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� The case of a statically determinate plane arch under constant vertical load is analyzed.

� An analytical solution for the optimal shape is proposed.

� The weight of the arch total volume and the horizontal thrust are used as objective functions.
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a b s t r a c t

Arches are widely used when large spans are necessary, e.g. to overpass large rivers, and

further possess unquestioned aesthetics advantages. Their structural efficiency depends

primarily on optimal material exploitation, i.e. minimization of internal stress eccentricity,

and on minimization of structural material volume. An efficient structure, under these

terms, further requires simpler and lighter scaffolding, contributing in minimizing con-

struction costs.

Although arches have millenary use and many researches dealing with this typology

are available in literature, there is still scope for design optimization. The proposed study is

framed within this context. Investigation is limited to statically determinate plane arches

under vertical load. The problem of finding the profile of an equal strength catenary sub-

jected to its self-weight is spread out to the case of an inverted catenary of equal strength

under its self-weight and an external constant load. In the first optimization step, constant

normal stress is imposed at all sections, to maximize material exploitation, and the

resulting arch centerline shape is computed in closed form. In the second step, the

ensemble of foundations and arch is considered and optimized, taking the linear combi-

nation of arch weight and thrust as objective function. The linear combination is depen-

dent on a single variable, and minima of the objective function (i.e. optimal geometric

shape parameters) are computed and charted to be simply used in the design process.
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1. Introduction

Arches are inherently efficient structures: they are capable to

transfer loads from the superstructure to the foundations

(Wilson, 2005) with lowflexibility and structural weight.When

properly shaped, they provide, per unit material volume, the

optimal solution to cross large spans and transfer high

loads. Structural efficiency depends on the dominance of

centered normal stress: smaller cross sections, as compared

to beams, can be used (Allen and Zalewski, 2009; Marano

et al., 2014; Wang and Wang, 2015). Internal stress

eccentricity (i.e., large bending moments) or large shear

stresses should be avoided, resulting in uneconomical

design, sub-exploitation of building materials, unnecessary

self-weight (Billington, 1982; Gohnert et al., 2013). Further

design economy can be obtained via overall shape and cross

section optimization to achieve specific objectives and

satisfy given constraints (Trentadue et al., 2018). In many

cases a key point is the minimization of structural volume,

since arch self-weight is the largest component of the

vertical load, accounting for about half the total.

Optimization is a key issue for good design. From the data

on 55 arch bridges built during the twentieth century reported

in Salonga andGauvreau (2014), several empirical lessonsmay

be learnt. The first one is that concrete arches (long span)

consume, per unit length, higher material quantities as

compared to post-tensioned concrete girder bridges (shorter

span). This is an expected result, at least since arches are

curved, whereas beams are not; however, post-tensioned

concrete girder are not usable on large spans. The second

lesson is that, for long span arch bridges, arch self-weight is

about half the total vertical load. In fact vertical loads, per

unit deck surface, may be roughly approximated as

independent on span and equal to about 12 kN/m2 (girder),

3 kN/m2 (columns) and 5 kN/m2 (traffic); contrarily arch self-

weight strongly depends on the span length, approximately

in a linear way, and ranges from 13 kN/m2 (50 m span) to

31 kN/m2 (300 m span). Ratios between arch self-weight and

total load therefore range from about 0.4 (50 m span) to 0.6

(300 m span). Both lessons further motivate the search for

optimal (less material consuming) solutions.

Further, structural optimization is an important design tool

for shape selection, also from an architectural point of view

(Adriaenssens et al., 2014; Briseghella et al., 2016; Fiore et al.,

2016). The shape of an arch, deriving from the conceptual

design stage, generally belongs to three main idealized

configurations: circular, parabolic or catenary. On this topic,

Lewis (2016) in a recent study shows how these forms can

become moment-less arches when subject to certain specific

load conditions: an inextensible chain that hangs under its

own weight produces a catenary shape; a weightless chain
carrying a uniformly-distributed load gives a parabola, and a

uniform load applied normally to a weightless chain leads to

a circular shape.

Structural optimization has been common for a long time

in mechanical and aeronautical engineering. In civil engi-

neering, it has been progressively adopted both for buildings

and bridges (Allahdadian and Boroomand, 2010; Briseghella

et al., 2013a, b; De Tommasi et al., 2015, 2016; Greco and

Marano, 2016; Greco et al., 2016; Greco and Trentadue, 2013;

Marano and Greco, 2011; Neves et al., 1995; Quaranta et al.,

2014; Stromberg et al., 2011; Trentadue and Quaranta, 2013;

Zordan et al., 2010).

Arches optimization traditionally departs from the concept

of catenary. Catenary arches have the property of being

stressed in pure compression, without bending moment or

shear. A chain suspended between two points will form this

unique curve, which is routinely used for arches, and some-

time for shells (although this is not entirely correct due to bi-

dimensional stiffness).

Catenary curves are typically referred to an ideal situation

with uniform load and supports at the same level. A more

general solution should however take into account non-ho-

mogeneous loading patterns and point loads and supports at

uneven level (Briseghella and Zordan, 2015; Fiore andMonaco,

2009; Fiore et al., 2012, 2013).

Literature is abundant of studies dealing with arches and

arches optimization, starting from the one from Budiansky

et al. (1969). Optimal shaping of arches subjected to general

loading is firstly dealt with by Farshad (1974). The study

includes computation of the optimum center line shape and

cross section area distribution. Mathematical techniques

include the objective function with constraints; the objective

function combines arch thrust, material volume, total arc

length, and enclosed area. Tadjbakhsh (1981) determines the

arch buckling load. Błachut and Gajewski (1981) define the

optimal cross-sectional area function for catenary shape,

considering transverse vibrating arches under external load.

Bochenek and Gajewski (1989) analyze an elastic, plane,

catenary circular arch, loaded by uniformly distributed

radial pressure. The two lowest critical loads, for out-of-

plane and in-plane buckling of the arch, are computed. The

optimization problem is applied to the cross-section

dimensions; the result is the minimization of the total arch

volume under given external pressure and geometrical

constraints. Serra (1994) examines the numerical problem of

the optimal arch as a uniformly compressed structure

subjected to static loads. A closed form solution for the

optimal shape of a statically determined planar arch under

uniform vertical loads is computed in Marano et al. (2014).

The problem of a catenary under self-weight is extended to

an inverted catenary under self-weight and constant vertical
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load.Wang andWang (2015) find the closed form solution for a

uniformly loaded arch.

This paper extends the results by Marano et al. (2014). The

optimal arch shape is defined via minimization of structural

volume and horizontal thrust, the latter being central in

foundations optimization.

The problem is cast as follows: finding the optimal arch

shape and cross section, that satisfy the condition of constant

cross section stress. Loads are vertical, and include dead loads

and self-weight. It should be noted that different catenaries

correspond to different vertical loads distributions; the

designer should therefore select a single load distribution,

possibly coinciding with the one characterized by the highest

intensity, and then check the design including the remaining

load distributions.
2. Catenary arch optimal shape and section

The problem of finding the optimal arch shape (Marano et al.,

2014) is here extended by searching the arch that minimizes a

linear combination of the total weight, that is representative

of the material cost, and of the arch thrust H, that

represents the arch's foundation cost.

The search is focused on the optimal arch profile y(x) and

the cross section area A(x) of a statically determinate arch

(Fig. 1) subjected to self-weight and to a distributed external

load p(x), assigned for unit horizontal length. The arch shape

is such that all cross sections are subjected to a unique

constant stress s.

Generally speaking, in arches subjected only to vertical

loads, a generic section with horizontal coordinate x is sub-

jected to an horizontal internal force that, for equilibrium

reasons, is always equal to the thrustH, while vertical internal

force V(x) and bending moment M(x) are variable.

The arch is made up of a homogeneous material with

constant specificweight g, so that the arch self-weight for unit

horizontal length qðxÞ is given by

qðxÞ ¼ gAðxÞ
cosðqÞðxÞ ¼ gAðxÞ

�
1þ yIðxÞ2

�1
2

(1)

where cos(q) (x) is the horizontal projection of an arch element
Fig. 1 e Arch structure with a variable section subject to a

distributed vertical load p ¼ p(x).
with unit length, y(x) is the vertical coordinate of the center of

the generic section with horizontal coordinate x and the

symbol �I denotes the first derivative with respect to the in-

dependent variable x.

In an arch having all sections uniformly compressed,

bending moment is equal zero in each section, so that it

results

MðxÞ ¼ �
24Hy� VAxþ

Zx

0

�
pþ gAðtÞ

�
1þ yIðtÞ2

�1
2

�
ðx� tÞdt

35
¼ 0 x2½0; L� (2)

where VA is the vertical component of the reaction RA in sec-

tion A (Fig. 1) and t is the integration variable.

Differentiation of Eq. (2) with respect to x gives the

following expression

MIðxÞ ¼ �
24HyIðxÞ � VA þ

Zx

0

pdtþ
Zx

0

gAðtÞ
�
1þ yIðtÞ2

�1
2
dt

35 ¼ 0

(3)

Moreover, a further differentiation leads to

MIIðxÞ ¼ �
�
HyIIðxÞ þ pþ gAðxÞ

�
1þ yIðxÞ2

�1
2

�
¼ 0 (4)

where �II denotes the second derivative with respect to the

independent variable x.

This last equation, together with the following boundary

conditions:�
Mð0Þ ¼ 0
MðLÞ ¼ 0

(5)

where L is the arch span, allows determining the arch shape

such that a null bending moment and a null shear force are

exerted in each cross section under the load p.

Further, the condition that each cross section is subject to a

given constant axial compressive stress s should be satisfied,

so that

s ¼ NðxÞ
AðxÞ ¼

H

AðxÞcosðqÞðxÞ ¼
H
�
1þ yIðxÞ2

�1
2

AðxÞ (6)

Then the cross section area AðxÞ is given by

AðxÞ ¼ H
s

�
1þ yIðxÞ2

�1
2

(7)

By substituting Eq. (7) into (6), Eq. (1) becomes

qðxÞ ¼ g

s
H
�
1þ yIðxÞ2

�
¼ H

h

�
1þ yIðxÞ2

�
(8)

where the constant h ¼ s=g is the height of the column, sub-

jected to its self-weight and made up of the same material of

the arch, in which the compressive stress s is reached at the

base section.

By substituting Eq. (8) in Eq. (4) the following second order

non-linear differential equation is obtained8><>:yIIðxÞ þ p
H
þ 1

h

�
1þ yIðxÞ2

�
¼ 0

Mð0Þ ¼ MðLÞ ¼ 0

(9)
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Approximate solutions for Eq. (9) have been proposed by

Serra (1994). In the following, an analytical solution of this

equation is presented, in the case of a constant external load

pðxÞ ¼ p. At this aim, the solution of Eq. (9) is searched in the

form

yðxÞ ¼ hlogðzðxÞÞ zðxÞ>0 (10)

By differentiating yðxÞwith respect to x, and by substituting

Eq. (10) in Eq. (9), it results

h
zIIðxÞ
zðxÞ � h

�
zIðxÞ
zðxÞ

�2

þ p
H
þ 1

h

"
1þ h

2
�
zIðxÞ
zðxÞ

�2
#
¼ 0 (11)

Finally, after some algebraic manipulation, the following

system is obtained�
zIIðxÞ þ u2zðxÞ ¼ 0
Mð0Þ ¼ MðLÞ ¼ 0

(12)

u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p

Hh
þ 1

h
2

s
¼ 1

h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
phþH

H

s
(13)

Notice that the explicit solution of Eq. (9) can be written as

yðxÞ ¼ hlogðzðxÞÞ ¼ hlog½C cosðuðx� xcÞÞ� (14)

where the parameters C and xc depend on the boundary con-

ditions. Since the following analysis refers only to symmetric

shape arches, it results xc ¼ L/2. Further, referring to Fig. 1 and

to Eq. (2), it emerges that since yð0Þ ¼ 0 the condition Mð0Þ ¼ 0

is always satisfied, meanwhile the condition MðLÞ ¼ 0 is

implied by the symmetry. Finally, yð0Þ ¼ 0 implies zð0Þ ¼ 1

and then

C ¼ 1

cos


uL
2

� (15)

Then, the optimal arch profile y(x) and the cross section

area A(x) are

8>>>><>>>>:
yðxÞ ¼ hlog

"
cos



u


x� L

2

��
cos


uL
2

�
#

AðxÞ ¼ H
s

h
1þ h

2
u2 tanðuðx� L=2ÞÞ2

i1
2

(16)

Since the constant C in Eq. (14) has to be positive in order to

ensure the existence of the solution given by Eq. (10), the

condition uL<p has to be satisfied and then

L � ~L ¼ p

u
¼ ph

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H

phþ H

s
(17)

where ~L represents an upper bound for the arch span L

(Marano et al., 2014).

It is worth noting that in the case of null applied load, Eq.

(17) furnishes L � eL ¼ ph, showing that the maximum span of

an optimal arch cannot be greater than p times the height of

the column subjected to its self-weight and made up of the

same material of the arch, in which the compressive stress s

is reached at the base section.

Moreover the rise f of the arch at its crown section is given

by
f ¼ �h log

�
cos

�
uL
2

��
(18)

Finally, it is worth to underline that the optimal thrust H

remains indeterminate in the set of feasible solutions defined

by Eq. (16), so that the optimal solution minimizing a chosen

objective function can be searched within this set.
3. Optimal design problem

As already stated, our preliminary design aims at minimizing

a linear combinations of the arch total weight and of the arch

thrust H. It is useful to consider the ratio of these quantities

and the total external load pL to obtain a dimensionless

objective function. For the following developments, two

dimensionless parameters are introduced8>><>>:
a ¼ L

~L
¼ u

p
L

h ¼ L

h
¼ gL

s

(19)

Thus a is the ratio between the span of the arch and the

maximum feasible span and h relates the span with the me-

chanical properties of the material. Notice that the existence

condition given by Eq. (17) implies a � 1. Referring to Eqs. (16)

and (19), the arch weight can be expressed as

W ¼
ZL

0

qðxÞdx ¼ H

h

ZL

0

h
1þ h

2
u2 tanðux� L=2Þ2

i
dx

¼ pL

�2pa tan

pa
2

�
p2a2 � h2 � 1

� (20)

Meanwhile, as a consequence of Eq. (20), the arch thrust

can be determined as

H ¼ hp

h
2
u2 � 1

¼
�

h

p2a2 � h2

�
pL (21)

Since our analysis is limited only to finite positive values of

the thrust ð0 � H � þ ∞Þ, Eq. (21) implies that h=p>a.

The objective function is thus

Fjða;hÞ ¼ 1
pL

ðW þ jHÞ

¼
�
2pa tan



pa
2

�
p2a2 � h2

� 1

�
þJ

�
h

p2a2 � h2

�
h

p
<a<1 (22)

where the positive parameter j considers the incidence of the

cost of foundation on the total cost. The objective function Fj

is shown in Fig. 2 for j ¼ 0:2. Notice thatFj tends to an infinite

value on the boundaries of the feasible domain. It is worth to

note that the boundary a ¼ 1 corresponds to arches with an

infinite rise f and the boundary a ¼ p=h corresponds to

arches exerting an infinite thrust H.

Though the above choice of the design parameters allows

to clearly represents the feasible domain of this optimum

problem, from an engineering point of view it is more

convenient to consider as design parameter the dimension-

less rise ~f≡f=L. To this end, from Eqs. (18) and (19), it derives

https://doi.org/10.1016/j.jtte.2018.10.005
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Fig. 4 e Graph of the function ~F ¼ ~FJð~f ;hÞ for h ¼ {0.1, 0.2,

0.3, 0.5, 0.7, 1.0}, j ¼ 0.2.

Fig. 5 e Optimal dimensionless rise efopt ¼ efðh;JÞ.

Fig. 2 e Graph of the function Fjða;hÞ for j ¼ 0.2.
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Eq. (23). So that the objective function can be rewritten as Eq.

(24).

a ¼ a
�
h; ~f

�
¼ 2

p
arccos

h
exp

�
�h~f

�i
(23)

~FJ

�
~f ; h

�
¼ FJ

�
a
�
h; ~f

�
;h
�

(24)

By adopting these new design parameters, the objective

function becomes independent from the applied load p. In

Fig. 3 the graph of the objective function ~FJð~f ; hÞ for j ¼ 0.2 is

reported. It can be noted that the objective function always

decreases with respect to the design parameter h relating

the span L to the mechanical properties of the material.

In Fig. 4 the curves ~F ¼ ~FJð~f ;hÞ are drawn for h ¼
f0:1; 0:2; 0:3; 0:5; 0:7; 1:0g. The minimum point of each

curve is marked by a bold dot and defines the optimal value
~fopt of the dimensionless rise

~fopt ¼ argmin
~f

n
~FJ

�
~f ;h

�o
(25)

It emerges that ~fopt varies in an almost strict range.

Based on the above considerations, the following design

procedure can be proposed: after fixing the material parame-

ters g and s , the span L and the relative cost of the foundation
Fig. 3 e Graph of the function ~F ¼ ~FJð~f ;hÞ for j ¼ 0.2.
by the parameter J, the optimal value of the dimensionless

rise ~f ¼ f=L can be determined as ~fopt ¼ ~fðh;JÞ.
Fig. 5 shows the optimal dimensionless rise ~fopt. Values of

the span L in the interval [40 m, 250 m], a specific weight

g ¼ 25 kN/m3 and a working stress s in the interval [5 MPa,

10 MPa] are considered in the analysis. Therefore values of

the parameter h in the interval [0.1, 1.2] are obtained.

It is worth to underline that the optimal dimensionless rise
~fopt here determined is independent from the applied load p.

Moreover, when the cost of foundation is neglected (J ¼ 0),

the optimal dimensionless rise always decreases with respect

to h, while the other cases exhibit a more complex behaviour.

However, limiting our analysis to the higher range of values of

h (h � 0:3� 0:4), the optimal dimensionless rise varies within a

rather strict range.
4. Conclusions

In the present work an analytical solution for the optimal

shape of a plane statically determined arch subject to a

constant vertical load has been presented. The classical

https://doi.org/10.1016/j.jtte.2018.10.005
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problem of finding the profile of an equal strength catenary

subjected to its self-weight has been extended to the case of

an inverted catenary of equal strength subject to both its

self-weight and an external applied constant load. The

weight of the arch total volume and the lateral thrust were

used as objective function, in order to include two different

aspect of arch construction costs, that is self-weight and

foundation rigidity. Some sensitivity analyses to obtain

optimal solutions in a dimensionless formulation were also

carried out, at the aim to define some practical rules useful

for predesign. More precisely, the proposed analysis allows

to obtain the optimal value of the arch dimensionless rise

after properly fixing the material properties, the span length

and the foundation relative cost.
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