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Differential evolution algorithm (DEA) is a stochastic, population-based global optimization

method. In this paper, we propose new schemes for both mutation and crossover operators

in order to enhance the performances of the standard DEA. The advantage of these pro-

posed operators is that they are “parameters-less”, without a tuning phase of algorithm

parameters that is often a disadvantage of DEA. Once the modified differential evolutions

are presented, a large comparative analysis is performed with the aim to assess both

correctness and efficiency of the proposed operators. Advantages of proposed DEA are used

in an important task of modern structural engineering that is mechanical identification

under external dynamic loads. This is because of the importance of using a “parameters-

less” algorithm in identification problems whose characteristics typically vary strongly

case by case, needing of a continuous set up of the algorithm proposed. This important

advantage of proposed optimizers, in front of other identification algorithms, is used to

develop a computer code suitable for the automatic identification of a simple supported

beam subject to an impact load, that has been tested both using numerical simulations and

real standard tests dynamic. The results point out that this algorithm is an interesting

candidate for standard applications in structural identification problems.
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1. Introduction

The differential evolution algorithm (DEA) is an interesting

soft computing technique for solving complex optimization

problems proposed by Storn and Price (1997) whose positive

features are attracting the interest of several researches in

the field of the applied sciences. Differently from traditional

evolutionary algorithms, this optimizer is completely self-

organizing and requires few lines of code in most of the

existing programming languages. Moreover, its functionality

requires a small set of embedded control parameters, which

makes it easy to use for non-experts. Although its simplicity,

DEA has shown remarkable performances in solving hard

optimization problems so that its popularity is expected to

grow rapidly. The general structure of the DEA shares

similar features with other evolutionary algorithms, such as

genetic algorithm (GA), initially proposed by Holland (1975).

DEA is different in handling distance and direction

information to move from the population at the current

generation toward the next generation in virtue of a

constructive cooperation between individuals.

There are two ways to enhance the performances of the

standard DEA. One way is to look for new operators (or hybrid-

izations) for DEAs. For instance, Kaelo and Ali (2006) proposed

two new DEAs. The first version modifies the original mutation

rule by including a tournament selection. The second version

is a DEA using the best vector with localization. Das et al. (2009)

described a class of DEA-based variants which utilizes the

concept of neighborhood for each population member in order

to balance the exploration and exploitation abilities of DEAs.

Omran et al. (2009) presented the barebones DEA which is a

hybridization between barebones PSOA and DEA. A second

(and maybe fundamental) way to improve the standard DEA

deals with the definition of the control parameters. The most

common procedure (originally adopted for the standard DEA) is

based on parameter tuning, a commonly practiced approach in

evolutionary computation in good values control parameters

are selected after a “learning stage”. Unfortunately, this

operation is not that simple, and generally needs “experts”

who know how to use algorithms, reducing strongly the appeal

and the advantages of such methodologies. For instance, the

user may assign the numerical values by analyzing the results

carried out from trial-and-error runs. This strategy requires an

appropriate knowledge of the optimizer to obtain the expected

performances quickly and, therefore, a high degree of

interaction is needed between the user and the adopted

optimizer. A solution may be that of employing another

algorithm such as an artificial neural network. However, even

this choice is not immune from criticism as it increases

considerably the level of complexity making it less attractive to

non-experts in the field of soft computingmethodologies. Once

the use or machine-based learning stage is completed, the

optimizer seeks the optimal solution on the basis of the values

obtained without further modifications.

In the fields of civil and mechanical engineering, DEAs

have been applied for solving structural optimization prob-

lems (Hull et al., 2006; J�armai et al., 2003), but only few re-

searches have explored new variants for handling constrained

optimization problems (Wang and Li, 2009). Most recently,
DEAs have been applied for parameter/tolerance design

problems (Rout and Mittal, 2010), mechanical systems

identification (Quaranta et al., 2014a; Tang et al., 2008) and

health monitoring (Casciati, 2008). The main goal of this

paper is to suggest new schemes “parameters-less” for both

mutation and crossover operators for DEA, whose

performances are of the same order of other DEA. The main

advantages of the proposed scheme is an easiest and widest

applicability in real problems particularly sensible to

parameters setup, to increase the appeal of DEA for those

real problems. To demonstrate the efficiency of the new

operators, an extensive numerical investigation is conducted

to evaluate the correctness of the proposed differential

evolution based optimizers. To achieve this goal, a first

comparative analysis deals with the optimization of thirteen

well known benchmark test functions (Neculai, 2008) over

small and medium search spaces: in doing this, five

standard differential evolution algorithms and four particle

swarm-based optimizers, including a chaotic particle swarm

optimization algorithm (PSOA) are taken into account.

Subsequently, another comparative analysis has been

performed by taking into account more recent adaptive DEAs.

In this study an important problem of structural engi-

neering is treated as practical application of proposed DEA

scheme, which regards the impact load identification. In

structuralmonitoring, in fact, it is crucial to know the external

loads that act on structural elements or mechanical compo-

nents.With the knowledge of the loads, we can assess damage

in terms of the strength, fatigue and reliability of structures. In

several circumstances, dynamic loads can be directly

measured by means of opportune sensors. Nonetheless, nu-

merical methods for load identification are highly welcome

when a direct measure is complicated, i.e., because of

extremely large magnitudes of loads for a very short time

period (impact loads). A quite typical way for solving load

identification problems deals with the formulation (and res-

olution) of a single-objective optimization problem (Marano

et al., 2006, 2007a, 2007b, 2008). In doing this, the first step is

the mathematical definition of the loading model: an oppor-

tune parameterization of the dynamic load allows the recon-

struction of the time-dependent load history to be more

efficient, since the point-by-point time domain based identi-

fication of the loading process is much more difficult and less

reliable (Greco et al., 2015, 2016; Marano et al., 2009a, 2009b,

2010; Trentadue et al., 2018). Following this way, combining

with a forward model, which characterizes the dynamic

response of the structure subject to a known dynamic force,

the unknown parameters depicting the dynamic loads can be

identified by minimizing the difference between the

computed analytical responses and the actually measured

responses. Unfortunately, a typical problem arising from the

optimization-based formulation of the load identification

process is that the resulting problems can be non-linear and

multi-modal. Differential information (i.e., gradients) or initial

information (i.e., starting values of the unknown parameters

to be identified), which is required by traditional optimization

approaches,may be difficult and time-consuming to calculate.

Therefore, free-gradient algorithms with global exploration

capabilities may be explored to overcome this difficulties.

https://doi.org/10.1016/j.jtte.2018.09.002
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Given the inherent difficulties in solving optimization-based

load identification problems, several researchers have adopted

GA-based numerical strategies (Marano et al., 2009c, 2011). For

instance, the solutionprocedure proposed in (Martin andDoyle,

1996) combines frequency-domain problem solving using the

spectral element method with a genetic-based heuristic

iterative search technique. Flores et al. (2007) formulated an

optimization problem in which the objective function (OF)

represents the difference between the measured modal

characteristics of the loaded structure and their finite element

counterparts. The loading parameters (magnitude, position

and direction) were assumed as unknown variables of this

optimization problem and a heuristic technique known as the

life-cycle model was used to resolve the problem. The life-

cycle model is a heuristic numerical technique that considers

different stages of evolution to reflect natural phases, as

experienced in life. This strategy uses two nature based

methods (GA and PSOA).
2. Standard differential evolution algorithm

A general single-objective problem in a continuous real

domain is considered. A general formulation of such a prob-

lem is as follow.

min
x

ffðxÞg s:t: xl � x � xu (1)

where x¼ {x1,/,xj,/,xn} is a set of real parameters, xl ¼ fxl
1;/;

xl
j;/; xl

ng and xu ¼ fxu
1 ;/; xu

j ;/; xu
ng are lower and upper

bounds of x, respectively. The solution that minimizes the

objective function f(x) (OF) is denoted as x*.

The floating-point code is the most appropriate choice

when problem variables are continuous because it allows for

the representation of the precision of the machine and re-

quires a reduced time of elaboration because code/decode

processes are not required. The use of the floating-point code

is typical in several identification problems, for instance Tang

et al. (2008) or Monti et al. (2010), and is suitable for

engineering applications. However, combinatorial or mixed-

integer optimization problems are also common in

engineering. Although some methods have been proposed to

overcome the issue of integer or discrete variables when

using a floating-point code, for instance Lampinen and

Zelinka (1999), it is always advisable to adopt appropriate

numerical strategies to consider realizable solutions.

Therefore, the strategies discussed in this paper are not

suitable for solving combinatorial or mixed-integer

optimization problems. Another relevant issue deals with

the existence of constraints. The original DEA was usually

applied to unconstrained continuous optimization problems

was the case with many other evolutionary algorithms.

Several methods exist to incorporate a constraints handling

technique into originally unconstrained evolutionary

algorithms (Coello, 2002).

2.1. Mutation operators

The standard version of the DEA uses the differences between

randomly selected individuals as the source of random
variations for a third individual referred to as the target vector.

Trial solutions are generated by adding weighted difference

vectors to the target vector. This process is dubbed as muta-

tion operator and its main goal is to enhance diversity in the

current population as well as “to move” the individuals in

such a way a better result (Fiore et al., 2016a). By computing

the differences between two individuals randomly chosen

from the population, the algorithm estimates the gradient in

that zone rather than in a single point of the search space.

Consider kxi ¼ {kxi1, /,kxij, /,kxin} the ith individual (with

i ¼ 1, /,N) at generation k. The initial population 0xi, for

i ¼ 1, /,N, is defined by generating randomly the collection

of N solutions within the specified search space. In this

study, the Latin hypercube sampling technique has been

iteratively used to generate the best initial population with

minimum correlation between samples (Tang, 1993). During

the generation kþ1, for each individual kxi, a mutation vector
kþ1vi is computed by means of one of the following

alternatives.

kþ1vi ¼ kxr1 þ F1ðkxr2 � kxr3Þ (2)

kþ1vi ¼ kxbest þ F1ðkxr1 � kxr2Þ (3)

kþ1vi ¼ kxi þ F2ðkxbest � kxiÞ þ F1ðkxr1 � kxr2Þ (4)

kþ1vi ¼ kxbest þ F2ðkxr1 � kxr2Þ þ F1ðkxr3 � kxr4Þ (5)

kþ1vi ¼ kxr1 þ F2ðkxr2 � kxr3Þ þ F1ðkxr4 � kxr5Þ (6)

where r1, r2, r3, r4 and r5 denote integers randomly selected

within the set {1,/,i-1,i,iþ1,/,N} such that r1 s r2 s r3 s r4 s

r5, the individual kxbest is the best performer in the population

at the generation k, the coefficients F1 and F2 are the so-called

mutation coefficients and are real positive constants and they

are real positive constants whose typical values are in the

range [0.40,1.00], and 0.50 is in our numerical applications.
2.2. Crossover operator

The crossover follows the mutation phase. For each mutated

vector kþ1vi, a trial vector kþ1ui (offspring) is generated by using

the following Eq. (7) so-called binomial crossover.

kþ1uij ¼
� kþ1vij w � pc or j ¼ randintð1;nÞ

kxij otherwise
(7)

where w is a random number generated by using the uniform

probability density functions in the range [0,1], j is the gene

under consideration and n is a integer number, parameter pc is

the probability of crossover and it assumes values between

0 and 1, randint (1,n) is a randomly integer selected within the

set {1, /,n} and is adopted to ensure that at least one param-

eter is taken into account for constructing the vector kþ1ui.

Typically, the probability of crossover pc is much more sen-

sitive to the problem's property and complexity, such as the

multimodality, whereas the mutation constants regulate the

convergence speed. It was found that pc ¼ 0.5 is a good choice

(for instance in Kaelo and Ali (2006) and its references).

https://doi.org/10.1016/j.jtte.2018.09.002
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2.3. Selection

The selection operator employs a very simple one-to-one

competition scheme between kþ1ui and
kþ1xi as follow.

kþ1xi ¼
�

kþ1ui fðkþ1uiÞ< fðkþ1xiÞ
kxi otherwise

(8)

Therefore, the winner kþ1xi in the selection stage is the best

performer between the parent individual kxi and its trial one
kþ1ui. The output of this operator is a new population for the

next generation, unless a stopping criteria has not been ful-

filled. The evolutionary search will terminate once a

maximum number of iterations L is achieved.
2.4. Preserving the feasibility of the solution

An opportune strategy is needed to ensure the feasibility of

the obtained solutions (Fiore et al., 2016b; Quaranta et al.,

2014b). This means obtaining the fulfillment of the lower and

upper bounds of the search space could be in the optimization

problemEq. (1). To achieve the goal, themutation operator can

be repeated until a feasible solution is obtained. Some authors

adopt penalty basedmethods in which a penalized OF value is

assigned to the unfeasible solutions. However, both strategies

do not ensure the obtainment of a feasible solution. The

assignment of the penalty model and the numerical

definition of the penalty weight are not an easy task.

Usually, the introduction of new control parameters are

required in the algorithm.
3. Optimization-based strategy for
identification problems

Engineering analysis can be broadly categorized as direct and

inverse analysis. Direct analysis for structural systems aim to

predict structural response (output) for given excitation

(input) and known system parameters (Fiore et al., 2013a,

2016c; Resta et al., 2013), whereas inverse analysis deals with

identification of structural parameters based on given input

and output (I/O) information (Colapietro et al., 2013; Fiore and

Marano, 2017). The latter may be termed as “structural iden-

tification” and falls within the larger domain of system iden-

tification. Structural identification can be applied to update or

calibrate structural models so as to better predict response

and achieve more cost-effective designs. It can also be used

for structural health monitoring and damage assessment in a

nondestructive way by tracking changes in pertinent struc-

tural parameters. This is especially useful for identifying

structural damage caused by natural actions, such as earth-

quakes. For structural control applications, identification of

actual parameters is essential for effective control. From a

computational point of view, structural identification pre-

sents a very challenging problem, particularly when the sys-

tem involves a large number of unknown parameters. In

addition to accuracy and efficiency, robustness is an impor-

tant issue for selecting the identification strategy. Presently,

the main hurdle is the lack of a robust and intelligent

computational strategy to identify parameters and the given
limited number of sensors and inevitable noise in reality. Koh

et al. (2003) suggest that a good identification method should

fulfill the following features.

(Ⅰ) The method should not require a good start-point (good

initial values for the investigated parameters) in order

to converge to the correct solution.

(Ⅱ) The identification strategy should preferably be not too

sensitive to noise.

(Ⅲ) A useful property requires a good identification when

handling incomplete measurements. On its part, this

characteristic deals with two possible issues.
(i) It is not necessary to have measurements at all de-

grees of freedom (DOFs).

(ii) It is indispensable to suppose that, in most cases, a

unique response typology is monitored (generally,

accelerations). When this happens, it is absolutely

preferable to operate on the available set of data

directly without any type of mathematical manip-

ulation (integration or derivation).
Identification methods proposed until now can be classi-

fied by means of different criteria. To begin with, there are

frequency and time domain methods, parametric and non-

parametric methods, deterministic and non-deterministic

methods, classical and non-classical methods. Non-classical

methods in structural identification (artificial neural net-

works, genetic algorithms, genetic programming, differential

evolution algorithms, particle swarm optimization algo-

rithms, ant colony based algorithms) are continuously gaining

attention in virtue of their robustness and efficacy (especially

in real structures) and are still under investigation. This is

imputable to the lack of accurate and detailed mathematical

formulations, so that in many circumstances their conver-

gence cannot be formally demonstrated a-priori but only via

“trial-and-error” validations.
4. Proposed operators for differential
evolution algorithms

The functionality of the above soft computing based tech-

niques for systems identification depends on a quantity of

control parameters (acceleration factors and inertia weight for

PSOAs; mutation coefficients and probability of crossover for

DEAs). Consequently, a parameters tuning stage is needed to

improve (if possible) the final result. Unfortunately this oper-

ation is not so simple. For instance, the user may assign the

numerical values by analyzing the results carried out from

numerical sensitivity analyses: this strategy requires an

appropriate knowledge of the optimizer to achieve the ex-

pected performances as soon as possible, and therefore a high

degree of interaction between the user and the adopted opti-

mizer is needed. Alternatively, this end can be achieved by

employing another algorithm (i.e., a neural network can be

developed for this goal). However, also this choice is not

totally immune from criticisms since it introduces a consid-

erable level of complexity and thus its use becomes less

attractive for non-experts in the field of soft computing

methodologies. Therefore, the usability and the autonomy of

https://doi.org/10.1016/j.jtte.2018.09.002
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soft computing techniques in mechanical systems identifica-

tion can be sensibly improved looking for numerical strategies

whose functionality requires adaptive or self-adaptive control

parameters. An optimal result will be the use of free-param-

eters operators.
4.1. Proposed adaptive mutation operator

The first modification of the standard DEA concerns the mu-

tation operator. In detail, the proposal dealswith the following

revised version of Eq. (4).

kþ1vi ¼ kxi þ kFr3;iðkxr3 � kxiÞ þ kFr1;r2ðkxr1 � kxr2Þ
k
L
� k (9)

kþ1vi ¼ kxi þ kFbest;iðkxbest � kxiÞ þ kFr1;r2ðkxr1 � kxr2Þ
k
L
> k (10)

The mutation coefficients are calculated as follows.

kFr3;i ¼ max

�����fðkxr3Þ � fðkxiÞ
kfmax � kfmin

����;0:5
�

(11)

kFr1;r2 ¼

8>>><
>>>:

max

�����fðkxr1Þ � fðkxr2Þ
kfmax � kfmin

����; 0:5
�

k
L
� k

����fðkxr1Þ � fðkxr2Þ
kfmax � kfmin

���� k
L
> k

(12)

kFbest;i ¼
����
kfmin � fðkxiÞ
kfmax � kfmin

���� (13)

in which

8<
:

kfmin ¼ min
i¼1;/;N

ffðkxiÞg
kfmax ¼ max

i¼1;/;N
ffðkxiÞg

(14)
Fig. 1 e Bi-dimensional example of an objective function show

solutions by means of the proposed mutation operator. (a) k/L ≤
The process for generating new solutions using Eqs. (9) and

(10) is represented in Fig. 1 over a generic bi-dimensional real

search space. Based on the proposed scheme, the mutation

occurs in two distinct manners. The first one takes place

when k/L � k and its goal is to help the exploration of the

search space. In this effort, the weighted difference vectors

in Eq. (9) only involve randomly selected individuals and the

mutation coefficients are forced to be greater than 0.5, Eq.

(11) and the first equality in Eq. (12). When k/L > k, the

mutation scheme proposed in Eq. (10) is performed. In this

case, the current best individual kxbest is taken into account.

Fundamentally, the goal of this alternative scheme is to

keep track of the current best performer within the

population. Moreover, an improved exploitation can be

achieved by removing the lower bounds for the adopted

mutation coefficients (therefore numerical values less than

0.5 are accepted this time). There is not rigid separation

between exploration and exploitation because the numerical

values of the scale factors are dynamically adjusted during

the evolutionary search. For instance, if the exploration of

the search space is not concluded for k/L � k, then the

numerical values of the mutation parameters in Eqs. (12)

and (13) remain sensibly large and the global recognition is

not penalized. It should be observed that the numerical

values of the mutation coefficients are always less than 1

and this upper bound is in agreement with most of literature

(see the above discussion about the scale factors for the

standard DEA). Similarly, both lower bounds in Eqs. (11) and

(12) are also compatible with the suggestions provided by

current state of practice. A good value for k has been carried

out from numerical investigations based on the solution of

the benchmark optimization problems presented in this

paper. The numerical analysis demonstrate that a good

value for k should be selected within 0.40 and 0.60. In this

paper, k ¼ 0.50 and this numerical value is proposed as a
ing its contour lines and the process for generating new

k. (b) k/L> k.

https://doi.org/10.1016/j.jtte.2018.09.002
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Table 1 e Statistical results for “Branin” ef(x*) ¼ 0.397887
(population size 20, number of generations 40, number of
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starting choice for further applications of the proposed

mutation operator.
variables 2).

Algorithm Min Max Mean Std

DEA01 0.3979 0.3980 0.3979 2.9369e-5

DEA02 0.3979 0.3979 0.3979 2.2368e-8

DEA03 0.3979 0.3979 0.3979 1.2955e-6

DEA04 0.3979 0.3979 0.3979 1.4190e-6

DEA05 0.3979 0.3984 0.3980 1.1834e-4

DEA06 0.3979 0.3979 0.3979 5.6854e-6

PSOA01 0.3979 0.3979 0.3979 2.0286e-6

PSOA02 0.3979 0.3981 0.3979 4.0300e-5

PSOA03 0.3979 0.3979 0.3979 8.8494e-8

PSOA04 0.3979 0.4009 0.3987 6.3956e-4

Bold represents DEA06 is compared with other results.
4.2. Proposed crossover operator

The second modification on the standard DEA deals with the

crossover operator. In this case, the binomial scheme Eq. (7) is

replaced with the following one.

kþ1ui ¼ kþ1wi � kxi þ ð1� kþ1wiÞ � kþ1vi (15)

where kþ1wi is a vector whose n components are random

numbers generated by using the uniform probability density

functions in the range [0,1]. The symbol “�” denotes the term-

by-term vector multiplication and 1 ¼ (11, /,1j, /,1n).

Fig. 2 provides a graphical visualization of the effects of the

proposed crossover scheme also with reference to a generic

bi-dimensional search space. The candidate results of the

binomial crossover in Eq. (7) are the vertex points of the

hypercube described by kþ1vi and kþ1xi, (see the triangular

markers in Fig. 2 for a bi-dimensional search space). These

two solutions marked with a triangular symbol are also

candidate solutions of the crossover operator presented in

Eq. (15) when kþ1wij / 0 or kþ1wij / 1 for each j ¼ 1, /,n.

However, unlike the binomial crossover, the proposed one

allows the exploration of the inner space bound by the
Fig. 2 e Some solutions that may be carried out by means

of the proposed crossover operator. Two solutions

(denoted with triangular markers) can also be obtained by

performing a standard binomial scheme.
hypercube (Fig. 2). It is evident that the probability of

reproduction is not required to perform the proposed

crossover. Thus, this is a free-parameter operator.
5. Comparison with standard differential
evolution algorithms and several swarm
intelligence based optimizers

Comparative numerical analyses have been performed to es-

timate the performances of the proposed optimizer. This nu-

merical study involves the class of the standard DEAs (the

complete list is given in Appendix). Particle swarm based

optimizers are also taken into account to include a different

paradigms in the numerical competition. The list of the

adopted PSOAs is given in Appendix. To protect the cohesion

of the swarm, the velocities of the particles are forced to be

in absolute value, less than a maximum velocity given by

(xue xl)/2. In the PSOA02, the maximum velocity is limited to

the dynamic range of the particle on each dimension

(Eberhart and Shi, 2000). A craziness operator has been

performed on the velocity of some particles with the aim of

increasing the direction diversity in the swarm (Fourie and

Groenwold, 2002). The probability of craziness is equal to

0.05 for all the PSOAs and it is assumed to be a constant value.
Table 2 e Statistical results for “Haupt-1”
ef(x*) ¼ ¡18.5547 (population size 30, number of
generations 60, number of variables 2).

Algorithm Min Max Mean Std

DEA01 �18.5547 �18.5547 �18.5547 1.0337e-08

DEA02 �18.5547 �18.5547 �18.5547 1.8257e-14

DEA03 �18.5547 �18.5547 �18.5547 6.0333e-08

DEA04 �18.5547 �18.5547 �18.5547 1.1540e-10

DEA05 �18.5547 �18.5542 �18.5547 7.6339e-05

DEA06 �18.5547 ¡18.5540 ¡18.5547 1.5485e-04

PSOA01 �18.5547 �18.5547 �18.5547 4.4627e-07

PSOA02 �18.5547 �18.5532 �18.5547 2.2281e-04

PSOA03 �18.5547 �18.5547 �18.5547 2.0082e-08

PSOA04 �18.5546 �18.4972 �18.5485 0.0095

Bold represents DEA06 is compared with other results.
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Table 3 e Statistical results for “Haupt-2” ef(x*) ¼ ¡345.3599 (population size 30, number of generations 60, number of
variables 2).

Algorithm Min Max Mean Std

DEA01 �345.3599 �345.3599 �345.3599 4.1856e-07

DEA02 �345.3599 �211.4547 �342.6818 18.9371

DEA03 �345.3599 �345.3599 �345.3599 8.9519e-07

DEA04 �345.3599 �345.3599 �345.3599 1.6688e-07

DEA05 �345.3599 �345.3573 �345.3598 5.1078e-04

DEA06 ¡345.3599 ¡345.3599 ¡345.3599 1.4066e-05

PSOA01 �345.3599 �345.3595 �345.3599 7.4264e-05

PSOA02 �345.3599 �211.4547 �337.0930 28.7569

PSOA03 �345.3599 �252.2501 �343.4977 13.1677

PSOA04 �345.3417 �340.2211 �344.5178 1.0775

Bold represents DEA06 is compared with other results.
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Several numerical comparative analyses are presented to

assess, both, accuracy and reliability of the proposed soft

computing based non-classical identification technique.

The numerical competition is performed over thirteen

benchmark test functions from the standard set of optimiza-

tion problems available in the specialized literature (Neculai,

2008). The test functions reflect different degrees of

complexity. A complete list of information about the

benchmark test functions adopted for this numerical

investigation is given in the Appendix and results are given
Table 4 e Statistical results for “Shaffer” ef(x*) ¼ 0
(population size 30, number of generations 60, number of
variables 2).

Algorithm Min Max Mean Std

DEA01 0.0014 0.0108 0.0085 0.0028

DEA02 < 1e-021 0.0099 0.0059 0.0044

DEA03 < 1e-021 0.0099 0.0079 0.0032

DEA04 1.8938e-04 0.0098 0.0085 0.0028

DEA05 0.0018 0.0237 0.0099 0.0023

DEA06 1.4514e-05 0.0097 0.0086 0.0030

PSOA01 < 1e-021 0.0097 0.0078 0.0039

PSOA02 2.6540e-04 0.0099 0.0088 0.0026

PSOA03 < 1e-021 0.0097 0.0049 0.0049

PSOA04 < 1e-021 0.0236 0.0094 0.0037

Bold represents DEA06 is compared with other results.

Table 5 e Statistical results for “Six-hump Camel”
ef(x*) ¼ ¡1.0316 (population size 30, number of
generations 60, number of variables 2).

Algorithm Min Max Mean Std

DEA01 �1.0316 �1.0316 �1.0316 3.6868e-06

DEA02 �1.0316 �1.0316 �1.0316 4.6403e-16

DEA03 �1.0316 �1.0316 �1.0316 4.0126e-08

DEA04 �1.0316 �1.0316 �1.0316 1.3290e-08

DEA05 �1.0316 �1.0314 �1.0316 3.1209e-05

DEA06 ¡1.0316 ¡1.0316 ¡1.0316 1.5049e-06

PSOA01 �1.0316 �1.0316 �1.0316 9.5837e-09

PSOA02 �1.0316 �1.0316 �1.0316 7.3008e-06

PSOA03 �1.0316 �1.0316 �1.0316 1.3192e-10

PSOA04 �1.0316 �1.0235 �1.0298 0.0018

Bold represents DEA06 is compared with other results.
in Tables 1e13. The optimization problems are solved fifty

times by using five DEAs, four PSOAs, and the modified DEAs

proposed in this study, and the results are recorded. The

initial population is different for each run. Statistical results

are carried out from the recorded numerical analyses and

they are presented in the following Tables. For each method,

the best (Min), the worst (Max) and the average (Mean)

value, as well as the standard deviation (Std), are calculated

over the fifty simulated runs. The number of evaluations is

equal for all optimizers (equal to N�L), so it is not taken into

consideration for the comparative analyses.
Table 6 e Statistical results for “Ackley” ef(x*) ¼ 0
(population size 150, number of generations 300, number
of variables 30).

Algorithm Min Max Mean Std

DEA01 1.909034 2.632981 2.307796 0.208676

DEA02 2.27e-07 19.859370 5.209168 8.717906

DEA03 3.23e-07 6.33e-05 5.46e-06 1.19e-05

DEA04 2.489280 19.854420 12.86839 4.759546

DEA05 19.420500 19.966770 19.89776 0.096700

DEA06 0.688304 3.126793 1.818985 0.604219

PSOA01 0.000573 1.899835 0.609118 0.661950

PSOA02 19.954970 19.962750 19.95868 0.001205

PSOA03 0.004908 1.971800 0.381879 0.558306

PSOA04 2.791422 3.693946 3.308441 0.253601

Table 7 e Statistical results for “Cosine Mixture”
ef(x*)¼¡0.1n (population size 50, number of generations
150, number of variables 20).

Algorithm Min Max Mean Std

DEA01 �1.9895 �1.9230 �1.9596 0.0135

DEA02 �2.0000 �1.7044 �1.8788 0.1144

DEA03 �2.0000 �1.7044 �1.9793 0.0668

DEA04 �1.9969 �1.8032 �1.9722 0.0350

DEA05 �0.9692 �0.4032 �0.6691 0.1356

DEA06 ¡1.9997 ¡1.9919 ¡1.9983 0.0013

PSOA01 �2.0000 �1.4086 �1.8491 0.1594

PSOA02 �1.9994 �1.2605 �1.7279 0.1839

PSOA03 �1.9994 �1.3859 �1.8445 0.1304

PSOA04 �1.9791 �1.0783 �1.6603 0.1871

Bold represents DEA06 is compared with other results.
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Table 8 e Statistical results for “Goldstein and Price”
ef(x*) ¼ 3 (population size 30, number of generations 60,
number of variables 30).

Algorithm Min Max Mean Std

DEA01 3.0000 3.0046 3.0004 0.0009

DEA02 3.0000 3.0000 3.0000 0.0000

DEA03 3.0000 3.0001 3.0000 0.0000

DEA04 3.0000 3.0002 3.0000 0.0000

DEA05 3.0000 3.0244 3.0048 0.0061

DEA06 3.0000 3.0005 3.0001 0.0001

PSOA01 3.0000 3.0000 3.0000 0.0000

PSOA02 3.0000 3.0004 3.0001 0.0001

PSOA03 3.0000 3.0000 3.0000 0.0000

PSOA04 3.0006 3.3587 3.0521 0.0724

Bold represents DEA06 is compared with other results.

Table 9 e Statistical results for “Griewank” ef(x*) ¼ 0
(population size 100, number of generations 200, number
of variables 30).

Algorithm Min Max Mean Std

DEA01 1.7422 2.1580 1.9504 0.1349

DEA02 0.0000 0.0295 0.0080 0.0081

DEA03 0.0000 0.0173 0.0020 0.0047

DEA04 1.0767 1.3189 1.1886 0.0582

DEA05 33.4896 66.6038 48.6475 7.2088

DEA06 1.4768 2.7829 1.9628 0.3406

PSOA01 0.0061 0.1256 0.0524 0.0301

PSOA02 0.0837 0.9074 0.4211 0.2376

PSOA03 0.1532 1.0047 0.5416 0.2096

PSOA04 1.3043 1.9978 1.6526 0.1746

Bold represents DEA06 is compared with other results.

Table 10 e Statistical results for “Rastrigin” ef(x*) ¼ 0
(population size 400, number of generations 800, number
of variables 30).

Algorithm Min Max Mean Std

DEA01 106.2080 138.7823 126.2862 8.2822

DEA02 6.9647 61.5221 18.9021 12.3493

DEA03 84.5703 104.8653 94.6072 5.2677

DEA04 112.0754 162.4771 138.6558 10.5792

DEA05 146.9282 184.6684 171.3315 8.7585

DEA06 6.1583 25.1300 14.0261 4.9777

PSOA01 11.9395 36.8134 22.6851 5.9318

PSOA02 28.8538 102.7326 52.4476 17.3502

PSOA03 0.9950 44.8992 19.8384 8.3240

PSOA04 26.6269 86.8123 52.4240 15.1265

Bold represents DEA06 is compared with other results.
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Looking at statistical results carried out from bi-dimen-

sional test functions, the differences between investigated

optimizers are of negligible significance. This is certainly true

for the Haupt-1 problem (Table 2), Shaffer problem (Table 4)

and Six-hump Camel problem (Table 5). Moderate

differences exist for the Branin problem (Table 1) in which

the maximum values of the OF carried out by DEA06 and

PSOA04 are higher than the optimal ones. DEA02, PSOA02,
PSOA03 and PSOA04 are not so constant in the simulation

runs performed to solve the Haupt-2 problem (Table 3). In

fact, it can be observed that there is a sensible difference

between the maximum value of the OF carried out and its

optimal value. Consequently, no ideal performances were

found in terms of mean value and standard deviation.

DEA06 has not statistically significant difference with

DEA01 for the Griewank problem (Table 9), with DEA02 for the

Rastrigin problem (Table 10), with PSOA02 for the Goldstein

and Price problems (Table 8) and finally with PSOA04 for the

Sphere problem (Table 12), and has been outperformed by

DEA03 (Table 9). In all other problems DEA06 has been

statistically significant differences. In the resolution of the

Ackley problem (Table 6), DEA03 is the best performer, but

the behavior of PSOA01 and PSOA03 are also very good. The

performances obtained by DEA06 are good enough, but not

the best. On the contrary, DEA05, DEA 02 and PSOA02

provide the worst results for this test function. Although the

proposed DEA06 does not provide the best minimum value

of the OF for the Cosine Mixture problem (Table 7), it is the

best optimizer for this test function because maximum

value, mean value and standard deviation value calculated

over fifty simulation runs are sensibly better than the

others. In the case of the Zakharov problem (Table 13), it can

be observed that the best performances are achieved by

DEA02 and DEA03. In the resolution of Sphere problem

(Table 12) DEA06 does not obtained a good performance, it

has not statistically differences with PSOA04, while PSOA02,

PSOA03 and DEA04 are the best optimizers. In the resolution

of Goldstein and Price problem (Table 8) DEA06 has not

statistically difference with PSOA02, but all the optimizers

provide the solution. The proposed DEA06 is the best

competitor for the resolution of the Rastrigin problem (Table

10) and Schwefel problem (Table 11). In both these cases,

only the proposed operators enable us to find the optimal

solutions. On the contrary, standard DEAs and all the PSOAs

are not able to achieve the optimal region of the search space.
6. Impact load identification on a simply
supported elastic beam as a case study

It is crucial to know the external loads that act on structural

elements or mechanical components in structural moni-

toring. Load damage can be assessed in terms of the strength,

fatigue and reliability of structures. In some circumstances,

dynamic loads can be directly measured by means of oppor-

tune sensors. Numerical methods for load identification are

highly welcome when obtaining a direct measure is compli-

cated in the course of dealing with extremely large magni-

tudes of loads during a very short period of time (impact

loads).

The formulation and resolution of a single-objective opti-

mization problem is a typical way of solving load identifica-

tion problems. In doing so, the first step is the mathematical

definition of the loading model. An appropriate parameteri-

zation of the dynamic load allows for a more efficient recon-

struction of the time-dependent load history. A point-by-point

time domain based identification of the loading process is

much more difficult and less reliable. Combined to a forward

https://doi.org/10.1016/j.jtte.2018.09.002
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Table 12 e Statistical results for “Sphere” ef(x*) ¼ 0 (population size 150, number of generations 300, number of variables
30).

Algorithm Min Max Mean Std

DEA01 3.48100 7.452200 5.128900 1.068100

DEA02 3.90e-014 5.121e-013 1.742e-013 1.189e-013

DEA03 6.34e-013 2.245e-012 1.220e-012 4.58e-013

DEA04 0.15950 0.577700 0.328200 0.121000

DEA05 1.4263eþ003 2.2484eþ003 1.7940eþ003 0.198eþ0037

DEA06 21.73490 107.502400 56.299700 20.778500

PSOA01 4.37e-07 0.000606 3.36e-05 0.000110

PSOA02 7.15e-06 0.000917 0.000152 0.000169

PSOA03 6.34e-05 0.003309 0.000925 0.000785

PSOA04 20.30052 81.861310 52.617470 14.206280

Bold represents DEA06 is compared with other results.

Table 13e Statistical results for “Zakharov”ef(x*)¼ 0 (population size 100, number of generations 300, number of variables
20).

Algorithm Min Max Mean Std

DEA01 0.1788 0.5548 0.3211 0.0917

DEA02 7.8972e-13 2.5143e-11 5.9014e-12 5.9037e-12

DEA03 1.1186e-10 2.4279e-09 3.9736e-10 3.7205e-10

DEA04 0.0025 0.0111 0.0069 0.0026

DEA05 24.1523 151.4827 92.7521 29.7932

DEA06 1.0471e-04 0.0022 7.9752e-04 4.9738e-04

PSOA01 1.9617e-07 1.6268e-05 3.4076e-06 3.6366e-06

PSOA02 7.2631e-05 0.0251 0.0011 0.0035

PSOA03 1.6771e-05 0.0019 4.3732e-04 3.7322e-04

PSOA04 2.1543 102.1635 20.4623 19.3724

Bold represents DEA06 is compared with other results.

Table 11 e Statistical results for “Schwefel” ef(x*) ¼ ¡418.9829n (population size 300, number of generations 800, number
of variables 30).

Algorithm Min Max Mean Std

DEA01 �7669.99 �7283.76 �6993.03 178.60780

DEA02 �8732.77 �7755.95 �7213.97 341.28850

DEA03 �6955.44 �6550.02 �6262.62 195.33900

DEA04 �8287.73 �7495.91 �6788.09 516.47710

DEA05 �7317.86 �6723.83 �6377.10 208.52330

DEA06 ¡12126.80 ¡11079.30 ¡7050.18 1289.14100

PSOA01 �7932.19 �7438.44 �7097.05 173.61890

PSOA02 �7326.34 �6694.82 �6492.72 188.81350

PSOA03 �6974.06 �6587.57 �6137.41 184.86010

PSOA04 �5476.52 �5423.01 �5417.67 15.07789

Bold represents DEA06 is compared with other results.
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model which characterizes the dynamic response of the

structure subject to a known dynamic force, the unknown

parameters of the dynamic loads can be identified by mini-

mizing the difference between the computed analytical re-

sponses and the actually measured responses. Unfortunately,

a problem arising from the optimization-based formulation of

the load identification process is that the results can be non-

linear and multi-modal. Differential information (i.e., gradi-

ents) or initial information (i.e., starting values of the un-

known parameters to be identified) required by traditional

optimization approaches may be difficult to calculate and
time-consuming. Therefore, gradient-free algorithms with

global exploration capabilities may be explored to overcome

these difficulties.

The impact load identification on a simply supported

elastic beam has been chosen as a case study given that de-

gree of complexity involved is not so high as to jeopardize this

effort. The problem has been formalized as a single-objective

optimization problem in Wang and Chiu (2003) and has been

solved by means of a standard GA in Hashemi and

Kargarnovin (2007). The experimental results obtained from

a laboratory test can be easily reproduced, given its simplicity.

https://doi.org/10.1016/j.jtte.2018.09.002
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Table 14 e Physical and geometrical properties of the
beam.

Property Value

Length of the beam (m) 3

Base of the transversal section (m) 0.04

Width of the transversal section (m) 0.02

Thickness of the transversal section (m) 0.002

Density (aluminum) (kg/m3) 2700

Elastic modulus (aluminum) (N/m2) 70 � 109

Damping ratio (lightly damped beam) (%) 1

Sensor position (m) 2.55

Exact impact force position (m) 0.85

Exact impact force magnitude (N) 5.00
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6.1. Problem formulation

In considering a uniform, simply supported beam with linear

elastic behavior, the layout of the system is represented in

Fig. 3 in which l is the length of the beam. It represents a

widespread structural scheme for bridge structures (Fiore

et al., 2012, 2013b).

The beam is subject to an impact force, P, acting on x ¼ xP

and the dynamic response is measured in x ¼ xS with an

appropriate sensor. Under the Euler-Bernoulli hypothesis, the

equation of the motion y(x,t) of the beam solves the following

differential equations.

EI
v4yðx; tÞ

vx4
þ v

vt
Cyðx; tÞ þ rA

v2yðx; tÞ
vt2

¼ PdðtÞd�x� xp
�

(16)

where E, C and r are, respectively, the elastic modulus, the

damping constant and the density of the beam, I and A are,

respectively, the moment of inertia and the area of the

transversal section, the symbol d($) is the Dirac's delta. The

right side of Eq. (16) represents an impact force, P, applied to

the abscissa xp. d(t) is functional to the instantaneous load,

while d(x-xp) is its application at a single point.

The necessary and sufficient boundary conditions are

8><
>:

yðx ¼ 0; tÞ ¼ 0

v2yðx; tÞ
vx2

����
x¼0

¼ 0
(17)

8><
>:

yðx ¼ l; tÞ ¼ 0

v2yðx; tÞ
vx2

����
x¼l

¼ 0
(18)

According to the above presentation, the impact load iden-

tification can be formalized as an inverse problem based on Eq.

(16). It is assumed that the displacement response of the beam

subject to the unknown impact force is measured at x ¼ xS,

namely ym(xS, tsample) in which tsample is the sampling instant

time. Moreover, ye(xS,tsamplejx) is the estimated response from

the forward model given by Eq. (16). Vector x collects the load

parameters, that is x ¼(xP,P). Thus, the impact load

identification problem is formalized as a single-objective

optimization problem, Eq. (1), whose OF is

fðxÞ ¼

PNsample

sample¼1

�
ym
�
xS; tsample

�� ye
�
xS; tsample

��x��2
Nsample

(19)
Fig. 3 e General layout of the impact force prediction

problem for a simply supported beam.
where Nsample is the total length of the records. The final

optimal solution, x*, of the optimization problem provides the

impact location and its magnitude.
6.2. Numerical application

Initially, a simulated experiment was conducted with the aim

of verifying the correctness of the adopted optimization-based

identification strategy and to assess the effectiveness of the

proposed DEAs. The physical properties of the investigated

beam, aswell as the “true values” for both impact force position

and magnitude, are listed in Table 14. The impact load

prediction problem is solved fifty times by using the five

standard DEAs (DEA01-DEA05), four PSOAs (PSOA01-PSOA04),

and the modified DEAs proposed in this study (DEA06/DEA07).

The lower and the upper bounds for this simulated

experiments are xl ¼ (0.00 m, 0.1 N) and xu ¼ (3.00 m, 10 N),

respectively. The statistical results are listed in Table 15 and a

presentation of the convergence histories of the proposed

DEA06 is represented in Fig. 4. It can be observed that the

best optimizer is DEA02, but the proposed DEA06 provides

more constant identification results. In fact, the latter's
statistics in terms of max/mean/std values are the best (Table

14). In the search for a compromise between accuracy and

algorithm reliability, the DEA06 proves to be the most

adequate optimizer for this application. It is interesting to

observe that this result is coherent with those previously

obtained for the optimization of some bi-dimensional

benchmark test functions.
Table 15 e Statistical results for the impact force
identification problem.

Algorithm Best Worst Mean Std

DEA01 0.0033 0.3342 0.0547 0.0589

DEA02 8.3501e-6 0.0016 2.1798e-4 3.3147e-4

DEA03 0.0034 0.9286 0.0819 0.1361

DEA04 0.0016 0.1323 0.0203 0.0230

DEA05 0.0079 0.9512 0.3189 0.2399

DEA06 9.1652e-05 0.0012 1.9092e-4 2.8798e-4

PSOA01 1.1850e-4 0.0125 0.0016 0.0019

PSOA02 2.9116e-4 0.0477 0.0109 0.0103

PSOA03 8.2832e-6 0.0113 0.0011 0.0019

PSOA04 0.0164 0.3233 0.1374 0.0722

Bold represents DEA06 is compared with other results.
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Fig. 4 e Convergence histories of the impact force prediction problem using DEA06. (a) Objective function. (b) Position. (c)

Magnitude.
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7. Experimental application

Evolutionary algorithms have shown remarkable perfor-

mances in solving several identification problems using noisy

signals without the use of pre-filtering techniques for noise

reduction. It has been recognized that said resistance against

noise contamination depends on the implicit parallelism of

these algorithms (Monti et al., 2010). This interesting feature

can be easily assessed experimentally. A simple, low-cost

laboratory test has been conducted with the aim of

validating the obtained results using real data. The layout of

the performed experiment is shown in Fig. 5. The beam is an

aluminum alloy element and a single accelerometer with
Fig. 5 e Experimental test.
MEMS technology is installed on it. Specifically, the dynamic

response is measured by a three-dimensional Kionix KXM52

accelerometer. The linear output range of this accelerometer

is ± 2g (g is the gravity acceleration), its sensitivity is equal

to 660 mv/g and the noise level is 35 mg/√Hz for two axes

and 65 mg/√Hz for the third axis. By limiting the frequency

band to 500 Hz, the RMS noise intensity is respectively 0.989

and 1.838 mg. A simple hammer is adopted to reproduce an

impact force acting on the beam and the vertical

accelerations are resolved by adopting a sampling frequency

equal to 1000 Hz. The elaboration unit is a laptop in which a

MATLAB SIMULINK program carries out a realtime

visualization of the recorded accelerations, as well as the

corresponding fast Fourier transforms (FFTs) which are very

useful for an instantaneous control of the experiment

(Leonardis, 2009). Once acquirement of the dynamic

response has terminated, the identification problem can be
Fig. 6 e Comparison between experimental and predicted

Fourier transforms.
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solved by using several evolutionary algorithms. The DEA06

was adopted for this experimental application based on the

above numerical simulations. The solution of the impact

load prediction problem by using the proposed DEA06 shows

that the experimental and predicted FFTs match well (Fig. 6).

Therefore, the final identification obtained can be

considered very satisfactory.
8. Conclusions

The present study dealt with the potentialities of DEA, a sto-

chastic, population-based global optimization method. New

schemes for both mutation and crossover operators were

proposed at the aim to improve the performances of the

standard DEA. In order to prove the efficiency of the new op-

erators, an extensive numerical investigation was firstly car-

ried out, by comparing the corresponding optimization results

with thirteen well known benchmark test functions. The re-

sults showed that proposed DEA06 is the best competitor for

the resolution of the Rastrigin problem and Schwefel problem.

In both these cases, only the proposed operators enable us to

find the optimal solutions. On the contrary, standard DEAs

and all the PSOAs are not able to achieve the optimal region of

the search space. In other benchmark test functions, DEA06

has not statistically significant difference with standard DEAs

whereas in other problems DEA06 has been statistically sig-

nificant differences and its performances obtained are good

enough, but not the best. Successively the good performances

of the proposed DEAs were confirmed by a numerical appli-

cation regarding a simply supported beam, also experimen-

tally validated. Also in this case the proposed DEA06

performed well because the final identification obtained can

be considered very satisfactory.
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Appendix

(1) List of DEAs
� DEA01 e A DEA whose mutation operator is given by

Eq. (2) and with binomial crossover Eq. (7).

� DEA02 e A DEA whose mutation operator is given by

Eq. (3) and with binomial crossover Eq. (7).

� DEA03 e A DEA whose mutation operator is given by

Eq. (4) and with binomial crossover Eq. (7).

� DEA04 e A DEA whose mutation operator is given by

Eq. (5) and with binomial crossover Eq. (7).
� DEA05 e A DEA whose mutation operator is given by

Eq. (6) and with binomial crossover Eq. (7).
Based on the mutation operators e and on the crossover

operator Eq. (15), the following modified DEAs have been

analyzed:

� DEA06 e A DEAwhose mutation operator is given by e and

whose crossover operator is given by Eq. (15).

The numerical values for the involved control parameters

are the following: F1¼ 0.50, F2¼ 0.50 and pc¼ 0.50. They are the

same for any generation and for any DEA.

(2) List of PSOA
� PSOA01 e A PSOA with inertia weight, social and

cognitive factors. A linearly decreasing inertia weight

has been adopted in which the initial value and the

final one are respectively 0.9 and 0.4. Moreover, line-

arly generation-dependentmodels have been adopted

for the cognitive factor with values between 2.5 and

0.5 as well as, with values between 0.5 and 2.5.

� PSOA02 e A PSOA with constriction factor. Using this

optimizer, the cognitive and the social factors are

assumed both equal to 2.05 (constant value).

� PSOA03 e A PSOA based on the use of chaotic maps

(so-called chaotic PSOA). A Logistic map is used for

the inertia weight but scaled in the range 0.4e0.9. The

Zaslavskii map is adopted for both cognitive and so-

cial factors but scaled in the range 0.5e2.5.

� PSOA04 e A PSOA with passive congregation. The

inertia weight linearly decreases between 0.9 and 0.7.

The cognitive factor, the passive congregation factor

and the social are equal to 0.5 (constant value).
(3) Benchmark test functions
� Ackley
fðxÞ ¼ � 20 exp

0
@� 0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
j¼1

x2
j

vuut
1
A� xp

0
@1
n

Xn
j¼1

cos
�
2pxj

�1A
þ 20þ e

� 32 � xj � 32; x* ¼ f0;/;0g; fðx*Þ ¼ 0

� Branin

fðxÞ ¼
�
x3 � 5:1

4p2
x2
1 þ

5
p
x1 � 6

	2

þ 10

�
1� 1

8p

	
cosðx1Þ þ 10

�5 � x1 � 10;0 � x2 � 15

x* ¼ f�p; 12:275g∧fp; 2:275g∧f9:42478;2:475g
fðx*Þ ¼ 0:397887

� Cosine Mixture

fðxÞ ¼
Xn
j¼1

x2
j � 0:1

Xn
j¼1

cos
�
5pxj

�
� 1 � xj � 1; x* ¼ f0;/; 0g; fðx*Þ ¼ �0:1n

� Goldstein and Price
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0 � xi � 10; x* ¼ f9:039;8:668g; fðx*Þ ¼ �18:5547

� Haupt-2

fðxÞ ¼ �e�0:2
ffiffiffiffiffiffiffiffiffiffi
x2
1
þx2

2

p
þ3ðcosð2x1Þþsinð2x2ÞÞ
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� Rastrigin
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x2
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� Shaffer
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