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Abstract: Producing accurate land cover maps is time-consuming and estimating land cover
changes between two generated maps is affected by error propagation. The increased availability of
analysis-ready Earth Observation (EO) data and the access to big data analytics capabilities on Google
Earth Engine (GEE) have opened the opportunities for continuous monitoring of environment changing
patterns. This research proposed a framework for analyzing urban land cover change trajectories based
on Landsat time series and LandTrendr, a well-known spectral-temporal segmentation algorithm
for land-based disturbance and recovery detection. The framework involved the use of baseline
land cover maps generated at the beginning and at the end of the considered time interval and
proposed a new approach to merge the LandTrendr results using multiple indices for reconstructing
dense annual land cover maps within the considered period. A supervised support vector machine
(SVM) classification was first performed on the two Landsat scenes, respectively, acquired in 1987
and 2019 over Kigali, Rwanda. The resulting land cover maps were then imported in the GEE
platform and used to label the interannual LandTrendr-derived changes. The changes in duration,
year, and magnitude of land cover disturbance were derived from six different indices/bands using
the LandTrendr algorithm. The interannual change LandTrendr results were then combined using a
robust estimation procedure based on principal component analysis (PCA) for reconstructing the
annual land cover change maps. The produced yearly land cover maps were assessed using validation
data and the GEE-based Area Estimation and Accuracy Assessment (Area2) application. The results
were used to study the Kigali’s urbanization in the last three decades since 1987. The results illustrated
that from 1987 to 1998, the urbanization was characterized by slow development, with less than a 2%
annual growth rate. The post-conflict period was characterized by accelerated urbanization, with a
4.5% annual growth rate, particularly from 2004 onwards due to migration flows and investment
promotion in the construction industry. The five-year interval analysis from 1990 to 2019 revealed
that impervious surfaces increased from 4233.5 to 12116 hectares, with a 3.7% average annual growth
rate. The proposed scheme was found to be cost-effective and useful for continuously monitoring the
complex urban land cover dynamics, especially in environments with EO data affordability issues,
and in data-sparse regions.

Keywords: Landsat time series; LandTrendr; trajectory segmentation; urban land cover change
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1. Introduction

Since 2007, our planet has reached a significant landmark, with urban inhabitants outnumbering
those of rural settlements and projections illustrated that urban areas would be housing two-thirds
(66%) of the world population by 2050 [1]. Despite tiny land fractions being occupied by urbanized
areas (2% of the Earth’s surface), cities account for 60% to 80% of global energy consumption [2,3].
Previous studies illustrated that there is a strong correlation between excessive urbanization and
an increase of greenhouse gas emissions [4–7], and the latter is contributing to global warming and
climate change and variability [8–11]. Therefore, continuous urbanization monitoring is of critical
importance for a better understanding of land cover change trajectories, their impact on the surrounding
environment, and the dynamics of urban ecosystem services. Adequate and cost-effective methods
are needed for high temporal and dense land cover information production, which is critical for
responsive urban land development. Previous studies illustrated that mapping and modeling urban
land cover and land-use change, based on Earth Observation (EO) data, was deemed a timely and
cost-effective method for quantifying the impact of the urban environmental footprint [12–14]. With
almost five decades (since 1972) of data records, and rigorous calibration, consistency, and free access
since 2008, Landsat time series are essential resourceful EO data for environmental analysis [15,16],
including continuous spatio-temporal urban growth monitoring. However, EO data, like any other
big data, are both structured and unstructured, noisy, and their direct use is often difficult [17].
Considering that the size of EO data is scaling up to petabytes, it is beyond the ability of commonly
used software tools to capture, manage, and process them within a tolerable elapsed time [18–20].
Subsequently, frequently employed methods for satellite-based land change detection are relying either
on performing post-classification comparison based on single pass classification. or on a pixel-to-pixel
approach with simultaneous multispectral pattern analysis in two or more time-series images [21–23].
By using such traditional methods, it is evident that producing reliable and accurate land cover maps
is time-consuming. Moreover, the results of bi-temporal post-classification comparison are prone to
error propagation from single pass land cover classification. Therefore, reliable semi-automated and
cost-effective approaches are needed for continuously tracking urbanization phenomena. Recently,
EO big data analytics and cloud computing systems have revolutionized the ability to handle geo
big data [24,25]. The availability of analysis-ready EO data cubes and the access to big data analytics
capabilities in a cloud-computing environment, such as Google Earth Engine (GEE), has opened the
opportunities for continuous monitoring of our changing environment, such as tracking urbanization
development and its associated environmental impact. With free and open access to Landsat archives,
novel change detection algorithms based on Landsat time series were simulated, and large-scale land
change mapping at a medium resolution was significantly improved [15,16,26].

Several time series algorithms were implemented in cloud computing platforms for land
cover change, and each of them is subject to pros and cons [26,27]. Various land change analysis
could be performed based on spatiotemporal dimensions using dedicated time series algorithms.
Seasonal changes, such as seasonal snow cover [28], wetland inundations, or hydrological regime
variation [29,30], are analyzed using time series algorithms suitable for short-term period trends.
Long-term changes, such as trends in vegetation greenness [31], are analyzed using annual time series.
EO time series algorithms are further utilized for abrupt change monitoring, such as wildfire [32,33]
and deforestation [34,35], to name a few. Gradual changes, such as land degradation [36,37], forest
recovery [38], and urban development [39], are also among the type of trends that can be analyzed
using satellite time series algorithms. The widely used EO-based time series algorithms for land
change processes include, but are not limited to:

(i) Breaks For Additive Season and Trend (BFAST) [40] implemented for seasonal trends analysis;
(ii) Continuous Change Detection and Classification (CCDC) [41], which was found to be worthwhile

for long-term and gradual change detection;
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(iii) Time-Weighted Dynamic Time Warping (TWDTW) [42], which consists of comparing temporal
similarities of known seasonality of a land cover event with unknown time series, and finding
optimal alignment between them through dynamic space-time classification;

(iv) Vegetation Change Tracker (VCT) mainly designed for historical forest change processes based
on the spectral–temporal properties [43];

(v) TimeSat designed for seasonal trends monitoring of land surface processes taking into account
the seasonal parameters [17]; and

(vi) LandTrendr involving the spectral-temporal segmentation of Landsat time series and the complex
statistical analysis allowing the extraction of spatial patterns of land cover change magnitude,
change duration, and year of change [44].

All time-series change detection algorithms are not producing similar results, even if using the
same inputs data [45]. Some algorithms are hard to implement and more demanding in terms of
computation requirements. Therefore, users should be cautious about the choice, and the selection
should be based on the application domain, supporting computational platform and study objective.
The common characteristics for all times series for land change are still a large number of missing
data [46] but each of them presents the pros and the cons. For instance, TimeSat was found robust
across the large number of its applications, and its flexibility to allow seasonal trend analysis [17].
However, TimeSat-based analysis could be affected by bias emanating from inter-annual variations and
fluctuation of seasonal parameters. Despite its robustness in depicting vegetation change processes,
particularly forest, VCT is uniquely designed for limited applications.

The performance of EO time series algorithms heavily depends on their accommodating
computational platform and parameters to be taken into account. Traditional standalone architecture
and personal computers could not efficiently handle advanced EO big data processing tasks [20].
Hopefully, the technology advance enhanced the computation performance through server-client
application platforms or through the move to cloud computing. The cloud-based processing platforms
allow users the possibility to interact with EO data without investigation in backend computing and data
management infrastructures [47] and it is the case for LandTrendr-GEE architecture. While considering
the standpoint of ease of use and the development maturity, GEE was identified as one of the best
options for big EO data management and analysis [48]. Recently, the implementation of the LandTrendtr
algorithm in the GEE platform opened the opportunities for online collection of all available Landsat
data and processing them in a cloud-based environment with a user-friendly application programming
interface (API) [44].

2. LandTrendr-Google Earth Engine for Analysis of Land Cover Change Trajectories

GEE is a cloud-based geospatial processing platform, offering a large set of user-friendly API for
analyzing freely available satellite images, producing statistics and maps, and graphical representation
of investigated phenomena through parallel computing [49]. It is mainly composed of two components
working in sync with each other, namely Google Earth Engine Playground (EEP) and Google Engine
Explorer (EE) [49,50]. On the other hand, LandTrendr is a set of trajectories and spectral-temporal
segmentation algorithm that are useful for annual land disturbance and recovery detection taking into
account the intensity of the land cover disturbance known as the magnitude of change, the duration
of the event expressed in the number of years, and the year when the land disturbance or recovery
occurs [35]. The detection is carried out based on collection of Landsat time-series. The algorithm
applies the normalization and medoid image stacks and selection process, which makes the spectral
space relatively consistent across all Landsat sensors [35]. The medoid selection process consists of
comparing and aligning pixels’ values in all visible and infrared red bands of all Landsat sensors to
median spectral values in all annual collected images. Values resulting from any spectral transformation
can be used for all images irrespective of Landsat sensors [35,44]. LandTrendr was first developed in
Interactive Data Language (IDL) software in 2010 [35] and then implemented in the GEE platform
in 2018 [44]. It fits the spectral-temporal trajectory to each image pixel in an annual time series and
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traces the historical evolution of the same pixel in image time series. By referring to one band/index,
these trajectories can be used to identify a specific event of land cover change at a pixel level in space
and time dimensions. The algorithm provides information on the year of detection, the duration,
and the magnitude of each detected change event (see Figure 1).
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Figure 1. Conceptual model of LandTrendr fitting spectral index (e.g., NDVI) values to spectral-temporal
segments for spatio-temporal dynamics of a pixel undergoing disturbance, recovery, and stability in
21 years. The first temporal segment starting from the first vertex to the second vertex illustrates the
original model with a sequential and slight change. The model is fitted to a no change event. From the
second to the third vertices, the pixel underwent a great disturbance, translating to an important land
cover change, followed by a recovery period (from third to fourth vertices). The last land cover change
processes in the same pixel were characterized by stability in interannual variations (conceptual model
adapted from Kennedy et al., 2010).

The LandTrendr algorithm was initially tested in forest disturbance and recovery detection in
the Pacific Northwest of the United States of America (U.S.A), western Oregon, and Washington by
Kennedy et al. [35]. The findings of their study confirmed that the model outperformed the bi-temporal
change detection previously carried out by [51] in tracking forest disturbance and detecting other
trends related to forest phenology and regrowth in the same study area. A growing number of studies
have subsequently proven the effectiveness of LandTrendr algorithms in investigating the patterns
of forest disturbance and recovery (e.g., [52,53]). Furthermore, trends in mining-induced land cover
change based on LandTrendr-GEE were successfully tracked respectively in Richards Bay Minerals Site,
South Africa [54], and in central east Queensland, Australia [55]. The combination of LandTrendr-based
indices and Landsat time-series data allowed analysis of cropland conversion patterns in a 10-year time
span around Dongting Lake, China [56], and the detection of impervious surfaces in two urban areas of
Jiangsu Province, China, including Nanjing [57] and Xinbei District [58]. LandTrendr-GEE’s application
in analyzing urban land cover dynamics and change trajectories is very scanty, thus this needs to be
tested. Particularly, the LandTrendr-GEE framework would potentially open the opportunities for
urban land cover change analysis in Sub-Saharan Africa (SSA), as the very high-resolution satellite
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images are expensive and less affordable by local urban planning institutions. Additionally, it is hard
to acquire continuously and annually fit-for-purpose optical images for regular monitoring of land
cover dynamics, given that atmospheric attenuations sometimes affect the quality of data acquired
from optical sensors.

Various approaches are used for urbanization analysis, such as change analysis of spatial temporal
variation of land surface biophysical properties using time series indices derived from multispectral
satellite data (e.g., [59,60]). These indices include, but are not limited to, the normalized difference
vegetation index (NDVI), normalized difference moisture index (NDMI), normalized difference built-up
index (NDBI), index-based built-up index (IBI), urban index (UI), enhanced built-up, and bareness index
(EBBI), etc. The synergistic use of Landsat time series and the LandTrendr-GEE framework is an added
value to the previous urbanization research effort. This framework allows long-term and continuous
annual monitoring of land cover change disturbance and recovery analysis. It is also equipped with a
fitting model for noise-induced spikes reduction, while detecting interannual land change events [44].
LandTrendr-GEE-based indices/bands are easily portrayed and manipulated in a user-friendly interface
with rich information on the magnitude, duration, and year of event change detection. Further statistics
on land cover change disturbance and recovery can be extracted, and a fitting model narrating the
global trend of landscape change trajectory is visualized. In this research, a framework for analyzing
urban land cover change dynamics based on Landsat time series and LandTrendr-GEE is proposed.
The study aimed at integrating the baseline land cover change with bands and indices extracted using
the LandTrendr algorithm for reconstructing progressive dense annual land cover maps within the
considered period. The baseline two land cover maps were generated at the beginning and at the
end of the proposed time interval, which is 1987 and 2019, respectively. The proposed framework
is believed to be cost-effective and useful for continuous monitoring of complex urban land cover
dynamics, especially in environments with EO data affordability issues, and in data-sparse regions.
Indeed, LandTrendr-derived data have worldwide coverage and are freely available. Furthermore,
the integration of LandTrendr in GEE was judged as a high-performing platform based on open-access
software and cloud computing [44,48].

3. Study Area and Data Description

Kigali is the largest and the capital city of Rwanda, a country located in East Africa (see Figure 2).
The city, designated initially as Germany’s colonial administrative outpost in 1907, expanded across
a small neighborhood plateau around Nyarugenge hill with an estimated 357 inhabitants [61].
The last administrative restructuring took place in 2006 and led Kigali to be a metropolitan area
covering 730 km2, partitioned in three districts including Nyarugenge, Gasabo, and Kicukiro [62].
The 2012 Population and Housing Census illustrated that the Kigali metropolitan area accommodates
1.135 million inhabitants, with a 4.1% annual urban growth rate [63]. Kigali is remains the most
important hub of Rwanda’s secondary and tertiary activities, and the main port of entry. According
to the 2013 land use [64], around 60.5% of the total city administrative area is dominated by rural
agrarian land and marshlands (19.4%). Urbanized area occupies approximately 17%, with informal
settlements estimated at 79% of the total built-up areas [65]. Since the implementation of the 2013
Master Plan, which is a long planning process dated back in 2007, urban redevelopment is taking
place in the core urban zone through built-up area renovation, the construction of high-rise buildings,
road network densification, and parking area modernization. Land conversion, rapid urban expansion
in urban fringe neighborhoods, and conurbation translated by satellite towns in the proximity of Kigali
administrative boundaries mainly along the national road axes are the observed land change trends.
Despite the urban policy and settlement regulations in place, accelerated urbanization observed in
Kigali has led to the uncontrolled growth of informal settlements and environmental degradation [66].
Tangible statistics on land use change processes and trajectories are still lacking. Quantification of the
change in vegetation proxy and land-use change trajectories in Kigali would contribute to informed
decision making about sustainable urban dynamics and land use management. The testing area
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covered in the present study occupies an area of approximately 609.57km2
. It mainly covers Kigali’s

core built-up area and the surrounding urban fringe zones as portrayed in Figure 2.
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Figure 2. Location of Kigali city in Rwanda, in the East African region (upper left cartoon).
The zoomed-in map (top right) illustrates the three districts composing Kigali. The Landsat-8
image with a false color image display (near-infrared, red and green) illustrates the area of interest
covering approximately 609.57km2.
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The Landsat surface reflectance cloud masked composite collections were used for generating
the two baseline land cover maps, respectively, the 1987 and 2019 classifications. The collections
were accessed, pre-processed from GEE, and exported for further processing by constraining the
area of interest in the study area-bounding box. The two composite collections were acquired
by filtering the dates corresponding to the image with good quality. Landsat surface reflectance
data are atmospherically corrected using the Landsat Ecosystem Disturbance Adaptive Processing
System (LEDAPS), and they include a cloud, shadow, water, and snow mask produced using
CFMASK, as well as a per-pixel saturation mask as specified in the Earth Engine data catalog
(https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C01_T1_SR). The first
Landsat 5 Thematic Mapper composite (LANDSAT/LT05/C01/T1_SR Path: 172; Row: 061) was
constrained between 1 February and 31 December 1987. The 2019 image was acquired using the
Landsat 8 Operation Landsat Imager (L8-OLI) sensor with LANDSAT/LC08/C01/T1_SR identification
code. It is an annual cloud-masked composite collected by constraining the acquisition between
1 January and 31 December 2019. The Digital Terrain Model (DTM) and slope derived from the DTM
were also data sources combined with multispectral bands for land cover classification. The DTM
used in this study was produced by the Shuttle Radar Topographic Mission (SRTM) with a resolution
of 1 arc-second global product (around a 30-m spatial resolution). More DTM specifications can be
retrieved from https://www2.jpl.nasa.gov/srtm/. Annual image collections from L5-TM, Landsat 7
Enhanced Thematic Mapper Plus (L7-ETM+), and L8-OLI from 1987 to 2019 were used for LandTrendr
spectral-temporal segmentation and for generating GEE-LandTrendr-based indices. High-resolution
Google Earth images were employed for collecting and labeling the validation samples.

4. Methods

In this section, an overview of the methods used in this study is presented and discussed, including
the functional architecture of the LandTrendr-GEE framework and various processing tasks.

4.1. Image Pre-Processing

The two Landsat images that served as baseline classification were first co-registered using
automatic registration performed in ENVI 5.3 software. L8-OLI was considered as a base image for
co-registering the 1987 L5-TM. A cross-correlation matching method and 0.2 minimum matching score
were proposed for automatic tie points generation. The image transformation was set as a geometric
model, whereas the first-order polynomial transform (RST) was chosen as the transformation model.
In total, 100 tie points were proposed, and the ones with more than XY pixels’ reprojection errors were
eliminated until we retained 24 high accurate points with a root mean square error (RMSE) > = 0.8.
Prior to land cover classification, the Gray Level co-Occurrence Matrix (GLCM) proposed by [67] was
computed and stacked with Landsat bands. GLCM is a texture measurement based on second-order
statistics for image texture analysis. It quantitatively describes the probability of relationships between
the brightness values of neighboring pixels at a distance and orientation invariant within the image [67].
The output consists of a single two-dimension raster layer containing derived measurements for all
pixels and may be input into further analysis [68]. In the present study, the use of GLCM as input
in the feature space was motivated by the fact that previous studies (e.g., [69,70]) illustrated the
utility of GLCM texture features in improving land cover class separability. Derived GLCM texture
features concerned the mean, variance, contrast, and standard deviation computed from red, green,
and near-infrared bands of both 1987 L5-TM and 2019 L8-OLI. The GLCM was calculated in the four
main orientations (i.e., 0, 45, 90, and 135) with a one-pixel shift and 11× 11 kernel size. The experimental
results in the previous studies found that the best urban classification results would be achieved with a
kernel size ranging from 5 × 5 to 13 × 13 [71,72] and 11 × 11 kernel was found to be optimal for the
best urban land cover classification [73,74].

https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C01_T1_SR
https://www2.jpl.nasa.gov/srtm/
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4.2. Baseline Land Cover Classification

Five land cover classes were proposed in the land classification scheme, as specified in Table 1.
Before the GEE processing chain, a pixel-based support vector machine (SVM) classifier was applied
to generate baseline and keyframe land cover maps for the predefined starting and ending time
periods. SVM is a non-parametric supervised classifier based on statistical learning theory [75],
which has outperforming properties, including effectiveness in segregating multimodal classes [76],
good generalization ability, and efficiency in handling data in high-dimensional feature spaces [77].
Previous studies (e.g., [78–80]) illustrated the SVM as one of the top best-performing classifiers for
satellite image land cover classification. Figure 3 illustrates the step-by-step processing chain followed
for generating the 1987 and 2019 land cover keyframe classification.

Table 1. Proposed land cover classification scheme and the corresponding description.

Land Cover Type Description

Urban Areas composed of high and low-density built-up areas, sealed surfaces,
including paved road networks, airport, and parking lots

Open land Areas occupied by cultivated lands, glass land, urban green spaces, and bare land

Forest
Areas covered by mature vegetation of height > 5 m with ≥ 60 % ground surface
covered by trees and canopy with evergreen foliage. This class includes native
montane forests, secondary (derived) forests, and forest plantations

Wetland
Low land zone characterized either by permanent flooded zones with vegetated
cover or seasonally flooded low land occupied by cropland and surrounded by
highlands with a steep and moderate slope

Water Permanent water bodies such as lakes, fish ponds, water table in irrigated land,
and water channels mainly composed of permanent watercourses
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Figure 3. Processing steps for baseline land cover production. Co-registered Landsat images stacked
with extracted GLCM were used for generating land cover maps with five classes for the 1987 starting
and the 2019 ending periods.

The training samples were determined by referring to the random sampling design. Five land cover
classes were proposed in the classification scheme, including the built-up area (BUA) corresponding to
settlements and sealed/impervious surface, open land mainly composed of either agricultural areas
or permissive uncovered land, forest, wetlands, and water. In total, 572 samples were proposed
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for the 1987 classification, while 647 were selected for the 2019 image classification. The computed
GLCM layers, together with DTM and slope, were stacked with classic Landsat bands for the training
of the SVM classifier. The SVM Radian Basic Function kernel (RBF) was chosen for generating the
classified maps. Post-processing operations, such as class aggregation, were performed for smoothing
the classification.

4.3. Processing Chain in GEE

The processing steps performed in GEE include the spectral-temporal segmentation and
LandTrendr-based analysis, predicting progressive land cover maps and associated statistics,
and accuracy assessments using the GEE-based area estimation and accuracy Assessment
(Area2) application.

4.4. Spectral-Temporal Segmentation and Analysis

GEE was used to analyze the stacks of Landsat images using the LandTrendr (LT) algorithm.
Spectral-temporal metrics were constructed from 1987 to 2019 based on images acquired from L5-TM,
L7-ETM+, and L8-OLI. Landsat annual collections were constrained to the date range from 1 September
to 30 June of the following year. This time span corresponds to the two main rainy seasons, and the
short-term dry season in the study area. The optimal land cover representation during the proposed
time range could be effectively inventoried. To trace the land cover changes, we proposed the use of
a combination of six indices/bands, including red (R) and shortwave infrared (SWIR) bands, NDVI,
NDMI, Tasseled Cap Greenness (TCG), and Tasseled Cap Wetness (TCW). The selection of these
bands and indices for spectral-temporal segmentation was first based on visual inspection of the
LandTrendr results.

The best candidate indices/bands were those judged that were able to highlight more changing
patterns and those that were believed to capture valuable information related to the land surface
properties in the study area. The NDVI was expressed as a normalized transformed ratio between R
and near-infrared (NIR) bands (NDVI = (NIR-RED)/(NIR+RED)) [81], which was selected because it
is the most widely used index for land cover assessment [82,83]. NDVI was also previously proved
worthwhile in greenness proxy monitoring in urban and peri-urban environments [84,85]. The NDMI
index is a normalized ratio between NIR and SWIR (NDMI = (NIR-SWIR)/(NIR+SWIR), and it was
found to be useful for tracking changes in plant biomass [86]. We assumed that cropland conversion to
impervious surfaces is associated with a decrease in the NDMI value. The two features of tasseled
cap transformation (i.e., TCG and TCW) were found to be valuable for providing mechanisms for
spectral data dimensionality reduction with minimal information loss [87,88], and they were previously
applied for enhancing urban land cover change analysis (e.g., [12,89,90]). We adopted the tasseled
cap transformation coefficients defined for reflectance data, as proposed by [91]. These coefficients
were successfully adopted in previous LandTrendr-related studies (e.g., [35,52]) involving the use of
annual collection of stacked Landsat time series. Orthogonal cap transformation for the wetness and
greenness indices (TCG and TCW) is respectively expressed by Equations (1) and (2):

TCG = −0.1602 ∗ Blue− 0.2819 ∗Green− 0.4934 ∗Red + 0.7940 ∗NIR− 0.00002 ∗ SWIR_1− 0.1446 ∗ SWIR_2 (1)

TCW = 0.0315 ∗ Blue + 0.2021 ∗Green + 0.3102 ∗Red + 0.1594 ∗NIR− 0.6806 ∗ SWIR_1− 0.6109 ∗ SWIR_2 (2)

4.5. Progressive Land Cover Reconstruction

The LT algorithm is designed to analyze a single index/band, while integrating many logical
decision steps and statistical tests to detect land cover disturbance and recovery [52]. In the present
study, we proposed a new methodology to integrate multiple indices and to use two available land
cover maps as keyframes for labeling the LT-detected changes that occurred during the analyzed
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period. Figure 4 portrays the proposed workflow for LT-GEE for reconstructing land cover change
trajectories and applying the Area2 methodology to estimate the area and accuracy assessment.
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Figure 4. Processing chain for progressive land cover reconstruction, and area estimate and accuracy
assessment. The year of detection (YOD), the change duration (DUR), and change magnitude (MAG)
are combined with a change map for continuous land cover reconstruction.

For reconstructing yearly land cover maps, we stacked all the LT results generated using a
single index/band to obtain a complete and more reliable detection of the changes that occurred
during the period. In particular, we adopted different strategies to combine the three outputs of LT:
The year of change detection (YOD), the change detection duration (DUR), and the change detection
magnitude (MAG).

For the MAG outputs, we stacked together the four indices and two bands, and we applied a
principal component analysis (PCA). Considering that the LT MAG results have a great amount of
no-data values (see Figure 5) and that these values are not in the same location for the different stacked
layers, we adopted a median filling procedure to interpolate the values of the no-data pixels using the
values of the surrounding pixels. The implementation of the PCA algorithm with a median filling
strategy for missing values has been implemented in the GEE platform. We selected the first PCA band
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(PC-1) as the most informative band that is able to combine the common pattern detected in most of
the indices and this procedure substantially improves the reliability and the completeness of the LT
magnitude results.
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Figure 5. Excerpts of visual comparison among LandTrendr indices and PCA-1. The missing values in
all LandTrendr-derived indices are common as illustrated by blank spaces in right side of the zoomed
red band, NDVI, and TCG. These values were filled by computing the first PCA band using a median
filling strategy based on six stacked LandTrendr indices. The zoomed PCA-1 illustrates the layer with
no blank areas.
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The LT YOD and the LT DUR results portray data range values illustrating the absolute year of
change disturbance, and the number of year(s) the change or the stability of the disturbance event
last. For deducting LT YOD and the LT DUR results based on stacked four indices and two bands,
we adopted a strategy different from the one used for deducting the magnitude of change (MAG) to
keep the original data range and measurement unit. We realized that applying PCA to the data range
would result in transformed values. While it was important to keep the measurement unit expressed
in years (for the case of YOD and DUR) to be able to retrieve the correct year of change, we adopted
the GEE based "reduce by mode" function for separately deducting the LT YOD and the LT DUR based
on LT based on stacked four indices and two bands (see Figure 4).

For each pixel in the LT stacked results, we observed and computed YOD and DUR values
as illustrated in Figure 6. We further detected the land cover change that starts at the YOD and,
we investigated the time when the change trend stabilized after a period of perturbation (DUR). Starting
from these two values, we could estimate the YOC (year of change) and the time the corresponding
pixel can be labeled as the new land cover class. This simplification of the LT results was required to
label the pixel in a land cover class and to obtain yearly land cover maps. We further used a weighted
mean procedure to estimate the corresponding YOC (see the formula for the weighted YOC formula
in Equation (3)), in which we assumed that the YOC is the central value of the disturbance period.
We also weighted the sharp detection (short DUR), which was considered useful for observing the
change in a very short period:

YOC =

n∑
i=1

1
2 ( (YODi+DURi))

1
DURi

n∑
i=1

1
DURi

(3)
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Figure 6. Conceptual illustration of the trend in pixel change dynamics-based spectral-temporal
segmentation. The change magnitude, change duration, and year of detection (YOD) explain the pixel
under disturbance and the one under stability.

By combining the MAG-PC1 and YOC layers in each year, it was possible to reconstruct the
land cover trajectories over the period 1987-2019 and produce the annual land cover maps. We used
a threshold value to consider only the changes with a significant MAG and that were detected
before the considered year (YOC < target land cover map year). The followed steps in GEE can be
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accessed via https://code.earthengine.google.com/cd2666b30174d7e728fef70eac6be7a4?accept_repo=

users%2Femaprlab%2Fpublic.

4.6. Results Validation and Quality Assessment

Area estimation and accuracy assessment (Area2), which is a GEE application that provides
support for sampling and estimation in a design-based inference framework [92], was used for quality
assessment. The baseline classification maps for reconstructing progressive land cover maps were first
imported in GEE Asset Manager and then displayed in GEE code editor. By referring to the Area2

application, stratified random sampling was adopted for the proportional area estimate and accuracy
among strata. According to the Area2 approach, the sample size is determined using Equation (4):

n =
(∑

h Wh SDh
SE(ŷ)

)2
(4)

where

n is the number of samples;
Wh are the stratum weight corresponding to the weight of each of the proposed land cover classed;
SDh are the stratum area standard deviations;
SE(ŷ) is the target standard error of the stratum area estimate

By adapting Equation (4), 1481 random samples were proposed for 1987 and 1500 samples in 2019
for area estimate and accuracy assessment. The areal weight for each stratum (i.e., each of our adopted
land cover classes) was determined and used for allocating the number of samples. The more the
stratum weight is significant, the more the number of samples were allocated [92]. High-resolution
Google Earth imagery and background Landsat images were used for collecting and labeling validation
samples. A stratified estimator was adopted for computing the strata proportion area estimate, standard
error quantification, and accuracy assessment. The 95% confidence interval (CI) with a 0.005 margin
error was adopted for accuracy assessment. The stratified estimator is expressed as the sum of the
means of the simple random samples within strata weighted by stratum weights calculated as relative
proportions of the population within strata [92,93]. The progressive maps were also assessed using the
same area2 procedures. The 2019 baseline validation samples were used across all five-year-interval
reconstructed maps using the proposed elimination and gap-filling approach. The latter consisted
of first extracting the binary change mask (changed/unchanged) for each considered YOC based on
2019 and the considered YOC land cover. Validation points falling inside the changed zones in the
mask were then eliminated and new samples were collected for compensating for the eliminated ones.
This strategy was found to be useful for rationalizing and saving time for collecting validation samples,
but an increase of additional samples is paramount. As proposed by [92], the producer’ and user’s
accuracies, and overall accuracy are expressed as follows:

Ûi =
p̂ii

p̂i.
(5)

P̂ j =
p̂ j j

p̂. j
(6)

Ô =

q∑
j=1

p̂ j j. (7)

where

i: Mapped category represented in row
j: Reference category represented in column

https://code.earthengine.google.com/cd2666b30174d7e728fef70eac6be7a4?accept_repo=users%2Femaprlab%2Fpublic
https://code.earthengine.google.com/cd2666b30174d7e728fef70eac6be7a4?accept_repo=users%2Femaprlab%2Fpublic
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q: number of considered categories
Ûi: User’s Accuracy in class i
P̂ j: Producer Accuracy in category j
Ô: Overall Accuracy

5. Results

5.1. Baseline Urban Land Cover Classification

The baseline urban land cover maps were generated with an overall 92%±1.6% classification
accuracy in 1987 and 94.2%±1.6% in 2019 with a 95% confidence interval. A significant change
is remarkable in Kigali in the last 32 years, from 1987 to 2019. Table 2 illustrates the land cover
classification statistics in two considered extreme dates, while Figure 7 portrays the binary change
detection maps where both unchanged and changed zones are visualized.

Table 2. Estimated area and accuracies with a 95% confidence interval for the baseline land
cover classification.

1987

Land Cover Classes Urban Open Land Forest Wetland Water

Class area proportion 0.078 0.736 0.071 0.11 0.005
Standard error 0.005 0.008 0.004 0.005 0

Area (ha) 4782.99 44884.99 4321.57 6688.63 279.45
95% CI (ha) 642.49 957.88 491.72 547.26 18.85

User’s accuracy 0.94 ± 0.02 0.94 ± 0.02 0.90 ± 0.036 0.97 ± 0.037 0.93 ± 0.062
Producer’s accuracy 0.73 ± 0.13 0.98 ± 0.021 0.84 ± 0.114 0.88 ± 0.082 1 ± 0.067

Overall Accuracy ( ± 95% CI) 0.942 ± 0.016

2019

Class area proportion 0.234 0.587 0.067 0.106 0.006
Standard error 0.006 0.008 0.003 0.004 0

Area (ha) 14432.05 36224.59 4142.24 6518.98 389.95
95% CI (ha) 760.10 977.79 406.24 506.06 12.53

User’s accuracy 0.94 ± 0.022 0.92 ± 0.022 0.95 ± 0.026 0.89 ± 0.058 0.98 ± 0.032
Producer’s accuracy 0.85 ± 0.53 0.95 ± 0.027 0.85 ± 0.098 0.93 ± 0.078 1 ± 0.032

Overall Accuracy ( ± 95% CI) 0.92 ± 0.016

CI: Confidence Interval

Land cover dynamics between 1987 and 2019 illustrate that 27% of the study area corresponding
to 16,750 ha was subjected to change. At the class level, the results illustrate that compared to the 1987
situation, urban area increased by 198.4%, whereas open land was reduced by 16.7%. Open land was
mainly converted to urban class. Even if the water class was slightly changed, dense annual land cover
maps revealed the emergence of small water patches in the central part and in the southeast of the
study area. Compared to previously stated classes, the area occupied by wetland was found more or
less stable and the forest class was less affected by the change. This does not mean forest and wetland
were not altered in Kigali City administrative entities, because the main changes of the two last classes
were found in areas beyond the bounding box of the present study area.



Remote Sens. 2020, 12, 2883 15 of 27

Remote Sens. 2020, 12, x FOR PEER REVIEW 15 of 27 

 

 

Figure 7. Baseline land cover map with considered five land cover classes (left side) and binary change 

map between 1987 and 2019 (right). 

Land cover dynamics between 1987 and 2019 illustrate that 27% of the study area corresponding 

to 16750ha was subjected to change. At the class level, the results illustrate that compared to the 1987 

situation, urban area increased by 198.4%, whereas open land was reduced by 16.7%. Open land was 

mainly converted to urban class. Even if the water class was slightly changed, dense annual land 

cover maps revealed the emergence of small water patches in the central part and in the southeast of 

the study area. Compared to previously stated classes, the area occupied by wetland was found more 

or less stable and the forest class was less affected by the change. This does not mean forest and 

wetland were not altered in Kigali City administrative entities, because the main changes of the two 

last classes were found in areas beyond the bounding box of the present study area. 

5.2. LT-GEE Parameter Configurations and Spectral Indices’ Characterization 

LT requires several parameters from which spectral-temporal segmentation and land cover 

trends analysis could be feasible. According to Kenned et al. [44], eight control parameters and annual 

Landsat images collection are mandatory for deriving either an index or a single band telling the 

pixel's story background evolution. In the light of achieving the best results, different combination 

values of algorithm parameters were tested, and the judged optimal values are illustrated in Table 3. 

Table 3. GEE-LT optimal segmentation parameters. 

Parameters Data Type Proposed Value 

Max segments Integer 8 

Spike threshold Float 0.9 

Vertex count overshoot Integer 3 

Prevent one-year recovery Boolean True 

Recovery threshold Float 0.25 

p-value threshold Float 0.05 

Best model proportion Float 0.75 

Min observations needed Integer 6 

Time series collection L5-TM, L7-ETM+, and L8-OLI  

Figure 7. Baseline land cover map with considered five land cover classes (left side) and binary change
map between 1987 and 2019 (right).

5.2. LT-GEE Parameter Configurations and Spectral Indices’ Characterization

LT requires several parameters from which spectral-temporal segmentation and land cover trends
analysis could be feasible. According to Kenned et al. [44], eight control parameters and annual
Landsat images collection are mandatory for deriving either an index or a single band telling the pixel’s
story background evolution. In the light of achieving the best results, different combination values of
algorithm parameters were tested, and the judged optimal values are illustrated in Table 3.

Table 3. GEE-LT optimal segmentation parameters.

Parameters Data Type Proposed Value

Max segments Integer 8
Spike threshold Float 0.9

Vertex count overshoot Integer 3
Prevent one-year recovery Boolean True

Recovery threshold Float 0.25
p-value threshold Float 0.05

Best model proportion Float 0.75
Min observations needed Integer 6

Time series collection L5-TM, L7-ETM+, and L8-OLI

For the purpose of the present study, we used the standard configuration parameters as specified
by the algorithm pioneers [35]. We simply adapted the number of maximum segments as the pioneer
recommended that this could be adopted, provided that it is helpful in detecting the disturbance
and recovery of land cover dynamics in the considered study area. We found that an 8-value set for
maximum segments was helpful is detecting land cover disturbance in the study area. Other parameters
were kept as they were originally defined. The value derived from specific indices, such as NDVI
and TCG, illustrated that a short change duration (less than 5 years) is always associated with a high
change magnitude since circa 2008. In general, it took the completely covered period corresponding to
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32 years to see the change in a big part of the study area. This translates that the land change processes
were gradual, especially in old urban areas and in crop-dominated land. However, newly urbanized
and converted areas are characterized by a high change magnitude and abrupt change duration.

5.3. Progressive Land Cover Reconstruction Based on the LT-GEE Framework

The synergy between the baseline change maps and LT-GEE-derived indices/bands allowed
reconstruction of the annual land cover change maps from 1988 to 2019. Since 1988, tremendous land
cover conversion, mainly from cropland to impervious areas, and urban expansion were witnessed
across the Kigali city landscape. The study results illustrated extensive urban growth between 1987
and 2019, with a 226.4% growth rate. The five-year term analysis from 1990 to 2015 illustrated that
impervious surfaces increased from 4233.5 to 11648.29 hectares (see Table 4), with 3.7% average annual
urban growth rate.

Table 4. Land cover change from 1990 to 2015 based on derived from combined LandTrendr indices
and classified Landsat baseline frames.

Area (in ha)

1990 1995 2000 2005 2010 2015

Urban 4233.51 4779.62 5813.57 8099.01 9892.77 11648.29
Open land 46397.33 45851.02 44832.81 42696.50 41071.18 39473.76

Forest 3869.73 3856.78 3821.85 3677.54 3493.34 3328.13
Wetland 6142.25 6153.15 6167.05 6158.47 6165.54 6164.07

Water 307.99 310.23 315.51 319.29 327.98 336.55

Land cover change trajectories portray a conversion to urban class mainly following the eastern,
southern, and northern directions. In contrast, the western areas were less converted as illustrated in
the land cover maps represented in Figure 8.

The interannual change analysis revealed that gradual change to urban structures was observed
from 1988 to 1991, with an average annual urban growth rate of around 3.4%. During that time
span, the built-up area extended from 3976 to 4405 hectares. The period from 1991 to 1995 was
characterized by a decreasing urban growth, with an annual average rate ranging between 1.8% and
2%. The slow urban progress during this period could be explained by socio-economic and political
instability and economic recession in Rwanda, which characterized the abovementioned period.
Indeed, the 1991–1995 period coincided with the five-year war and armored conflict that culminated
with the 1994 genocide against Tutsi in Rwanda. The post-genocide period was characterized by
an urbanization take off. From 2004 onwards, continuous urban expansion was observed, with an
increase in annual urban growth averaged to 4%. The post-genocide reconstruction period, especially
from 2004, was characterized by servicing new construction sites and built-up area expansion, such as
the construction of the Kigali Special Economic Zone, expansion of Kigali International Airport,
densification of tarmac roads, and estate development in various zones of the city. This period also
coincided with important migration flux to Kigali of the newly repatriated Rwandan refugees who
were mainly living in neighboring countries. Since 2014, the continuous and gradual urban growth is
observed with an incremental increase (see Figure 9). A probable cause would be linked to the urban
policy enforcement translated by new urban planning regulation and construction standards imposed
after endorsing the 2013 revised Kigali City Land Use Master Plan [65], and the integration of the city
growth perspective in Rwanda Vision 2020 [94]. Endorsed planning standards and regulations are
more or less limiting the spread of illegal and deprivation areas. Taking into account the five years
of progress of the land cover change interval from 1990 to 2015, the accuracies, class area proportion,
and standard error for each land cover class are reported in Table 5.

The overall accuracies in all considered timespans are exceed 92% with a margin error between
1% and 2%. The urban class progressively increased its weights vis-à-vis to others, while open land
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decreased in weights. In general, the standard error (SE) is less than 0.01, except in the open land class
where SE increased to that threshold, respectively, in 2005, 2010, and 2015.Remote Sens. 2020, 12, x FOR PEER REVIEW 17 of 27 
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Figure 9. Dense annual land cover change from 1988 to 2019 based on keyframe classification and six stacked LandTrendr-derived indices.
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Table 5. Estimated error matrix of sample counts with class weight, standard error, producer’ and user’s accuracy, and overall accuracy with a 95% confidence interval.
Map categories are presented in rows while reference categories are in columns.

2015

Reference class

Ur OL For Wet WT Total Wi SE PA UA OA

Map class

Ur 238 13 0 1 0 252 0.217 0.0076 0.82 ± 0.069 0.94 ± 0.028

0.92± 0.02
OL 28 437 4 6 0 475 0.632 0.0095 0.96 ± 0.030 0.92 ± 0.024
For 0 6 52 0 0 58 0.047 0.0033 0.88 ± 0.140 0.90 ± 0.079
Wet 0 7 0 65 0 72 0.100 0.0050 0.91 ± 0.097 0.90 ± 0.069
WT 0 0 0 1 40 41 0.005 0.0001 1 ± 0.049 0.98 ± 0.048

Total 266 463 56 73 40 1

2010

Reference class

Ur OL For Wet WT Total Wi SE PA UA OA

Map class

Ur 227 11 0 1 0 239 0.205 0.0077 0.81 ± 0.074 0.95 ± 0.028

0.92 ± 0.02

OL 28 436 4 6 0 474 0.643 0.0096 0.97 ± 0.029 0.92 ± 0.024
For 0 6 52 0 0 58 0.048 0.0034 0.88 ± 0.140 0.90 ± 0.079
Wet 0 7 0 65 0 72 0.100 0.0050 0.91 ± 0.098 0.90 ± 0.069
WT 0 0 0 1 37 38 0.005 0.0001 1 ± 0.053 0.97 ± 0.052

Total 255 460 56 73 37 1

2005

Ur OL For Wet WT Total Wi SE PA UA OA

Map class

Ur 222 7 0 1 0 230 0.199 0.0078 0.79 ± 0.077 0.97 ± 0.024

0.92 ± 0.02

OL 29 435 4 6 0 474 0.649 0.0097 0.97 ± 0.029 0.92 ± 0.025
For 0 6 51 0 0 57 0.048 0.0035 0.88 ± 0.142 0.90 ± 0.080
Wet 0 7 0 65 0 72 0.099 0.0050 0.90 ± 0.099 0.90 ± 0.069
WT 0 0 0 1 32 33 0.005 0.0001 1 ± 0.061 0.97 ± 0.059

Total 251 455 55 73 32 1
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Table 5. Cont.

2015

2000

Ur OL For Wet WT Total Wi SE PA UA OA

Map class

Ur 383 3 0 0 0 386 0.104 0.0057 0.81 ± 0.109 0.99 ± 0.009

0.95 ± 0.02
OL 12 431 4 6 0 453 0.735 0.0086 0.98 ± 0.023 0.95 ± 0.020
For 0 6 49 0 0 55 0.054 0.0040 0.88 ± 0.146 0.89 ± 0.083
Wet 0 5 0 65 0 70 0.103 0.0051 0.90 ± 0.097 0.93 ± 0.061
WT 0 0 0 1 23 24 0.004 0.0002 1 ± 0.085 0.96 ± 0.082

Total 395 445 53 72 23 1

1995

Ur OL For Wet WT Total Wi SE PA UA OA

Map class

Ur 78 3 0 0 0 81 0.072 0.0023 0.98 ± 0.064 0.96 ± 0.041

0.96 ± 0.01

OL 1 428 5 5 0 439 0.766 0.0071 0.98 ± 0.018 0.98 ± 0.015
For 0 6 46 0 0 52 0.057 0.0046 0.85 ± 0.159 0.89 ± 0.088
Wet 0 5 0 65 0 70 0.102 0.0050 0.91 ± 0.096 0.93 ± 0.061
WT 0 0 0 1 20 21 0.004 0.0002 1 ± 0.098 0.95 ± 0.093

Total 79 442 51 71 20 1

1990

Ur OL For Wet WT Total Wi SE PA UA OA

Map class

Ur 76 3 0 0 0 79 0.069 0.0023 0.97 ± 0.066 0.96 ± 0.042

0.96 ± 0.01

OL 1 426 5 5 0 437 0.768 0.0072 0.98 ± 0.018 0.98 ± 0.015
For 0 6 47 0 0 53 0.058 0.0046 0.85 ± 0.157 0.89 ± 0.086
Wet 0 5 0 64 0 69 0.101 0.0050 0.91 ± 0.097 0.93 ± 0.062
WT 0 0 0 1 20 21 0.004 0.0002 1 ± 0.098 0.95 ± 0.093

Total 77 440 52 70 20 1

Ur = Urban; OL = Open land; For = Forest; Wet = Wetland; WT = Water; Wi = Class Weight; SE = Standard Error; PA = Producer’s Accuracy; UA = User’s Accuracy; OA = Overall Accuracy.
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6. Discussion

The present study aimed to design a method for reconstructing annual and dense land cover
change dynamics in complex urban environments based on LT and baseline land cover maps. We used
Kigali, Rwanda as a case study in the global south nations characterized by a continuous urbanization
increase. The case study portrays urban environments with a rapid spread of informal settlements
and unregulated constructions in the last three decades since 1987. We adopted the combination of
LT-derived indices and bands as a way of deducting reliable intermediate results, such as PCA, applied
for filling the gaps observed in the magnitude of land cover change event, and the application of the
reduce function for having filled layers representing the duration of land cover change events and
the corresponding year of detection. These results were helpful for producing reliable land cover
classification and reconstructing annual dense land cover in the study area. The combination of
keyframe classifications in two proposed extreme periods, with derived LT indices, allowed continuous
annual land cover reconstruction from 1987 to 2019.

6.1. Benefits from LT-GEE in Continuous Land Cover Reconstruction

A cloud computing environment, such as GEE, was found to be worthwhile in data discovery,
and in handling multidimensional datasets. LT-GEE allows multifunctional data processing, and the
GEE playground offers a user-friendly API and straightforward possibilities for statistics extraction,
and interactive data visualization at the intermediate and final processing stages. Furthermore, the GEE
platform allows the users to share scripts and assets [48,49], and this capability is paramount for
collaborative knowledge generation and experience sharing. The GEE-based area2 application was
found to be useful in both scrutinizing the quality of the results and predefining the acceptable
error margin. It is well known that cloud cover, shadows, and other data gaps, such as the L7
ETM+ scan-line collector failure experienced after May 31, 2003 [95], constrain users to extracting
continuous land cover on an annual basis as needed. The GEE-LandTrendr framework was found
as an additional solution together with existing gap-filling methods. For characterizing the change
in land cover properties, we used six indices. Previous studies (e.g., [53–57]) that involved the use
of the LT algorithm in quantifying land cover disturbance had separately relied on evaluating a
single index in change detection. Our study illustrated that the combination of several indices in
characterizing the land surface properties was deemed useful. Our results concur with the findings
by [45], where they emphasized that different indices in time series analysis are useful instead of
relying on a single band/index. The GEE-LandTrendr framework was also found to be extendable
and customizable. The indices were combined considering the first principle component (PC-1) that
was used for computing the change magnitude with filled no-data values. The failure to use PCA and
relying on the use of a single LT index would result in the maps having gaps and discontinuous patches
that could negatively affect the interannual land cover change trajectories analysis in the study area.

6.2. Methodology Transferability and Limitations

The transferability of land cover classification-related rules is deemed to be more or less consistent
when tested in different study areas [96,97]. The GEE-LandTrendr framework can be successfully tested
in any site, given the availability of annual Landsat composite imagery. However, the indices used to
characterize the landscape under investigation need to be site specific depending on their capability
of reflecting the quasi-situation of land surface properties and their spatial coverage. The value of
magnitude could be customized for meeting the local situation based on experimental trials. The main
bottleneck in using the GEE-LandTrendr framework is still the lack of high-quality image acquisition
in a specific area of interest, given the persistence of cloud cover and haze affecting the optimal
imagery, such as Landsat. Some indices can reflect the over/underestimated value. The annual land
cover reconstruction could be affected by outlier values in stacked indices, and this could affect the
spatial-temporal interpolation. Thus, calibration and verification would enhance the production of
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high-quality land cover maps. In some circumstances, LandTrendr-derived indices are characterized by
a large number of no-data values, and deducting their associated value would be incomplete in spatial
coverage. This drawback is also found in many methods designed for time series analysis, as reported
by [46]. From our experiment, the above challenge could be compensated by stacking many indices
and applying the MapReduce function or principal components analysis. The proposed framework
for handling gap-fill challenges could be an added value to the existing methods for compensating
incompleteness sensitivity while performing EO time series analysis. The performance of one or
another LandTrendr index was beyond the scope of the present study. We intend to explore the role
and the ranking of each index in different study sites in the future research direction.

7. Conclusions

In this study, a new GEE-LandTrendr cloud-computing framework based on Landsat time
series and LT stacked bands and indices for reconstructing annual land cover maps was developed.
The resulting dense maps and statistics were found to be worthwhile for better understanding the
spatial-temporal land cover change trajectories in Kigali, Rwanda over the past 32 years from 1987 to
2019. Two land cover maps at the start and at the end of the proposed timeframe were first extracted
based on Landsat images using a pixel-based SVM classification. A scheme of five land cover classes,
including urban, open land, forest, wetland, and water, was selected to understand the urbanization
phenomena in the study area. Then, the LandTrenndr-Google Earth Engine platform was used to
retrieve the annual collection of Landsat images for tracing the historical evolution of urban land cover
change trajectories through the derived LT bands and indices. Control parameters for running the
LandTrendr algorithm were set for extracting the duration, the year, and the magnitude for each of
the proposed LandTrendr bands/indices, including red, shortwave infrared bands, and NDVI, NDMI,
TCG, and TCW indices. Using the MapReduce function by the mode implemented in GEE, the two bands
and four indices were stacked for separately extracting both the year and the duration of land cover
change disturbance. The magnitude of disturbance was developed by considering the first principal
component (PC-1) of the compressed six indices. By combining the duration and the magnitude change
in the targeted year with a change detection mask derived from baseline classification, the dense
annual land cover maps were extracted. The two extreme periods corresponding to the study timeline
illustrated that urban space increased from 3708.5 to 12,107.2ha, equivalent to a 226.5% urban growth
rate in Kigali, Rwanda. Open land was among the most converted land covers. The results illustrated
that urbanization was gradually increasing between 1987 and 1991, with an annual growth rate
ranging between 2% and 3%. The period from 1991 to 1995 was characterized by a slowdown in
the urbanization process, mainly due to political instability and economic recession emanating from
war and armed conflict that took place in Rwanda between 1990 and 1994. From 2004 onwards,
urbanization was taking off with the post-conflict reconstruction period, which was characterized
by the emergence of estate development companies and investment promotion in the construction
industry. During the post-genocide period, the increase in the built-up area is estimated at a 4.5%
annual growth rate. The present study demonstrates the importance of synergistic use of archived
Landsat images and the LandTrendr algorithm for continuous land cover reconstruction using the
GEE cloud computing environment. The use of combined LandTrendr resulting indices was found
to be useful for compensating gap values commonly observed in single LandTrendr-derived indices.
The reconstructed land cover based on Landsat time series and LT-GEE was considered cost-effective
for continuous urban land cover change monitoring, especially for sub-Sahara Africa where data is
sparse, and concerns are high regarding EO data affordability.
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