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Abstract: Opacity notion is a security and privacy property that verifies whether an external
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determine whether the current-state of the system belongs to a set of secret states, otherwise it
is said to be not current-state opaque. The run time verifier waits for an observable event and
performs an algorithm based on the solution of Integer Linear Programming problem to verify
the current state opacity and preserve the secret. Indeed, if the secret may be discovered, then
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1. INTRODUCTION

Security and privacy are important requirements that
on-line services of networked and cyber-physical systems
have to fulfill. Due to the increase of Information and
Communications Technologies (ICT) systems, these issues
are drawing the researchers’ attention over the last few
decades (Jacob et al. (2016)).

In the context of the analysis of security protocols the
notion of opacity is specific to a particular item of infor-
mation, called secret. The secret is deemed to be opaque
for a particular run of a protocol if the intruder is unable
to deduce its value from the observations and deductions
available to him during the run.

Successively, the notion of opacity is extended to systems
in general, rather than just to cryptographic protocols.
Bryans et al. (2005) cast the opacity in the framework of
Petri Nets (PNs): in particular, the authors are interested
in: i) whether an observer can establish a secret at some
specific state(s) of the execution of the system solely on
the basis of its visible version; ii) finding out whether a
marking, that belongs to the secret, can be deduced by the
observer.

Depending on the definition of the secret, there are two
main kinds of opacity notions proposed in the related
literature (Jacob et al., 2016): language-based opacity and
state-based opacity. State-based opacity defines the secret
as a set of secret states and it can be further classified
as initial-state opacity (Tong et al. (2017)), initial-and-

final-state opacity (Wu and Lafortune (2013)), current-
state opacity (Bryans et al. (2008), Saboori and Hadjicostis
(2014), Tong et al. (2017)) and k-step opacity (Saboori and
Hadjicostis (2011)), (Yin and Lafortune (2017)).

However, Wu and Lafortune (2013) establish that it is
possible to transform one of the four kinds of opacity
(language-based, initial-state, initial-and-final-state, and
current-state) to any other by a polynomial algorithm.

This paper focuses on the verification and enforcement
of current-state opacity by PNs. More in detail, an on-
line algorithm is proposed to verify if a system is not
current-state opaque with respect to a secret, i.e., if for
any observation of finite length, the intruder cannot infer
that the current state of the system belongs to the secret.

In this context, the intruder is considered as an external
observer that has full knowledge of the structure of the
system but has only partial observation on its events.
In Saboori and Hadjicostis (2007), the authors extend
the notion of opacity in computer security to Discrete
Event Systems (DESs) and use a state-based approach
to verify whether the system is opaque. Successively, the
same authors in Saboori and Hadjicostis (2014) extend
current-state opacity formulations to systems that can be
modeled as probabilistic finite automata. Moreover, the
paper (Chen et al. (2017)) proposes a Jensen-Shannon di-
vergence based measure to quantify secrecy loss in systems
modeled as partially observed stochastic DESs.
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In the framework of PNs, the notion of current-state opac-
ity is introduced in Bryans et al. (2005). In particular, the
authors assume that the system behaviour is represented
by transition firings. Moreover, Bryans et al. (2008) extend
to labeled transition systems the concept of current-state
opacity.

Recently, Tong et al. (2017) propose an approach based
on basis marking to verifying current-state opacity of
bounded Labeled Petri Nets (LPNs). The advantage of
this method is to avoid the exhaustive enumeration of the
reachable markings. However, it can be only applied to
bounded PNs and a large memory may be required.

In this paper a novel on-line verification and enforcement
method of current-state opacity is developed. The authors
propose an algorithm based on Integer Linear Program-
ming (ILP) problem solutions, an approach also used to
solve the on-line fault diagnosis (Basile et al. (2009), Dotoli
et al. (2009) and Fanti et al. (2013)) to avoid the states
enumeration of a system. More precisely, the structure of
the LPN and the initial marking are known by the intruder
which only has partial observation of the transitions. The
run-time verifier observes the same event sequence of the
intruder: it waits for an observable event and performs an
algorithm to deduce whether the information is useful to
determine the secret, i.e., if the observed sequence is such
that the intruder can infer that all the markings consistent
with the observation belong to the secret. If the secret may
be discovered, then the last event is hidden by the run-
time enforcer. Hence, the proposed approach falls in the
opacity enforcement at run-time (Falcone and Marchand,
2015): it does not restrict the system behaviour and hides
some system output events whenever it is necessary.

In this paper, the secret is defined as the conjunction
of a set of Generalized Mutual Exclusion Constraints
(GMECs) ((Giua et al., 1992)). Indeed, GMECs describe
interesting subsets of the state space of a net and can
represent many important state-based specifications and
control problems (Tong et al. (2017)).

Now, we summarize the main features and contributions
of this paper.

(1) An on-line algorithm for current-state opacity verifi-
cation and enforcement is presented in the framework
of PN system exploiting ILP problem solutions. The
algorithm checks i) if the observed word (of finite
length) is current-state opaque wrt the secret; ii)
by using some presented propositions, the algorithm
verifies if the system is not current-state opaque wrt
the secret avoiding expensive off-line computations.

(2) By using the on-line strategy, the proposed method
avoids the redesign and redefinition of the intruder
when the system structure changes.

(3) The proposed method is general since it both can be
applied to the net with bounded and unbounded state
space.

The paper is organized as follows. Section 2 briefly gives
some basic definitions of the PNs. Section 3 addresses
the current-state opacity problem, while Section 4 first
introduces the intruder specification and then, proposes
an on-line algorithm to verify and enforce current-state

opacity. Finally, Section 5 draws conclusion and future
works.

2. BASIC DEFINITIONS ON PETRI NETS

2.1 Petri Nets

This section recalls some basic definitions on PNs used in
the paper (Peterson (1981)).

Definition 1. A PN is a bipartite graph described by the
four-tuple PN = (P, T, Pre, Post), where P is a set of
places with cardinality m represented by circles, T is a set
of transitions with cardinality n represented by bars, Pre :
P × T → Nm×n and Post : P × T → Nm×n are the pre-
and post-incidence matrices, respectively, which specify
the arcs connecting places and transitions. Note that N is
the set of non-negative integers. Matrix C = Post − Pre
is the incidence matrix of the PN.

More precisely, for each p ∈ P and t ∈ T element Pre(p, t)
(Post(p, t)) is equal to a natural number indicating the arc
multiplicity if an arc going from p to t (from t to p) exists,
and it is equal to 0 otherwise.

The state of a PN is represented by its current marking
that is a mapping M : P → Nm, assigning to each place
a non-negative number of tokens. The marking of place p
is denoted by M(p). A PN system 〈PN,M0〉 is a net PN
with an initial marking M0.

For the pre- and post-sets we use the dot notation, e.g.,
•t = {p ∈ P : Pre(p, t) > 0}. A transition tj ∈ T is
enabled at marking M if and only if for each p ∈ •tj it
holds: M ≥ Pre(p, tj) and M [tj〉 is written to denote that
tj ∈ T is enabled at M .

When the transition tj fires, it produces a new marking
Mnew, denoted by M [tj〉Mnew that is computed by the

PN state equation Mnew = M + C · −→tj , where
−→
tj is

an n-dimensional firing vector corresponding to the j-th
canonical basis vector.

Let σ = tα1tα2 . . . tαk
be a sequence of transitions (firing

sequence) and let k be its length, given by the number
of transitions that σ contains. The fact that a transition
t ∈ T appears in the sequence σ is denoted by t ∈ σ.
Moreover, the notation M [σ〉 denotes that σ is enabled
at M and M [σ〉Mnew denotes that the firing of σ yields
Mnew. The set of all sequences that can fire in a net system
〈PN,M0〉 is denoted by L(PN,M0) = {σ ∈ T ∗ | M0[σ〉}.
In addition, we define σ : T → Nn the firing vector
associated with σ.

A marking M is reachable from 〈PN,M0〉 if there exists
a firing sequence σ such that M0[σ〉M . The set of all
markings reachable from M0 defines the reachability set
of 〈PN,M0〉 denoted as R(PN,M0).

A PN having no directed cycles is said to be acyclic.
The following theorem shows an important result for this
subclass of PN.

Theorem 2. (Ichikawa and Hiraishi (1988)) Let 〈PN,M0〉
be an acyclic PN.
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If vector y satisfies equation M0 + C · y ≥ 0, there exists
a firing sequence σ fireable from M0 such that σ = y.

A marking M is reachable from M0 iff there exists a non-
negative integer solution y satisfying the state equation
M = M0 + C · y.

2.2 Labeled Petri Nets

Definition 3. An LPN is a four-tuple G = (PN,M0, E, λ)
where 〈PN,M0〉 is a PN system, E is an alphabet (a set
of labels) and λ : T → E ∪ {ε} is a labeling function that
assigns to each transition t ∈ T either a symbol e ∈ E or
the empty word ε.

Namely, the set of transitions can be partitioned into
T = To ∪ Tu with To ∩ Tu = ∅, where To (resp. Tu) is
the set of |To| = no (resp. |Tu| = nu) observable (resp.
unobservable) transitions.

The labeling function λ is defined as follows: if t ∈ To then
λ(t) = e ∈ E, and if t ∈ Tu then λ(t) = ε. In this paper,
we assume that the same label e ∈ E can be associated to
more than one transition. In the following, we denote by
T (e) = {t ∈ To|λ(t) = e} the set of transitions associated
with the same label e ∈ E.

Moreover, we denote as w the sequence of events associated
with the sequence σ ∈ T ∗ such that w = λ(σ) by using
the extended form of the labeling function λ : T ∗ → E∗.
The set of languages generated by an LPN is denoted as
L(PN,M0) = {w ∈ E∗|∃σ ∈ L(PN,M0) : λ(σ) = w}. In
addition, we denote by σu ∈ σ (σo ∈ σ) the subsequence
of σ composed of the unobservable (observable) transitions
and by σu : Tu → Nnu (σo : To → Nno) the corresponding
firing vector.

Given a net PN = (P, T, Pre, Post) and a subset TA ⊆ T
of its transitions, we define the TA-induced subnet of PN
as a new net PNA = (P, TA, P reA, PostA) where PreA
and PostA are the restrictions of Pre and Post to TA,
i.e., PNA is the net obtained from PN by removing all
transitions in T\TA, which is denoted by PNA∠TA

PN .
In the following, matrices Cu = Postu − Preu and Co =
Posto−Preo denote the restriction of the incidence matrix
C to Tu and To, respectively.

Let w be an observed word. We define S(w) = {σ ∈
L(PN,M0)|λ(σ) = w} as the set of firing sequences
consistent with w and C(w) = {M ∈ Nm|∃σ ∈ S(w) :
M0[σ〉M} as the set of markings consistent with w.

3. CURRENT-STATE OPACITY PROBLEM

In this section, we provide a description of the current-
state opacity problem.

We assume that the intruder has complete knowledge of
the net system but partial observation of its behaviour. In
particular, the intruder can detect the occurrence of all the
observable transitions t ∈ To only. Moreover, the secret is
defined as a set of secret states S ⊆ R(PN,M0).

In the following, we first recall opacity definitions reported
in Tong et al. (2017) for DESs modeled by LPNs.

Definition 4. (Tong et al. (2017)). Let G be an LPN
system and S be a secret. An observation w of G is said
to be current-state opaque wrt S if C(w) � S holds.

Based on Definition 4, the current-state opacity definition
for a system is given as follows.

Definition 5. (Tong et al. (2017)). Let G be an LPN
system and S be a secret. G is said to be current-state
opaque wrt S if all observations w are current-state opaque
wrt S.

Motivated by Definitions 4 and 5, we provide the following
two definitions of a not current-state opaque observation
and a not current-state opaque system, respectively.

Definition 6. Let G be an LPN system and S be a secret.
An observation w of G is said to be not current-state
opaque wrt S if C(w) ⊆ S holds.

A not current-state opaque observation w implies that the
intruder can infer that all the markings consistent with w
belong to the secret, i.e., ∀M ∈ C(w) : M ∈ S.

Consequently, a not current-state opaque system is defined
as follows.

Definition 7. Let G be an LPN system and S be a secret.
G is said to be not current-state opaque wrt S if there
exists an observation w that is not current-state opaque
wrt S.

In this paper, the following set of GMECs describes the
secret:

S =
r⋂

q=1

{M ∈ Nm|xT
q ·M ≤ kq},

where xq ∈ Zm and kq ∈ Z with q = 1, 2, . . . , r. Note that
Z is the set of integers. Such a set of GMECs (xq, kq)
is denoted as S = {M ∈ Nm|X · M ≤ K}, where
X = [x1, x2, . . . , xr]

T and K = [k1, k2, . . . , kr]
T .

4. ON-LINE ALGORITHM FOR CURRENT STATE
OPACITY ENFORCEMENT

In this section we provide an on-line approach for ver-
ification and enforcement of current-state opacity by a
centralized approach. First, we introduce the intruder
specification and then, we describe in detail the on-line
algorithm that verifies and enforces current-state opacity.

4.1 Intruder Specification

Given an observed word w, we show how to characterize
the sets S(w) and C(w) by solving ILP problems and
we specify the on-line intruder. Firstly, the following
assumption is given for the system under investigation:

A1) The Tu-induced subnet PNu∠Tu
PN and To-induced

subnet PNo∠To
PN are acyclic.

In particular, assumption A1 allows us to study the
reachability of the unobservable and observable subnets by
using the state equation. The inputs of the intruder are the
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In this section, we provide a description of the current-
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We assume that the intruder has complete knowledge of
the net system but partial observation of its behaviour. In
particular, the intruder can detect the occurrence of all the
observable transitions t ∈ To only. Moreover, the secret is
defined as a set of secret states S ⊆ R(PN,M0).

In the following, we first recall opacity definitions reported
in Tong et al. (2017) for DESs modeled by LPNs.
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system and S be a secret. An observation w of G is said
to be current-state opaque wrt S if C(w) � S holds.

Based on Definition 4, the current-state opacity definition
for a system is given as follows.

Definition 5. (Tong et al. (2017)). Let G be an LPN
system and S be a secret. G is said to be current-state
opaque wrt S if all observations w are current-state opaque
wrt S.
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An observation w of G is said to be not current-state
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intruder can infer that all the markings consistent with w
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Consequently, a not current-state opaque system is defined
as follows.

Definition 7. Let G be an LPN system and S be a secret.
G is said to be not current-state opaque wrt S if there
exists an observation w that is not current-state opaque
wrt S.

In this paper, the following set of GMECs describes the
secret:

S =
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q=1

{M ∈ Nm|xT
q ·M ≤ kq},

where xq ∈ Zm and kq ∈ Z with q = 1, 2, . . . , r. Note that
Z is the set of integers. Such a set of GMECs (xq, kq)
is denoted as S = {M ∈ Nm|X · M ≤ K}, where
X = [x1, x2, . . . , xr]

T and K = [k1, k2, . . . , kr]
T .

4. ON-LINE ALGORITHM FOR CURRENT STATE
OPACITY ENFORCEMENT

In this section we provide an on-line approach for ver-
ification and enforcement of current-state opacity by a
centralized approach. First, we introduce the intruder
specification and then, we describe in detail the on-line
algorithm that verifies and enforces current-state opacity.

4.1 Intruder Specification

Given an observed word w, we show how to characterize
the sets S(w) and C(w) by solving ILP problems and
we specify the on-line intruder. Firstly, the following
assumption is given for the system under investigation:

A1) The Tu-induced subnet PNu∠Tu
PN and To-induced

subnet PNo∠To
PN are acyclic.

In particular, assumption A1 allows us to study the
reachability of the unobservable and observable subnets by
using the state equation. The inputs of the intruder are the
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LPN system G = (PN,M0, E, λ), the secret S modeled by
a set of GMECs, and the observed word w ∈ L(PN,M0).
The output of the intruder is the set-valued function Φ(w)
that is defined as follows:

Definition 8. An on-line intruder is a function Φ :
L(PN,M0) → {Y,N} that associates to each observation
w ∈ L(PN,M0) the following sets:

(1) Φ(w) = {Y } if the observation of the system is
current-state opaque wrt the secret S.

(2) Φ(w) = {N} if the observation of the system is not
current-state opaque wrt the secret S.

Given an LPN system G = (PN,M0, E, λ) with language
L(PN,M0) and satisfying assumption A1, we specify an
intruder that works on-line and determines whether an ob-
servation is opaque or not after the occurrence of each new
event. More precisely, for each initial marking M0 ∈ Nm,
at the occurrence of an observed word w ∈ L(PN,M0),
the following proposition shows a linear algebraic charac-
terization of each transition sequence σ ∈ T ∗ whose firing
at M0 is consistent with the observation w = λ(σ).

Proposition 9. Let L(PN,M0) be the language of an
LPN system G = (PN,M0, E, λ) satisfying assumption
A1. Given a word w ∈ L(PN,M0) denoted by w =
e1e2 . . . eh (where ei ∈ E for i = 1, 2, . . . , h is the
ith observed event), there exists at least one sequence
σ = σu1

σo1σu2
σo2 . . . σuh

σohσuh+1
with |σui

| ≥ 0 for i =
1, 2, . . . , h + 1 and |σoi | = 1 for i = 1, 2, . . . , h enabled at
the initial marking M0 such that λ(σ) = w = e1e2 . . . eh iff
there exist 2h+1 firing vectors σu1

, σu2
, . . . , σuh+1

, σo1 ,
σo2 , . . .σoh that satisfy the following set of constraints
denoted by ρ(M0, w):




σui ∈ Nnu , for i = 1, . . . , h+ 1 (a)
σoi ∈ Nno , for i = 1, . . . , h (b)

Cu

k∑
i=1

σui ≥ Preo · σok −M0 − Co

k−1∑
i=1

σoi ,

for k = 1, . . . , h (c)

M0 + Cu

h+1∑
i=1

σui + Co

h∑
i=1

σoi ≥ 0 (d)

∑
tj∈T (e1)

σo1 (tj) = 1∑
tj∈T (e2)

σo2 (tj) = 1

· · ·∑
tj∈T (eh)

σoh (tj) = 1 (e)∑
tj /∈T (e1)

σo1 (tj) = 0∑
tj /∈T (e2)

σo2 (tj) = 0

· · ·∑
tj /∈T (eh)

σoh (tj) = 0

(1)

Proof. The proof is omitted.

In general, the solution of the set of constraints ρ(M0, w)
is not a singleton and fully characterizes the two sets S(w)
and C(w). Actually, constraints (1) imply that M = M0 +

Cu

h+1∑
i=1

σui
+Co

h∑
i=1

σoi belongs to C(w). In order to verify

if the behaviour of the system remains in the secret under
the given observation w ∈ L(PN,M0), we have to find
a possible solution of (1), i.e., a set of firing vectors
leading to a marking that does not belong to the secret.

Algorithm specifying the on-line verifier
Input: G = (PN,M0, E, λ), S

Output: Φ(w)

Step 1. Initializing the variables of the algorithm
w := ε, h := 0,

Step 2. Recording the events
Wait until an event e ∈ E occurs
w := we, Φ(w) := ∅ h := h+ 1.

Step 3. Verifying if the observed word w is current-state
opaque wrt S
for q = 1 to r do
Solve ILPP 1
if zq > kq then

set Φ(w) := {Y }, go to Step 2
end if

end for
Step 4. set Φ(w) := {N}, hide event e, go to Step 2.

The following theorem proves that such a solution can be
obtained by solving the ILP Problem 1 (ILPP 1).

Proposition 10. Let G = (PN,M0, E, λ) be an LPN sys-
tem and S be a secret. Given an observed word w =
e1e2 . . . eh ∈ L(PN,M0), let us define the following ILP
problem, ILPP 1:



zq = max xT
q ·M

s.t. ρ(M0, w)

M = M0 + Cu

h+1∑
i=1

σui + Co

h∑
i=1

σoi .

(2)

An observation w of G is current-state opaque wrt S
iff for a GMEC (xq, kq) of the secret, ILPP 1 admits a
solution σu1

, σu2
, . . ., σuh+1

, σo1 , σo2 , . . ., σoh and it
holds zq > kq.

Proof. The proof is omitted.

Proposition 10 provides the following sufficient and nec-
essary condition to verify whether an LPN system is not
current-state opaque.

Corollary 11. Let G = (PN,M0, E, λ) be an LPN system
and S be a secret. The system is not current-state opaque
iff there exists an observation w such that ILPP 1 admits
a solution with zq =max xT

q · M ≤ kq for each GMEC
(xq, kq) of the secret.

Proof. It follows immediately from Definition 7 and
Proposition 10. �

4.2 On-line Algorithm

Based on the aforementioned results, we propose Algo-
rithm 4.2 that the verifier applies on-line by observing
the nsame events of the intruder to verify the current-
state opacity of an observation of a given LPN system.
Moreover, if there exists an observation w such that ILPP
1 admits a solution with zq =max xT

q · M ≤ kq for
each GMEC (xq, kq) of the secret, then the system is
not current-state opaque. In the following, we discuss the
details of Algorithm 4.2.

Step 1 initializes the variables of the algorithm where h
denotes the length of w. Step 2 waits for a new observed
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LPN system G = (PN,M0, E, λ), the secret S modeled by
a set of GMECs, and the observed word w ∈ L(PN,M0).
The output of the intruder is the set-valued function Φ(w)
that is defined as follows:

Definition 8. An on-line intruder is a function Φ :
L(PN,M0) → {Y,N} that associates to each observation
w ∈ L(PN,M0) the following sets:

(1) Φ(w) = {Y } if the observation of the system is
current-state opaque wrt the secret S.

(2) Φ(w) = {N} if the observation of the system is not
current-state opaque wrt the secret S.

Given an LPN system G = (PN,M0, E, λ) with language
L(PN,M0) and satisfying assumption A1, we specify an
intruder that works on-line and determines whether an ob-
servation is opaque or not after the occurrence of each new
event. More precisely, for each initial marking M0 ∈ Nm,
at the occurrence of an observed word w ∈ L(PN,M0),
the following proposition shows a linear algebraic charac-
terization of each transition sequence σ ∈ T ∗ whose firing
at M0 is consistent with the observation w = λ(σ).

Proposition 9. Let L(PN,M0) be the language of an
LPN system G = (PN,M0, E, λ) satisfying assumption
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Proof. The proof is omitted.
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and C(w). Actually, constraints (1) imply that M = M0 +
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if the behaviour of the system remains in the secret under
the given observation w ∈ L(PN,M0), we have to find
a possible solution of (1), i.e., a set of firing vectors
leading to a marking that does not belong to the secret.

Algorithm specifying the on-line verifier
Input: G = (PN,M0, E, λ), S

Output: Φ(w)

Step 1. Initializing the variables of the algorithm
w := ε, h := 0,

Step 2. Recording the events
Wait until an event e ∈ E occurs
w := we, Φ(w) := ∅ h := h+ 1.

Step 3. Verifying if the observed word w is current-state
opaque wrt S
for q = 1 to r do
Solve ILPP 1
if zq > kq then

set Φ(w) := {Y }, go to Step 2
end if

end for
Step 4. set Φ(w) := {N}, hide event e, go to Step 2.

The following theorem proves that such a solution can be
obtained by solving the ILP Problem 1 (ILPP 1).

Proposition 10. Let G = (PN,M0, E, λ) be an LPN sys-
tem and S be a secret. Given an observed word w =
e1e2 . . . eh ∈ L(PN,M0), let us define the following ILP
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(2)

An observation w of G is current-state opaque wrt S
iff for a GMEC (xq, kq) of the secret, ILPP 1 admits a
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, σo1 , σo2 , . . ., σoh and it
holds zq > kq.

Proof. The proof is omitted.

Proposition 10 provides the following sufficient and nec-
essary condition to verify whether an LPN system is not
current-state opaque.

Corollary 11. Let G = (PN,M0, E, λ) be an LPN system
and S be a secret. The system is not current-state opaque
iff there exists an observation w such that ILPP 1 admits
a solution with zq =max xT

q · M ≤ kq for each GMEC
(xq, kq) of the secret.

Proof. It follows immediately from Definition 7 and
Proposition 10. �

4.2 On-line Algorithm

Based on the aforementioned results, we propose Algo-
rithm 4.2 that the verifier applies on-line by observing
the nsame events of the intruder to verify the current-
state opacity of an observation of a given LPN system.
Moreover, if there exists an observation w such that ILPP
1 admits a solution with zq =max xT

q · M ≤ kq for
each GMEC (xq, kq) of the secret, then the system is
not current-state opaque. In the following, we discuss the
details of Algorithm 4.2.

Step 1 initializes the variables of the algorithm where h
denotes the length of w. Step 2 waits for a new observed
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event, while Step 3 verifies whether w is current-state
opaque wrt S. If there exists a GMEC (xq, kq) of S such
that the objective function value of ILPP 1 zq > kq, then
by Proposition 10, w is current-state opaque wrt S. In
this case, the algorithm goes to Step 2 to wait for a new
event. Moreover, if ILPP 1 admits an optimal solution with
zq ≤ kq for each of the GMEC (xq, kq) of the secret, then
by Proposition 10, w is not current-state opaque wrt S.
According to Corollary 11, the system G is not current-
state opaque wrt S: then the enforcer hides the last event
e ∈ E.
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Fig. 1. The LPN system considered in Example 12.

Example 12. In order to show the application of Algorithm
4.2, we consider the LPN of a communication system
proposed in Tong et al. (2017) that is shown in Fig. 1. Let
us consider the LPN in Fig. 1. There are five places, seven
transitions and two observable events, i.e., E = {a, b}.
The set of observable transitions is To = {t1, t2, t3, t4}
such that T (a) = {t1, t2} and T (b) = {t3, t4}, and the
set of unobservable transitions is Tu = {ε5, ε6, ε7}. The
initial marking is M0 = [2, 0, 0, 0, 0]T . Let the secret be
S = {M ∈ N5|X · M ≤ K}, where X = [x1, x2]

T and
K = [k1, k2]

T with x1 = [−1, 0, 1, 0, 1], x2 = [0, 0, 1, 0, 0],
k1 = 1 and k2 = 0. By using the Basis Reachability Graph
(BRG) and its observer presented in Tong et al. (2017),
the system is inferred not current-state opaque wrt the
secret. Now, we show the procedure of the proposed on-
line algorithm as follows.

Assume that the observable event a occurs. By applying
Algorithm 4.2, we infer Φ(a) = {Y }, i.e., the observation
w = a is current-state opaque wrt S.

Now, assume that the second observable event b occurs:
Algorithm 4.2 provides Φ(ab) = {N}, i.e., the observation
w = ab is not current-state opaque wrt S and the second
event occurrence b is hidden. Moreover, according to
Definition 7, the system is not current-state opaque wrt
S. �

4.3 Computational Complexity

A global picture of complexity results for the verification
of diagnosability and opacity is discussed in (Brard et al.
(2017)). As regard the computational complexity of Algo-
rithm 4.2, we note that the algorithm needs to solve for
each observation w at most r ILPPs, which are NP-hard
in theory. To evaluate the computational effort required
by the proposed algorithm, we recall that the primary
determinants of the computational cost of an ILPP are
the numbers of variables and constraints in it. It is easy
to infer that the numbers of variables and constraints in

each ILPP are h ·n+nu +m and h ·m+2 · (h+m) in the
worst case, respectively, where h ≥ 0 denotes the length of
the observation w, n denotes the number of transitions in
the LPN, nu denotes that of unobservable transitions in
the LPN and m denotes that of places in the LPN. Hence,
the on-line computational cost of the proposed algorithm
increases with the number of observed events. However,
in practice, our experience shows that in the examined
cases, compared with those presented in the literature, an
optimal solution is obtained in a short time by solving
the ILPPs on a PC equipped with a standard solver of
optimization tool.

4.4 Experimental Results

This subsection provides some experimental results of the
algorithm proposed in this paper. The obtained compu-
tational time refers to the CPU seconds of a notebook
computer under the Windows 7 operating system with
Intel CPU Core 2.6 GHz, 8 GB memory and a standard
optimization solver.

In order to show the advantage and efficiency of the
proposed on-line algorithm, let us consider a large example
satisfying Assumption A1 shown in Fig. 2, which is similar
to the one presented in Cabasino et al. (2011). This
example is an LPN that models a manufacturing system.
The LPN is composed by 35 places, 28 transitions and
the event set is E = {a, b, c, d}. The set of observable
transitions To consists of transitions from t1 to t10 such
that T (a) = {t1, t4}, T (b) = {t2, t3, t9}, T (c) = {t5, t6},
T (d) = {t7, t8, t10}. The secret is defined by the following
set: S = {M ∈ N35|M(p12)+M(p15)+M(p21)+M(p22) ≤
0}. By applying the method in Tong et al. (2017) to this
example, the system is not current-state opaque wrt the
secret. However, it takes more than 1800 seconds to obtain
this result due to the computation of the BRG and its
observer.

Now, we apply Algorithm 4.2 to this example. In particu-
lar, the performance of Algorithm 4.2 is presented in Table
1, where the first column represents the evolution of the
system, Nvar and Ncon indicate the numbers of variables
and constraints of ILPP 1, respectively. The fourth column
shows the CPU time in seconds for solving ILPP 1 and the
fifth column is the output of Algorithm 4.2 at each step.
From Table 1, we can see that the observed event sequence
w = accabcc is not current-state opaque wrt the secret S.
Hence, according to Definition 7, we conclude that the
LPN system is not current-state opaque wrt the secret.

Table 1. Performance of Algorithm 4.2

Action NvarNcon time (s) Φ(w)

observable event a occurs 81 107 0.8×10−2 {Y}
observable event c occurs 109 144 1.1×10−2 {Y}
observable event c occurs 137 181 1.2×10−2 {Y}
observable event a occurs 165 218 1.5×10−2 {Y}
observable event b occurs 193 255 1.7×10−2 {Y}
observable event c occurs 221 292 1.9×10−2 {Y}
observable event c occurs 249 329 2.4×10−2 {N}

5. CONCLUSION

This paper proposes an on-line verification method of
current-state opacity in a LPN framework. The verifier
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Fig. 2. LPN modeling a manufacturing system.

observes and stores the event sequence of the LPN system
and decides run-time whether the given observation is
current-state opaque or not. To this aim, an ILP problem
is defined and we prove that, on the basis of the provided
solutions at each observed event, it is possible to decide
if the secret can be discovered. If the given observation
of the system is not current-state opaque, the last event
occurrence is hidden by the enforcer.

The proposed methodology for opacity verification falls
in the opacity enforcement at run-time approach (Falcone
and Marchand, 2015) that avoids the enumeration of
the PN markings and can be applied also to unbounded
nets. Moreover, the presented run-time enforcement is
not intrusive and does not distort the internal system
behaviour. By applying the proposed algorithm to a large
example, we show its efficiency.

Future works will focus on the possibility of extending the
proposed approach to systems where the secret cannot be
represented by a set of GMECs.
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