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Abstract: Mapping Earth’s surface and its rapid changes with remotely sensed data is a crucial task
to understand the impact of an increasingly urban world population on the environment. However,
the impressive amount of available Earth observation data is only marginally exploited in common
classifications. In this study, we use the computational power of Google Earth Engine and Google
Cloud Platform to generate an oversized feature set in which we explore feature importance and
analyze the influence of dimensionality reduction methods to object-based land cover classification
with Support Vector Machines. We propose a methodology to extract the most relevant features and
optimize an SVM classifier hyperparameters to achieve higher classification accuracy. The proposed
approach is evaluated in two different urban study areas of Stockholm and Beijing. Despite different
training set sizes in the two study sites, the averaged feature importance ranking showed similar
results for the top-ranking features. In particular, Sentinel-2 NDVI, NDWI, and Sentinel-1 VV
temporal means are the highest ranked features and the experiment results strongly indicated that
the fusion of these features improved the separability between urban land cover and land use classes.
Overall classification accuracies of 94% and 93% were achieved in Stockholm and Beijing study
sites, respectively. The test demonstrated the viability of the methodology in a cloud-computing
environment to incorporate dimensionality reduction as a key step in the land cover classification
process, which we consider essential for the exploitation of the growing Earth observation big data.
To encourage further research and development of reliable workflows, we share our datasets and
publish the developed Google Earth Engine and Python scripts as free and open-source software.

Keywords: EO big data; SAR; MSI; Google Earth Engine; object-based classification

1. Introduction

Mapping Earth’s surface and its rapid changes with remotely sensed data are a crucial task to help
understand the impact of an increasingly urban world population on the environment. The information
provided by urban scene classification and change maps are quite important for urban planners,
environmental engineers, and decision makers in general. Land Use/Land Cover (LULC) classes
are established categorical variables that represent the status of the Earth’s surface in a viable way.
In the last couple decades, several studies have investigated the classification of urban scenes using
remote sensing data. Remotely sensed data provides cheap, comprehensive, and easy to use source
to map the location and the spatial extent of different LULC classes. With its rich information
content, multispectral optical images have been used intensively for urban scene classification [1–6].
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Unlike optical, radar images have lower spectral information content. Nevertheless, these images
are not affected by atmospheric and solar illumination conditions. Several studies have shown the
potential of these images in urban classification [7–13]. The successful use of remote sensing data for
urban scene classification depends on several considerations (e.g., image spatial resolution, acquisition
time, spectral information, classification scheme, etc.). Another factor of crucial importance and that
has strong impact on the classification accuracy, in general, is the input features and their quality.
It is quite common to use the raw input spectral images (e.g., green, red, NIR, radar cross section,
etc.), or/and product derived from these spectral bands (e.g., NDBI, NDVI, NDWI) as input features.
Texture measures (e.g., GLCM texture) have also played important role in increasing the discrimination
between different LULC classes [14,15]. Features that can be used for scene classification are not
restricted to raw image spectral bands or products derived from them. Several studies have shown
that combining features extracted from images acquired at different times could help significantly
improving the classification accuracy [11,16–19]. The basic idea is that despite the fact that some
LULC classes would look very similar in one season/time, they tend to look quite different in another.
By combining images acquired in different times, therefore, it is possible increase classes’ separability.

Because of their different modalities, optical and SAR provide quite different information about
earth surface. The response of earth surface materials to the short wavelength energy used by
optical sensors depends to a high extent on the biochemical properties of the observed objects.
Conversely, radar response is often associated with other factors such as objects geometrical properties
(e.g., roughness), and its moisture content. It is therefore natural to think of SAR and optical images
as complementary to each other [20]. Several studies have investigated the possibility to improve
classification accuracy through the fusion of SAR and optical images [21–23]. Fusion can be carried
out at the feature, pixel, or information level. The former approach consists of combining features
extracted from different data sources into a one augmented feature vector; it can then be an input of any
classification algorithm. Because of the simplicity involved, this approach has been the focus of several
studies [24–28]. In fact, the multitemporal image classification approach discussed in the previous
section can be envisaged as a feature-level fusion technique; this approach was further extended
by the fusion of multitemporal and multi-source features extracted from Radarsat-2 and QuickBird
images for urban land-cover mapping [29]. Despite the availability of a large selection of features
that can be used for the classification task, most studies only consider a few of them. This could be
attributed to the fact that in many cases features will be highly correlated, i.e., they contain redundant
information. Including such features would serve nothing other than slowing down the classification
process. Another reason is that features computation (e.g., GLCM textures) is time consuming and
handling large dataset with many features is not easy in common image classification software [30].
For this reason, the analyst faces the problem of selecting few out of hundredth of available features
(e.g., spectral band, GLCM textures, and indices). Usually, expert knowledge is used to manually select
a few, allegedly promising features, even though numerous algorithms exist that could perform the
dimensionality reduction task automatically [31–36].

Dimensionality reduction is the process of simplifying the classification task by either transforming
the original features to a representation in a set of lower dimensionality (feature extraction) or by
removing redundant and irrelevant features (feature selection) [37]. A well-known feature extraction
method is principal component analysis (PCA) [38]. It projects the input feature space to a new
space in which feature will be uncorrelated. It also compresses (i.e., dimensionality reduction) the
information into few output features that contain most of the information available in the original space.
Unlike PCA, linear discriminant analysis (LDA) is a supervised feature extraction method that projects
the input feature space in a way that maximizes the separation between the classes [39]. With large
representative training data, LDA is expected to outperform PCA since it takes samples classes into
consideration [40]. Feature selection methods can be grouped into three main categories: filters,
wrappers, and embedded methods [37,41]. While filters rank features according to some predefined
statistic and remove lowest ranking features, wrappers utilize learning machines to find the best
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performing subset of features. Embedded methods find optimal feature subsets during training and are
integral parts of certain learning machines. In particular, filters are independent of the learning machine
and they evaluate feature importance based on data characteristics [42]. Univariate filters compute a
feature’s quality individually, assuming independence between the features, while multivariate filters
take possible dependencies into account and perform assessment in batches.

The frequent acquisition of satellite imagery leads to an impressive amount of data that is
collected and published on a daily basis. An efficient means of access and an infrastructure that allows
large-scale processing of this big EO data are needed to fully exploit it. Google Earth Engine (GEE) is a
cloud-based platform for planetary-scale geospatial analysis that utilizes the massive computational
capabilities of Google’s servers. It facilitates access to geographical and remote sensing data in
their “multi-petabyte analysis-ready data catalog” [43]. GEE allows for effective processing through
subdivision and distribution of computations. In general, GEE lowers the threshold for large-scale
geospatial computation and makes it possible “for everyone” [43]. Though, GEE offers valuable
opportunities for EO data analysis it could be vastly enhanced with an integration with Google Cloud
Platform (GCP) (https://cloud.google.com/). GCP provides Google Compute Engine, which offers
scalable and customizable virtual machines for cloud computing and Google Cloud Storage, a service
for storing and accessing data. It allows different types of storage based on the desired access-frequency
and the intended use. On GCP, external libraries can be used for further processing and deeper
analysis of data derived from GEE. One example is Scikit-learn, an open-source machine learning
Python module [44]. It contains a variety of machine learning models for classification, regression,
and clustering [45]. Besides implementations of machine learning models, it contains tools for model
selection, cross-validation, hyperparameter tuning, and model evaluation as well as dimensionality
reduction, feature decomposition, and feature selection.

In this study, we will utilize the computational power of Google Earth Engine (GEE) and Google
Cloud Platform (GCP) to generate an oversized feature set extracted form Sentinel1 and Sentinel2
multitemporal images. We will explore feature importance and analyze the potential of different
dimensionality reduction methods. A large feature set is evaluated to find the most relevant features
which discriminate the classes well and thereby contribute most to achieve high classification accuracy.
In doing so, we present an automated alternative to the sensitive knowledge-based but tedious and
sometimes biased selection of input features. Three methods of dimensionality reduction, i.e., linear
discriminant analysis (LDA), mutual information-based (MI), and Fisher-criterion-based (F-Score),
will be tested and evaluated. LDA is a feature extraction method that transform the original feature
space into a projected space of lower dimensionality. MI and F-score belong to the group of filter-based
univariate feature selection methods that rank and filter the features according to some statistic.
We evaluate the optimized feature sets against an untreated feature set in terms of classification
accuracy, training and prediction performance, data compression, and sensitivity to training set sizes.

For features classification, a support vector machine (SVM) is chosen. SVM is a supervised
non-parametric machine learning algorithm [46]. Although it is commonly used for classification tasks,
it has also been used for regression. SVM maps the input features space to a higher dimensional space
using kernel functions (e.g., radial basis function). The training samples are separated in the new
space by a hyperplane (defined by the support vectors) that guarantee the largest margin between the
classes. It has been used successfully in different types of remote sensing applications—for example,
classification [47–49], change detection [50–52], and in image fusion [53]. Depending on the size of the
training sample, SVM is known for being slow during the training phase. However, the classification
phase is quite fast since it only depends on a few training samples known as the support vector.
The spatial resolutions of Sentinel-1 (S1) SAR data and Sentinel-2 (S2) MSI sensors are moderate
(e.g., 10 m) and the classification will often use the pixel-based approach. Geographic object-based
image analysis (GEOBIA) is often applied when using high spatial resolution data [54,55]. However,
given the large extent of the study areas, which surpasses even the largest case studies compared in
a recent review of object-based methods by a factor of a thousand [56], we adopted an object-based
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classification even though the analysis will be based on S1 and S2 images. The application of GEOBIA
to moderate spatial resolution is not very common, however is not rare either [57]. The object-based
paradigm allows us to reduce the computational complexity immensely, and consequently, allow us to
put more emphasis on the main goal of this paper, which is the investigation of feature selection for
urban scenes classification.

In summary, we provide a framework that derives features from GEE’s data catalogue. We deliver
a prototype for GCP that applies dimensionality reduction and feature set optimization methods
and tunes the classifier’s hyperparameters in an exhaustive search. Performances on the different
feature sets are compared to each other with statistical measures, different visualization methods,
and a non-inferiority test for the highest dimensionality reduction satisfying the chosen performance
requirements. The overall aim is the exploration of feature importance in the big EO data that are
available today. Understanding the feature importance leads to an improved classification accuracy
by the removal of irrelevant features and to an increased classification throughput by the reduction
of the datasets. We demonstrate the applicability of our methodology in two different study sites
(i.e., Stockholm and Beijing) based on a multitemporal stack of S1 and S2 imagery. For the given
classification scheme, we find the best feature set that achieve the highest overall accuracy. A further
analysis of the feature selection allows us to evaluate the importance of individual features to the
classification task.

2. Study Areas and Data Description

We demonstrate our methodology on two study areas. One is based on a scheme of 10 LULC
classes in the urban area of Stockholm, while the other is based on 8 LULC classes scheme in the
urban area of Beijing. The study areas are shown in (Figure 1) and cover 450,000 ha in Stockholm
and 518,000 ha in Beijing. The classes represent the dominant land cover and land use types in
the respective areas as demonstrated in [58,59], and are derived from urban planning applications
and urban sprawl monitoring. The classification schemas adopted for the study areas were defined
in previous projects [58,59] to monitor the urbanization process and evaluate the corresponding
environmental impact; Table 1 provides an overview of the selected classes. We used reference points
that were manually collected by remote sensing experts not involved in this study [58,59] and we
divided them in training and validation sets. In Stockholm, these reference points are approximately
uniformly distributed over most classes (≈1000 samples per class, except 500 for bare rock and wetlands).
In Beijing, there are in general fewer reference points with more imbalanced classes (70 samples for
urban green space up to 175 for forests).
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Table 1. Classification schema in Stockholm and Beijing.

Class Description
Stockholm Beijing

No. Reference
Points

No. Sample
Segments

No. Reference
Points

No. Sample
Segments

1-HDB High-density built-up 1000 986 150 134
2-LDB Low-density built-up 1000 926 150 54

3-R Roads and Railroads 1009 166 153 89
4-UGS Urban green spaces 1045 571 70 63
5-GC Golf courses 1013 275 80 73
6-AG Agriculture 1045 866 160 133
7-F Forests 1000 908 218 175
8-W Water 1000 780 161 93
9-BR Bare rock 503 172 None None

10-WL Wetlands 500 105 None None

Sum: 9115 5755 1142 814

As mentioned earlier, an object-based approach has been adopted in order to reduce the
computational burden and focus more on the feature selection and classification. The segmented
image-objects should aim to depict the entities of the urban land cover types. For the detection of
low-density built-up areas, which are a dense mix of built-up and vegetated pixels, an object-based
approach is beneficial. Additionally, the separation of high-density built-up areas and roads can benefit
from the geometric properties of the objects (e.g., minimum enclosing circle, minimal area rotated
rectangle, and least-squared fitted ellipse).

For both study areas, the segmentation is performed using a multiresolution module of eCognition
software [60]. The segmentation is based on the S2 10 m spectral bands. The segments are created
using a scale parameter of 50, a shape vs. color ratio of 0.7:0.3 and a compactness vs. smoothness ratio
of 0.7:0.3. The parameters were selected based on repeated tests for a subjectively good segmentation
(compare Figures 2–4). The criteria of this selection were mainly the proper distinction of segments
containing LDB (low density built-up) in comparison to UGS (urban green spaces); and R (roads and
railroads) in comparison to HDB (high density built-up). The adequacy of a segmentation layout
can only be assessed in the context of an application. Consequently, the traditional approach has
been to use human expert to evaluate the quality of the segmentation [59]. However, when facing
big EO data, the segmentation process and determination of its parameters needs to be automated.
Several approaches have been proposed [61–63] and should be evaluated for efficient integration in
the workflow.
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Using the reference data, the segments were labeled based on the class of the reference point
located in the segment. Inside Stockholm lies a total of 5800 labeled segments and an additional 200,000
unlabeled segments (~3% labeled). In Beijing 1100 segments are labeled and 458,000 segments are
unlabeled (~0.25% labeled). For Stockholm and Beijing, the analysis considers S1 and S2 images from
the summer of 2015 and 2016, respectively (Table 2). For S1 images, two orbit directions (i.e., ascending
and descending) with two polarizations (i.e., VV and VH) are used and treated as individual inputs.
Four temporal stacks are created (one for each direction/polarization). Each temporal stack is reduced
by computing its temporal mean and standard deviation. This way, the speckle noise is reduced while
still capturing temporal variations of the different LULC classes. For each mean and standard deviation
image, 17 GLCM texture measures (Table 3) estimated with kernel size of 9 × 9 are computed. Finally,
for each segment, the mean, standard deviation, max, and min of the abovementioned features are
computed (see Table 4).
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Table 2. Overview of the acquired satellite imagery

Stockholm Beijing

S1 imagery (15 Ascending, 12 Descending) S1 imagery (11 Ascending, 18 Descending)

Period: 01-05-2015—30-09-2015 Period: 01-05-2016–30-09-2016
Polarizations: VV, VH Polarizations: VV, VH

S2 Imagery (8 Images) S2 Imagery (11 Images)

Period: 01-06-2015–30-08-2015- Period: 01-06-2016–30-09-2016
Cloudy pixels: <15% Cloudy pixels: <15%

Table 3. GLCM texture measures.

Band Description Band Description

asm angular second moment contrast contrast
corr correlation var sum of squares: variance
idm inverse difference moment savg sum average
svar sum variance sent sum entropy
ent entropy dvar difference variance

dent difference entropy imcorr1/imcorr2 information measures of correlation 1/2
diss dissimilarity inertia inertia

Table 4. Overview of all generated features

Sensor Input layers Segment Statistics
(Mean, Min, Max, Std.Dev) No. of Features

S1

temporal mean 4 images (Asc/Desc VV/VH) 16

temporal standard deviation 4 images (Asc/Desc VV/VH) 16

texture features 8 images 17 GLCM features 544

S2
cloud-free composite

12 spectral bands 48

2 spectral indices 8

texture features NIR 10 m bands 1 band 17 GLCM features 68

geometry

minimum enclosing circle radius, areal difference 2

minimal area rotated rectangle height, width, angle, aspect ratio,
aereal difference 5

least-squares-fitted ellipse major-axis, minor-axis, angle,
aspect ratio, areal difference 5

Sum 712

The S2 stack is filtered such that only images with less than 15% cloud cover is included. All S2
spectral bands were resampled to 10 m spatial resolution. In addition to the 12 spectral bands,
normalized difference-vegetation and water indices (NDVI, and NDWI) are computed and added to
the S2 stack. Additionally, 17 GLCM texture measures are computed for NIR (10 m) spectral band:
we could have computed GLCM textures for all S2 spectral band but this would have increased the
number of features tremendously (extra 748 features) without adding substantial new information
considering the high correlation of texture between the available S2 bands. Moreover, since several S1
textures have been included, choosing only NIR texture will be enough for the objective of this paper.
For each segment, four statistics (i.e., mean, standard deviation, min, and max) are computed for all
the available images. Finally, 12 features describing the segments’ geometric properties are computed
(see Table 4 for details). In total, 712 features are computed in the GEE platform and exported into
GCP (see Table 4).



Remote Sens. 2020, 12, 76 8 of 24

3. Methodology

An overview of our workflow is presented in Figure 3. It consists of three main steps: (1) feature
computation, (2) dimensionality reduction and classifier parameters estimation, and (3) classification.
In the first step, segments and reference points are imported to GEE and input time series are chosen
from GEE’s data catalogue. The segments are labeled based on the reference points. Features are
computed as statistics for each segment and exported to GCP. Please refer to the previous section
for more details about data preparation and features computation. In the second step, different
dimensionality reduction methods are performed, and an exhaustive grid search is used to optimize
the classifier hyperparameters [64]. The estimated hyperparameters are then used to train the classifier.
The results are analyzed using a non-inferiority test to detect the best classifier using the least number
of features. The generated reports and graphs give useful insights that can be used to refine the first
step of feature computation and reduce the data load. If a satisfying classifier has been found, in (3) the
prediction of the land cover classes is performed, and a resulting land cover map is produced in GEE.

3.1. Feature Set and Classifier Optimization

Step two is the most important step in the abovementioned workflow. Figure 4 shows this step in
more details. It mainly consists of features selection/extraction step intertwined with a cross-validated
exhaustive grid search for the optimum parameters of the machine learning model, i.e., the SVM.
The outputs are a set of selected features together with the best cross-validated classifier as specified by
a selected metric (i.e., overall accuracy) and a table of the full cross-validation results. The latter is used
to find improved feature sets with the non-inferiority test. The workflow performs the following steps:

• The first step is to scale the input features. Scaling ensures that all features have the similar ranges
of value, which are beneficial or even essential for some dimensionality reduction methods as
well as for the SVM classifier. We applied scaler that uses the second and third quantiles of the
data to rescale the data linearly in the range [0,1].

• The second step is a reduction of the feature set dimensionality either through the feature extraction
or feature selection methods.

• Given the selected feature set, the last step is to find, via grid search, the optimum set of
hyperparameters for the SVM classifier.

This workflow is computationally excessive operation, but as it consists of many independent
operations it can be parallelized and thus be run efficiently on GCP using a virtual machine with many
CPUs. The next few subsections describe these steps in more details.

3.1.1. Data Sets and Cross-Validation

For the optimization, only the labeled segments are relevant. Unlabeled segments are left aside
until creating a final land cover classification map. The labeled segments are split into a set of training
and testing data with a specified ratio. The testing set is withheld from the optimization step and is
only used for a final assessment. The training set serves as an input to feature selection/extraction
and grid search. A repeated stratified k-fold of the training set is performed for cross-validation.
It splits with n repetitions the training set into k equally large folds while preserving the distribution of
the target classes. Cross-validation is then performed by leaving out one of the folds for validation
of the classifier that is trained on the remaining folds. The number of folds k should be chosen in
consideration of the training set size and especially the number of samples in the least represented
classes. The number of repetitions n should be set according to the available amount of time and the
required certainty in the cross-validations.

3.1.2. Dimensionality Reduction Step

Because of the involved simplicity and fast implementation, we decided to test and evaluate three
different methods in the dimensionality reduction step. In particular, we tested the linear discriminant
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analysis (LDA), mutual information (MI), and Fisher’s criterion (F-Score). LDA is a supervised feature
extraction method that takes training sample categories into consideration [65,66]. The input feature
space is projected onto a linear subspace of directions that maximize the separation between class
means while minimize interclass variance [67]. The number of the output dimensions must necessarily
be smaller than the number of classes, which usually results in high data compression. MI and
F-Score are feature selection methods from the subgroup of univariate filters. In both techniques,
a certain criterion is used to rank the features according to their relevance to the target classes, and the
best K features are then selected. In MI the ranking criterion is the mutual information, which is a
non-negative value, measuring the mutual dependency between two random variables. It is zero if
and only if the two variables are strictly independent, higher values indicating higher dependency.
MI utilizes a non-parametric entropy estimation from k-nearest neighbor distances [68]. F-Score rank a
feature based on the ratio of the between classes variance to the within classes variances. It assigns
high rank to features that maximizes the distance between classes and minimizes the within class
variance. Unlike the MI, the F-Score cannot model non-linear dependencies [69].

3.1.3. SVM Hyperparameters Estimation

In this step, cross-validated guided exhaustive grid search over the specified SVM parameter
values is implemented. The grid search requires a learning machine, i.e., a classifier, to guide the
process and a parameter grid describing the classifier’s settings. For each combination of parameters,
grid search fits the learning machine to the training data. It then performs a prediction on withheld
data and assesses the accuracy using the overall accuracy. This is repeated for each combination of
training sets as specified by the chosen cross-validation method.

3.1.4. Non-Inferiority Test

Non-inferiority testing is a modification of the traditional hypothesis testing framework. Primarily
used in clinical studies to prove that new therapies do not perform significantly worse than established
therapies, when they might offer advantages such as fewer side effects, lower cost, easier application,
or fewer drug interactions. This concept can be transferred to the classification problem. There,
the secondary benefits could be the reduction of data, of computational complexity or of the sensitivity
to the training set size. We use the non-inferiority test to find a well-performing classifier that has
the secondary benefit of achieving a higher reduction in dimensionality. In contrast to the traditional
hypothesis test, the non-inferiority test formulates a null hypothesis that states that the efficacy of the
new method is inferior to the efficacy of the old method within the chosen non-inferiority margin,
while the alternative hypothesis states that the efficacy of the new method is greater or equal to the
efficacy of the old method within the non-inferiority margin. In rejecting this null hypothesis, one can
be certain that the new method does not perform worse than the old method. The implementation of
the non-inferiority test uses a Student’s t-distribution and applies the Welch’s t-test for samples with
unequal variances. This test is performed using the overall accuracy as the single metric. The two
parameters for this test are the non-inferiority margin and the significance level α. The non-inferiority
margin describes the acceptable deviation of efficacy from the best performing method. The significance
level describes the certainty of the hypothesis test as probability of falsely rejecting the null hypothesis.
Both should be carefully selected for the problem at hand. If the computed p-value < α, non-inferiority
is established.

3.2. Classification

In the last step, after finding the best set of features (i.e., dimensionality reduction) and the
optimum SVM hyperparameter values, the classifier is trained using the whole training data set and
the land cover classes for all segments are predicted. The results are joined with the segment polygons
in GEE and an appropriate color scheme is applied for the presentation of the final land cover map.
Finally, the test set is used to independently evaluate the accuracy of the classification map.
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4. Results and Discussion

4.1. Stockholm Study Area

The feature set is forwarded to a virtual machine on GCP, which is specified with 16 virtual Intel
Haswell CPUs, 20 GB memory, and Ubuntu 16.04.4 LTS as operating system. The labeled segments
were split into a training set of 70% and a withheld testing set of 30%, stratified by classes. The repeated
stratified k-fold was set to three folds with three repetitions. This enables still a relatively large number
of samples in each fold while enabling nine validations on the leave-one-out cross-validation.

The grid search is run separately for each feature extraction and feature selection method using the
parameters shown in Table 5. The feature range column indicates the range of numbers of features that
have been tested (discriminants of the LDA are referred to as features for convenience). While Default
SVM uses all features, the LDA can only generate maximum one component less than the number
of classes, which is why the maximum range ends at 9. All other methods were tested for a set of
30 approximately logarithmically spaced numbers of features spanning from 1 to 712. The C-and
γ-parameters are in a decadic space within the range of exponents indicated in the columns start and
stop; the number of parameters to test is specified in the column num. The search space C and γ

has been verified visually with heat maps, as shown in Figure 5. If the highest overall accuracy was
achieved at the borders of the parameter ranges, the range was extended.

The best-performing classifiers identified by the grid search are presented in Table 6. It first shows
the results without a non-inferiority test. Then the results with non-inferiority margins of 0.5%, 1%,
3%, and 5% respectively are shown. A significance level of 2.5% was chosen for the non-inferiority
test. The mean overall accuracy and the standard deviation of overall accuracies are shown for the
nine cross-validation results. Additionally, the overall accuracy of the prediction on the 30% withheld
testing segments are shown. Furthermore, the table presents numbers of features used and hence the
compression of dimensionality (i.e., total number of available features divided by number of features
used). The mean training and prediction times—as measured during the grid search—are shown as
decrease factors compared to the default SVM. The results without the non-inferiority test show that
all methods achieved better accuracies and reduced computational costs compared to the Default SVM.
In terms of data compression and training and prediction time, the LDA is unsurpassable. MI and
F-Score achieve the highest accuracy values on the withheld testing data; however, both still use much
more features. Inside a 0.5% non-inferiority margin, MI and F-Score achieve a higher dimensionality
compression, while keeping a high accuracy on withheld testing data, or in the case of F-Score even
surpassing the initial result. No LDA with fewer features was found inside the 0.5% margin. When the
non-inferiority margin is extended, higher dimensionality compressions can be achieved, however the
accuracy on withheld testing data slightly decreases. Even with a large margin of 5%, all methods
outperform the Default SVM on the withheld testing data, while achieving a drastic reduction of the
dimensionality. It can also be noted that all methods apart from the Default SVM achieve higher
accuracies on the withheld testing data than on the training data in the cross-validation.

Table 5. Parameter grid for the exhaustive grid search (Stockholm)

Method Feature Range
C-Parameter γ-Parameter

Start Stop Num Start Stop Num

Def.SVM 712 0 8 9 −10 −2 9

LDA 1–9 −1 5 7 −6 −1 6

MI 1–712 1 6 6 −9 −3 7

F-Score 1–712 1 7 7 −8 −2 7
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Taking a closer look at the results for the individual methods, the influence of the number of
features can be visualized: Figure 6 shows the classifier performances during the cross-validation in
the grid search highlighting the mean overall accuracy with shaded areas representing ±3σ. It can be
observed that LDA surpasses the default SVM’s accuracy with less than five components and reaches
its maximum with all possible components (one less than the number of classes). MI shows a large
variance especially when few features are used. It surpasses the results of the Default SVM between 5
and 10 selected features and achieves more reliable results with less variance thereafter. Between 30
and 500 selected features it shows an almost constant behavior. It seems that more features neither
improve nor harm the classifier’s performance. F-Score is more stable than MI when few features are
used, though it achieves lower accuracy scores. The default SVM is surpassed with fewer features
than MI and in general there is less variance in the performance while obtaining similar accuracy
scores. Only when more than 500 features are included, MI and F-Score, as expected, fall back to the
performance of the default SVM.

Taking a closer look at the results for the individual methods, the influence of the number of
features can be visualized: Figure 6 shows the classifier performances during the cross-validation in
the grid search highlighting the mean overall accuracy with shaded areas representing ±3σ. It can be
observed that LDA surpasses the default SVM’s accuracy with less than five components and reaches
its maximum with all possible components (one less than the number of classes). MI shows a large
variance especially when few features are used. It surpasses the results of the default SVM between 5
and 10 selected features and achieves more reliable results with less variance thereafter. Between 30
and 500 selected features it shows an almost constant behavior. It seems that more features neither
improve nor harm the classifier’s performance. F-Score is more stable than MI when few features are
used, though it achieves lower accuracy scores. The default SVM is surpassed with fewer features
than MI and in general there is less variance in the performance while obtaining similar accuracy
scores. Only when more than 500 features are included, MI and F-Score, as expected, fall back to the
performance of the default SVM.
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Table 6. Overview of the best-performing classifiers (Stockholm)

Mean Overall
Accuracy [%]

Std. Dev. of
Accuracy [%]

Accuracy Test
Data [%]

Number of
Features

Dimensionality
Compression

Decrease Factor
Training Time

Decrease Factor
Pred. Time

Method Best-performing classifier

Def.SVM 88.0 0.78 87.9 712 1 1 1

LDA 93.1 0.93 94.4 9 79 16 17

MI 94.4 0.64 94.7 185 4 6 10

F-Score 95.0 0.75 94.7 124 6 10 12

Best-performing within 0.5% non-inferiority margin

LDA - - - - - - -

MI 94.3 0.69 94.5 38 19 11 38

F-Score 84.9 0.43 94.9 102 7 10 10

Best-performing within 1% non-inferiority margin

LDA 92.5 0.51 94.4 7 102 22 25

MI 93.6 0.36 94.3 31 23 4 43

F-Score 94.4 0.32 94.3 56 13 16 23

Best-performing within 3% non-inferiority margin

LDA 91.3 0.54 92.3 5 142 48 58

MI 91.8 0.95 93.5 14 51 1 47

F-Score 92.3 0.65 93.7 14 51 19 45

Best-performing within 5% non-inferiority margin

LDA 89.2 0.92 90.3 4 178 36 75

MI 89.9 0.83 91.4 9 79 1 44

F-Score 90.7 0.75 91.9 8 89 2 50

Figure 7 shows the confusion matrices of the prediction of the withheld testing data for the
different classifiers at 0% non-inferiority-margin. The default SVM shows a high shift from roads to
HDB but also from UGS to LDB and HDB and from bare rock to forests and HDB. It is notable that the
shift is dominant in the direction of well-represented classes (compare Table 1).

All methods, LDA, MI, and F-Score, can remove some of these confusions. LDA reduces the shift
from roads to HDB best but cannot avoid it completely, F-Score just slightly improves it, while MI
shows only a minor improvement.

Roads and HDB have a very similar signature response and they are the most challenging classes
in the presented classification schema; moreover, the spatial resolution of Sentinels imagery (10–20 m)
is not sufficient to detect small roads. These are the main reasons why there is a higher confusion
among these two classes across the results. The shifts from UGS and bare rock are reduced by all
methods and best by F-Score. The default SVM achieves high accuracies of more than 90% on the
remaining classes, however every method improves these further, reaching up to 99% and 100% for
forest, water, and wetland classes.Remote Sens. 2020, 12, x FOR PEER REVIEW  13 of 25 
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In general, the main data processing advantage of the proposed framework is to use GEE and GCP
to reduce the computational time and the download and preprocessing time to handle S1 and S2 dense
time series. GEE is efficient in producing the feature data and is free of charge for non-commercial
applications; GCP can be configured to have a good balance between computational power vs.
operational costs. The main bottleneck for integration of GEE and GCP is the data transmission
between the two platforms; however, it is the only technical solution that we found to combine the
GEE platform with advanced machine learning libraries (i.e., scikit-learn). Moreover, we adopted
an object-based approach and computed all the object statistics directly in the GEE platform. Hence,
we only transfer a small amount of data between these two platforms (around 200,000 sample statistics
in Stockholm case for example) limiting the side effect of data transfer. Figure 8 depicts the prediction
times over the number of features for the different methods. For comparison, the times of the default
SVM are is shown as dashed black line. It can be observed that LDA outperforms the default SVM
drastically in prediction times. The figure clearly shows the expected outcome, i.e., the prediction time
grows exponentially with number of features.
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To analyze sensitivity to the training set size, learning curves are generated. Plotting the training
and testing accuracy over adjusted training set sizes can give an indication of how training set size
affects the classifier’s accuracy. Figure 9 shows the learning curves for the different classifiers at 0%
non-inferiority margin using 2% to 70% of the initial training set. All learning curves have been
cross-validated with six stratified shuffled splits, withholding 30% for testing. Shaded areas indicate
±3σ of the overall accuracy. As might be expected, the accuracy of the default SVM is worst with the
smallest training set size. With an increasing training set size, the testing accuracy increases while
showing less variance and the training score decreases slightly. The gap between both scores at the
largest training set size indicates that this classifier could still be improved with the further addition of
training samples.

LDA shows a remarkably unstable behavior for variable training set sizes. Though it achieves
reasonable testing scores on very small training set sizes, its performance drops drastically for
medium-sized training sets. Only with very large training sets does the accuracy reach the level seen in
Figure 8. We assume that the between-class scatter matrix is becoming singular for this specific number
of around 500 training samples, which is a known problem when there are less training samples than
input dimensions [70]. One explanation could be that LDA is more sensitive to the quality of the
training samples. Note that, for a given size, the training samples are selected randomly and could
therefore not be representative of all the classes. The remaining gap between training scores and testing
scores shows that this classifier could further be improved with larger and more balanced training sets.
In fact, the decline in the training score is just starting to become visible at the largest training sets.

LDA shows a remarkably unstable behavior for variable training set sizes. Though it achieves
reasonable testing scores on very small training set sizes, its performance drops drastically for
medium-sized training sets. Only with very large training sets does the accuracy reach the level seen in
Figure 8. We assume that the between-class scatter matrix is becoming singular for this specific number
of around 500 training samples, which is a known problem when there are less training samples than
input dimensions [70]. One explanation could be that LDA is more sensitive to the quality of the
training samples. Note that, for a given size, the training samples are selected randomly and could
therefore not be representative of all the classes. The remaining gap between training scores and testing
scores shows that this classifier could further be improved with larger and more balanced training sets.
In fact, the decline in the training score is just starting to become visible at the largest training sets.

The testing scores for MI and F-Score already surpass the default SVM at the smallest training set
size. The F-Score shows slightly larger variances on the testing score compared to MI, indicating its
higher dependency on meaningful training samples. The accuracy of both methods can be increased
with larger training set sizes. However, compared to the default SVM the gap between training and
testing scores is smaller and the convergence can clearly be seen. Figure 10 shows the S1 temporal
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mean VV-VH-composite, the S2 false-color composite and one of the predicted land cover maps with
F-Score feature selection using 102 features.

Remote Sens. 2020, 12, x FOR PEER REVIEW  15 of 25 

 

LDA shows a remarkably unstable behavior for variable training set sizes. Though it achieves 
reasonable testing scores on very small training set sizes, its performance drops drastically for 
medium-sized training sets. Only with very large training sets does the accuracy reach the level seen 
in Figure 8. We assume that the between-class scatter matrix is becoming singular for this specific 
number of around 500 training samples, which is a known problem when there are less training 
samples than input dimensions [70]. One explanation could be that LDA is more sensitive to the 
quality of the training samples. Note that, for a given size, the training samples are selected randomly 
and could therefore not be representative of all the classes. The remaining gap between training 
scores and testing scores shows that this classifier could further be improved with larger and more 
balanced training sets. In fact, the decline in the training score is just starting to become visible at the 
largest training sets. 

  

  

  

Figure 9. Learning curves showing the influence of training set sizes (Stockholm). 

The testing scores for MI and F-Score already surpass the default SVM at the smallest training 
set size. The F-Score shows slightly larger variances on the testing score compared to MI, indicating 
its higher dependency on meaningful training samples. The accuracy of both methods can be 
increased with larger training set sizes. However, compared to the default SVM the gap between 
training and testing scores is smaller and the convergence can clearly be seen. Figure 10 shows the S1 
temporal mean VV-VH-composite, the S2 false-color composite and one of the predicted land cover 
maps with F-Score feature selection using 102 features. 

Figure 9. Learning curves showing the influence of training set sizes (Stockholm).Remote Sens. 2020, 12, x FOR PEER REVIEW  16 of 25 

 

 
Figure 10. Display of input images and a resulting land cover map. 

4.2.  Beijing Study Area 

The split of 70% training and 30% testing set was performed in the same way as in the Stockholm 
study area and the same cross-validation method and parameters were chosen. However, the 
parameters needed to be adjusted. More specifically, the maximum number of features used for the 
LDA had to be reduced to 7 accordingly with the number of classes and the search ranges for the C-
and γ-parameters had to be adjusted to find the optimal hyperparameters as indicated in Table 7. 
Table 8 shows the best classifiers found by the grid search, again without and with a non-inferiority 
margin. In contrast to the Stockholm study area, no better classifiers were found within non-
inferiority margins of 0.5% or 1%, hence only 3% and 5% margins are presented. The performances 
of all classifiers are worse and less stable than in the Stockholm study area. Considering the learning 
curves in Figure 9, this behavior is not surprising considering the smaller training set of this study 
area. The Default SVM only reaches a mean overall accuracy of 76% on the training set and shows a 
very large standard deviation of almost 7%. On the withheld testing set, this performance is only 
marginally better. LDA achieves higher mean overall accuracies on the training set than the default 
SVM, it performs very poorly (77.5% overall accuracy) on the testing set, both with seven and six 
features. Considerably better, are MI’s and F-Score’s results. While both show a high instability on 
their performance with a standard deviation of around 2.5%, their overall accuracy surpasses 90%. 
Inside the 3% non-inferiority margin, MI can be reduced from 226 to 13 features, however the 
accuracy is reduced below 90%. F-Score still uses 110 features and achieves an accuracy of just 90% 
on the withheld data. With a 5% margin, MI is further reduced to 10 features, with a slightly 
increasing accuracy on withheld data compared to the 3% margin. F-Score is reduced to 21 features 
and achieves the same accuracy on the withheld testing data as without a non-inferiority margin. 

Table 7. Parameter grid for the exhaustive grid search (Beijing) 

Method Feature Range 
 𝐶 -Parameter  𝛾 -Parameter 

Start Stop Num Start Stop Num 
Def.SVM 712 3 11 9 −12 −4 9 

LDA 1–7 −1 5 7 −7 −1 7 
MI 1–712 3 8 6 −9 −4 6 

F-Score 1–712 2 8 7 −10 −3 8 

 

  

Figure 10. Display of input images and a resulting land cover map.



Remote Sens. 2020, 12, 76 16 of 24

4.2. Beijing Study Area

The split of 70% training and 30% testing set was performed in the same way as in the Stockholm
study area and the same cross-validation method and parameters were chosen. However, the
parameters needed to be adjusted. More specifically, the maximum number of features used for the
LDA had to be reduced to 7 accordingly with the number of classes and the search ranges for the C-and
γ-parameters had to be adjusted to find the optimal hyperparameters as indicated in Table 7. Table 8
shows the best classifiers found by the grid search, again without and with a non-inferiority margin.
In contrast to the Stockholm study area, no better classifiers were found within non-inferiority margins
of 0.5% or 1%, hence only 3% and 5% margins are presented. The performances of all classifiers are
worse and less stable than in the Stockholm study area. Considering the learning curves in Figure 9,
this behavior is not surprising considering the smaller training set of this study area. The Default
SVM only reaches a mean overall accuracy of 76% on the training set and shows a very large standard
deviation of almost 7%. On the withheld testing set, this performance is only marginally better. LDA
achieves higher mean overall accuracies on the training set than the default SVM, it performs very
poorly (77.5% overall accuracy) on the testing set, both with seven and six features. Considerably better,
are MI’s and F-Score’s results. While both show a high instability on their performance with a standard
deviation of around 2.5%, their overall accuracy surpasses 90%. Inside the 3% non-inferiority margin,
MI can be reduced from 226 to 13 features, however the accuracy is reduced below 90%. F-Score still
uses 110 features and achieves an accuracy of just 90% on the withheld data. With a 5% margin, MI is
further reduced to 10 features, with a slightly increasing accuracy on withheld data compared to the
3% margin. F-Score is reduced to 21 features and achieves the same accuracy on the withheld testing
data as without a non-inferiority margin.

Table 7. Parameter grid for the exhaustive grid search (Beijing).

Method Feature Range
C-Parameter γ-Parameter

Start Stop Num Start Stop Num

Def.SVM 712 3 11 9 −12 −4 9

LDA 1–7 −1 5 7 −7 −1 7

MI 1–712 3 8 6 −9 −4 6

F-Score 1–712 2 8 7 −10 −3 8

Table 8. Overview of the best performing classifiers (Beijing)

Mean Overall
Accuracy [%]

Std. Dev. of
Accuracy [%]

Accuracy Test
Data [%]

Number of
Features

Dimensionality
Compression

Decrease Factor
Training Time

Decrease Factor
Pred. Time

Method Best-performing classifier

Def.SVM 76.0 6.97 81.9 712 1 1 1

LDA 84.4 3.62 77.5 7 102 5 14

MI 91.5 2.64 90 226 3 3 4

F-Score 93.7 2.43 93.1 226 3 3 4

Best-performing within 3% non-inferiority margin

LDA - - - - - - -

MI 89.9 2.42 88.1 13 55 1 16

F-Score 91.6 2.42 90 110 6 3 7

Best-performing within 5% non-inferiority margin

LDA 81.9 3.93 77.5 6 119 5 13

MI 87.7 2.55 89.4 10 71 1 16

F-Score 89.7 1.01 93.1 21 34 4 13

It can be observed by comparing Figures 8 and 11 that all three methods perform worse in Beijing
than in Stockholm and show a higher instability. As expected, with the smaller training set size, it is
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more difficult to find a good classifier and a good subset of features. LDA surpasses the default
SVM just slightly, when all seven features are used, but still shows a large variance at that point.
MI and F-Score can both surpass the default SVM in a similar way as for the Stockholm study area.
Once past the default SVM accuracy, MI reaches higher accuracy scores with fewer features than
F-Score. Thus, F-Score appears to be more sensitive to the combination of few features and small
training sets. The normalized confusion matrices in Figure 12 show that the default SVM has a high
shift from LDB to HDB and roads, from UGS to agriculture, from golf courses to UGS, and from
agriculture to forests and HDB. LDA cannot reduce these confusions and introduces new errors. Many
segments were falsely predicted as forests. Overall, MI and F-Score improve these classification results
and are able to reduce confusions.
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4.3. Comparison of the Study Areas

Whereas all methods-LDA, MI, and F-Score-could improve the classification accuracies in the case
study of Stockholm with a comparably large training set size, LDA appears to be unsuited for cases
with small training set sizes as in Beijing. The estimation of the class means and variances is essential
for LDA and thus a sufficiently large training set is required. MI and F-Score work reasonably well
also with smaller training sets. However, all methods produced more stable results in Stockholm than
in Beijing.

Figure 13 visualizes an excerpt from the feature ranking by MI and F-Score. The top 20 features
averaged over both methods are presented grouped by S1 and S2 for Stockholm and Beijing. This ranking
was created with cross-validation of five stratified folds of the whole training set. The averaged rank
is indicated next to the feature name. MI and F-Score rank the features differently as they are using
different measures. It is interesting, but not surprising, to see that the features from descending and
ascending S1 passes are always paired up in this ranking. VV polarizations appear to be slightly
more informative than VH polarizations, as the same features always appear in the same order for the
respective polarizations. Another interesting observation is that the VV_mean has a very high rank
in general. SAR response is very sensitive to geometric properties of the observed objects and could
therefore, help discriminating between certain LULC classes especially in the urban environment. As an
example, built-up areas are characterized by double bounce scattering, and consequently, appear very
bright unlike roads with their smooth surface, which appear very dark in radar images.
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The highest-ranking features from S2 are the indices NDVI and NDWI. They are followed by red
edge, near- and short-wave-infrared bands (B6-B11). The first feature from the visible spectrum was
the mean of B4 (red) that held rank 54 in Stockholm and rank 30 in Beijing. The GLCM sum average
(savg) delivers the highest ranked textural feature and appears for several bands in the top 20 ranking.
Even though the rankings are not exactly the same, the results appear to be consistent for the different
study areas—the same or similar features received the highest ranks. This is especially noteworthy as
the accuracy scores in the study area of Beijing are way lower and more unstable than in Stockholm.
Still the cross-validated, averaged feature importance ranking is quite similar.

The geometric features received low scores in this ranking and were hence excluded from Figure 13.
In the Stockholm study area, the first geometric feature, the width of the fitted ellipse, was placed on
rank 288. Two features, which were anticipated to reduce the confusion between roads and HDB, the
aspect ratios of the minimum area rectangle and the fitted ellipse, were placed on rank 579 and 591
respectively. Inspecting the value distributions for these two features in Figure 14, it can be seen that
they are useful to separate specific classes (roads, golf courses, and wetlands) but they do not contain
useful information for the separation of the remaining classes. These features could be used rather for
rule-based post-classification corrections to reduce the confusions between roads and HDB.
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What should be considered for this ranking is that MI and F-Score are univariate feature selection
methods, which do not account for correlation between the features. Thus, they do not detect
redundancy in the feature set. Plotting the training samples for the two highest-ranking S1 features,
it becomes obvious that they have a positive correlation (Figure 15). The plot for the highest-ranking
S2 features shows a strong negative correlation. However, it is interesting to plot the highest-ranked S1
and S2 features; the separation of the classes becomes clearly visible showing the great potential of
merging multispectral and SAR data.
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5. Conclusions

This study demonstrates the feasibility of GEE and GCP infrastructure to apply dimensionality
reduction through feature extraction and feature selection methods for object-based land cover
classifications with oversized feature sets. The presented workflow allows thorough assessments
of different features as well as different dimensionality reduction methods for specific GEOBIA
applications. It incorporates the dimensionality reduction as a key step in the land cover classification
process, which we consider essential for the exploitation of the growing EO big data.

The LDA showed the highest compression of the initial feature space and can obtain remarkable
results in comparison to the default SVM. One disadvantage, however, is that this method gives
no intuitive indication about the contribution of individual features to the accuracy and is less
reliable with small training sets. The feature selection methods appear very promising and provide
exactly this insight into the features’ quality. With a sensitive non-inferiority margin, both MI and
F-Score allowed high compressions of the feature set and achieved notable improvements of the
accuracy. This emphasizes the fact that dimensionality reduction should form a key step in land cover
classification using SVM. Thanks to the availability of cloud computing, these dimensionality reduction
processes are no longer limited by the lack of computational power and can easily be integrated into
the classification workflow.

Despite the different training set sizes in the two study areas, the averaged feature importance
ranking showed similar results for the top-ranking features. It strongly indicates that a feature-level
fusion of SAR data from Sentinel-1 and multispectral imagery from Sentinel-2 allows for a better
discrimination between different LULC classes. It should be acknowledged, however, that the optimal
set of features is specific for each classification scheme. Different land cover classes require different
features to be separable from one another. Future research should therefore expand this method
to different classification schemes but also further investigate the importance of features for each
individual class. To explore the relevance of features for a land cover classification more broadly,
additional features need to be included in the analysis. More spectral indices should be included;
thorough multi-temporal analyses of optical or SAR imagery are promising candidates to improve
land cover; analysis of the phenology through harmonic or linear fitting of the NDVI, for example,
help to distinguish between different vegetation classes.

Despite their limitation, LDA, MI, and F-Score serve as a demonstration of the integration in
the workflow. In future work, different feature selection methods should be tested following the
proposed methodology. Multivariate filter methods, in particular, should be explored, since the applied
univariate methods fail to identify the dependency between similar high-ranked features. Moreover,
wrappers and embedded methods especially designed for the chosen classifier should be included in
the analysis as well.
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Considering the multiple types of sensors and the massive amount of data that is already available
and that will be available in the next years, we think that the developed framework can be used
to analyze the importance of the different input data and the derived features; it can contribute to
understanding how to optimize the integration of these different data sources (i.e., very high-resolution
SAR and multispectral data) for object-based classification analysis.

The Python scripts developed during this study are released in a public GitHub repository and
licensed under GNU GPL v3.0 [71]. Additionally, the respective JavaScript snippets for the Google
Earth Engine web API as well as the segmented image-objects and reference points are published
and referenced in the GitHub repository. We hope that this might encourage further research and
the development of reliable workflows for the efficient exploitation of today’s EO big data with
inter-comparable results.
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