unique $L^{\tilde{p}}$-viscosity solution u of (1.1), where $\tilde{p}:=\frac{n_{0} p}{p-n_{0} \tilde{\epsilon}}$ for some small constant $\tilde{\epsilon}=$ $\tilde{\epsilon}\left(n, \lambda, \Lambda, p,[w]_{\frac{p}{n_{0}}}\right)>0$. We can also obtain the existence of $L^{\tilde{p}}$-viscosity solutions of (1.1) by using the same approximation argument as in the proof of [21, Theorem 4.6]. Moreover, Theorem 2.10 in [4] gives the uniqueness of solutions to (1.1). Therefore, we only need to derive the estimate (2.7).

Let us fix a point $x_{0} \in \partial \Omega$. We now flatten the boundary near x_{0} and apply the boundary estimate (3.6). From the assumption $\partial \Omega \in C^{1,1}$, there exist a neighborhood \mathcal{N} of x_{0} and a $C^{1,1}$-diffeomorphism $\Phi: \mathcal{N} \rightarrow B_{1}$ such that $\Phi\left(x_{0}\right)=0$ and $\Phi(\mathcal{N} \cap \Omega)=B_{1}^{+}$. We set $\Psi:=\Phi^{-1}$ and then $x=\Psi(y)$. Now we define $\tilde{u}(y)=u(\Psi(y))$ and $\tilde{w}(y)=w(\Psi(y))$. Then it is clear that $\tilde{w} \in A_{\frac{p}{n_{0}}}$ and we observe that \tilde{u} is an $L^{\tilde{p}}$-viscosity solution of

$$
\left\{\begin{array}{rlccc}
\tilde{F}\left(D^{2} \tilde{u}, D \tilde{u}, \tilde{u}, y\right) & = & \tilde{f} & \text { in } & B_{1}^{+} \\
\tilde{u} & = & 0 & \text { on } & B_{1} \cap\left\{x_{n}=0\right\},
\end{array}\right.
$$

where

$$
\tilde{F}(X, z, s, y):=F\left(D \Phi^{T} \circ \Psi X D \Phi \circ \Psi+\left(z D_{i j} \Phi \circ \Psi\right)_{1 \leq i, j \leq n}, z D \Phi \circ \Psi, s, \Psi(y)\right)
$$

and $\tilde{f}(y):=f(\Psi(y))$. Note that \tilde{F} is convex in X and $\tilde{F}(0,0,0, y)=0$. Moreover, we see that $\beta_{\tilde{F}}\left(x, x_{0}\right) \leq c(\Phi) \beta_{F}\left(\Psi(x), \Psi\left(x_{0}\right)\right)$ and \tilde{F} is uniformly elliptic with ellipticity constants $\lambda c(\Phi), \Lambda c(\Phi)$. Therefore all the hypotheses of Theorem 3.4 (ii) are satisfied, and so we apply Theorem 3.4 (ii) to obtain the estimate

$$
\|\tilde{u}\|_{W_{\widetilde{w}}^{2, p}\left(B_{\frac{1}{2}}^{+}\right)} \leq c\left(\|\tilde{f}\|_{L_{\tilde{w}}^{p}\left(B_{1}^{+}\right)}+\|\tilde{u}\|_{L^{\infty}\left(B_{1}^{+}\right)}\right)
$$

Turning back to the x-variables, we then deduce that

$$
\begin{aligned}
\|u\|_{W_{w}^{2, p}\left(\Psi\left(B_{\frac{1}{2}}^{+}\right)\right)} & \leq c\left(\|f\|_{L_{w}^{p}\left(\Psi\left(B_{1}^{+}\right)\right)}+\|u\|_{L^{\infty}\left(\Psi\left(B_{1}^{+}\right)\right)}\right) \\
& \leq c\left(\|f\|_{L_{w}^{p}(\Omega)}+\|u\|_{L^{\infty}(\Omega)}\right) .
\end{aligned}
$$

From this estimate, along with the interior bound (3.4) in Theorem 3.4, the standard covering arguments lead to

$$
\begin{equation*}
\|u\|_{W_{w}^{2, p}(\Omega)} \leq c\left(\|f\|_{L_{w}^{p}(\Omega)}+\|u\|_{L^{\infty}(\Omega)}\right) . \tag{3.16}
\end{equation*}
$$

At this point, the desired estimate (2.7) follows from the uniqueness property of the homogeneous equation. Indeed, if (2.7) is not true, there exist sequences $\left\{u_{k}\right\}_{k=1}^{\infty}$ and $\left\{f_{k}\right\}_{k=1}^{\infty}$ such that u_{k} is a $L^{\tilde{p}}$-viscosity solution of

$$
\left\{\begin{array}{rll}
F\left(D^{2} u_{k}, D u_{k}, u_{k}, x\right) & =f_{k} & \text { in } \quad \Omega \\
u_{k} & =0 & \text { on } \quad \partial \Omega
\end{array}\right.
$$

satisfying

$$
\begin{equation*}
\left\|u_{k}\right\|_{W_{w}^{2, p}(\Omega)}>k\left\|f_{k}\right\|_{L_{w}^{p}(\Omega)} \quad \text { for any } k \geq 1 \tag{3.17}
\end{equation*}
$$

Without loss of generality, we may suppose that $\left\|u_{k}\right\|_{W_{w}^{2, p}(\Omega)}=1$. Then it follows from (3.17) that

$$
\left\|f_{k}\right\|_{L_{w}^{p}(\Omega)}<\frac{1}{k} \longrightarrow 0 \text { as } k \rightarrow \infty
$$

Moreover, there exist a subsequence of $\left\{u_{k}\right\}_{k=1}^{\infty}$, which is still denoted by $\left\{u_{k}\right\}_{k=1}^{\infty}$ and a function $v \in W_{w}^{2, p}(\Omega)$ such that $u_{k} \rightharpoonup v$ weakly in $W_{w}^{2, p}(\Omega)$ as $k \rightarrow \infty$. Note that $W_{w}^{2, p}(\Omega) \hookrightarrow W^{2, \tilde{p}}(\Omega) \hookrightarrow \hookrightarrow C^{0}(\Omega)$ from (2.8) and the fact that $\tilde{p}>\frac{n}{2}$. Then u_{k} converges strongly to v in $C^{0}(\Omega)$, and hence we observe that v is a $L^{\tilde{p}}$-viscosity solution of

$$
\left\{\begin{array}{rlcc}
F\left(D^{2} v, D v, v, x\right) & =0 & \text { in } \quad \Omega, \tag{3.18}\\
v & =0 & \text { on } \quad \partial \Omega,
\end{array}\right.
$$

by applying [21, Proposition 1.5]. Accordingly, we have $v \equiv 0$ by the uniqueness of strong solutions to (3.18) from [4, Theorem 2.10]. However, (3.16) implies

$$
1=\left\|u_{k}\right\|_{W_{w}^{2, p}(\Omega)} \leq c\left(\left\|f_{k}\right\|_{L_{w}^{p}(\Omega)}+\left\|u_{k}\right\|_{L^{\infty}(\Omega)}\right) \longrightarrow 0 \text { as } k \rightarrow \infty
$$

which is a contradiction. This completes the proof.

4. Regularity in Morrey spaces and Hölder continuity of the GRADIENT

We first recall the definition of the Morrey spaces. The Morrey space $L^{q, \mu}(\Omega)$ with $1<q<\infty$ and $0<\mu<n$ is defined as the set of all measurable functions $g \in L^{q}(\Omega)$ for which the norm

$$
\|g\|_{L^{q, \mu}(\Omega)}:=\left(\sup _{y \in \Omega, \rho>0} \frac{1}{\rho^{\mu}} \int_{B_{\rho}(y) \cap \Omega}|g(x)|^{q} d x\right)^{1 / q}
$$

is finite. Moreover, we define the space $W^{2, q, \mu}(\Omega)$ as the Banach space of functions belonging to the classical Sobolev space $W^{2, q}(\Omega)$ and having second order derivatives lying in the Morrey space $L^{q, \mu}(\Omega)$. A natural norm in this space is given by

$$
\|g\|_{W^{2, q, \mu}(\Omega)}:=\|g\|_{L^{q}(\Omega)}+\left\|D^{2} g\right\|_{L^{q, \mu}(\Omega)}
$$

The following is an outgrowth of our main result, Theorem 2.4.
Theorem 4.1. Assume the hypotheses on F and $\partial \Omega$ given in Theorem 2.4. In addition, suppose that $f \in L^{p, \mu}$ with $p \in\left(n_{0}, \infty\right)$ and $\mu \in(0, n)$. There exists a small constant $\delta=\delta(n, \lambda, \Lambda, p, \mu, \Omega, \partial \Omega)>0$ so that if (2.6) is satisfied for some $r_{0}>0$, then the second derivative of the solution u to the problem (1.1) belongs to $L^{p, \mu}(\Omega)$ with the estimate

$$
\begin{equation*}
\|u\|_{W^{2, p, \mu}(\Omega)} \leq c\|f\|_{L^{p, \mu}(\Omega)} \tag{4.1}
\end{equation*}
$$

for some positive constant $c=c\left(n, \lambda, \Lambda, \kappa_{1}, \kappa_{2}, p, \mu, \partial \Omega, \operatorname{diam}(\Omega), r_{0}\right)$.
Proof. We first extend f by zero outside Ω and fix arbitrary $x_{0} \in \Omega$ and $r>0$. Let $\chi_{B_{r}\left(x_{0}\right)}$ denote a characteristic function of $B_{r}\left(x_{0}\right)$. It follows from [9, Proposition $2]$ that if $\sigma \in(0,1)$ then

$$
\left(\mathcal{M} \chi_{B_{r}\left(x_{0}\right)}(x)\right)^{\sigma} \in A_{1}
$$

Therefore, since $\frac{p}{n_{0}}>1$, we have by the monotonicity of the classes A_{q} that

$$
\left(\mathcal{M} \chi_{B_{r}\left(x_{0}\right)}(x)\right)^{\sigma} \in A_{1} \subset A_{\frac{p}{n_{0}}}
$$

with $\left[\left(\mathcal{M} \chi_{B_{r}\left(x_{0}\right)}(x)\right)^{\sigma}\right]_{\frac{p}{n_{0}}}=c\left(n, n_{0}, p, \sigma\right)$.
Let us fix an arbitrary $\sigma \in\left(\frac{\mu}{n}, 1\right)$. We apply Theorem 2.4 to discover that there exists a constant $\delta=\delta(n, \lambda, \Lambda, p, \partial \Omega)>0$ such that if (2.6) is satisfied, then

$$
\begin{align*}
\int_{B_{r}\left(x_{0}\right) \cap \Omega}\left|D^{2} u\right|^{p} d x & =\int_{\Omega}\left|D^{2} u\right|^{p}\left(\chi_{B_{r}\left(x_{0}\right)}\right)^{\sigma} d x \tag{4.2}\\
& \leq \int_{\Omega}\left|D^{2} u\right|^{p}\left(\mathcal{M} \chi_{B_{r}\left(x_{0}\right)}\right)^{\sigma} d x \\
& \leq c \int_{\Omega}|f|^{p}\left(\mathcal{M} \chi_{B_{r}\left(x_{0}\right)}\right)^{\sigma} d x
\end{align*}
$$

for some constant $c=c\left(n, \lambda, \Lambda, \kappa_{1}, \kappa_{2}, p, \partial \Omega, \operatorname{diam}(\Omega), r_{0}\right)>0$. We use now the dyadic decomposition of \mathbb{R}^{n} related to $B_{r}\left(x_{0}\right)$,

$$
\mathbb{R}^{n}=B_{2 r}\left(x_{0}\right) \cup\left(\bigcup_{k=1}^{\infty} B_{2^{k+1} r}\left(x_{0}\right) \backslash B_{2^{k} r}\left(x_{0}\right)\right)
$$

in order to obtain that

$$
\begin{equation*}
\int_{\Omega}|f|^{p}\left(\mathcal{M} \chi_{B_{r}\left(x_{0}\right)}\right)^{\sigma} d x=\int_{\mathbb{R}^{n}}|f|^{p}\left(\mathcal{M} \chi_{B_{r}\left(x_{0}\right)}\right)^{\sigma} d x=I_{0}+\sum_{k=1}^{\infty} I_{k} \tag{4.3}
\end{equation*}
$$

where

$$
I_{0}:=\int_{B_{2 r}\left(x_{0}\right)}|f|^{p}\left(\mathcal{M} \chi_{B_{r}\left(x_{0}\right)}\right)^{\sigma} d x
$$

and

$$
I_{k}:=\int_{B_{2^{k+1} 1_{r}}\left(x_{0}\right) \backslash B_{2^{k_{r}}}\left(x_{0}\right)}|f|^{p}\left(\mathcal{M} \chi_{B_{r}\left(x_{0}\right)}\right)^{\sigma} d x
$$

It is clear that $\mathcal{M}_{\chi_{B_{r}\left(x_{0}\right)}}(x) \leq 1$ for a.a. $x \in \mathbb{R}^{n}$ and thus we have

$$
\begin{equation*}
I_{0} \leq \int_{B_{2 r}\left(x_{0}\right)}|f|^{p} d x \leq c(n) r^{\mu}\|f\|_{L^{p, \mu}(\Omega)}^{p} \tag{4.4}
\end{equation*}
$$

Now we estimate I_{k} for $k=1,2, \ldots$ Note that

$$
0<f_{B_{\rho}(x)} \chi_{B_{r}\left(x_{0}\right)}(y) d y \leq \frac{\left|B_{r}\left(x_{0}\right)\right|}{\left|B_{\rho}(x)\right|}=\left(\frac{r}{\rho}\right)^{n}
$$

for each $x \in B_{2^{k+1} r}\left(x_{0}\right) \backslash B_{2^{k} r}\left(x_{0}\right)$ and for each $\rho>\left(2^{k+1}-1\right) r$. Then from the fact that $2^{k+1}-1 \geq 2^{k}-1 \geq 2^{k-1}$ for any $k \geq 1$, it follows that

$$
f_{B_{\rho}(x)} \chi_{B_{r}\left(x_{0}\right)}(y) d y \leq\left(\frac{r}{2^{k-1} r}\right)^{n}=\frac{1}{2^{n(k-1)}}
$$

which implies

$$
\left(\mathcal{M} \chi_{B_{r}\left(x_{0}\right)}(x)\right)^{\sigma}=\left(\sup _{\rho>0} f_{B_{\rho}(x)} \chi_{B_{r}\left(x_{0}\right)}(y) d y\right)^{\sigma} \leq \frac{1}{2^{\sigma n(k-1)}}
$$

Accordingly, we deduce that

$$
\begin{align*}
I_{k} & \leq \frac{1}{2^{\sigma n(k-1)}} \int_{B_{2^{k+1} 1_{r}}\left(x_{0}\right) \backslash B_{2^{k_{r}}\left(x_{0}\right)}|f|^{p} d x} \tag{4.5}\\
& \leq \frac{1}{2^{\sigma n(k-1)}} \int_{B_{2^{k+1}}\left(x_{0}\right)}|f|^{p} d x=\frac{\left(2^{k+1} r\right)^{\mu}}{2^{\sigma n(k-1)}}\left(\frac{1}{\left(2^{k+1} r\right)^{\mu}} \int_{B_{2^{k+1_{r}}\left(x_{0}\right)}}|f|^{p} d x\right) \\
& \leq 2^{(\mu+\sigma n)+(\mu-\sigma n) k} r^{\mu}\|f\|_{L^{p, \mu}(\Omega) .}^{p} .
\end{align*}
$$

Having in mind (4.4) and (4.5), and remembering the choice of $\sigma \in\left(\frac{\mu}{n}, 1\right)$, (4.3) becomes

$$
\begin{aligned}
\int_{\Omega}|f|^{p}\left(\mathcal{M} \chi_{B_{r}\left(x_{0}\right)}\right)^{\sigma} d x & =I_{0}+\sum_{k=1}^{\infty} I_{k} \\
& \leq c(n) r^{\mu}\|f\|_{L^{p, \mu}(\Omega)}^{p}+2^{(\mu+\sigma n)} r^{\mu}\|f\|_{L^{p, \mu}(\Omega)}^{p} \sum_{k=1}^{\infty} 2^{(\mu-\sigma n) k} \\
& \leq c r^{\mu}\left(\sum_{k=0}^{\infty} 2^{(\mu-\sigma n) k}\right)\|f\|_{L^{p, \mu}(\Omega)}^{p} \\
& \leq c r^{\mu}\|f\|_{L^{p, \mu}(\Omega)}^{p}
\end{aligned}
$$

whence

$$
\int_{B_{r}\left(x_{0}\right) \cap \Omega}\left|D^{2} u\right|^{p} d x \leq c \int_{\Omega}|f|^{p}\left(\mathcal{M} \chi_{B_{r}\left(x_{0}\right)}\right)^{\sigma} d x \leq c r^{\mu}\|f\|_{L^{p, \mu}(\Omega)}^{p}
$$

By dividing the both side above by r^{μ} and taking the supremum with respect to $x_{0} \in \Omega$ and $r>0$, we obtain $D^{2} u \in L^{p, \mu}(\Omega)$ with the desired estimate (4.1).

Since $p>\frac{n}{2}$, we have Hölder continuity of the solution to problem (1.1) by the Sobolev imbedding theorem. However, employing the known properties of functions with Morrey regular gradient (cf. [5, Lemmas 3.III and 3.IV]), Theorem 4.1 allows to get better integrability and even Hölder continuity of the gradient for appropriate values of p and μ. Precisely,

Corollary 4.2. Under the assumptions of Theorem 4.1, let $u \in W^{2, p, \mu}(\Omega)$ be the viscosity solution of the problem (1.1). Then
(1) $D u \in L^{\frac{n p}{n-p}, \frac{n \mu}{n-p}}\left(\Omega ; \mathbb{R}^{n}\right) \subset L^{p, p+\mu}\left(\Omega ; \mathbb{R}^{n}\right)$ if $p+\mu<n$;
(2) $D u \in L^{p^{\prime}, \mu^{\prime}}\left(\Omega ; \mathbb{R}^{n}\right)$ for each $p^{\prime}<\infty$ and each $\mu^{\prime}<n$, if $p+\mu=n$;
(3) $D u \in C^{0,1-\frac{n-\mu}{p}}\left(\bar{\Omega} ; \mathbb{R}^{n}\right)$ if $p+\mu>n$.

Acknowledgements. S. Byun was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(NRF-2014K2A2A2000796). The work of D.K. Palagachev is part of the INdAM-GNAMPA Project 2015 "Regolarità delle soluzioni di problemi al bordo per operatori differenziali su domini non regolari o non limitati".

References

1. Byun, S. and Lee, M., On weighted $W^{2, p}$ estimates for elliptic equations with BMO coefficients in nondivergence form, Internat. J. Math., 26 (1) (2015), 1550001.
2. Caffarelli, L.A., Interior a priori estimates for solutions of fully nonlinear equations, Ann. of Math., 130 (1) (1989), 189-213.
3. Caffarelli, L.A. and Cabré, X., Fully Nonlinear Elliptic Equations, American Mathematical Society Colloquium Publications, 43. American Mathematical Society, Providence, R.I., 1995.
4. Caffarelli, L.A., Crandall, M.G., Kocan, M. and Świȩch, A., On viscosity solutions of fully nonlinear equations with measurable ingredients, Comm. Pure Appl. Math., 49 (4) (1996), 365-397.
5. Campanato, S., Sistemi Ellittici in Forma Divergenza. Regolarità all'Interno, Quaderni, Scuola Normale Superiore di Pisa, Pisa, 1980.
6. Calderón, A.P. and Zygmund, A., Local properties of solutions of elliptic partial differential equations, Studia Math., 20 (1961), 171-225.
7. Di Fazio, G. and Palagachev, D.K., Oblique derivative problem for quasilinear elliptic equations with VMO coefficients, Bull. Austral. Math. Soc., 53 (1996), 501-513.
8. Crandall, M.G., Kocan, M. and Świẹch, A., L^{p}-theory for fully nonlinear uniformly parabolic equations, Comm. Partial Differential Equations, 25 (2000), no. 11-12, 1997-2053.
9. Coifman, R.R. and Rochberg, R., Another characterization of BMO, Proc. Amer. Math. Soc., 79 (1980), no. 2, 249-254.
10. Escauriaza, L., $W^{2, n}$ a priori estimates for solutions to fully nonlinear equations, Indiana Univ. Math. J., 42 (2) (1993), 413-423.
11. Fabes, E.B. and Stroock, D.W., The L^{p}-integrability of Green's functions and fundamental solutions for elliptic and parabolic equations, Duke Math. J., 51 (4) (1984), 997-1016.
12. Grafakos, L., Modern Fourier Analysis, Graduate Texts in Mathematics 250, Springer, New York, 2009.
13. Muckenhoupt, B., Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc., 165 (1972), 207-226.
14. Milakis, E. and Silvestre, L.E., Regularity for fully nonlinear elliptic equations with Neumann boundary data, Comm. Partial Differential Equations, 31 7-9 (2006), 1227-1252.
15. Palagachev, D.K., Quasilinear elliptic equations with VMO coefficients, Trans. Amer. Math. Soc., 347 (1995), 2481-2493.
16. Stein, E.M., Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals, With the assistance of Timothy S. Murphy. Princeton Mathematical Series, 43. Monographs in Harmonic Analysis, III. Princeton University Press, Princeton, NJ, 1993.
17. Świȩch, A., $W^{1, p}$-interior estimates for solutions of fully nonlinear, uniformly elliptic equations, Adv. Differential Equations. 2 (6) (1997), 1005-1027.
18. Torchinsky, A., Real-variable methods in harmonic analysis, Pure and Applied Mathematics, 123. Academic Press, Inc., Orlando, FL, 1986.
19. Turesson, B.O., Nonlinear Potential Theory and Weighted Sobolev Spaces, Springer Verlag, New York, 2000.
20. Wang, L., On the regularity theory of fully nonlinear parabolic equations. I., Comm. Pure Appl. Math., 45 (1) (1992), 27-76.
21. Winter, N., $W^{2, p}$ and $W^{1, p}$-estimates at the boundary for solutions of fully nonlinear, uniformly elliptic equations, Z. Anal. Anwend., 28 (2) (2009), 129-164.

Department of Mathematical Sciences and Research Institute of Mathematics, Seoul National University, Seoul 151-747, Korea

E-mail address: byun@snu.ac.kr
Department of Mathematical Sciences, Seoul National University, Seoul 151-747, Korea

E-mail address: mikyounglee@snu.ac.kr
Politecnico di Bari, Dipartimento di Meccanica, Matematica e Management, Via Edoardo Orabona 4, 70125 Bari, Italy

E-mail address: dian.palagachev@poliba.it

[^0]: 2010 Mathematics Subject Classification. Primary 35J60; Secondary 35B45, 35D40, 35B65.
 Key words and phrases. Fully nonlinear equation; Strong solution; Viscosity solution; Regularity; Hessian estimates; Weighted Lebesgue space; Muckenhoupt weight; Morrey space.

