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Abstract

This thesis is focused on numerical analysis of wind turbines wakes. The flow over

wind turbines is simulated performing Large Eddy Simulations (LES), where the rotor

blades are modeled using the Actuator Line Method, whereas the Immersed Boundary

Method is employed for tower and nacelle. The effect of tower and nacelle on wake

dynamics is investigated by means of Proper Orthogonal Decomposition (POD) of

numerical velocity data produced by two LES of a model wind turbine: one accounts

only for the blades effect; the other includes also tower and nacelle. The turbine

operates at Reynolds number Re = 6.3 × 105 and tip-speed ratio λ = 3. The two

simulations are analysed and compared in terms of mean flow fields and POD modes

that mainly characterize the wake dynamics. In the rotor-only case, the most ener-

getic modes in the near wake are composed of high-frequency tip and root vortices,

whereas in the far wake, low-frequency modes, mostly located in the wake shear layer

region, are found. When tower and nacelle are included, low-frequency POD modes

are present already in the near wake, linked to the von Karman vortices shed by the

tower. These modes interact non linearly with the tip vortices in the far wake, gener-

ating new low-frequency POD modes, some of them lying in the frequency range of

wake meandering. An analysis of the mean kinetic energy entrainment of each POD

mode shows that tip vortices sustain the wake mean shear, whereas low-frequency

modes contribute to wake recovery. This explains why tower and nacelle induce a

faster wake recovery.

The proper orthogonal decomposition, despite being able to isolate energetic flow

structures in the wake, does not provide any physical information on their origin.

In an attempt to determine the physical mechanisms responsible for the emergence

of these flow structures, the numerical data obtained without tower and nacelle are

ii



further analyzed performing two-dimensional modal and non-modal stability analysis

of the turbulent mean flow developing downstream of a wind turbine rotor. Linear

stability and optimal forcing analyses have been carried out in different cross-sections

sufficiently far from the rotor, where nonparallel effects are rather weak. The fre-

quency content and spatial structure of the most amplified perturbations are com-

pared with that of the most energetic coherent structures recovered by POD analysis.

Results show that most unstable modes computed relatively close to the rotor resem-

ble large-scale oscillations isolated by the POD. Moving downstream, this matching is

no longer verified; however, restricting the stability analysis to waves having stream-

wise wavenumber consistent with that of the POD analysis, we find three slightly

stable eigenmodes bearing a strong resemblance with the most energetic POD modes.

The analyses described above are based on a model wind turbine; however utility-scale

wind turbines operate at far larger Reynolds number, of the order of 108 and higher

tip-speed ratio. These differences can lead to a different wake dynamics. For this

reason a reference utility-scale wind turbine (i.e. the NREL 5-MW) is simulated and

analyzed using Proper Orthogonal Decomposition and Dynamic Mode Decomposition

(DMD) in its sparsity promoting variant, which selects a limited subset of dynami-

cally relevant modes. In contrast to the model wind turbine, the wake meanflow

is, in this case, essentially aligned with the rotor axis and axisymmetric, suggesting

a weaker impact of the tower. The coherent structures isolated by the two modal-

decomposition techniques are similar to those observed for the model turbine, but a

weaker interaction of tower’s wake and tip vortices is confirmed and a faster break-

down of the latter is reported. Furthermore, POD and DMD of the flow field provide

rather different results. Large-scale, low-frequency oscillations are not present among

the most energetic POD modes. On the contrary, sparsity-promoting dynamic mode

decomposition suggests that large-scale structures, developing far from the rotor, are

relevant to the flow dynamics, despite their energetic content is not sufficiently high

to overcome that of the tip vortices and their harmonics, which are among the first
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POD modes. This result demonstrates that while Proper Orthogonal Decomposition

is efficient at identifying coherent structures, it may not be suitable for building a

low-dimensional model of a wind turbine wake, while sparsity-promoting DMD can

be a better choice.
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Chapter 1

Introduction

1.1 Historical background

Wind has been a source of power for humankind for millenia. The first historical use

of wind as a power source was to propel sailing ships and boats, with the first recorded

proofs belonging to the Egyptians and dating back to 3200 B.C.. Later, another wind-

powered tool of fundamental importance developed: the windmill. The first reliable

written account of the use of windmills dates to 10th century, and describes how

Persian, in the region of Sistan, exploited the wind power to drive mills and pump

water for irrigation [95]. Persian windmills were vertical-axis wind turbines consisting

of a vertical shaft connected to a spoked reel with 6 to 12 upright ribs, each covered

with cloth to form separate sails. However, Persian windmills never came into use

into northern Europe, where, instead, another kind of windmill became widespread

from the twelfth century. The european design of windmills was characterized by the

horizontal axis of rotation with the rotor facing the wind, which provided a larger

efficiency than its counterpart with vertical axis rotor. In the late 19th and early 20th

centuries, the conversion of wind energy to electrical energy was conceived almost

simultaneously in multiple place. In the same years the advent and development of

airplanes gave rise to a growing interest in aerodynamics research, which strongly

1



1. Introduction 2

contributed to the development of wind turbines. Professor Albert Betz and other

aerodynamicists, in those years laid the foundation for wind energy science. In the

following years different wind-turbine designs developed; the most seminal, among

these, for the development of modern wind industry was the so-called "Danish design".

The latter owes its origin to Johannes Juul, who built in 1957 a cost-effective and

very robust three-bladed horizontal axis wind turbine, equipped with an asynchronous

generator and connected directly to the grid (see Figure 1.1). However, about 30 years

had to pass before wind energy could gain visibility as a commercial power generation,

due to the 1973 oil crisis. The economical and technological growth of wind energy

lasted until the oil price rose fell again in 1980. As the 21th century began fossil fuels

prices were still low, nevertheless concerns about fossil fuels depletion and global

warming rekindled interest in renewable energy technologies, which experienced a

tremendous growth in the last 20 years, making wind energy competitive with respect

to fuel-based energy.

1.2 Motivation

In order to limit the negative impact of energy production by fossil fuels on the

environment and climate equilibrium, in the upcoming years a larger fraction of energy

demand must be satisfied by renewable sources. In 2018, 80% of the global energy

consumption has been provided by fossil fuels (coal, oil and gas) [44]. Moreover, world

energy consumption is growing, especially driven by some emerging countries: global

energy demand increased by 2.1% in 2017 [43] and 2.3% in 2018 [44], and it is expected

about to double by 2030 [14]. The energy production from renewable sources increased

by 4% in 2018 [44], accounting for almost one-quarter of global energy demand growth.

Wind energy contributed for about 30% to this increment and is expected to be one

of the key technologies for clean energy production in the future. In fact, renewable

power capacity is expected to expand by 50% between 2019 and 2024 [79], onshore
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Figure 1.1: The three-bladed wind turbine build by J. Juul in 1957 near Gedser (Zealand,
Denmark). Juul’s turbine established the so-called "Danish design" which was adopted by
manufacturers around the globe as reference for the development of modern wind turbines.
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Figure 1.2: Numerical simulation of the Invenergy Vantage wind farm (located in the
Washington state, USA) in complex terrain [111]. Color contours of the time-averaged
downwind velocity on a plane parallel to and located at zh = 80m above the ground.

wind energy production representing one-quarter of this growth. Achieving such a

target requires the design and installation of new large wind farms, constituted of up

to hundreds of turbines, and the upgrade of existing ones exploiting new technologies

for improving efficiency and reliability. The performance of wind farms are closely

related to the dynamics of the atmospheric boundary layer and therefore to mesoscale

meteorological processes [87, 86], as well as landscape characteristics [74, 41] and the

design of the farms themselves [110, 94]. When clustered in large farms, a great part

of the wind turbines operates in the wake of upwind turbines, as can be observed

in Figure 1.2. The velocity deficit and the high turbulence level of the incoming

flow induces power losses and fatigue blade loading [9, 84, 101]. For this reason,

understanding the dynamics of wind turbine wakes is fundamental for the design

and optimization of wind turbines and farms, where, limiting the wake losses, is,

indeed, one of the key issues. However, this is a challenging task due to the multi-

scale nature of atmospheric turbulence spreading over a wide range of spatial scales

ranging from millimeters, corresponding to the Kolmogorov turbulence length scale,

influencing the flow past the blade airfoils, to thousands of kilometers, linked to the

horizontal length scale of the vortices in the atmosphere, influencing the interaction
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between the atmospheric boundary layer and large wind farms [78]. The wind energy

research community is indeed engaged in the study of a variety of fluid dynamics

topics covering all the length scales involved in wind energy technology and their

interaction.

1.3 Wake dynamics and coherent structures

As mentioned above, the study of wind turbine wakes is of fundamental importance

in the context of wind farms, where a large number of turbines can be affected by

the wake of upstream turbines. In wakes produced by horizontal-axis wind turbines

two regions are typically recognized: the near wake and the far wake [106]. The near

wake is the region just behind the rotor where the dynamics of the flow is determined

by the geometry and working conditions of the rotor itself, namely, by the number of

blades, blade aerodynamics, tip vortices, rotational speed. The far wake is the region

beyond the near wake, where the structures linked to the bladesâĂŹ aerodynamics

are no longer visible and the flow is dominated by convection and turbulence diffu-

sion. The latter region is also reported to show large-scale low-frequency oscillation

referred to as wake meandering [66], the origin of the which still being a matter of

scientific debate [63, 48, 52]. In order to decrease losses due to wakes and maximize

power harvesting, different control strategies have been developed at the farm level,

where coupling between the turbines is taken into account. These include torque gain

control, pitch and yaw and tilt angle control [20, 54, 70, 23, 22]. In any case a fast

wake recovery is desired, which is closely related to the turbulence intensity of the

flow, and consequently to atmospheric stability. It has been shown that during day-

time (unstable regime) wind turbine wakes experience a faster recovery with respect

to night-time (stable regime), being the former characterized by a higher turbulence

intensity [78]. Therefore stable atmospheric conditions are the most critical with re-

gard to power losses due to wake effects, where turbulence is mainly produced by the
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Figure 1.3: Dye visualization of a single tip-vortex helix subject to pairing instability. [59]

turbines. In the near wake, coherent helicoidal vortex structures shed from the tip and

the root of the rotor blades undergo instability mechanisms and break down forming

small-scale turbulent structures (Figure 1.3). At the center of the near wake there is

the so-called hub vortex, a vortical structure elongated in the streamwise direction

and characterized by a single-helix counter-winding periodic instability, which may

interact with the tip vortices triggering the breakdown of the vortex system [71, 52].

The breakdown of coherent vortices shed by the rotor defines qualitatively the bound-

ary between the near and the far wake, which is, therefore characterized by a higher

turbulence intensity promoting the entrainment of the outer flow and consequently

the wake recovery [48, 1].

Although many studies have essentially focused on the vortical dynamics induced by

the rotor, the tower and nacelle are now believed to have a fundamental role in the

breakdown of the vortices shed by the rotor and on the consequent wake recovery. The

wake of the tower appears to promote the breakdown of the tip vortices, increasing

the mean kinetic energy flux into the wake [85]. Similarly to background turbulence,

tower-wake interactions also induce an asymmetry of the wake deficit, leading to a

decreased efficiency and increased blade stress levels for a turbine placed downstream

[76]. Moreover, the role of the nacelle on the origin of wake meandering in the near

field of a single turbine has been recently investigated. The helical hub vortex that

forms behind the turbine nacelle interacts with the tip vortices while expanding radi-

ally, leading to turbulent coherent structures in the far wake that can be connected to

the wake meandering phenomenon [29]. For this reason, incorporating the presence of
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the nacelle in wind farm simulations is crucial for accurately predicting the dynamics

of wake meandering as well as the loads on downwind turbines [30]. Nevertheless,

most of these studies including the effect of tower and nacelle focus on the features of

the mean flow only, failing to capture unsteady phenomena due to the interaction of

coherent structures with different frequencies and structures, which may have a strong

impact on wake entrainment and recovery. An analysis of the influence of both tower

and nacelle on the main frequencies and spatial features of the coherent structures

developing in the turbine wake, which is at the moment still lacking, will be crucial

to determine the impact of these components of a wind turbine on the entrainment

and recovery of its wake and represents an objective of the present work.

One of the most widely used methods for extracting coherent structures from flow

data is the Proper Orthogonal Decomposition (POD) [62, 96, 13]. POD allows one

to find a finite set of deterministic modes whose linear combination optimally recon-

structs the energy of a set of stochastic flow data. Such a technique has been recently

introduced in the study of the flow through wind turbines and wind farms. Ander-

sen et al.[4] simulated the turbulence in the interior of a wind farm using large eddy

simulation and the actuator line method. The flow was reconstructed by applying

the POD to the velocity field extracted in a plane perpendicular to the streamwise

direction. VerHulst & Meneveau[105] proposed one of the first applications of the

three-dimensional POD analysis to the study of a wind farm. They classified the

resulting POD modes into four categories according to their general structure and

determined how many of these POD modes are needed to capture a large fraction of

the turbulent kinetic energy of the flow. Sarmast et al.[89] focused on the stability

properties of the tip vortices and the mechanisms leading to vortex pairing by means

of large eddy simulation (LES), continuing the work previously performed by Ivanell

et al.[49]. The flow was perturbed by using low-amplitude excitations near the tip

of the blades and the POD technique was employed to extract the unstable modes,

demonstrating a prominence of the mutual inductance phenomenon. Also Bastine et
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al.[12] applied the two-dimensional POD to the LES data of the wake of a wind tur-

bine, considering a more realistic incoming flow representing a turbulent atmospheric

boundary layer (ABL) in the case of a neutrally stratified atmosphere. Hamilton

et al.[35, 37] investigated wake interaction and recovery dynamics in different wind

turbine array configurations using the POD applied to velocity measurements. Result-

ing modes were used for constructing low-dimensional models of turbulence statistics.

Double POD applied on a similar dataset [36] has indicated that the structure of the

wake can be described using a small subset of the original mode basis, providing a

total reduction to 0.015% of the degrees of freedom of the wind turbine wake. POD

has been also used to extract coherent structures of the thermally stratified wind

turbine array boundary layer [2], showing that, in the unstable and neutrally strat-

ified regimes, the structures related to the atmospheric boundary-layer flow, which

are beneficial for wake recovery, dominate over those introduced by the presence of

the turbines. The effect of the spacing between wind turbines on POD modes has

been assessed by Ali et al. [3], showing that modifying the streamwise and spanwise

spacing leads to changes in the background structure of the turbulence as well as on

power producted. Numerous other works focused on the wake of a single wind turbine.

Sorensen et al.[98] applied the POD on the LES results for a single-turbine wake ana-

lyzing the flow field in planes behind the rotor. The spatial development of the POD

modes was employed to describe the breakdown process in the transition region from

the near wake to the far wake. Bastine et al.[11] applied the POD technique to LES

data, extracted in one plane in the wake, to investigate a new stochastic modeling

approach for the wake of a wind turbine. They showed that approximately six POD

modes are sufficient to capture the load dynamics on large temporal scales. Debnath

et al.[26] studied the dynamics of wind turbine wakes and instabilities of helicoidal

tip vortices using three-dimensional POD. Snapshots of the velocity field obtained

from the LES of an isolated wind turbine were considered as dataset. The dominant

wake structures were selected for the formulation of a reduced order model.
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The present work aims at assessing the effect of tower and nacelle on the dynamics

of coherent structures in the wake of wind turbines using large eddy simulations and

POD analysis.

However, despite extracting the most energetic flow structures, POD analysis does

not provide in general a deep insight on the physical origin of coherent structures,

which might be due to modal or non-modal instability mechanisms. Linear stability

analysis of time-averaged mean flows has proved to be a powerful tool able to predict

low-frequency coherent oscillations in different flow configurations [8, 33, 102]. Fol-

lowing this approach, by means of a ’local’, one-dimensional analysis carried out in

the vicinity of the rotor, Iungo et al.[47] found highly unstable eigenmodes with tem-

poral frequency typical of the wake meandering and associated with small azimuthal

wavenumbers. A similar one-dimensional analysis has been then performed by Iungo

et al.[107] adding different eddy viscosity models to take into account the turbulent

diffusion of perturbations. This analysis provided eigenspectra with maximum growth

rate at temporal and azimuthal wavenumbers corresponding to those typical of the

wake meandering phenomenon. The influence of turbulence intensity and blade aero-

dynamics on the hub-vortex instability frequencies and related flow structures has

been studied by Ashton et al.[6, 5] using a model mean flow. Viola et al.[108] have

carried out a two-dimensional stability analysis in the cross-planes close to the rotor

of a model wind turbine immersed in an atmospheric boundary layer, finding once

again unstable modes with frequencies typical of the hub-vortex instability. More re-

cently, Ferrer et al.[27] used stability and sensitivity analysis on a wall-parallel plane

passing through the hub center of a wind turbine rotor to design a passive way to

control the primary wake destabilization at low Reynolds number. Restraining the

analysis to a two-dimensional configuration, they showed that adding a localized con-

trol force in flow regions identified by the sensitivity analysis is able to stabilize the

wake. Although based on a simplified flow configuration at low Reynolds number, this

work indicates that, for controlling the wake, one should modify the velocity gradient
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close to the turbine in a non trivial way, as predicted by sensitivity analysis. Linear

stability eigenmodes, together with their adjoint counterparts [31], are thus able to

provide valuable information on the shape and location of active or passive means to

control the spatial structure, recovery rate, and frequency content of the wake behind

a wind turbine.

Despite the importance of linear stability analysis for the identification and control

of coherent structures, only a few stability studies, mostly focused on the hub-vortex

instability, have been carried out on this peculiar flow. A detailed analysis of the

main flow features found by modal and non-modal instability methods, and on their

relevance with respect to the coherent structures that populate the turbulent flow, is

still lacking in the literature. In fact, apart from the hub-vortex instability recovered

by Iungo et al. in the immediate vicinity of the rotor, the correspondence of other

linear instabilities to energetic coherent structures extending towards the far wake

region has not been investigated yet. Moreover, the possible relevance of non-modal

stability mechanisms, able to provide a strong amplification of some particular per-

turbations, in the development of coherent structures in wind turbine wakes, has not

been assessed yet. Non-modal mechanisms such as the amplification of harmonic

forcing at particularly receptive frequencies, can have a strong relevance in the de-

velopment of coherent structures within the wake. In fact, non-modal amplification

mechanisms may allow a fast transfer of energy from the meanflow to some waves

having particularly receptive frequencies, allowing the displacing of energy among

different regions of the wake and strongly affecting wake recovery. The capability of

resolvent (optimal forcing) analysis to identify the most energetic flow structures in

asymptotically stable flows has been recently proven for different flow configurations

[61, 32, 92], and the importance of reynolds stresses modeling and forcing statistics

has been highlighted [68, 103]. For these reasons, in the present thesis, we aim at

investigating in detail the modal and non-modal stability of the turbulent meanflow

developing downstream of a wind turbine rotor.
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Low-dimensional models based on the modal decomposition of complex flows are of-

ten sought, also in the wind-energy field. The orthogonality of the resulting modes

makes the POD the commonly-chosen basis for the formulation of a Reduced-Order

Model (ROM). Very recently, Hamilton et al.[38] applied POD to LES data in order

to construct a ROM of turbine wakes using polynomial reconstruction able to quan-

tify the interaction and evaluation of POD modes. Fortes-Plaza et al.[28] realized a

ROM base on POD of LES data of yaw-controlled wake-interacting wind turbines.

However the most-energetic POD modes may not be dynamically relevant, therefore

the selection of a low-dimensional basis for the realization of a reduced-order model is

not trivial [45]. Another data-driven modal-decomposition technique that gained pop-

ularity in the last ten years is the Dynamic Mode Decomposition (DMD), introduced

by Schmid in 2010 [90]. This technique finds eigenvalues and eigenvectors of a linear

operator approximating the nonlinear dynamics embedded in the data sequence and

it has been recently exploited for the formulation of ROMs of wind-turbine-relevant

flows. Iungo et al. [46] realized a reduced-order model of wind turbine wakes, based

on the dynamic mode decomposition of LES flow data of wind turbines operating

under different operational regimes. Le Clainche et al. [57] used the dynamic mode

decomposition of Lidar measurements to build a reduced-order model of the wind ve-

locity upstream of an horizontal-axis wind turbine. DMD modes are usually ranked

according to their amplitude at the first snapshot of the data-sequence. Such a crite-

rion for the selection of a limited subset of dynamic modes can lead to poor quality of

approximation of numerically generated snapshots and, therefore, to poor predictive

capability of low-dimensional models. For this reason different variants of the stan-

dard algorithm, aiming at extracting a limited subset of flow features that optimally

approximate the original data sequence, have been developed, such as the Optimized

DMD [17] or the Sparsity-Promoting DMD [51]. The latter technique is employed in

the present thesis to analyze LES data of the wake produced by a utility-scale wind

turbine. The results are also compared with the proper orthogonal decomposition of
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the same dataset.

1.4 Thesis structure

The present thesis focuses on numerical modeling and analysis of coherent structures

characterizing wind turbine wakes. Chapter 2 provides the numerical methods em-

ployed for simulations and analyses. In chapter 3 the numerically-simulated flow in

the presence and absence of tower and nacelle has been analyzed using the proper

orthogonal decomposition technique which allowed us to identify the most relevant

coherent structures. The outcomes of the POD analysis in the two different configura-

tions (rotor-only and complete turbine) are compared in order to understand the role

of tower and nacelle in wake recovery and meandering. Chapter 4 provides a bilocal

stability and resolvent analysis of the wake meanflow obtained in the absence of tower

and nacelle. The capability of linear meanflow analysis to model coherent structures

arising in a wind turbine wake is assessed by comparison with proper orthogonal

decomposition. In chapter 5 the wake produced by a utility-scale wind turbine is ana-

lyzed using the proper orthogonal decomposition and the sparsity-promoting dynamic

mode decomposition. Results are compared and the main differences are highlighted

in order to evaluate which of the two methods is more suitable for dimensionaly

reduction. Concluding remarks are drawn in chapter 6.



Chapter 2

Methodology

2.1 Governing equations

The flow developing around wind turbines can be assumed to be incompressible, since

even at the blades’ tip the Mach number is still farly low (Ma ≤ 0.25). Therefore the

numerical simulations considered in the present thesis are based on the incompressible

Navier-Stokes equations together with the continuity constraint,

∂Ui

∂t
+

∂UiUj

∂xj
= −1

ρ

∂P

∂xi
+ ν

∂2Ui

∂xj∂xj
+ Fi, (2.1a)

∂Ui

∂xi
= 0. (2.1b)

where Ui and Fi are the velocity and the generic force per unit mass along the i

direction, P is the pressure, ρ the fluid constant density, ν the kinematic viscosity,

xi the ith spatial coordinate and t the time. The above equations (2.1b) can be

rewritten into a nondimensional form by choosing reference length and velocity scales,

denoted by L and U0. The reference scales are chosen by convention and represent

a characteristic dimension and velocity of the problem under study. In the context

of wind turbines the incoming wind speed U∞ and the rotor diameter D are usually

chosen as reference velocity and length. The nondimensionalization of the Navier-

13
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Stokes equations leads to the following nondimensional equations:

∂U∗

i

∂t∗
+

∂U∗

i U
∗

j

∂x∗

j

= −∂P ∗

∂x∗

i

+
1

Re

∂2U∗

i

∂x∗

j∂x
∗

j

+ F ∗

i , (2.2a)

∂U∗

i

∂x∗

i

= 0, (2.2b)

where the nondimensional physical variables, defined in (2.3), are marked with an

asterisk (∗) and Re is the Reynolds number, defined as Re = U0L/ν.

U∗

i =
Ui

U0
P∗ =

P

ρU2
0

F ∗

i =
FiL

U2
0

x∗

i =
xi

L
t∗ =

tL

U0
(2.3)

The Reynolds number is the only nondimensional parameter which appears in the

governing equations. Therefore, according to the dynamic similarity principle, two

geometrically-similar flow configurations flows, if characterized by the same Reynolds

number, meet also dynamic similarity. This principle is very useful and widely lever-

aged in experiments and computations. In the following sections the non-dimensional

form of the Navier-Stokes equations is used and, for the sake of clarity of notation, the

super-script "*" is omitted and lower-case letters are employed for nondimensional

variables.

2.2 Large-eddy simulation

It is known that, since Osborne Reynolds’ experiments, when the Reynolds number,

that is the ratio of inertial and viscous forces within a fluid, exceeds a certain value,

characteristic of the specific flow configuration, the flow becomes turbulent. Turbulent

flows are characterized by three-dimensional, time-dependent and chaotic velocity

fields u(x, t). Moreover a large range of time- and length-scales is present: the energy

is generally injected into the system at the largest scales (as large as the characteristic

length of the flow L), and is transferred across the scales to the smallest eddies

(η), where viscous dissipation stops the cascade. The simplest and more accurate
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approach to perform a turbulent-flow simulation is the Direct Numerical Simulation

(DNS), where the Navier-Stokes equations are solved directly, solving all the length-

and time-scales. However the range of scales to be resolved grows as the Reynolds

number increases, so that the DNS approach becomes inaccessible for high-Reynolds

number flows. Indeed, according to Kolmogorov hypotheses for homogeneous isotropic

turbulence, the ratio of the largest and the smallest eddy is defined as:

L

η
∝ Re3/4, (2.4)

and the ratio of the characteristic times of the eddies is:

T

tη
∝ Re1/2. (2.5)

The grid-spacing δ for a DNS should be as small as the smallest eddy η. Concurrently

the computational domain size ∆ has to be large enough to fit the largest scale L.

The ratio of the computational domain size and the grid spacing, which gives an es-

timate of the number of gridpoints in one direction, is proportional to Re3/4. Hence,

the total number of gridpoints for a three-dimensional computation grows as Re9/4.

Since the time-interval δT used to advance the solution is limited by considerations of

numerical stability (CFL condition), the total number of time-steps to span a given

time-interval is also proportional to Re3/4. Therefore the computational cost for a

DNS grows as Re3 and for this reason DNS applications are usually limited to flows

of low or moderate Reynolds number. For modern utility-scale wind turbines, the

Reynolds number Re = U∞D
ν

is of the order of 108, and the consequent computational

requirements for DNS clearly becomes far beyond reach even for the most powerful

modern supercomputers. For this reason, in the present thesis the Large Eddy Simu-

lation (LES) approach is adopted to study the wake behind wind turbines. This type

of computational approach solves in a direct way the large-scale turbulent structures,

with shape and wavelength depending on the geometry of the problem, that contain
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a large part of the energy of the flow. Whereas, smaller-scale turbulent fluctuations,

which do not depend on the geometry of the considered problem and have universal

character, are represented by simple models. The universality of the small scale is

implied in the local isotropy hypothesis of the Kolmogorov theory: if the directional

information of the large scales is lost as the energy passes down the cascade, it is

reasonable to assume that the statistics of the small-scale motions are in a sense uni-

versal, hence similar in every high-Reynolds-number turbulent flow. This assumption

holds better as far as the Reynolds number is larger, since the scale separation in-

creases. Modeling small-scales in LES allows to increase the size of the grid δ required

to simulate the flow, which results into a reduction of the overall number of gridpoints.

Therefore, LES allows one to reduce the computational cost with respect to Direct

Numerical Simulation (DNS), achieving at the same time a much higher accuracy

with respect to the Reynolds-averaged Navier-Stokes equations (RANS), especially

for flows where large-scale motions are significant, such as flows over bluff bodies [77].

Large eddy simulations are based onto a low-pass filtering operation of the flow vari-

ables φ(x, t) which removes all the scales lower than a selected cut-off scale so that

the filtered variables can be resolved on a relatively coarse grid. The resolved part

φ(x, t) of a flow variable is then defined in physical space by the following relation:

φ(x, t) =

∫ +∞

−∞

∫ +∞

−∞

φ(ξ, t′)G(x− ξ, t− t′)dt′d3ξ, (2.6)

where the filter kernel G(x, t) is associated with the cutoff scales in space and time,

∆ and τc, respectively. The filter is required to meet some properties such as linearity,

conservation of constants and commutation with derivatives in order to be able to

manipulate the Navier-Stokes equations after applying a filter[83]. The residual field

is defined as:

φ′(x, t) = φ(x, t)− φ(x, t), (2.7)
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so that flow-variable field has the following decomposition:

φ(x, t) = φ(x, t) + φ′(x, t). (2.8)

LESs are carried out by solving the governing equations for the filtered non-dimensional

velocity, u, and pressure, p, derived by applying a filter on the Navier-Stokes equa-

tions for incompressible flows (2.2b):

∂ui

∂t
+

∂uiuj

∂xj
= − ∂p

∂xi
+

1

Re

∂2ui

∂xj∂xj
− ∂τij

∂xj
+ F i, (2.9a)

∂ui

∂xi
= 0. (2.9b)

The filtered Navier-Stokes equations (2.9a) are very similar to the non-filtered equa-

tion; the only exception is the presence of sub-grid scale (SGS) stress tensor τij in the

filtered equations, which represents the interaction between the large resolved and

sub-grid unresolved scales and needs to be modeled in order to obtain the closure of

the equations.

2.2.1 Sub-grid scale modeling

The SGS stress tensor is defined as:

τij = uiuj − uiuj, (2.10)

and its appearance in (2.9a) is due to the nonlinearity of the convective term. It can be

decomposed into an isotropic part, 1
3
δijτkk and an anisotropic part, τ rij = τij − 1

3
δijτkk.

The isotropic part is included in the modified filtered pressure p∗ = p+ 1
3
τkk, whereas

the anisotropic part is usually modeled following a linear eddy-viscosity approach.

This approach relates the residual stress to the filtered rate of strain, Sij =
1
2
(∂U i

∂xj
+
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∂Uj

∂xi
), according to the following equation,

τ rij = −2νrSij, (2.11)

where the proportionality constant νr is the eddy viscosity of residual motions. The

latter is, in turn, modeled using the Smagorinsky model as:

νr = l2sS = (Cs∆)2 S, (2.12)

where S is the characteristic filtered rate of strain, defined as S ≡ 2SijSij , and ls is

the Smagorinsky lenghtscale which is defined as the product between the Smagorinsky

constant Cs and the filter width ∆. The filter width is defined as the cube root of

the local cell volume. The Smagorinsky constant depends upon the type of flow and

usually ranges between Cs = 0.1− 0.2. In this work we set Cs = 0.09 on the basis of

previous works on wind turbines [21].

The model is local and computationally efficient, and it represents well the globally

dissipative nature of turbulence. On the other hand it has few important drawback:

(i) the Smagorinsky constant is flow-dependent, (ii) the model introduces an excessive

SGS dissipation in attached boundary layers, (iii) it allows only the forward energy

cascade, being the subgrid dissipation positive by construction, (iv) the SGS tensor

principal axes are parallel to those of the strain rate tensor and this is not the case

for many types of flows. However, the Smagorinsky model has been widely used in

the field on wind turbines, see, for instance, the work of Martinez-Tossas et al[64].

Ciri et al [21, 19] performed LES of the "Blind test 1" [56] and the "Blind test 4"

[10] using the Smagorinsky model varying the value of Cs, the Vreman, the WALE

and the σ− models. They indicated a weak dependence of the wake dynamics on the

particular subgrid-scale model, similarly to Sarlak et al[88] results. In the following

section, the overline used to denote LES resolved variables will be omitted and they

will be indicated by lower-case letters.
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Figure 2.1: Grid cell indicating the flow variables location.

2.3 Numerical method

The governing equations are solved using a central second-order finite-difference scheme

on a staggered Cartesian grid, with the velocities defined in the face centers and

the pressure in the cell center (Figure 2.1). The staggered arrangement produces

compact differential operators and realizes a strong coupling between pressure and

velocity, which prevents spurious checkerboard patterns in the pressure distribution.

For time-integration an hybrid low-storage third-order-accurate Runge-Kutta scheme

originally developed by Wray [109] is employed, in which the nonlinear advective term

ares treated explicitly and the linear diffusive terms implicitly . The scheme is said to

be low-storage because it requires the same memory storage of a second-order scheme,

while being third-order accurate.

The solution is advanced in time from t = tn to t = tn+1 using three substeps. The

solution for each substep l is computed according to the following equation:

ul+1
i = ul

i + ρl∆t RHSi(u
l) + γl∆t RHSi(u

l−1) l = {0, 1, 2}, (2.13)

where the substep l = 0 corresponds to the timestep n (ul=0
i = un

i ), whereas the last

substep l = 2 corresponds to the timestep n + 1 (ul=2
i = un+1

i ). The terms RHS(u)
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indicate the right-hand side of the equations and include both linear and nonlinear

terms. The coefficients ρi and γi (2.14) can be obtained comparing the solution after

the three substeps with that obtained by a third-order Taylor expansion for un+1
i

centered at the time step n [72].

γ1 =
8

15
, γ2 =

5

12
, γ3 =

3

4
,

ρ1 = 0, ρ2 = −17

60
, ρ3 = − 5

12
,

α1 =
8

15
, α2 =

2

15
, α3 =

1

3
. (2.14)

As already mentioned, the linear terms of the Navier-Stokes equations are treated

implicitly using a Crank-Nicolson scheme centered at tl+1/2 for each substep. The

nonlinear and the SGS terms are instead treated explicitly. Therefore the filtered

discretized Navier Stokes equations read as follow:

ul+1
i − ul

i

∆t
+ γl Ni(u

l) + ρl Ni(u
l−1) = −αl

∂p∗

∂xi

∣∣∣∣
l+ 1

2

+ αlLjj

(
ul
i + ul+1

i

2

)
+

−γl
∂τ rij
∂xj

∣∣∣∣
l

− ρl
∂τ rij
∂xj

∣∣∣∣
l−1

+ αlF
l
i ,

(2.15)

where the term N(u) represent the advective nonlinear term, Ljj is the Laplacian

operator, p∗ and τ rij are the modified pressure and the deviatoric part of the SGS

stress tensor mentioned in section 2.2.1. The coefficient αl determines the size of the

substep αl∆t, and since the linear and non-linear terms must be at the same time-step,

αl = ρl+ γl. The equation (2.15) cannot be solved directly, because the pressure field

is known only at time t = tl. In order to overcome this difficulty, the fractional-step

method is employed [53]. The method consists in solving the equation (2.15) with

the pressure at time t = tl, obtaining a non-solenoidal velocity field ûi. The latter

is then projected onto a solenoidal space enforcing continuity. The pressure is lastly

updated at time t = tl+1. More precisely, the method develops as follow. Replacing
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ul+1
i with ûi and introducing the quantity ∆ui, the equation (2.15) becomes:

∆ui +
αl∆t

Re
Ljj

(
∆ui

2

)
=− αl∆t

∂p∗

∂xi

∣∣∣∣
l

− γl∆tNi(u
l)− ρl∆tNi(u

l−1) +
αl∆t

Re
Ljj(u

l
i)+

− γl∆t
∂τ rij
∂xj

∣∣∣∣
l

− ρl∆t
∂τ rij
∂xj

∣∣∣∣
l−1

+ αl∆tF l
i ,

(2.16)
(
δjj +

αl∆t

2Re
Ljj

)
∆ui = Hi, (2.17)

where Hi denotes all the known terms on the right-hand side. Due to the discretization

of spatial derivatives, the matrix on the left-hand side is an N×N sparse matrix with

7 diagonals, where N is the total number of gridpoints. Solving such a linear system,

with standard exact methods, would require a large amount of operations (O(N3)),

and could became unfeasible if a fine resolution is needed, which is often the case

when dealing with turbulent flow. For this reason the linear system in (2.17) is solved

with the approximate factorization technique as follow:

(
δ11 +

αl∆t

2Re
Ljj

)
∆u∗∗

i = Hi,

(
δ22 +

αl∆t

2Re
Ljj

)
∆u∗

i = U∗∗

i ,

(
δ33 +

αl∆t

2Re
Ljj

)
∆ui = u∗

i ,

(2.18)

where Lii represents the discrete second derivative operator in the i-th direction.

These operators are tri-diagonal matrices and can be inverted using the computa-

tionally efficient Thomas’ algorithm. This approximation of the Laplacian operator

is second-order accurate in time (∆t2). A scalar quantity φ (pseudo-pressure) is then

introduced in order to project the solution ûi onto a solenoidal space:

ul+1
i = ûi −∆t

∂φ

∂xi
. (2.19)
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Taking the divergence of the last equation and enforcing the continuity on U l+1, the

following Poisson equation is obtained for the scalar φ:

∂

∂xi

(
∂φ

∂xi

)
=

1

∆t

∂ûi

∂xi

. (2.20)

Lastly the pressure is updated as follow:

p∗|l+1 = p∗|l + φ− ∆t

2Re
Ljjφ. (2.21)

2.3.1 Stability and accuracy of the numerical scheme

The numerical method presented in the above section is known as the Hybrid third-

order Runge-Kutta scheme. It is second-order accurate in space and time, therefore

the actual advantage of the scheme is not the accuracy, but rather an increased

stability. In fact, due to the explicit treatment of the convective terms, the CFL [24]

condition applies:

C =
∆tui

∆xi
≤ Cmax, (2.22)

where C is called the Courant number. Tipically the stability of the numerical scheme

is guaranteed for Cmax = 1, which limits the distance a fluid particle travel in each

time integration to be less or equal to the mesh width. For the three-step Runge-

Kutta method, the stability condition is relaxed to:

Cmax ≤
√
3. (2.23)

An additional advantage offered by this method is that ρ1 = 0, which enables you to

restart the computation with the latest solution only.
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2.4 Turbine blades’ modeling

In the present thesis, rotor blades are simulated employing the Actuator Line Method

(ALM) similar to that proposed by Sørensen & Shen [99]. An external force per

unit volume is added in Navier-Stokes equations (the last term in equation (2.9a),

F i), which models the aerodynamic forces exerted by the turbine blades on the fluid.

The forces exerted by the blades on the fluid are computed on the basis of the two-

dimensional performance of blade’s airfoils at each radius, given by the lift, CL, and

drag, CD, coefficients. Rotor blades are treated as rotating rigid lines, which are

divided into discrete segments, consistently with the computational grid. For each

segment, the relative inflow velocity, urel, and the angle of attack, α, are evaluated,

as shown in figure 2.2. Then, knowing the fluid density, ρ, the chord, c, and the

twist-angle, φ, distributions along the blade radius, it is possible to estimate the lift

and drag forces per unit length as follows:

FL =
1

2
ρu2

relCL(α)cf, (2.24)

FD =
1

2
ρu2

relCD(α)cf. (2.25)

The coefficient f is a modified Prandtl correction factor [85], which is meant to account

for performance degradation due to tip and root vortices. The calculated aerodynamic

forces, FL and FD, are spread on areas perpendicular to each actuator line with the

following Gaussian distribution kernel:

η =
1

ǫ2π
exp

[
−
(rη
ǫ

)2
]
, (2.26)

where rη is the radial distance from the actuator line and ǫ is a parameter proportional

to the standard deviation of the distribution, which controls forces’ spreading. The

ALM is an attractive way for simulating rotor blades, because it is computationally

less expensive with respect to computing the detailed flow past the blade by a body-
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x

θ

u

Ω× r

w

Figure 2.2: Blade cross section: θ and x indicate the tangential and axial directions,
respectively, and Ω × r,u,w represent the projection in the blade-to-blade plane of the
blade speed and of the absolute and relative flow velocity, respectively.

fitted grid, especially when dealing with wind farms, where a large number of turbines

have to be simulated. However, it must be considered that the ALM presents some

limitations; for example, it cannot reproduce some flow features such as the effect

of the blade boundary-layer separation at high angle of attack. A particular care

should be taken in the setting of the velocity sampling used to compute angles and

forces, since it can significantly affect the overall performance of the turbine [18], thus

requiring a thorough validation.

2.5 Immersed boundary method

The tower and nacelle are described using the immersed boundary method (IBM)

[25, 72], which avoids the use of a body-fitted grid, reducing the computational cost

of the simulations. An approach similar to that proposed by Orlandi & Leonardi [72],

has been used. The method involves imposing a zero velocity, Ui = 0, in the grid

points inside the solid boundary. Then the metrics for the derivatives computation in

the Navier-Stokes equations are corrected using the distance between the "immersed"

body and points where the velocities are defined (see Figure 2.3). This method has

been already applied to a large number of flows, as described in the review article by
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∆x ∆y

Figure 2.3: Geometrical sketch of the staggered grid around a solid boundary (green curve).
The black markers lies within the fluid domain, whereas the red markers lies within the solid
domain. The velocity derivatives at the closest points around the boundary are computed
using the real distance to the body (∆x and ∆y) and not the grid spacing.
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Iaccarino & Verzicco [42], and validated in the case of wind turbines by Santoni et

al[85]. A comment about the particular choice of the IBM and the ALM for modeling

the tower and the blade airfoils, respectively, is in order. The IBM, as implemented

in the present paper, is very effective in imposing the impermeability condition and in

predicting a realistic value of the drag. However, computing accurately the pressure

distribution and the position of the separation point over the surface of streamlined

bodies at relatively high Reynolds numbers, as in the present case, requires a high-

resolution mesh with the size of the cell much smaller than the chord length. It is,

therefore, unfeasible to resolve in a three-dimensional computation the details of the

flow using the IBM. Instead, using the ALM, one describes the interaction between

the airfoil and the fluid by assigning a lift force (namely, a circulation), which is

obtained from lookup tables constructed by accurate simulations of the 2D steady

flow around the airfoil. Due to the high mesh resolution one can achieve at the blade

tip using a 2D airfoil model, the lift force employed in the ALM is more accurate

than that obtained by an "under-resolved" IBM. On the other hand, the IBM is quite

accurate when modeling the tower because its diameter is larger and it is possible to

have a sufficient number of points inside the body to enforce impermeability and to

provide an accurate evaluation of the drag. Instead, using the ALM, a forcing term

is added to the Navier-Stokes equations, which represents the time averaged overall

force experienced by the body. Such a forcing term is spread (with a Gaussian shape)

on a cylindrical region of the mesh which may not resemble the pressure distribution

of the "real body". As a consequence, at a generic point, the distributed force of the

ALM may not balance the momentum of the incoming flow and the impermeability

condition at the body surface cannot be satisfied accurately, as shown in Rocchio et

al [81]. Moreover, the ALM applied to the tower would provide a steady symmetric

wake. Attempts have been made to impose a force varying in time to provide an

oscillation of the tower wake (see Sarlak et al[88]). This approach would however

require assuming a priori the shedding frequency, which instead is not needed for the
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IBM. For these reasons, the approach used in the present paper combines the two

methods. When the dimensions of the solid body are sufficiently larger than the mesh

size (6-8 times in each direction), we use the IBM because it is more accurate than

the ALM. Otherwise, when the dimensions of the body are too small to be treated

with the IBM, the ALM is used to impose the average overall effect of the body on

the fluid.

2.6 Proper orthogonal decomposition

Turbulent flows are often characterized by the presence of coherent spatio-temporal

structures. The Proper Orthogonal Decomposition (POD) is a statistically-based

method for extracting these organized structures from time-dependent experimen-

tal or numerical (DNS, LES) data.

The method is based on finding a deterministic function φ(z) that is, on average, an

optimal approximation of a stochastic variable q(z, ξ), where z is a set of independent

variables and ξ is a point in the sample space [62].

The space-only variant of the POD [104] applied to fluid flows described by space-

time fields q(x, t), considers the flow at each instant as a realization of a stochastic

process. Therefore, the basic objective of the method is formalized by finding the

spatial mode φ(x) that maximizes the quantity:

λ =
E{|〈q(x, t),φ(x)〉|2}

〈φ(x),φ(x)〉 , (2.27)

assuming that the stochastic process belongs to a Hilbert space, H, with inner prod-

uct 〈·, ·〉 and E{·} is the expectation operator. In the case of space-only POD, the

expectation operator corresponds to a time-average and the inner product is defined

as:

〈u, v〉 =
∫

Ω

v∗(x, t)W (x)u(x, t)dx, (2.28)
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where u and v are two elements in H; Ω is the spatial flow domain; W (x) is a positive-

definite Hermitian weight tensor; the asterisk superscript indicates the Hermitian

transpose. The maximization problem in equation (2.27) can be reformulated, using

a standard variational method, such as the Fredholm eigenvalue problem:

∫

Ω

C(x,x′)W (x′)φ(x′)dx′ = λφ(x), (2.29)

where C(x,x′) = E{q(x, t)q∗(x′, t)} is the two-point spatial correlation tensor. The

latter is a compact, self-adjoint, positive operator and
∫
Ω
C(x,x)dx < ∞, and, as

such, it carries some properties that characterize the eigenvalue problem (2.29):

• Hilbert-Schmidt theory guarantees that there exists a countably infinite set of

eigenpairs {λj,φj}.

• All the eigenvalues λj are real and non-negative so that they can be ordered

as λ1 ≥ λ2 ≥ · · · ≥ 0. The largest eigenvalue λ1 of equation (2.29) with its

associated eigenfunction φ1(x) constitute the mode that maximizes equation

(2.27).

• The eigenfunctions are orthonormal, 〈φj ,φk〉 = δjk, providing a complete basis

for each realization of the stochastic process q(x, t).

Consequently, the unsteady flow field can be expanded as a sum of these orthonor-

mal eigenfunctions:

q(x, t) =
∞∑

j=1

aj(t)φj(x), (2.30)

where the weighting functions are represented by the time coefficients aj(t), which

can be shown to be uncorrelated at zero time-lag:

E{aj(t)ak(t)} = λjδjk. (2.31)

In most cases, when considering either experimental or numerical dataset, one deals
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with discretized flow fields, both in space and time. In order to perform the space-

only POD of these data, a sufficiently large number (M) of instantaneous snapshots

of the flow field is required. Usually the three velocity components (u1, u2, u3) are

considered so that each snapshot can be stored as a N vector qi, where N = 3 × S

and S is, in turn, the number of gridpoints. One can build, then, a matrix Q ∈ RN×M

representing all dataset, in which each column is a single snapshot,

Q =




∣∣∣
∣∣∣

∣∣∣
∣∣∣

q1 q2 q3 . . . qM

∣∣∣
∣∣∣

∣∣∣
∣∣∣


 . (2.32)

The two-point correlation tensor can be then approximated by the matrix C ∈ RN×N

according to the following equations:

C =
1

M
QQT , (2.33)

Cij =
1

M

M∑

k=1

qki q
k
j ≈ E{qiqj}. (2.34)

The Fredholm eigenvalue problem (2.29) is therefore approximated by the following

eigenvalue problem:

CWΦ = ΦΛ, (2.35)

ΦTWΦ = I, (2.36)

where the positive-definite symmetric (Hermitian) matrix W ∈ RN×N accounts for

both the weight W (x) and the numerical quadrature on a discrete grid, the columns

of Φ represent the eigenvectors, i.e. the POD modes, whereas the diagonal entries of

Λ are the eigenvalues λj .

There are two main alternatives to solve the discrete counterpart of the eigenvalue

problem in equation (2.29): i) computing the singular value decomposition (SVD)
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of the snapshot matrix Q; 2) using the so-called "snapshot POD"[96], based on the

solution of a smaller eigenvalue problem. In the present work the first method is

employed and, since the grid used for the discretization of the data is uniform, the

weight matrix is considered unitary. Therefore the POD is performed by computing

the singular value decomposition of the snapshot matrix Q, divided by the square

root of the number of snapshots M ,

Q√
M

= USVT , (2.37)

where the left singular vectors U correspond to the right eigenvectors of C, namely to

the POD modes, and S is the matrix of the singular values, such that SST = Λ. The

time coefficients of each POD mode, ak, are given by the rows of the matrix
√
MSVT .

The method has been implemented in Fortran90 using tools from the LAPACK libraries.

2.7 Sparsity Promoting Dynamic Mode Decomposi-

tion

The dynamic mode decomposition (DMD), introduced in [90], is a data driven tech-

nique which allows one to extract relevant flow features, namely the DMD modes,

whose dynamics is governed by correspondent eigenvalues. Despite the fact fluid

flows dynamics is nonlinear, DMD analysis assumes a linear mapping between suc-

cessive snapshots. It was shown, in fact, that DMD can be thought as a numerical

approximation to Koopman spectral analysis [82, 7]. The DMD has been used in the

last decade to study a wide variety of flows [93, 69, 100] and different variants of the

original algorithm have been developed, aimed at improving certain aspects as noise

sensitivity or memory-efficiency [39, 40]. The variant we employed in the present

study has been developed by Jovanovic et al.[51] and is called Sparsity Promoting

Dynamic Mode Decomposition (SP-DMD), because it selects a limited number of



2. Methodology 31

modes which optimally reconstruct the flow field time series. This makes more sense

than selecting the ones that carry most of the energy at the first time instant, which

is the common reference quantity for ranking DMD modes, because they could be

strongly damped.

As for the POD, a series of snapshots is collected from a numerical simulation or a

physical experiment at a constant sampling frequency,

{q0,q2, . . . ,qM}. (2.38)

Each snapshot qi can include one or multiple flow variables or even derived observables

and has dimension N = O × S (qi ∈ CN), where O is the number of observables

considered, whereas S represents the number of measurements points. We assume

that a linear time-invariant mapping A, connects every pair of successive snapshots,

qi+1 = Aqi, i = {0, . . . ,M − 1}. (2.39)

Using the relation 2.39 we can write:

Q1 = AQ0, (2.40)

where Q0 and Q1 are:

Q0 =
[
q0 q1 . . . qM−1

]
(2.41)

Q1 =
[
q1 q2 . . . qM

]
(2.42)

The linear operator A, as suggested by [90], can be projected onto the POD basis U

of the snapshots matrix Q0, calculated using a Singular Value Decomposition (SVD)
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or the snapshot method [96],

Q0 = USV∗ (2.43)

A ≈ UFU∗. (2.44)

The matrix F can be therefore obtained by minimizing the Frobenius norm of the

difference between Q1 and AQ0, with A = UFU∗ and Q0 = USV∗,

min
F

∥∥Q1 −UFSV∗
∥∥2

F
. (2.45)

The optimal solution to 2.45 is:

F = U∗Q1VS−1. (2.46)

This projection ensures a more robust calculation of the low dimensional representa-

tion of A algorithm and it allows also to account for a rank-deficiency of the snapshots

matrix Q0, restricting the basis U to those vectors associated to non-zero singular

values, or singular values above a prescribed threshold. The dynamics in the low-

dimensional subspace defined by the POD modes U is governed by

xi+1 = Fxi. (2.47)

Dynamic modes are then extracted by computing the eigendecomposition of the ma-

trix F :

F =
[
y1 . . . yr

]

︸ ︷︷ ︸
Y




µ1

. . .

µr




︸ ︷︷ ︸
Dµ




z∗

1

...

z∗

r




︸ ︷︷ ︸
Z∗

(2.48)

where yi and z∗

1 are the right and left eigenvectors of F , which are scaled such that

y∗

i yi = 1 and z∗

i yj = δij. Therefore, the solution to (2.47) can be calculated as
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follows:

xn = Y Dn
µZ

∗x0 =
r∑

i

yiµ
n
i z

∗

i x
0 =

r∑

i

yiµ
n
i αi, (2.49)

where αi = z∗

i x
0 represents the component of the initial condition x0 in the z∗

i direc-

tion. The snapshots can be approximated by mapping xi of the higher dimensional

space CN ,

qn ≈ Uxn =

r∑

i

Uyiµ
n
i αi =

r∑

i

φiµ
n
i αi, (2.50)

and can be seen, therefore, as a linear combination of the DMD modes φi = Uyi

where αi is the amplitude of the corresponding DMD mode. The equation (2.50) can

be written also in matrix form:

[
q0 q1 . . . qM−1

]

︸ ︷︷ ︸
Q0

≈
[
φ1 φ2 . . . φr

]

︸ ︷︷ ︸
Φ




α1

α2

. . .

αr




︸ ︷︷ ︸
Dα




1 µ1 . . . µM−1
1

1 µ2 . . . µM−1
2

...
... . . . ...

1 µr . . . µM−1
r




︸ ︷︷ ︸
Vand

(2.51)

which highlights that the temporal evolution of the dynamic modes is governed by

the Vandermonde matrix Vand. Once the eigendecomposition of (2.48) is computed,

the calculation of the amplitudes vector α = [α1 . . . αr]
T is performed solving the

following optimization problem.

minimize
α

∥∥Q0 −ΦDαVand

∥∥2

F
(2.52)

The latter, using equation (2.43) and the definition of the matrix Φ := UY , can be

rewritten as:

minimize
α

J(α) = ‖SV∗ − Y DαVand‖2F (2.53)
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The superposition of all the DMD modes, weighted by their amplitudes and evolv-

ing according to their frequency and growth rate, optimally approximates the data

sequence. However, the sparsity promoting DMD aims at finding a low dimensional

representation of the snapshots’ sequence in order to capture the most relevant dy-

namic structures. This objective is achieved in two steps: firstly, a sparsity structure

is sought, which achieves a user-defined trade-off between the number of modes and

the approximation error; then the sparsity structure of the amplitudes’ vector is fixed

and the optimal values of the non-zero amplitudes is calculated. The first step is

tackled by augmenting the objective function J(α) in (2.53) with an additional term,

card(α), the penalizes the number of non-zero elements in the amplitudes’ vector α,

minimize
α

J(α) + γ card(α). (2.54)

In the sparsity promoting optimization problem (2.54), γ is a parameter that in-

fluences the sparsity level, with higher values of the parameter promoting sparser

solutions. In general, finding a solution to (2.54) amounts to a combinatorial search

that quickly becomes intractable for any problem of interest. For this reason a re-

laxed version of (2.54) is introduced by replacing the cardinality function of α with

its ℓ1-norm,

minimize
α

J(α) + γ
r∑

i=1

|αi|. (2.55)

The sparsity-promoting DMD problem (2.55) is a convex optimization problem, solved

using the Alternating Direction Method of Multipliers (ADMM) [51]. Then, the

sparsity structure of the amplitudes’ vector is fixed and the amplitudes of the non-

zero entries are recomputed by solving the following optimization problem:

minimize
α

J(α) (2.56)

subject to ETα = 0,
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where the matrix E ∈ R
r×m encodes the sparsity structure of the amplitudes’ vector

α. The columns of E are unitary vectors whose non-zero elements correspond to zero

components of α. For example, for α ∈ C4 with:

α =
[
α1 0 α3 0,

]T
(2.57)

the matrix E will be:

E =




0 0

1 0

0 0

0 1



. (2.58)

The numerical method employed for the solution of the optimization problem (2.56)

is the one proposed in [51].

2.8 Linear mean flow analysis

The interpretation of linear analysis of perturbations around a mean flow is not

straightforward as that of the linear analysis around steady solutions of the Navier-

Stokes equations. Nevertheless, the following argument provides a mathematical and

physical interpretation of linear analyses around mean flows. We consider a lineariza-

tion of the Navier-Stokes equations obtained by plugging a triple decomposition of

the flow field following Reynolds & Hussain (1972)[80]

u(x, t) = u+ ũ+ u′. (2.59)

The first term of the decomposition u is the meanflow obtained by time averaging

the snapshots resolved in time, while the remaining two terms describe the turbulent

fluctuations; in particular, within the context of the triple decomposition, using a

phase average, we make a distinction between organized wave containing all coherent
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time-periodic large-scale motions ũ and the remaining incoherent turbulent fluctua-

tion with zero phase average u′. In particular time average and phase average of a

fluctuating quantity f(x, t) are defined as follows:

f(x) = lim
T→∞

∫ t=T

t=0

f(x, t)dt (2.60)

〈f(x, t)〉 = lim
N→∞

1

N

N∑

n=0

f(x, t+ nτ) (2.61)

where τ is the period of the wave. The wave component f̃ is then defined as f̃ = 〈f〉−f .

Substituting the triple decomposition into the Navier-Stokes equation and taking the

time average, the following equation for the mean flow is obtained:

u ·∇u = −∇p +∇ ·

(
2

Re
S− ũũ− u′u′

)
(2.62)

while the organized wave satisfies the phase-averaged Navier-Stokes equations, with

equation (2.62) subtracted:

∂ũ

∂t
+ u ·∇ũ+ ũ ·∇u = −∇p̃ +∇ ·

(
2

Re
s̃− ˜̃uũ− ũ′u′

)
, (2.63)

where S =
∇u+∇uT

2
is the mean flow shear stress tensor and s̃ the stress tensor

of the organized wave. The Reynolds stress tensors ũ′u′ and u′u′ are modeled using

the Boussinesq hypothesis. Moreover, we assume that the eddy-viscosity field is not

oscillating with the perturbation, ν̃t = 0, and similarly for the turbulent kinetic energy,

k̃ = 0. With these assumptions, we obtain (see [102]):

u′u′ =
2

3
kI− 2νtS (2.64)

ũ′u′ = −2νtS̃ (2.65)
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This means that the eddy viscosity νt can be determined from the averages using

(2.64) and used as it is for the oscillating Reynolds stresses (2.65), as usually done

in Newtonian eddy models. In particular νt is determined by taking the Frobenius

product between (2.65) and S:

νt = −u′u′ : S

2S : S
. (2.66)

Thus, the following phase-averaged equations, governing the dynamics of the orga-

nized wave ũ, are derived:

∂ũ

∂t
= −u · ∇ũ− ũ · ∇u = −∇p̃ +∇ ·

[
Re−1

eff(∇ũ+∇ũT )
]
+ f (2.67a)

0 = ∇ · ũ (2.67b)

where an effective Reynolds number defined as Reeff =

(
1

Re
+ νt

)
−1

, is introduced,

and f corresponds to the nonlinear remaining terms. The term accounting for diffu-

sion in (2.67) is expanded in order to isolate the molecular and turbulent contributions.

Using the property that ∇·
(
∇uT

)
= ∇(∇ · u) = 0 for incompressibility, the diffusive

term in the equation (2.67a) can be rearranged as follow:

∇ ·
[
Re−1

eff(∇u+∇uT )
]
= ∇ ·

[(
1

Re
+ νt

)
(∇u+∇uT )

]
=

=
1

Re
∇2u

︸ ︷︷ ︸
1

+∇ ·
[
νt(∇u+∇uT )

]
︸ ︷︷ ︸

2

.
(2.68)

The first term on the second line is the classical diffusive term due to molecular

diffusivity, and the second term represents, instead, the contribution of turbulent

motion to the momentum diffusion.



2. Methodology 38

2.8.1 Bilocal stability analysis

The equations (2.67a) are linear, except for the last term f , which contains the

remaining nonlinearities. However, if nonlinear terms are considered to be negligible

(i.e. ˜̃uũ ≈ 0), f can be discarded and the phase-averaged equations are linearized.

These equations are then projected onto a divergence-free vector space to provide the

linear problem
∂u

∂t
= Lu (2.69)

with L the projection of the linearized phase-averaged Navier-Stokes operator onto a

solenoidal vector space. The asymptotic time evolution of an infinitesimal perturba-

tion u is then governed by the eigenspectrum of L. Due to the very large dimensions

of L after discretization of the linearized phase-averaged Navier-Stokes equations, its

leading eigenvalues cannot be easily obtained using direct eigenvalue solvers. Thus,

for making the eigenvalue problem computationally affordable, we make use of the

quasi-parallel hypothesis, for which the mean flow is supposed to be slowly varying

in the streamwise direction. This choice is appropriate where the non-parallel effects

due to the presence of the rotor are weak. Therefore we carry out our stability (and

POD) analysis in cross-sectional planes relatively far from the rotor. Thus, we ana-

lyze the fate of infinitesimal perturbations of the two-dimensional base flow u(y, z),

which are sinusoidal in the streamwise direction as:

q(x, t) = q̂(y, z)ei(αx−ωt) + c.c., (2.70)

where q̂ is the Fourier-Laplace transform of q(x, t) = (u, p, T )(x, t), c.c. is its complex

conjugate, ω is the complex pulsation, and α is the (real) wave number in the x

direction. Replacing the mean flow profiles and the fluctuation form (2.70) in the

linearized system (2.69), the equation to be solved are obtained:

iωû(y, z) = Aû(y, z) (2.71)
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where the linear operator A is a (Ny×Nz×4)×(Ny×Nz×4) matrix with eigenvectors

ûk(y.z) and eigenvalues ω = ωr + iωi, ωr and ωi being the growth rate and pulsation

of the eigenvalue. A spectral collocation method is used for the discretization of the

problem in the primitive-variables formulation. In particular a Chebyshev colloca-

tion method is employed in the y-direction, where Dirichlet boundary conditions are

imposed; whereas a Fourier collocation method is adopted in the z−direction, along

with periodic boundary conditions.

2.8.2 Optimal forcing analysis

While linear stability analysis allows us to identify the flow structures and frequen-

cies subject to exponential amplification, resolvent analysis establishes which kind

of harmonic disturbances are amplified within the flow due to non-modal or quasi-

resonance mechanisms, despite the system being asymptotically stable. We consider

again the problem in Eq. (2.67), but this time, the term including the non-linearities

f is retained and the following input-output linear problem arise:

∂q

∂t
= Lq+ f with f = f̂eiωt ω ∈ R. (2.72)

The general solution to this problem consists of the sum of a homogeneous and a

particular solution

q(t) = exp(tL)q0 + (iωI− L)−1f̂eiωt (2.73)

which, assuming that the eigenvalues of L are confined to the stable half-plane, has

the asymptotic long-time response

q(t) = (iωI− L)−1f̂eiωt. (2.74)

The quantity (iωI − L)−1 is known as the resolvent. We can define the maximum

response of the system due to a forcing at a frequency ω as
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R(ω) = max
f̂

‖(iωI− L)−1f̂‖E
‖f̂‖E

. (2.75)

Restricting ourselves to the space SN spanned by the first N eigenfunctions of L,

S
N = span{q̃1, q̃2, . . . , q̃N}, (2.76)

and expanding the vector functions q, f ∈ SN in the basis {q̃1, q̃2, . . . , q̃N},

q =

N∑

n=1

κn(t)q̃n and f =

N∑

n=1

κf
n(t)q̃n, (2.77)

we can restate the forced problem in (2.72) as

dκ

dt
= Λκ + κf(t) κf (t) = κfeiωt (2.78)

κ = (iωI−Λ)−1κf (2.79)

with

κ = (κ1, κ2, . . . , κN)
T (2.80)

κf = (κf
1 , κ

f
2 , . . . , κ

f
N)

T (2.81)

Λ = diag{λ1, λ2, . . . , λN}. (2.82)

The operator Λ represents the linear evolution operator L, projected onto the space

SN . The resolvent norm in (2.75) requires the calculation of the energy norm of the

state vector q that can be performed as

‖q̂‖E = q̂∗Mq̂ (2.83)

= κ∗Ve∗MVeκ (2.84)

= κ∗M1κ = ‖κ‖E (2.85)
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where M is a suitable energy weight matrix, Ve is a matrix whose columns are N

eigenvectors of L, (q̃1, q̃2, . . . , q̃N), and M1 is the weight energy matrix to be used if

we need to calculate energy related to the coefficient vector κ. We also observe that

M1 is both Hermitian and positive definite; we can therefore compute its Cholesky

factorization, M1 = F∗

1F1, so that

‖κ‖E = κ∗F∗

1F1κ = 〈F1κ,F1κ〉 = ‖F1κ‖2. (2.86)

Using the relations in (2.83)-(2.86) and the equation (2.72) we can rewrite the resol-

vent norm as

R = max
f̂

‖(iωI− L)−1f̂‖E
‖f̂‖E

(2.87)

= max
κf

‖κ‖E
‖κf‖E

(2.88)

= max
κf

‖F1(iωI−Λ)−1κf‖2
‖F1κf‖2

(2.89)

= max
κf

‖F1(iωI−Λ)−1F1
−1F1κ

f‖2
‖F1κf‖2

(2.90)

= ‖F1(iωI−Λ)−1F1
−1‖2 = σ1{F1(iωI−Λ)−1F1

−1} (2.91)

with σ1 denoting the principal singular value.

Most responsive disturbances and responses

By indicating B = F1(Λ− ωI)−1F1
−1, the singular values decomposition lead to

BV = UΣ, (2.92)

where V and U are unitary matrices and Σ is a diagonal matrix consisting of singular

values ordered in size σ1 ≥ σ2 ≥ · · · ≥ σN . Concentrating only on the column vectors

of V and U corresponding to σ1, which are referred to as the principal right and left
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singular vectors respectively, one obtains

Bv1 = σ1u1. (2.93)

This describes a mapping B of an input vector v1 onto an output vector u1 that is

also stretched by a factor of σ1 equal to the 2-norm of B. Therefore, v1 describes the

most responsive disturbance that will be amplified by a factor of σ1 = ‖B‖ and u1

represents the corresponding response. The optimal forcing and response in spatial

coordinates, f̂ and q̂, normalized by their energy norm, are given by

f̂ = VeF−1
1 F1κ

f = VeF−1
1 v1, (2.94a)

q̂ = VeF−1
1 σ−1

1 F1κ = VeF−1
1 u1. (2.94b)



Chapter 3

Analysis of the wake coherent

structures using POD

3.1 Introduction

In this chapter the wake produced by a model wind turbine is investigated using

proper orthogonal decomposition (POD) of numerical data obtained by large eddy

simulations at a diameter-based Reynolds number Re = 6.3 × 105. The blades are

modeled employing the actuator line method and an immersed boundary method is

used to simulate tower and nacelle. Two simulations are performed: one accounts only

for the blades effect; the other includes also tower and nacelle. The two simulations

are analyzed and compared in terms of mean flow fields and POD modes that mainly

characterize the wake dynamics. An analysis of the mean kinetic energy entrainment

provided by each POD mode is then performed, which highlights the effect of different

flow structures on wake recovery.

43
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3.2 Simulation layout

The simulation layout is based on the experiments performed by Krogstad & Eriksen[56]

using a turbine model with a three-bladed rotor of diameter D = 0.894 m and hub

height yh = 0.817m. Detailed information about the blade design is given in Krogstad

& Eriksen[55].The tower is modeled as a cylinder with diameter equal to one-tenth

of the rotor diameter, namely dt = 8.94 cm. The nacelle is modeled as a capsule

with the same diameter of the tower having an axial length of 0.298 m (0.3D). The

computational domain has dimensions 12.5D× 5D× 3D in the streamwise (x), wall-

normal (y) and spanwise (z) directions, respectively. The rotor is located at 4D from

the inlet section and it is centered in the spanwise direction (see Figure 3.1). A uni-

form velocity profile aligned with the rotor axis with U∞ = 10 m/s is imposed at

the inlet points, whereas a radiative boundary condition is employed at the outlet

points with uniform convection velocity C = 9 m/s [73]. The no-slip condition is

imposed at the bottom wall, whereas free slip is prescribed at the top wall. The

lateral boundaries are periodic. Since the working fluid is air at atmospheric pressure

and 10◦C, the Reynolds number is Re = 6.3 × 105. The computational domain is

discretized using 2048 × 512 × 512 grid-points in x, y and z directions, respectively.

The grid-point distribution is uniform along the streamwise and spanwise directions,

whereas it is stretched in the wall-normal direction, with finer (uniform) spacing in

the rotor-wake region. The value of the smearing factor ε we use is 0.025 in diameter

units. Since cR = 0.0905 and cT = 0.0288 (cR and cT being the chord at the root and

at the tip, respectively), we have
(
ǫ
c

)
R
≈ 0.276 and

(
ǫ
c

)
T
≈ 0.868, which are a bit

beyond the optimal values suggested by Martinez-Tossas et al.[65] (0.14 <
ǫ

c
< 0.25).

However, decreasing this value would have lead to a grid too heavy for our compu-

tational resources. Martinez-Tossas et al. also reported that ε must be larger than

2∆x to avoid numerical spurious oscillations. In our case we have ǫ
∆

≈ 2.41, where

∆ =
√
∆x2 +∆y2 +∆z2. Following the experimental data[56], the tip-speed ratio

considered in this study is λ = 3, which implies a constant dimensionless angular
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Figure 3.1: Computational domain.

frequency of the rotor:

Ω =
2λUref

U∞

= 6, (3.1)

since we have chosen the inlet velocity U∞ as reference velocity Uref . The correspond-

ing Strouhal number is Str = Ω/2π = 0.9549. It has to be pointed out that the chosen

flow configuration does not reproduce exactly that of the reference case [56]. In par-

ticular, we have reduced the blockage effect by removing lateral walls and extending

the domain in the wall-normal direction up to five diameters, and we have decreased

the dimensions of tower and nacelle, in order to render the setup more similar to that

of utility-scale wind turbines.

3.2.1 Mesh convergence

The convergence of the numerical results with respect to the mesh has been assessed

with respect to several time-averaged velocity profiles: Figure 3.2 shows the stream-

wise velocity distributions along the y direction, at 7 locations (x = {1, 2, 3, 4, 5, 6, 7})
along the midline of the computational domain. Three different computational grids

have been employed with 1000× 250× 250, 1600× 400× 400, and 2048× 512× 512
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Figure 3.2: Time-averaged streamwise velocity profiles at 7 locations along the midline of
the computational domain for three different computational grids: the coarsest grid ( )
consists of 1000×250×250 gridpoints in x,y and z directions, respectively; the intermediate
grid ( ) consists of 1600 × 400 × 400 gridpoints; the finest grid ( ) consists of
2048 × 512 × 512 gridpoints.

gridpoints in x, y and z directions, respectively. The solutions obtained using the two

finest grids, being very close to each other, indicate that grid convergence is achieved.

According to the Kolmogorov’s hypotheses, the Kolmogorov length scale η ≡ (ν3/ǫ)1/4,

for the present case, is equal to 4.64 · 10−5 (in rotor diameter units), where the dis-

sipation rate ǫ has been estimated as U3
∞
/D. Therefore, the resulting size of the

finest mesh, being approximately equal to 0.006 in each direction, is approximately

130 times the Kolmogorov length scale and, according to existing literature on tur-

bulent flows, lies in the inertial subrange[77]. Moreover, the fine-mesh size is similar

to that employed in previous computations and validations using the same numerical

approach for solving problems involving wind turbine flows[85, 26].
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Figure 3.3: Time-averaged streamwise velocity contours at x = 1 for the RO case (a) and
the TN case (b).

3.3 Mean flow fields

3.3.1 Time-averaged velocity fields

In the present section the time-averaged flow fields computed for the two flow con-

figurations, the first considering only the rotor and the second taking into account

tower and nacelle, are discussed and compared. In the remainder of the paper we

will refer to the Rotor-Only case and the Tower and Nacelle flow configurations as

the RO and the TN cases, respectively. As shown in figure 3.3, in the x = 1 plane,

for both configurations, the wake is asymmetric in the vertical (y, z) plane, and the

near-wake flow rotates in the direction opposed to that of the rotor. When the nacelle

is neglected, an unphysical jet develops at the center of the rotor, whose strength in-

creases with the tip-speed ratio [85]. The presence of the tower and nacelle increases

the asymmetry of the flow due to the presence of additional wakes behind the tower

and at the center of the wake due to the nacelle. One can clearly observe in figure

3.3(b) that the left part of the near-wake flow has a lower velocity than the right

one. This is due to the transport of low-momentum fluid from the wake of the tower,
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which is lifted up in the near-wake region. Finally, two asymmetric counter-rotating

vortical regions can be observed at the two sides of the wake of the tower, which reveal

the presence of a horseshoe vortex system, whose vorticity on the right (respectively,

left) part of the domain is enhanced (respectively, inhibited) by the wake rotation.

Figure 3.4 provides the streamwise velocity contours in the (x, y) and (x, z) planes.

In the RO case (Figure 3.4(a)), the presence of the bottom wall induces a shift of

the central high-velocity jet towards the upper part of the wake, as clearly shown

in the top frame. Moreover, the jet persists for more than 3 diameters behind the

rotor. Further downstream, the velocity gradient is smoothed out by the viscosity

and the breakdown of the root vortex. Figure 3.4(b) shows that, in the TN case, the

velocity jet at the center of the rotor is reduced in intensity and length, and both the

asymmetry of the wake and the recovery of the wake, especially in its upper part, are

enhanced. The wake asymmetry in the horizontal (x, z) planes (bottom frames), in

the RO case is due to the wall blockage effect. In the TN case, the low-momentum

fluid is lifted up from the tower wake and captured by the rotor wake in the near-wake

region; then, this velocity deficit is transported downstream following the rotation of

the flow around the axis of the turbine. Therefore, due to the rotation of the wake

the left part of the near wake in figure 3.4(b) shows a lower streamwise velocity and

the wake is inclined with respect to the axial direction. In the far-wake region, the

recovery of the wake appears enhanced with respect to the rotor-only case.

A qualitative comparison with the experimental data of Krogstad & Eriksen[56] is

provided in Figure 3.5, which shows the mean axial velocity and turbulent kinetic

energy profiles along a line at x = 3 and y = 0 calculated by LES in the presence

of tower and nacelle, compared with the corresponding measured profiles. Numeri-

cal and experimental data are in reasonable agreement, considering that their layout

geometry is not perfectly coincident. In fact, we recall that the exact experimental

conditions were reproduced with the same numerical code used here by Santoni et

al [85], and the numerical results agreed well with measurements. Whereas, in the
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Figure 3.4: Time-averaged streamwise velocity contours in the x -y plane (top frames) and
in the x -z plane (bottom frames) passing through the rotor axis for the RO case (a) and the
TN case (b).
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Ū/U∞

z

(a)

10
-10

10
-5

10
0

0

0.5

1

1.5

2

2.5

3

k/U2
∞

z

(b)

Figure 3.5: Mean streamwise velocity profiles (a) and turbulent kinetic energy profiles (b)
at X/D = 3 and Y/D = 0 : experimental results by Krogstad & Eriksen[56] ( ) and LES
results ( ).

present configuration, due to the differences between the numerical and experimental

setup (namely, the absence of lateral walls, the increased wall-normal domain and the

decreased dimensions of tower and nacelle), the experimental velocity profile shows a

lower deficit within the wake and a higher velocity outside it. This depends mainly

on the domain cross-sectional area: the blockage ratio of the experiment is quite high

(13%), larger than that used in our simulation (5%), and this induces a higher accel-

eration around the turbine. Instead, the computed turbulent kinetic energy profile

is in close agreement with the measured one. Finally, Figure 3.6 shows the averaged

velocity distribution in the rotor swept area along the streamwise direction. The av-

eraged velocity drops across the rotor (x/D = 0), due to the drag force of the turbine,

and further downstream in the wake, the velocity increases (wake recovery). One can

observe that the presence of the tower and nacelle (corresponding to the dashed line)

on one hand increases the velocity deficit behind the rotor, with respect to the RO

case (solid line), and, on the other hand, accelerates the wake recovery by increasing

the entrainment of the mean kinetic energy.
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Figure 3.6: Mean streamwise velocity averaged on a disk of radius R = 0.5, centered on
the rotor axis. Solid line ( ) is relative to the rotor-only case, whereas dashed line
( ) is relative to the case with tower and nacelle.

3.3.2 Phase-averaged velocity fields

Since the flow under investigation is mainly forced at the frequency corresponding to

the rotational speed of the rotor, it is possible to apply a triple decomposition of the

turbulent velocity field [80],

u(x, y, z, t) = ū(x, y, z) + ũ(x, y, z, tr) + u′(x, y, z, t), (3.2)

where ū is the time-averaged velocity, ũ is the "coherent" fluctuation with period T

dependent on the forcing, tr ∈ [0, T ) and u′ is the "random" fluctuation. We define

the coherent fluctuation as ũ = 〈u〉 − ū, where 〈u〉 is the phase-averaged velocity at

the Strouhal number of the rotor Str,

〈u〉(x, tr) =
1

N

N−1∑

n=0

u(x, tr + nT ),

T =
1

Str
,

(3.3)

all the remaining part of the perturbation with respect to the time-average flow being

included in the random fluctuation u′. In both RO and TN cases, the phase-averaged

flow fields provided in figure 3.7 show quite intense coherent vortical structures shed

by the turbine, corresponding to tip and root vortices, as expected. For a three-
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bladed rotor, the vortical structures oscillate at a characteristic angular frequency,

ωTV (where the subscript TV stands for Tip Vortices), equal to three times the rotor

angular frequency Ω. Inspecting closely the iso-surfaces of the Q-criterion provided

in figure 3.7, one can see that, if tower and nacelle are not taken into account, helical

tip vortices are advected downstream, almost undisturbed, up to 6 diameters past

the turbine. If, instead, tower and nacelle are included in the simulation, the tip

vortices break down earlier, mainly at the bottom and left side of the wake. This is

due to the interaction with the vortical structures shed by tower and nacelle, which

are advected to the left side of the wake by the rotating flow induced by the blades

[85]. Whereas, the tip vortices in the top/right part of the wake are only slightly

affected by the presence of tower and nacelle, showing a behaviour similar to the RO

case. The analysis of the phase-locked fluctuation ũ allows us to define a criterion

for setting apart the near wake from the far wake, which will be used in the next

section for the POD analysis. Usually, the distinction between near and far wake is

qualitative: the near wake is the region just behind the rotor where the dynamics

of the flow is determined by the geometry and working conditions of the rotor itself,

namely, by the number of blades, blade aerodynamics, tip vortices, rotational speed.

The far wake is the region beyond the near wake, where the structures linked to the

blades’ aerodynamics are no longer visible and the flow is dominated by convection

and turbulence diffusion[106].

Several criteria have been employed for the discrimination between near and far wake,

e.g., the starting location of the wake breakdown [67] or the location where a fully

developed Gaussian velocity profile is attained [97]. However, there is not a unified

criterion for such a discrimination. The criterion defined and employed in the present

work is based on the time-averaged coherent kinetic energy computed as:

¯̃k =
1

2
ũ2, (3.4)

averaged on the y-z planes at each streamwise location. Figure 3.8 shows the stream-
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(a)

(b)

Figure 3.7: Q-criterion isosurfaces (Q = 5.1) of the phase-averaged flow fields for the RO
(a) and TN (b) cases.
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Figure 3.8: Mean kinetic energy of the coherent fluctuation ũ averaged in y-z planes for
each x location, normalised by its maximum. The solid line ( ) refers to the RO case,
whereas the dashed line ( ) refers to the TN case. The dotted line ( ) at 0.03 is
chosen as the threshold to discriminate near-wake and far-wake regions.

wise variation of this quantity (normalized with respect to its maximum value), which

decreases in the streamwise direction as the energy passes from coherent to random

fluctuations, going from the near to the far wake. The streamwise location at which

the value of the coherent averaged kinetic energy drops below 3% of its maximum

will be taken hereafter as the threshold between the near- and the far-wake region.

Such a criterion, despite being arbitrary by the choice of a threshold value, is closely

related to the general definition of near wake, characterized by coherent structures

generated by the rotor, in particular by the tip-vortex helices, and has proved to be

suitable for separating the two flow regions characterized by a different dynamics.

3.4 Proper Orthogonal Decomposition

The coherent structures developing in the wake of the considered wind turbine are

analysed using Proper Orthogonal Decomposition (POD). This technique allows one

to decompose the unsteady flow field into a set of orthonormal functions φj , providing

a complete basis for each realization of the stochastic process q(x, t), which can be

expanded as:

q(x, t) =
∞∑

j=1

aj(t)φj(x), (3.5)
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with aj(t) = 〈q(x, t),φj(x)〉 being the time coefficients of the expansion. The spatial

modes φ(x) are chosen so as to maximize the quantity:

λ =
E{|〈q(x, t),φ(x)〉|2}

〈φ(x),φ(x)〉 , (3.6)

where 〈·, ·〉 denotes the inner product and E{·} is the expectation operator. Further

details on the POD method can be found in section 2.6. and convergence of the POD

modes has been assessed considering several dataset made by an increasing number

of snapshots. Moreover, we have opportunely chosen the frequency threshold for

data sampling for it to be sufficiently higher than the frequency of the coherent

structures populating the flow. Figure 3.9 shows the Fourier amplitude spectrum of

the streamwise velocity signal extracted from a probe located on the rotor axis, at

6 diameters past the turbine. The green and the red lines represent the sampling

frequency of the POD snapshots and the related Nyquist frequency, respectively. The

Nyquist frequency, being equal to 17.19, is quite high with respect to the recovered

flow structures, since it corresponds to the frequency of the 6th harmonic of the

tip vortices. Moreover, one can observe that the amplitude decreases exponentially

after the red line, meaning that energy-containing structures are those with lower

frequencies. Therefore, we believe that further increasing the sampling rate would

not change the energy-containing coherent structures we presented in the results.

3.4.1 Rotor-only case

Proper Orthogonal Decomposition of the flow field in the rotor-only (RO) config-

uration has been carried out over a dataset made of M = 2575 snapshots, after

validation of the convergence of the POD modes with respect to the number of snap-

shots. Since the ∆t between the different snapshots allows for a 10◦ rotation of the

rotor, 36 snapshots correspond to a complete rotation of the rotor. Therefore, the

dataset spans about 71 revolutions. Two different sub-domains have been considered,
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Figure 3.9: Amplitude spectrum of the streamwise velocity signal U(t) from a probe located
on the rotor axis at 6 diameters past the wind turbine. The green and red line represent the
sampling frequency of the POD snapshots and the related Nyquist frequency, respectively.

namely a near-wake (NW) domain and a far-wake (FW) domain. According to the

criterion established in the previous section for the near/far wake discrimination, the

resulting sub-domain extents are [0 4.5]× [−0.8 0.9]× [0.3 2.7] for the near wake, and

[4.5 8.4]× [−0.8 0.9]× [0.3 2.7] for the far wake, in x,y and z directions, respectively.

The results of the analyses are nonetheless robust with respect to the choice of the

threshold for determining the near- and far-wake regions. In both regions, the ve-

locities have been down-sampled with a 1:5 ratio with respect to the computational

grid. The POD method ranks the eigenvectors with respect to their energy content,

as shown in figure 3.10. The top frames of this figure show the flow energy captured

by each of the main POD modes expressed as a percentage of the reconstructed total

turbulent kinetic energy, computed as E =
∑M

i=1 λk, in the near- (left) and far-wake

(right) region (the bottom frames showing the same quantities for the TN case). Al-

though the snapshots’ matrix is full-rank, the POD modes with k greater than those

shown in the figure have a slowly decaying energy and an increasingly small-scale

disorganized structure, being therefore of little interest for the present study. In all
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Figure 3.10: Energy of the main POD modes, expressed as a percentage of the total
turbulent kinetic energy E =

∑M
i=1 λk , for the RO (top) and TN (bottom) configuration in

the near wake (left) and in the far wake (right).

cases, the 0th POD modes (see the left columns of table 3.1), are omitted since they

simply provide the time average of the instantaneous flow fields.

Near wake

The most energetic POD modes from 1 to 12 are paired as described in table 3.1, since

their associated eigenvalues, λi, are very close each-other and their time coefficients,

ai(t), have almost identical frequency spectra, as shown in figure 3.11(a). The first pair

of modes, labeled RONW1 and containing about 25% of the total energy, represents

the root and tip vortices shed by the blades, as shown in figure 3.12 by the combination

of the first three POD modes providing the coherent tip- and root-vortex system
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RONW4|â7−8|
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Figure 3.11: Amplitude spectra of time coefficients associated to the first 4 POD pairs for
the RO case in the near wake (a) and in the far wake (b). Solid lines ( ) represent the
first mode of each pair, whereas dotted lines ( ) represent the second mode.
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Near Wake Far Wake
Pair POD modes Stl Pair POD modes Stl

RONW0 0 0 ROFW0 0 0
Rotor RONW1 1-2 2.865 ROFW1 1-2 2.865
-Only RONW2 3-4 5.73 ROFW2 3-4 1.277
Case RONW3 5-6 8.59 ROFW3 5-6 0.883

RONW4 7-8 11.46 ROFW4 7-8 0.78 - 1.41

TNNW0 0 0 TNFW0 0 0
Tower TNNW1 1-2 2.865 TNFW1 1-2 0.883
and TNNW2 3-4 1.891 TNFW2 3-4 0.246

Nacelle TNNW3 5-6 1.03 TNFW3 5-6 0.662
Case TNNW4 7-8 5.73 TNFW4 7-8 0.451

TNNW5 9-10 1.43 - 0.93 TNFW5 9-10 0.491

Table 3.1: Mode number of the RO (top) and TN (Bottom) cases, according to figure 3.10
and leading Strouhal number Stl of the most energetic POD pairs.

Figure 3.12: Q-criterion isosurface of the velocity field obtained by summing the first three
POD modes (RONW0 plus RONW1) multiplied by the corresponding time coefficients at
t = 0.
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Figure 3.13: Streamwise velocity contours of the ROFW1 pair at t = 0 in the x -y plane
at z = 1.5.

together with the central jet due to the absence of the nacelle. The frequency spectra

of the time coefficients a2−3(t) related to these modes show, indeed, a single peak at

StTV = ωTV /2π ≈ 2.865, which is three times the Strouhal number correspondent

to the rotor angular frequency Str. This particular value of the Strouhal number is

related to the pitch λx of the tip and root vortices by the convection velocity of the

vortex system. By measuring the pitch λx leading to the streamwise wavenumbers

αtip = 2π/λx ≈ 20.92 and αroot ≈ 20.36, the convection velocities of the tip and

root vortices can be estimated as Ctip = 2πStl/αtip ≈ 0.861 and Croot ≈ 0.88, where

the slightly larger convection velocity estimated for the root vortices is probably due

to the presence of a jet at the centre of the rotor. The successive mode pairs

characterizing the near-wake region, are simply harmonics of the first pair. Figure

3.11(a) provides the frequency spectra of pairs RONW2/3/4, all of them showing a

single peak at values of the Strouhal number multiple of StTV .

Far wake

In the far-wake region, the first three POD modes are similar to the first three modes

found in the near wake. Figure 3.13 provides the streamwise velocity contours of the

pair ROFW1 (where both modes, taken at t = 0, have been summed up for the sake



3. Analysis of the wake coherent structures using POD 61

(a) (b)

(c)

Figure 3.14: Streamwise velocity iso-surfaces of the ROFW2 (a), ROFW3 (b), ROFW4
(c) pairs at t = 0 (red for positive, blue for negative values).

of visualization) in the x -y plane containing the rotor axis, showing a clear set of tip

vortices fading out towards the end of the domain. The successive pairs of modes,

instead, capture the convective instabilities developing in the far wake and have lower

frequencies both in space and time, as shown by the spectra in figure 3.11(b). Figure

3.14 provides the streamwise velocity contours of pairs ROFW2/3/4, showing that

they are mostly located in the tip-vortex region, and to a lesser extent, in the core of

the wake, where radial gradients due to the central jet are present. Looking at the

flow field obtained by the combination of the first five POD modes, one can observe a

vortex-pairing mechanism (see figure 3.15 at x > 6), recalling the mutual inductance
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Figure 3.15: Spanwise vorticity contours in the x -y plane at z = 1.5 of the flow field
obtained by combining the first 5 POD modes of the RO case multiplied by the corresponding
time coefficients at t = 0.

instability phenomenon investigated extensively by Ivanell et al [49]. These authors

studied this phenomenon perturbing a steady (low-Re) wake of a wind turbine using

low-amplitude excitations located in the neighbourhood of the blade tips. They found

that the most amplified perturbations are those inducing an out-of-phase displacement

of two consecutive vortex spirals. It has been also shown by Sarmast et al [89] that

the streamwise frequency of the waves responsible for this instability is about half the

tip vortices’ frequency. Here, the ROFW2 modes have a peak Strouhal number about

equal to half the tip-vortex one; assuming that these POD pairs are characterised by

the same phase velocity, the relation between temporal frequencies is valid also for

the streamwise spatial frequencies. Therefore, the ROFW2 pair produces an out-of-

phase displacement of two consecutive tip vortices, leading to vortex pairing. It will

be shown in section 3.5 that these modes provide an important contribution to the

recovery of the wake through mean kinetic energy entrainment, even though they are

about 10 times less energetic than tip vortices, as shown in figure 3.10(b).
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3.4.2 Tower and Nacelle case

In this section we discuss the POD results in the flow configuration including the tower

and nacelle. The total number of snapshots considered for the POD is M = 2361,

stored each 10◦ rotation for about 65 revolutions. Near- and far-wake subdomains

have been considered. According to the criterion described in section 3.3.2, the near-

wake domain extent is [0 3.5]× [−0.8 0.9]× [0.3 2.7] and the far-wake domain extent

is [3.5 8.4]× [−0.8 0.9] × [0.3 2.7] in x, y and z directions, respectively. Notice that

the near-wake region is shorter than in the RO case. The velocity components, as

in the RO configuration, have been downsampled with a ratio 1:5 with respect to

the computational grid. The energy of the main POD modes obtained for the TN

configuration in the near wake and in the far wake is provided in the bottom row of

figure 3.10. The 0th mode is omitted being the time-average of the flow, whereas the

successive unsteady modes up to the 10th are combined in pairs, according to Table

3.1. As in the RO case, mode pairing is revealed by the frequency analyses of the

corresponding time coefficients, which are provided in figure 3.16.

Near wake

The most-energetic POD modes in the near wake for the configuration including tower

and nacelle allow us to uncover several important features of the flow. The TNNW1

pair is related to tip and root vortices, as shown in figure 3.17(a), and oscillates at the

characteristic Strouhal number of the tip vortices StTV , as in the RO case. However,

in the present case, these coherent vortical structures are detected by POD mainly on

one side of the wake, corresponding to the region where the phase-averaged velocity

gradient field discussed in section 3.3.2 is stronger. Notice that in this case the pres-

ence of the nacelle induces a reduction of the convection velocity of the root vortices

(Croot ≈ 0.67), which translates into a smaller pitch of the root vortices.

The TNNW2 pair provided in figure 3.17(b) is related to the von Karman vortices

shed by the tower. It is characterised by a Strouhal number St ≈ 1.891, which, once
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Figure 3.16: Amplitude spectra of time coefficients associated to the first 5 POD pairs for
the TN case in the near wake (a) and in the far wake (b). Solid lines ( ) represent the
first mode of each pair, whereas dotted lines ( ) represent the second mode.
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rescaled with respect to the tower diameter dt (St∗ = St (dt/D) ≈ 0.19), is in close

agreement with the value expected for vortices shed by a cylinder of diameter dt at

Reynolds number Ret = Re (dt/D) = 6.3 · 104. As shown by the 3D visualization

in figure 3.18 (a), these vortices are concentrated behind the lower part of the tower,

where the velocity hitting the tower is substantially undisturbed and aligned with

the streamwise direction. As expected in the case of the vortex shedding behind a

cylinder, these vortices propagate downstream in the streamwise direction, but ex-

tending in the spanwise one, although not in a homogeneous way due to the intrinsic

asymmetry of the mean flow.

The TNNW3 pair provided in figure 3.17(c) can be ascribed as well to the shedding

of a von Karman-like vortex street behind the tower. As shown in figure 3.18 (b), this

vortex street occupies also the upper part of the tower, where the velocity investing

the tower is influenced by rotor-blades’ passage. As already discussed in section 3.3,

the mean velocity behind the rotor has a lower magnitude than the undisturbed one,

and is characterized by a swirling motion opposite to the rotor direction of rotation.

This makes the TNNW3 pair oscillate at a lower Strouhal number (St ≈ 1.03) and

propagate in a direction which is slightly inclined with respect to the axial direction

towards the left side of the domain. Approximately 1 to 2 diameters behind the rotor,

the vortex street reaches the edge of the wake and interacts with the tip vortices,

causing the breakdown of the spirals and producing a large-scale perturbation which

can be observed in figure 3.19, where the solid contours of the TNNW3 modes are

superimposed on the shaded contours of the TNNW1 pair.

The TNNW4 pair is a harmonic of the first pair, as can be immediately deduced com-

paring figures 3.17(a) and 3.17(d). Frequency analysis of the relative time coefficients

highlights a single peak at St ≈ 5.73, which is two times the Strouhal number of the

tip vortices, StTV . The TNNW5 pair appears less coherent with respect to the first

four pairs and it is similar, both in shape and in spectral distribution, to the TNNW3

pair, therefore, it can be related to the same physical mechanism. Despite having a
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Figure 3.17: Streamwise velocity contours at t = 0 of the: TNNW1 pair at y = 0 (a),
TNNW2 pair at y = −0.5 (b), TNNW3 pair at y = −0.3 (c), TNNW4 pair at y = 0 (d) and
TNNW5 pair at y = −0.3 (e)

lower energy with respect to preceding pairs, the TNNW5 pair contributes to wake

recovery as much as the modes characterized by higher energy, as it will be shown in

section 3.5.

Far wake

In contrast to all other cases, POD analysis of the far-wake flow field in the TN con-

figuration shows that the most energetic perturbations are not associated with the tip

and root vortices. The TNFW1 pair, provided in figure 3.20(a), is characterized by a

structure similar to the TNNW3 pair in the region farther from the turbine. Also their
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Figure 3.18: Q-criterion iso-surfaces obtained by summing mode TNNW0 to the TNNW2
(a) and the TNNW3 (b) POD pairs in the near-wake region.

0.5

1

1.5

2

2.5

0.5 1 1.5 2 2.5 3

z

x

Figure 3.19: Streamwise velocity contours at t = 0 for the TNNW3 pair (solid contours)
superimposed to the TNNW1 pair at y = −0.3 (shaded ones).
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Strouhal numbers are similar, although the TNNW3 one is slightly higher, probably

due to the presence of higher frequency oscillations close to the turbine. This suggests

that these two coherent structures detected in the near and far wake may represent

the same perturbation that originates just behind the rotor and reduces its frequency

while propagating downstream and interacting with tip-vortex spirals. These highly

energetic and dynamically relevant POD modes, together with the TNNW2/5 pairs,

were totally undetected in the RO configuration. This indicates the crucial role of

the turbine’s tower, which strongly influences the wake both in the near- and in the

far-wake region as it will be discussed in detail in section 3.5.

The successive pair of modes, TNFW2, is characterized by spatial oscillation of larger

wavelength, as shown in figure 3.20(b). Both modes of this pair oscillate at an even

lower frequency than the previous ones, having St ≈ 0.246. This frequency lies within

the frequency range typical of the wake meandering [66, 63, 34]. In this case, this

low frequency oscillation is clearly not induced by atmospheric eddies. Rather, in the

present case, nonlinear interactions between rotor and tower vortices play an impor-

tant role in their generation. In fact, the TNFW2 pair is mostly concentrated on the

left side of the wake, where the vortices shed by the tower hit the tip-vortices spirals

leading to their breakdown.

The successive modes have a broader spectrum and a more disorganized spatial struc-

ture as can be observed from figures 3.16(b) and 3.20(c-e). The TNFW4/5 pairs

might be harmonics of TNFW2, since their peak Strouhal number is approximately

two times that of the TNFW2 pair (see table 3.1). One can also notice that they are

more concentrated on the left side of the wake. Instead, in the flow region where the

tip vortices are not broken (top/right side of the domain), the wake remains substan-

tially straight, without strong oscillations. This confirms the crucial importance of

simulating the presence of tower and nacelle for accurately describe the wake dynam-

ics, and suggests that, in the present case, convective linear instabilities of tip-vortices

spirals, if present, are energetically less important than the oscillations produced by
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Figure 3.20: Streamwise velocity contours at y = −0.3 and t = 0 of the: TNFW1 pair (a),
TNFW2 pair (b), TNFW3 pair (c), TNFW4 (d), and TNFW5 (e).

tower and nacelle.

3.4.3 Comparison of the RO and TN cases

As a summary of the presented results, figure 3.21 provides a bar plot of the Strouhal

numbers of the main POD modes in the four considered cases, RONW, ROFW,

TNNW and TNFW. One can notice that POD modes characterised by Strouhal

number Stl ≈ 2.865 and composed by tip and root vortices (RONW1, ROFW1 and

TNNW1) are found in all considered cases but the TNFW one. In fact, in the near

wake, the tip- and root- vortex system appears to be only slightly affected by the

presence of the tower and nacelle. Whereas, in the far wake, the presence of tower and

nacelle is found to promote the breakdown of the tip vortices, enhancing wake recovery

(as it will be further discussed in section 3.5), explaining why the frequency typical of

tip vortices is not found amongst the most energetic ones in the TNFW case. Similar
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conclusions can be drawn for all the POD modes that are dynamically linked to the tip

and root vortices, for instance the RONW2 and TNNW4 modes which represent the

first harmonic of the tip vortices (St = 5.73 ≈ 2×2.865). The robustness of the modes

linked to the tip vortices with regard to the presence or absence of tower and nacelle

explains most of the consistencies between frequencies in the different considered cases.

Only exception being the ROFW3 and TNFW1 modes, which are associated to very

similar Strouhal number by mere coincidence, since these modes have a very different

spatial support being connected to different physical mechanisms. In particular, the

ROFW3 pair develops symmetrically throughout the azimuthal direction in the region

of the tip vortices, being connected to their convective instability. Whereas, the

TNFW1 is mostly located in the bottom-left region of the wake, with a pronounced

asymmetry, being attributed to nonlinear interaction between the tip vortices and the

wake of the tower. Figure 3.21 clearly shows that the energy is differently distributed

between the modes depending on the presence (or not) of tower and nacelle. For

instance, in the TN case, the first harmonic of the tip vortices (mode pair 4) has

a lower energetic content with respect to other emerging modes. Moreover, new

low-frequency POD modes emerge that overtake in energy those connected with the

tip-vortices dynamics. These modes characterised by very low frequencies typical of

wake meandering (TNFW2), remained completely undetected by the POD analysis

in the rotor-only cases. In the next section, these modes will be shown to have

a positive impact on wake recovery. Thus, the direct comparison of the energy and

frequency content of the coherent structures in the RO and TN cases clearly indicates

that despite a few similarities, several important differences can be detected in the

POD modes recovered in these two cases. These results point out that for accurately

describing the flow dynamics, POD analysis of coherent structures should be made

in the presence of tower and nacelle, as well as on sufficiently long computational

domains, in order to capture the low-frequency POD modes typical of the far wake.
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Figure 3.21: Leading Strouhal numbers Stl of the most energetic POD pairs of the RO
(left) and TN (right) cases.

3.5 Mean kinetic energy entrainment

It is well established that the larger the turbulence intensity of the flow approaching

the turbine, the higher the wake recovery rate. In fact, the transport of mean kinetic

energy within the wake is enhanced by the diffusion provided by the turbulent fluc-

tuations. However, through quadrant analysis, Lignarolo et al[60] showed that tip

vortices do not provide any contributions to the overall turbulent mixing. Medici[66]

reported even a shielding effect of the tip vortices, which prevent the near-wake shear

layer to recover. To assess this hypothesis, we evaluate the contribution of each POD

mode to wake recovery using the following transport equation for the mean kinetic

energy (M.K.E.):
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It is known that the turbulent M.K.E. flux, highlighted in the equation (3.7), is the

term that mostly contribute to wake recovery [85, 105, 16]. Moreover, in the wake
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region, the subgrid-scale stresses are negligible with respect to the Reynolds stress

terms; therefore, in this analysis, their contribution to the turbulent M.K.E. flux

is neglected. The total flux of M.K.E. per unit area due to turbulent fluctuations

through a generic closed surface can be evaluated, using the Gauss theorem, by the

following equation:

FT =
1

S

∫

V

− ∂

∂xj

(
ūiu′

iu
′

j

)
dV, (3.8)

where V is the volume enclosed by the surface S. Note that, by the above definition,

the energy flux entering the volume is positive. Given the POD properties described

in section 2.6, the Reynolds stress tensor can be decomposed as:
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Therefore, using this decomposition, we can compute the contribution of each POD

mode to the turbulent M.K.E. flux as:
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The last equation can be rewritten as a surface integral:
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i φ

k
jdSj . (3.11)

We consider a cylindrical domain of radius Rc and length Lc centered on the rotor

axis and we focus on the turbulent M.K.E. flux through its lateral surface. Figure

3.22 shows the cylindrical domain of radius Rc = 0.5 and length Lc equal to the size

of the far-wake region. The streamwise velocity isosurfaces of the ROFW3 pair are

represented in red and blue, for reference. The vector representing the infinitesimal

surface element dS is normal to the streamwise direction, therefore it can be expressed
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in Cartesian coordinates as:

dS = (0, dc2, dc3) dx, (3.12)

where dc2 and dc3 are the components in the wall-normal and spanwise directions,

respectively, of the vector dc normal to the infinitesimal arc of the cylinder circum-

ference C. The total flux per unit area of turbulent M.K.E. for each POD mode over

the lateral surface of the cylinder can be calculated as:

Fk
T =

∫

Lc

fk
T (x)dx, (3.13)

fk
T (x) = − 1

2πRcLc

∫

C

ūi(x)λkφ
k
i (x)φ

k
j (x)dcj . (3.14)

The local fluxes fk
T (x) are computed for a circumference of radius Rc = 0.5, whereas

the total fluxes Fk
T through the entire surface are computed for different radii in the

range Rc ∈ [0.35 0.62]. For avoiding a direct computation of the integrals over these

cylindrical surfaces, the surface integral of equation (3.14) are transformed, using the

divergence theorem, into volume integrals which are then numerically evaluated using

the midpoint rule on subintervals of length compatible with the grid size. Figure

3.23(a) shows that all the most energetic POD pairs found in the near-wake region in

the RO case, which are directly related to the tip and root vortices, provide mostly

negative M.K.E. local flux at Rc = 0.5, except for some isolated, small positive peak of

the RONW1/2 pairs in the vicinity of the turbine. As shown in figure 3.23(b) the total

flux of all the considered modes is negative for all Rc ≤ 0.5. Increasing the cylinder

radius to Rc > 0.5, the total flux changes sign and becomes positive at 0.5 < Rc <

0.55, finally decreasing towards zero for Rc > 0.62. This indicates that the tip vortices

provide positive M.K.E. flux to an annular region with 0.5 < Rc < 0.55 that contains

the wake shear layer, as we can better observe from figure 3.24, showing both the

total flux of modes RONW1 and the time-averaged streamwise velocity profile versus
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Figure 3.22: Cylindrical domain used for M.K.E. flux evaluation in the far-wake region.
The red and blue isosurfaces represent the streamwise velocity component of the ROFW3
pair.

Rc. In particular, the radius at which the M.K.E. flux changes its sign corresponds

to the region where the mean streamwise velocity radial profile presents an inflection

point, suggesting that the mean flow profile is strongly influenced by these modes,

which extract energy from the region inside the wake, feeding the mean flow shear

layer. Thus, the tip vortices appear to strongly contribute to the sustainment of

the wake, which remains almost unchanged in the streamwise direction (see figure

3.4(a)). Therefore, this analysis clearly indicates that the tip-vortex system in the

near-wake region of the RO case does not contribute to the wake recovery, but rather

it tends to sustain the velocity gradient, confirming the findings of Lignarolo et al[60].

Although a direct quantitative comparison with the results of Lignarolo et al[60] is

not possible since those experiments were performed at a lower Reynolds number and

a higher tip-speed ratio, it appears that the overall scenario of the entrainment is

qualitatively very similar. In fact, in the near-wake region, they observe positive and

negative contributions of similar magnitude to the energy flux into the wake due to

the presence of the tip-vortex helix. Further downstream, after the the tip-vortex
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Figure 3.23: M.K.E. entrainment for the RO case: local (a)-(c) and total (b)-(d) fluxes,
in the near wake (a)-(b) and in the far wake (c)-(d).
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ū

Figure 3.24: Solid line: radial profile of the time-averaged streamwise velocity ū along an
horizontal line at x = 6.25, namely at the centre of the near-wake domain for the RO case.
Bar chart: total M.K.E. flux for the RONW1 pair versus the radius Rc of the cylindrical
surface over which the flux is computed.

breakdown, a positive flux, corresponding to a net entrainment of kinetic energy into

the wake, is observed. In our computations, we have decomposed the energy flux

contributions among the POD modes. We have found that the contribution to the

energy flux into the wake of the modes associated with the tip vortices (pair 1 in

figure 3.23(c)) is always negative and it reduces in modulus with the distance from

the rotor. At about x/D = 6.5, it is counterbalanced by the positive flux contribution

of modes 2-4 which give a positive entrainment, starting the recovery process of the

wake. The abscissa at which the recovery process starts is strongly dependent on the

flow condition (Reynolds number and tip-speed ratio) and on the interaction with

the tower and nacelle wake; in the case studied by Lignarolo et al[60], the recovery

process starts about at x/D = 1.5−1.7, depending on the value of the tip-speed ratio.

Concerning the far-wake region of the rotor-only case, the first POD pair (ROFW1),

being characterized by tip vortices, presents a negative local M.K.E. flux at Rc = 0.5

similarly to the near-wake modes (compare figures 3.23 (a)-(c)). Moreover, figure 3.23

(d) shows that the total M.K.E. flux provided by this mode is negative in the region

0.4 < Rc ≤ 0.55, becoming positive for larger radii, as found for near-wake modes.
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The other POD pairs, instead, provide a positive local and total flux, the latter

reaching its maximum for 0.5 < Rc < 0.55, but remaining positive for all considered

radii. Therefore, in contrast to the tip vortices, these modes appear beneficial to wake

recovery, since they transport the mean kinetic energy inside the wake.

The same analysis has been performed for the POD pairs found in the TN case.

Figures 3.25(a)-(b) show the M.K.E. local and total fluxes for POD pairs in the

near-wake region. The TNNW1 and TNNW4 pairs, which are characterised by tip

vortices, behave similarly to the corresponding POD pairs related to tip vortices

found in the RO case. The successive modes, as in the far-wake region of the RO

case, appear beneficial to wake recovery, providing positive total M.K.E. flux through

the cylindrical surfaces for any Rc. In the far-wake region of the TN case, as already

observed in section 3.4.2, tip vortices are not recovered among the most energetic

POD modes. As a consequence, Figures 3.25(c)-(d) clearly show that all of the POD

pairs provide positive flux at every radius, thus positively contributing to the mean

flow diffusion and to the wake recovery. This analysis suggests that the oscillations

generated by the presence of tower and nacelle play a crucial role on wake recovery for

three main reasons. The first one is that high-energy modes generated by tower and

nacelle are active in the M.K.E. entrainment mechanism from the very near wake,

whereas, the near wake of the rotor-only case is characterised only by modes that

do not contribute positively to the wake recovery. The second reason is that, even

in the far wake, the most energetic coherent fluctuations found in the presence of

tower and nacelle have a stronger impact on wake recovery with respect to those

characterising the RO case. Comparing figures 3.23 (d) and 3.25 (d), we can notice

that the mean kinetic energy fluxes measured in the TN case are about three times

those calculated for the RO case. The third reason is that the presence of tower and

nacelle reduces the shielding effect of tip vortices to wake recovery. Tip vortices break

down beforehand due to interactions with coherent structures generated by tower and

nacelle, as discussed in detail in section 3.4.2, leading to the generation of other low-
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frequency modes, some of those linked to the wake meandering, which are instead

beneficial to wake recovery.

3.6 Conclusions

This work provides a detailed analysis of the wake produced by a three-bladed wind

turbine and of the main embedded coherent structures, which are identified by means

of Proper Orthogonal Decomposition (POD). The analysis is based on large eddy

simulations of a model wind turbine with an incoming uniform velocity profile at

a fixed tip-speed ratio λ = 3. The turbine is simulated with and without tower

and nacelle, for evaluating their effect on the wake dynamics. In both cases, rotor

blades are modeled using the actuator line method, whereas tower and nacelle are

modeled using an immersed boundary method. Time- and phase-averaged flow fields

are computed and analyzed, highlighting and comparing the main flow features in

the rotor-only (RO) and tower and nacelle (TN) cases. In the latter case, the far

wake is characterized by a higher velocity on the left side of the turbine, related to

a faster overall recovery. Analysis of the phase-averaged RO-case flow shows that

tip-vortices spirals are advected downstream almost undisturbed until the end of the

computational domain. Whereas, in the TN case, breakdown of the tip vortices occurs

at the bottom and left side of the wake, suggesting a correlation between the tip-

vortices breakdown and the increased wake recovery. Based on the evaluation of the

kinetic energy of the phase-averaged flow field, we propose a criterion to discriminate

the near- from the far-wake region of the flow. The unsteady flow fields are studied

separately in these two subdomains (near and far wake) using POD for capturing

the energy-containing structures embedded in the turbulent flow. In the RO case,

the most energetic POD modes are characterised by tip and root vortices. In the

far wake, lower frequency POD modes are recovered, which appear to be linked to a

vortex pairing process. In the TN case, in addition to tip and root vortices, highly
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Figure 3.25: M.K.E. entrainment for the TN case: local (a)-(c) and total (b)-(d) fluxes,
in the near wake (a)-(b) and in the far wake (c)-(d).
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energetic POD modes connected with the Kármán vortex street developing behind

the tower are found as well. These vortical structures originate in the near wake just

behind the rotor and are advected towards the left side of the wake, until they interact

with and break down the tip vortices on the bottom and left side of the wake. This

interaction between tip vortices and tower vortices leads to low frequency oscillations

also in the far wake. In the same region, POD modes characterized by a very low

Strouhal number (St = 0.246) lying in the typical range of the wake meandering, are

recovered. These coherent structures appear to be linked to non-linear interactions

of coherent structures generated in the near wake by the presence of the tower.

POD analysis has also been used to investigate in detail the wake recovery process,

where turbulent fluctuations play a fundamental role. The effect of each POD mode

on wake recovery is evaluated computing its contribution to the mean kinetic energy

entrainment[105]. The mean kinetic energy flux provided by each POD mode through

the surface of a cylinder of radius Rc, centered on the rotor axis, is computed. The flux

provided by the tip vortices is negative for small radii and then becomes positive for

larger radii. Thus, tip vortices provide positive flux into an annular region containing

the wake shear layer, sustaining the mean velocity gradient and slowing down the wake

recovery. Whereas, a positive flux is observed at each radius for POD pairs related

to the tower’s wake, compensating the shielding effect of the tip vortices and finally

enhancing the wake recovery process. These findings indicate the crucial importance

of considering tower and nacelle when simulating the flow behind a wind turbine.



Chapter 4

Mean flow linear analysis of a

rotor-only turbine wake

4.1 Introduction

In this section, we perform two-dimensional modal and non-modal stability analysis

of the turbulent mean flow developing downstream of a wind turbine rotor. The

main objective is to verify to what extent is possible or meaningful to describe the

coherent structures extracted via POD as linear coherent waves. The database is

numerical and computed by Large-Eddy-Simulation in combination with the actuator

line technique to simulate the rotor (chapter 3). The presence of tower and nacelle is,

in this case, neglected. The POD modes obtained for the rotor-only case in the far

wake and described in section 3.4.1 are recalled here and analyzed in terms of their

spectral content in space and time. Linear stability and optimal forcing analyses have

been carried out in different cross-sections sufficiently far from the rotor, where non-

parallel effects are rather weak. The frequency content and spatial structure of the

most amplified perturbations are compared with that of the most energetic coherent

structures recovered by POD analysis.

81
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4.2 Spectral characterization of POD modes

In this section the POD modes already discussed in section 3.4.1 are further analyzed

in terms of spectral properties.

The frequency content of the first POD mode (see Figure 4.1) in both space and time

is provided in figure 4.2, showing the Fourier spectra in time and in the streamwise

and azimuthal directions. Since the mode is almost periodic in time (see bottom frame

of figure 4.1), the time spectrum has only a sharp peak at ω = 18, corresponding to

three times the non-dimensional rotational frequency. The Fourier spectrum in the

streamwise direction, resulting from the averaging of the Fourier spectra computed

at different wall-normal and spanwise locations within the subdomain, shows a clear

peak at α = 20.92, corresponding to the tip-vortices pitch. In the azimuthal direction,

the Fourier spectrum, resulting from the averaging of different spectra obtained for

different radial and streamwise positions, peaks at the azimuthal wavenumber m = 3,

corresponding to the number of blades of the rotor. The successive pairs of modes

have lower frequencies both in space and time, as shown by the spectra in figure 4.3

(left column) for the 3rd, 5th and 7th POD modes (from top to bottom), belonging

to the ROFW2, ROFW3, ROFW4, respectively (see Table 3.1). Figure 4.4 provides

the streamwise velocity contours of the same POD modes (from top to bottom, re-

spectively), showing that they are mostly located in the tip-vortices region, and to

a lesser extent, in the core of the wake, where radial gradients due to the central jet

are present. These modes seem to capture the convective instabilities of the tip and

root vortices developing in the regions of high shear of the far wake. One of these

instabilities is the mutual inductance instability phenomenon investigated extensively

by Sarmast et al.[89], which is characterized by a streamwise frequency which is about

half the tip vortices’ frequency. Here, the 3rd POD mode has the main temporal and

streamwise wavenumbers about equal to half the tip-vortex ones, namely ω ≈ 8 and

α ≈ 9 (see the top left frame of figure 4.3). An analysis of the radial distribution

of the main streamwise wavenumbers of this POD mode, averaged on the azimuthal
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Figure 4.1: Streamwise velocity contours of the 1st POD mode (ROFW1) in different
planes and in a three-dimensional visualization. The bottom plot represents the evolution
of the associated temporal coefficient.

Figure 4.2: Spectra of the 1st POD mode in time (top) and in the streamwise (middle)
and azimuthal (bottom) directions.
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Figure 4.3: ((Left) Fourier transform in time, streamwise and azimuthal directions of
the 3st (top), 5th (middle) and 7th (bottom) POD mode in the streamwise, temporal and
azimuthal directions. (Right) Streamwise frequency of the mode on the left for different
radii, averaged on the azimuthal direction.
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Figure 4.4: Streamwise velocity contours of the 3rd (a) 5th (b) and 7th (c) POD modes in
the x = 6.5 and y = 0 planes.
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direction, shows that the main α peak is located at r ≈ 0.5, in correspondence of

the tip vortices. A weaker peak is found also at r ≈ 0, in correspondence with the

root vortex system, associated to a slightly larger value of α. Similarly to the mutual

inductance instability discussed by Ivanell et al. [49], these POD modes produce an

out-of-phase displacement of two consecutive tip vortices, leading to vortex pairing

in the tip vortex system, which promotes its break down.

The 5th POD mode has a spatial structure similar to that of the 3rd mode, but is

characterized by slightly lower temporal and streamwise wavenumbers, namely ω ≈ 6

and α ≈ 7. Moreover, the streamwise wavenumber appears to be only slightly de-

pendent on the radial direction, being mostly localized in the outer part of the wake

(r ≈ 0.5), as shown in figure 4.3. As it will be discussed in the following, this POD

mode seems to be originated by a convective instability of the mean shear induced

by the presence of the wake. The 7th mode presents a more broadband temporal

and streamwise spectra, with two peaks at wavenumbers close to those of the previ-

ous modes. In particular, the two main streamwise wavenumbers are α ≈ 10.1 and

α ≈ 6, and two equally strong peaks are recovered in time, with ω ≈ 4.7 and 8.9.

Moreover, the spatial structure of this mode is very close to that of the previous two

ones, suggesting a similar physical mechanism at their origin. Finally, it is important

to remark that the main azimuthal wavenumber of all these POD modes is m = 1

(although the 7th mode presents also an m = 2 peak), indicating a strong similarity

of the structure and physical origin of these modes. In the next section, we consider

these results as a benchmark for the linear stability analysis; in particular, the most

amplified spatial frequencies α in each of the cross-sections x = x0 are considered.

The final goal is to verify the extent to which is meaningful to describe the identified

coherent structures as governed by linear mechanisms.
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4.3 Mean flow stability analysis

In this section, we perform a meanflow stability analysis, described in section 2.8.1,

by considering two-dimensional planes at different locations along the streamwise

direction. Two considerations are in order. First of all, as a meanflow analysis is con-

sidered, the comparisons that we carry out between the linear models predictions and

the turbulent flow generated by the wind turbine are mostly qualitative and needs to

be assessed a posteriori. From a theoretical viewpoint, the analysis of spectral POD

(SPOD) modes would be more appropriate [62, 75]: a single POD mode can contain

multiple flow structures with different frequencies, originated from different physical

mechanisms. Moreover, recent works have been shown that a relation exists between

the spectral POD modes and the frequence response obtained from the decomposition

of the resolvent operator [58, 104], under the assumptions that the forcing harmon-

ically drives the system at the different frequencies with equal spectral density (i.e.

white noise). However, a larger number of snapshots is required to achieve conver-

gence with respect to POD. Due to this limitation, we still adopt the POD and recover

the frequencies information by means of Fourier transform during the post-processing,

for a quantitative analysis of the spectral content. The analysis has been performed at

three different streamwise location, namely x = {3.5, 4.5, 6.5}. In figure 4.5 the mean

streamwise velocity is shown at three different streamwise locations. The incoher-

ent fluctuations considered for the Reynolds stresses computation clearly correspond

to the difference between the instantaneous velocity u and the phase-averaged flow

〈u〉. Here the phase average is computed according to (2.61), taking the sampling

period equal to the period of rotation of the rotor, τ = 1/Str = 1.047. The eddy-

viscosity field, shown in figure 4.6, is then computed according to the (2.66). It can

be noted that the eddy-viscosity is concentrated in the wake region and increases

moving downstream. The two-dimensional domain employed for the stability analy-

sis has been truncated in the y direction (y = [0.11 2.61]), in order to discard the wall

boundary layer and the far-field. The computational domain comprises Ny = 75 and
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(a) (b) (c)

Figure 4.5: Mean streamwise velocity u, at x = 3.5 (a), x = 4.5 (b) and x = 6.5 (c).

Nz = 72 collocation points in the wall-normal and spanwise directions, respectively.

Figure 4.7 provides the stability eigenspectra computed for the cross-sections x = 3.5

and x = 6.5 for different values of α ranging from 3 to 10. At x = 3.5, the spectrum

shows branches of unstable modes, one for each α considered here. A similar situation

is obtained for the x = 6.5 plane and α < 8, while stable modes are found for larger

α. The corresponding growth rates of the most unstable modes as a function of α

are shown in Figure 4.8(a) for x = 3.5, x = 4.5, and x = 6.5. It can be noted that by

moving downstream of the rotor, the maximum growth rate decreases and attains val-

ues of α progressively smaller, going from α ≈ 6 at x = 3.5 to α ≈ 3.5 at x = 6.5. In

Figure 4.8(b), we can observe that the angular frequency of the most unstable modes

is proportional to the value of α imposed for the stability analysis, with the relation

ωr ≈ α in all cases except at x = 6.5 when a change can be observed at α ' 8.25. We

can conclude that, stronger, higher-frequency instabilities are predicted by the linear

model in the vicinity of the rotor. The eigenvectors corresponding to the most unsta-

ble eigenmodes at x = 3.5, x = 4.5 and x = 6.5 are shown in Figure 4.9a-c. In the two

closest planes to the rotor, the most unstable modes are radially modulated as shown

by the alternation of positive/negative streamwise disturbances, mostly localized at
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(a) (b) (c)

Figure 4.6: Turbulent viscosity νt, at x = 3.5 (a), x = 4.5 (b) and x = 6.5 (c).
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Figure 4.7: Eigenvalues spectra for x = 3.5 (a) and x = 6.5 (b) for different values of α
reported in the legend.
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(a) (b)

Figure 4.8: (a) Growth rates of the most unstable eigenmodes for different streamwise
frequencies α. (b) Temporal frequencies associated to the growth rates in (a)

r ≈ 0.5 and along the centerline r ≈ 0. A streamwise view of the u component of

these modes is provided in the right frames of Figure 4.9.

Focusing on the most unstable modes at x = 3.5 and x = 4.5, we observe that their

structure is mostly localized on the right region (with respect of an observer looking

downstream). This asymmetry is attributed here to the meanflow, characterized by

different shear intensities in the azimuthal direction, as shown in Figure 4.10 for four

different azimuthal angles θ = {0, π/2, π, 3π/2}) at x = 3.5 and x = 6.5. In particu-

lar, Figure 4.10 shows that, in the plane closest to the rotor, the meanflow shear is

less pronounced in the left part of the wake, whereas, in this right region of the wake,

the streamwise velocity profile presents two inflection points in the radial direction,

i.e. ∂2u/∂r2 = 0. This is not the case at x = 6.5, due to the mean kinetic energy

entrainment: in this case the radial shear is slightly weaker and more uniform in

both radial and azimuthal directions. Thus, the unstable mode has almost the same

intensity in different azimuthal positions. All these features can be summarised by

analysing the three-dimensional rendering of the modes in Figure 4.11a-b, for x = 3.5,

α = 6 and x = 6.5, α = 3.5, respectively; here, the most unstable mode at x = 3.5

shows streamwise-alternating and azimuthally-elongated patches following the mean-
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Figure 4.9: Streamwise component of the most unstable eigenmode for x=3.5 and α = 6
(a), x=5.5 and α = 5.5 (b), and x=6.5 and α = 3.5 (c) in a (Left) z -y and (Right) x -z plane,
after reconstruction of the perturbation in the streamwise direction.
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Figure 4.10: Mean flow profiles at four different azimuthal positions, θ = 0, π/2, π, 3π/2,
corresponding to the right, bottom, left and top part of the wake, respectively, in the cross-
flow planes at x = 3.5 (a) x = 6.5 (b).
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flow shear in the upper-right part of the wake, while the mode at x = 6.5 develops a

double-helix structure.

We consider now the POD modes analysed in 4.2, except for the first pair of modes,

which capture the tip-vortex helices. In fact, the tip vortices are "forced" by the rotor

and do not emerge as an instability of the wake meanflow. By analysing the spectral

content of the following POD modes, we observe that the main streamwise angular fre-

quency found in the 5th POD mode and in the second peak of the 7th POD mode (see

the bottom frame of Figure 4.3), α ≈ 6, is very similar to the streamwise frequencies

of the most unstable modes found at x = 3.5 and x = 4.5, namely α = 6 and α = 5.5,

respectively. In fact, the overall spatial structure of the latter, provided in Figure 4.9,

resembles the POD modes 5 − 7. Moreover, a Fourier transform in the azimuthal

direction, provided in Figure 4.12 shows that the main azimuthal wavenumber of the

most unstable mode found in the plane closest to the rotor, coincides with that of the

most energetic POD modes, namely, m = 1. Whereas, the most unstable mode for

x = 6.5, found for α = 3.5, is characterized by main azimuthal wavenumber m = 2,

and by structures of longer wavelength in the streamwise direction. Neither this

wavenumber, nor the double-helix structure of this eigenmode, shown in Figure 4.11,

is recovered in the main POD modes. This is probably due to an insufficient length of

the computational domain in the streamwise direction. In fact, the angular frequency

α ≈ 3.5 corresponds to a wavelength λx = 2π
α

≈ 1.8. Since the unstable mode with

α ≈ 3.5 emerges at x = 6.5, only one wavelength can be contained in this portion

of the domain, which may be insufficient to capture unambiguously such instability.

4.4 Optimal forcing analysis

In the previous section, we noted that the most unstable mode found at x = 6.5 is

not identified by the POD. However, at the same location, the meanflow is linearly
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Figure 4.11: Isosurface of streamwise velocity of the three-dimensional reconstruction of
the most unstable mode for (a) x = 3.5, α = 6, and (b) x = 6.5, α = 3.5.

(a) (b) (c)

Figure 4.12: Fourier transform in the azimuthal direction of the streamwise component of
the eigenmode at x=3.5 and α = 6 (a), x=5.5 and α = 5.5 (b), and x=6.5 and α = 3.5 (c),
all representing the maximum growth rate in the considered plane.
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Figure 4.13: Eigenvalues spectrum for x = 6.5 and α = 9.

stable for α > 7.5. This allows us to complement the linear stability analysis with

a resolvent analysis, which enables to scrutinize the response of the system when

harmonically driven by real frequencies and to identify the corresponding optimal

forcing. In order to do so, we consider, in particular, the main streamwise frequency

that characterize the third POD mode, namely α = 9 (see the top frames of Fig-

ure 4.3). Inspecting the corresponding eigenspectrum provided in Figure 4.13, we

note that there are three modes lying very close to the neutral axis, whose spatial

structure is shown in Figure 4.14. The two of them which are characterized by a

(slightly) lower angular frequencies are mostly localized in the region r ≈ 0, show-

ing positive/negative streamwise disturbances alternating in the azimuthal direction.

Whereas, the mode with highest temporal wavenumber is mostly localized in the

r ≈ 0.5 region, showing a more complex flow structure. This correspondence between

localization and wavenumber is consistent with what has been observed in the 3rd

POD mode, being characterized by slightly larger wavenumbers in the root region
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Figure 4.14: First (a), second (b) and third (c) most unstable modes obtained for x=6.5
and α = 9: streamwise disturbance in the z -y (left) and in the x -z plane (middle) and
associated Fourier amplitudes in the azimuthal direction (right).
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4.5 5 5.5 6 6.5 7 7.5 8

Figure 4.15: Linear superposition of the three main eigenmodes of the energy spectrum
at x = 6.5 and α = 9: streamwise disturbance in the z -y (left) and in the x -z plane (right)

with respect to the tip one (see the right frame of Figure 4.3). Moreover, Fourier

transform in the azimuthal direction shows that all of these modes are characterized

by main azimuthal wavenumber m = 1 (see right frame of Figure 4.14), although

the azimuthal Fourier spectrum of mode 3 has a correspondingly high amplitude at

m = 2 and a weaker peak at m = 4. As already noted, the POD mode taken here

as reference comprises different structures with a different localization and frequency.

Therefore we attempted to reconstruct the POD mode by combining the three least

stable modes mentioned above with coefficients c1 = 0.25, c2 = 0.15, c3 = 0.6. Fig-

ure 4.15 provides the streamwise velocity contours of this combination, which show

a strong resemblance with the overall structure of the third POD mode shown in

Figure 4.4.

Figure 4.16 shows the resolvent norm R(ω), providing the maximum energy gain for

a given forcing in the range 6.8 < ω < 9. One can notice that the main three peaks

correspond to the frequencies of the least stable modes of the eigenspectrum, suggest-

ing a quasi-resonance mechanism at these particular wavenumbers (see [91, 15]). In

fact, in some flow cases, the amplification of the external forcing at a given frequency

can mostly result from the resonance of a given eigenmode, though other eigenmodes

can also contribute to the response, albeit to a lesser extent. In the present case,
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Figure 4.16: Resolvent norm in different cross-sections and α = 9.
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Figure 4.17: Optimal forcing (left) and responses (right) for different frequencies at x = 6.5
and α = 9.
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(a) (b)

(c) (d)

(e)

Figure 4.18: Fourier transform in the azimuthal direction for the optimal responses at
different frequencies indicated within the plots for x = 6.5 and α = 9.
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Figure 4.19: Optimal forcing (left) and responses (right) for different frequencies at x = 7.5
and α = 9

the main resolvent peak is found for ω = 7.8, providing a gain of R(ω = 7.8) ≈ 40,

although harmonic perturbations with slightly larger or smaller ω are also amplified

more than one order of magnitude. Looking at the optimal forcing and responses

at the different frequencies corresponding to the several peaks of the resolvent norm,

provided in Figure 4.17, one can see that the three most amplified harmonic responses

(ω = 7.44, 7.89, 8.48 in the first, third and bottom row) are very similar to the eigen-

modes with the same frequencies recovered by stability analysis. This feature is a

clear sign of the existence of a quasi-resonance mechanism at those particular fre-

quencies. As shown in Figure 4.18a-c-e, all of these responses have main azimuthal

wavenumber m = 1, which corresponds to the peak wavenumber of the main POD

modes. At intermediate forcing frequencies, rather different flow structures are found,

with main azimuthal wavenumber ranging from m = 1 to m = 4 (see Figure 4.18

(b-d)), which are however less amplified. A very similar behaviour is found in dif-

ferent cross-sections further downstream. Figure 4.16 (b) shows the resolvent norm

in the cross-section x = 7.5 for the same value of α. As before, the resolvent norm
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peaks at the frequencies of the least stable modes of the corresponding eigenspectrum

(not shown), indicating once again a quasi-resonance mechanism. Moreover, the most

amplified optimal responses are similar to those found at x = 6.5, characterized by

very low azimuthal wavenumber (m = 1− 2, as for the main POD modes) as shown

in Figure 4.19.

In conclusion, it appears that the local stability analysis can provide some informa-

tion about the main wavenumbers and structures within the flow when carried out

sufficiently close to the rotor. In that sense those large coherent structures can be

approximated by linear modelling, thus enabling - for instance - control design in

combination with the information obtained by perusing the localisation of the opti-

mal forcing. We also observe that in the far wake, stability analysis does not predict

the main frequency and spatial content of the flow; this can be due to the caveats of

the linear model as well as to the limited extent of the domain behind the turbine.

We further analyse the linear model by means of resolvent analysis and show that, if

forced appropriately, linearly stable modes can be effectively amplified, and detected

in the flow. Therefore, it appears that in convective flows as a wind turbine wake, flow

structures arising upstream can determine also the most amplified frequencies down-

stream. This suggests that the frequency content of the nonlinear forcing f (which is

often assumed being a white-noise) may be a key factor in determining the emerging

flow structures in this types of flows.
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4.5 Conclusions

We carried out a linear analysis of the wake developing past a wind turbine. We

considered a numerical snapshots computed by Large-Eddy-Simulation using the ac-

tuator line technique to simulate the rotor, at Re = 6.3 × 105. Proper orthogonal

decomposition analysis is applied for detecting the coherent structures developing

in the flow. These modes are applied here for benchmarking the linear modelling.

More precisely, two-dimensional linear stability and optimal forcing analyses have

been used at different cross-flow planes along the streamwise direction. The resulting

spatial structures at each frequency is compared with the most energetic coherent

structures recovered by POD analysis.

In the closest planes to the rotor (3 to 6 diameters), the main POD modes are char-

acterized by rather high values of the temporal and streamwise angular frequency

α = 6 − 10, and azimuthal wavenumber m = 1. These structures, mostly located in

the root and tip vortices regions, are characterized by slightly different wavenumbers

in the inner and in the outer part of the wake. These structures are recovered in the

modal stability analysis: close to the rotor, the unstable modes are mostly located in

the outer part of the wake and have a frequency content consistent with that of the

most energetic POD modes. The growth rate of these modes decreases while moving

far from the rotor. In the far wake, however, unstable branches identify structures

characterized by lower streamwise wavenumbers and higher azimuthal wavenumbers,

losing resemblance with respect of the identified POD. We further explore the spectral

content of the POD modes, by considering optimal forcing and response obtained by

the resolvent analysis. In particular, we considered a far-wake cross section at the

characteristic streamwise frequency of the third POD mode, namely α = 9, where the

mean flow results linearly stable. The response gain showed three distinct frequencies

correspondent to three barely stable modes. The two linear modes with lower ω are

localised at the wake core, wheareas the mode with a higher ω is mostly localised

of the wake shear layer. Moreover, the combination of these three linear modes re-
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sembles the third POD mode, taken as reference. Optimal forcing analysis shows,

therefore, that these asymptotically stable modes can be amplified by more than one

order of magnitude by means of a quasi-resonance mechanism, being able to bypass

the growth of the most unstable modes recovered in the far wake. This suggests a

scenario in which the coherent structures within the wake are mostly originated by

modal instability mechanisms close to the rotor, generating waves of selected frequen-

cies able to trigger a high flow response downstream. The author aims at verifying

this conjecture performing an analysis more tailored to the purpose in future works.



Chapter 5

Data driven modal analysis of a

utility-scale wind turbine wake

5.1 Introduction

In this chapter the wake produced by a utility-scale wind turbine invested by a laminar,

uniform inflow is analyzed. The turbine considered is the NREL-5MW [50] and its

size leads to a Reynolds number of the order of 108, which together with a higher

tip-speed ratio can lead to a different wake dynamics with respect to that analyzed

in the previous chapters. The wake flow is analyzed using both Proper Orthogonal

Decomposition (POD) and Dynamic Mode Decomposition in its sparsity-promoting

variant (SP-DMD), described in sections 3.4 and 2.7, respectively.

5.2 Simulation setup

The computational box and boundary conditions are the same used for the simulations

analyzed in chapter 3. The geometrical characteristics of the turbine considered

here are summarized in table 5.1. The turbine is simulated at rated conditions with

tip-speed ratio λ = 7, which implies a constant dimensionless angular frequency of

105
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Table 5.1: Geometrical parameters of the NREL 5MW turbine.

Parameter Value

Hub height h = 87.5 m
Blade length R = 61.5 m
Rotor diameter D = 126 m
Tower mean diameter dt = 5 m

the rotor ω = 2λ = 14. The reference incoming wind speed at rated conditions is

U∞ = 11.4 m/s, therefore the resulting diameter-based Reynolds number is Re ≈ 108.

5.3 Proper orthogonal decomposition

The proper orthogonal decomposition is carried out on a dataset made by M = 3051

snapshots of the velocity field in a subdomain enclosing the wake, whose extent is

[0 8.4]× [−0.7 0.63]× [0.8 2.2] in x,y and z direction, respectively. The velocity com-

ponents have been downsampled with a ratio 1:5 with respect to the computational

grid and the sampling frequency is such that 36 snapshots correspond to a complete

rotation of the rotor. Moreover, the ensemble mean, shown in Figure 5.1, has been

subtracted from each snapshot. The latter shows a weaker effect of the tower on the

wake, with respect to the case analyzed in Chapter 3. In this case, indeed, the wake

does not show a strong asymmetry between the left and the right side, being almost

axisymmetric. This behavior can be due to the reduced tower’s diameter, but also to

the higher tip-speed ratio and Reynolds number, which accelerating the tip-vortices

breakdown, prevents the latter to interact with the vortices shed by the tower. The

decomposition has been performed using the snapshots’ method [96]. In figure 5.2(a)

the distribution of the singular values is shown. It can be observed a fast energy decay

for the first 2-3 hundreds of modes; then the slope of the curve decreases and a nearly

null energy is reached for k ≈ 2500. A closer look to the singular values for the first

20 POD modes highlights a step-wise distribution, suggesting that successive modes
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(a)

(b) (c)

Figure 5.1: Streamwise velocity contours of the snapshots’ ensemble mean. (a) x -y plane
at z = 1.5. (b) x -z plane at y = 0 . (c) z -y plane at x = 4.

characterized by a similar energy are paired, as observed in chapter 3. Figure 5.2(b)

shows the cumulative percentage distribution of turbulent kinetic energy against the

fraction of POD modes considered, computed as:

k[%] =

∑m
k=1 sk∑M
k=1 sk

× 100 m ∈ {1, . . . ,M} (5.1)

modes[%] =
m

M
× 100. (5.2)

Fifty percent of the turbulent kinetic energy is due to only 15% of POD modes (∼ 457

modes), and 50% of modes (∼ 1525 modes) accounts for about 90% of the turbulent

kinetic energy. The most energetic POD modes are shown in figure 5.3. The first

pair (figure 5.3(a)) corresponds to the 4th harmonic of the tip vortices (figure 5.3(b)).

The second and third pair are harmonics of the tip vortices as well (not shown). Mode

9 in figure 5.3(c) is representative of the fitfh pair and it is mostly concentrated in the

region between the near wake and the turbulent far wake. For this reason the fifth

pair is possibly related to an instability mechanism, causing tip vortices’ breakdown.

The vortex shedding caused by presence of the tower is captured in the following three

pairs (figures 5.3(d-f)). Many of the remaining modes are very similar to the 13th

mode (figure 5.3(e)), with a small-scale and almost featureless structure far from the

rotor; however low-frequency large-scale coherent motions, though characterized by
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Figure 5.2: (a)Singular values distribution with a close-up for the first 20 modes. (b)
Cumulative turbulent kinetic energy distribution against the fraction of POD modes.

low amplitude, are also recovered (see figure 5.4).

5.4 Dynamic mode decomposition

The Dynamic Mode Decomposition is performed on the same dataset analyzed using

the POD. The latter, in fact, represents a preliminary step for the computation of

dynamic modes, as explained in section 2.7. In particular the dynamic modes are

computed onto a low-dimensional subspace consisting of the first 251 POD modes.

The selected value of sparsity-promoting parameter is γ = 40000. This particular

choice has led to the nontrivial selection of just 14 relevant dynamic modes. In the

left panel of Figure 5.5 the eigenvalues µ of the linear operator F (see equations (2.47)

and (2.48)) are shown, along with the unit circle. The selected modes by the sparsity-

promoting algorithm are marked with a black circle. As expected for a turbulent

statistically stationary flow, all eigenvalues are very close to the unit circle, describing

the purely periodic dynamics of the associated modes. It is noticeable, furthermore,

an unbalance between high- and low-frequency modes, the high-frequency ones being

only the harmonics of tip vortices, since their frequencies are multiples of the tip
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(a) POD Mode 1 (b) POD Mode 7

(c) POD Mode 9 (d) POD Mode 11

(e) POD Mode 13 (f) POD Mode 17

Figure 5.3: Streamwise velocity iso-surfaces of relevant POD modes (red for positive, blue
for negative values).
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(a) POD Mode 201 (b) POD Mode 211

(c) POD Mode 221 (d) POD Mode 235

Figure 5.4: Streamwise velocity iso-surfaces of POD modes with large-scale structure (red
for positive, blue for negative values).
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Figure 5.5: Eigenvalues resulting from the standard DMD algorithm (red crosses) and
the sparsity promoting algorithm (black circles). The right panel shows the logarithmic

mapping of the eigenvalues, ω = − log(µ)

i∆t
where ∆t is the temporal separation between two

consecutive snapshots and i the imaginary unit.

Table 5.2: Frequencies and amplitudes of the selected complex conjugate dynamic modes’
pairs, computed with the standard and sparsity-promoting DMD.

R(ω) |α| (std. DMD) |α| (S-P DMD)
Pair 1 42 178.5 24.01
Pair 2 3.586 340.4 5.875
Pair 3 3.45 353 3.563
Pair 4 3.917 308 3.118
Pair 5 2.96 348.3 2.592
Pair 6 2.472 114.7 2.246
Pair 7 5.205 362.8 0.7402

vortices’ frequency. The right panel of Figure 5.5 shows the logarithmic mapping

of the eigenvalues, computed according to ω = − log(µ)

i∆t
where ∆t is the temporal

separation between two consecutive snapshots and i the imaginary unit. Since the

analyzed dataset is real, the latter eigenvalues’ spectrum is clearly symmetric with

respect to the imaginary axis: the eigenvalues with non-zero frequency form complex

conjugate pairs, and so do the associated dynamic modes. Therefore, the 14 dynamic

modes selected by the sparsity-promoting DMD consist of 7 complex conjugate pairs.

Some low-frequency modes seem being slightly unstable; however this behavior is not

physical, more likely it is due to the limited time window spanned by the entire dataset,

which is insufficient for capturing low-frequency modes accurately. Frequencies and

amplitudes of the selected dynamic modes’ pairs are summarized in Table 5.2. The

amplitudes of the dynamic modes |αi| (see equation (2.53) are shown in Figure 5.6,
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Figure 5.6: Dependence of the absolute value of the DMD amplitudes αi on the angular
frequency R(ω). The results are obtained using the standard (blue stems) and the sparsity-
promoting algorithm (red stems). Due to the symmetry of amplitudes’ distribution, only
positive frequencies are shown.

which compares the results of the standard DMD algorithm (blue stems) with the

results of the sparsity-promoting DMD algorithm (red stems). Among the modes

selected by the SP-DMD, the ones having the largest amplitude correspond to the tip

vortices (see Figure 5.7(a)) and, in fact, oscillate at a characteristic angular frequency

ω = 42, equal to three times the rotational angular frequency of the turbine. It

is interesting to note that the remaining selected modes are characterized by low

frequencies and large-scale spatial structures, as can be observed in Figure 5.7(b-g).

This is in contrast with POD analysis, where large-scale structures are ranked low,

and, therefore, not considered energetically relevant. The different outcomes of the

POD and the sparsity-promoting DMD are justified and discussed in the following

concluding section.
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(a) Pair 1 (b) Pair 2

(c) Pair 3 (d) Pair 4

(e) Pair 5 (f) Pair 6

(g) Pair 7

Figure 5.7: Streamwise velocity iso-surfaces (red for positive, blue for negative values) of
the real part of the 7 dynamic modes’ pairs selected by the sparsity-promoting algorithm,
ordered according to their amplitude |α|.
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5.5 Conclusions

In this chapter, the wake produced by the reference utility-scale wind turbine NREL

5-MW is analyzed using two modal decomposition techniques, namely the Proper Or-

thogonal Decomposition (POD) and the Dynamic Mode Decomposition (DMD). The

POD generates orthogonal modes that optimally capture the energy of a given dataset.

However, the most energetic POD modes may not correspond with the dynamically

important ones. Therefore, the selection of the POD basis for a reduced-order model

is not trivial. On the other hand, DMD computes eigenvalues and eigenvectors of a

linear operator that approximates the underlying nonlinear dynamics. This can be

seen, in fact, as an approximation of the Koopman operator. The DMD provides

frequencies and growth rates for each mode, and if the data are periodic, the decom-

position amounts to Discrete Fourier Transform (DFT) [82]. However, even for the

DMD, the selection of dynamically relevant modes is not straightforward nor trivial.

For this reason the sparsity-promoting DMD (SP-DMD) algorithm is employed for

this analysis, which is able to find a set of modes that best approximated the dataset,

given a sparsity constraint. The results show a quite different behavior of the two

methods. The POD analysis appears to be biased toward near-wake, high-frequency

modes, as the tip vortices and, in particular, their harmonics. The SP-DMD still

selects the tip vortices in the wake, but also a set of large-scale coherent structures

in the far wake. According to the POD, the latter are characterized by a low en-

ergy, but nevertheless, SP-DMD proves they are dynamically relevant. The difference

between the two modal-decomposition techniques points out that POD may not be

suitable for obtaining a low-dimensional model of a turbulent wind turbine wake and

sparsity-promoting DMD should be preferred.



Chapter 6

Final remarks

In the present thesis the study of wind turbines wakes has been approached using

data-driven modal-decomposition techniques and meanflow linear analysis.

Large Eddy Simulations of a model wind turbine at moderate Reynolds number and

tip-speed ratio λ = 3 were performed, using the Actuator Line Method to model the

aerodynamic forces exerted by the blades and the Immersed Boundary Method to

simulate the tower and nacelle. The turbine was simulated with and without tower

and nacelle, and the Proper Orthogonal Decomposition of three-dimensional velocity

data allowed us to isolate the most energetic coherent structures characterizing the

two cases. The analysis of time-averaged flow fields and POD modes showed that the

vortex-shedding from tower and nacelle, interacting with the tip-vortex helices, leads

to a marked asymmetry of the wake and a faster recovery. A further insight into the

effect of tower and nacelle on wake recovery was provided by computing the contri-

bution of each POD mode to mean-kinetic-energy flux through a cylindrical surface

enclosing the wake. It was found that tip-vortices and their harmonics have a nega-

tive impact on wake recovery, whereas coherent structures generated by the presence

of tower and nacelle, as the von Kármaán vortex street and oscillations produced by

its interaction with tip vortives, promote the recovery of the wake.

The physical origin of coherent structures isolated by the Proper Orthogonal Decom-
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position in the case without tower and nacelle was then investigated. In order to do

so, a linear stability and optimal forcing analysis were performed on the meanflow.

In particular the quasi-parallel hypothesis was made and the flow was analyzed by

means of bilocal stability analysis in cross-flow planes at different locations along the

streamwise direction. The effect of turbulent fluctuations was taken into account by

modeling the Reynolds stress using the frozen eddy-viscosity approach. Most unstable

(amplified) modes were compared with POD modes and, despite lacking in predictive

abilities, linear analysis of the meanflow has proved to be well suited to model some

of the structures arising in the far wake.

Finally, the wake produced by a utility-scale wind turbine at high Reynolds number

and tip-speed ratio λ = 7 was analyzed using the Proper Orthogonal Decomposition

and the Dynamic Mode Decomposition, in its sparsity-promoting variant. A visual

analysis of the snapshots’ ensemble highlighted a different dynamics with respect to

the model wind turbine. In particular, in this case, the wake remains substantially

straight and axisymmetric, despite the presence of tower. The most energetic POD

modes were relative to the tip-vortices dynamics, the breakdown of which did not

seem to be not related to the interaction with tower’s wake. The tower’s wake char-

acteristic flow structures were also captured by the first POD modes. Large-scale

coherent structures arising in the far wake were, instead, not present among the most

energetic modes. The sparsity-promoting dynamic mode decomposition, performed

on the same dataset, selected a non-trivial limited subset of dynamic modes that op-

timally reconstruct the entire data sequence. In particular a pair of dynamic modes

related to the tip vortices was selected, but, in contrast to POD, the remaining selected

dynamic modes captured low-frequency large-scale coherent structures arising in the

far wake. The latter result suggests that an energy-based criterion, like POD, may

not be the more suitable for formulating a reduced-order model of wind turbine wake,

and the sparsity-promoting DMD should be preferred for finding a low-dimensional

representation of flow data.
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