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Introduction to optomechanics

Optomechanics is a developing field of research exploring the interaction between

light and mechanical motion. The modern nanofabrication techniques for mechani-

cal devices and ultralow dissipation optical structures have provided a way for giving

an important experimental progress to optomechanics, both for applications and for

fundamental investigations. In this thesis Optomechanics will be investigated in sev-

eral different aspects, in its general meaning, both theoretically and experimentally.

There are different ways in which light and mechanics interact with each other

(Figure 1). In this thesis three different areas of Optomechanics will be examined.

The interaction between light and mechanical motion will be investigated starting

from the concept of optical gyroscopes. Optical gyroscopes are sensors of angular

velocity. In the present state of the art, the physical principles and the configura-

tions used for realizing optical gyroscopes are not suitable for miniaturizing them to

the microscale. So, some new configurations exploiting the concept of “exceptional

points” will be here presented.

Secondly, the concept of optomechanical forces will be investigated in the follow-

ing chapter. A new generalized energetic model to evaluate optical forces will be

developed to provide an easy way to design new optomechanical devices. A mod-

elling of the dynamics of optomechanically coupled waveguides will be investigated

analytically and numerically. Then, an experimental work about an optomechani-

cal switch will be presented, to demonstrate the feasibility of a new generation of

optomechanical devices in optical networks and for different applications.

Finally, Photoacoustic Spectroscopy will be analysed in the last chapter. The

state-of-art Quartz-Enhanced PhotoAcoustic Spectroscopy (QEPAS) sensor will be

modelled and simulated and a proposal for a new semi-integrated sensor will be

presented.

13
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Here a brief background on the three subjects developed in the next chapters is

presented. Moreover, some principles of fabrication technology is given, to clarify the

fabrication steps involved in the fabrication all the devices presented in this thesis.

Figure 1: Graphical visualization of Optomechanics, with some examples of applica-
tions.

Optical gyroscopes

Sensors for angular velocity

The gyroscope, which measures angular velocity around a fixed axis with respect to

an inertial space, is a key sensor in modern navigation systems enabling the possibility

to plan, record and control the movement of a vehicle from one place to another [1].

There are three main categories of gyroscopes: spinning mass gyroscopes, optical

gyroscopes and vibrating gyroscopes. In the first category, all the devices with a

mass spinning steadily with respect to a free movable axis are included. Optical

gyroscopes are based on the Sagnac effect. Finally, vibrating gyros are based on

Coriolis effect, inducing a coupling between two resonant modes of a mechanical

resonator [1].
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Spinning mass gyroscope

The first conception of a gyroscope is the mechanical one using a spinning mass. A

mechanical gyroscope essentially consists of a spinning mass that rotates around its

axis. In particular, when the mass is rotating on its axis, it tends to remain parallel

to itself and to oppose any attempt to change its orientation. This mechanism was

invented in 1852 by physicist Léon Foucault during his studies of the Earth’s rotation

[2]. When the system is suspended and free to rotate, its spinning axis will remain

oriented in the same direction, even if the external frame is changing direction. When

the axis is forced to change direction, the system reacts with a counterbalancing

torque related to the angular velocity imposed to the frame. By constraining the

spinning mass to the rotating frame through a known stiffness, the emerging torque

can be retrieved and the angular velocity of the frame can be indirectly measured

(Figure 2a). This is called “rate mechanical gyroscope”.

Vibrating gyroscopes

Vibrating gyroscopes generally use a vibrating mechanical part as a sensing element

for detecting the angular velocity [2]. They do not have rotating parts that require

bearings and this enables an easy miniaturization and the use of the manufacturing

techniques typical of MEMS (Micro Electro Mechanical Systems) devices. All MEMS

gyroscopes with vibrating element are based on the transfer of energy between two

vibration modes caused by the acceleration of Coriolis. [2] The Coriolis acceleration,

proportional to the angular velocity, is an apparent acceleration that is observed in

a rotating frame of reference and can be used to sense the angular velocity of the

frame.

Sagnac gyroscope

Optical gyroscopes are based on the Sagnac effect, which states that the phase shift

between counterpropagating optical waves in a rotating ring interferometer is pro-

portional to the angular velocity of the structure around the axis perpendicular to

the ring. In 1963 the first Ring Laser Gyroscope was fabricated [3], using mirrors

to create the Sagnac loop. Then, fibre solutions to exploit the Sagnac effect have

been developed, called Fibre Optic Gyroscopes (FOGs). The trend of the recent
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years of miniaturizing sensors to save space, weight and money, lead to the interest

in the possibility of the integration of gyroscopes. The miniaturazion of spinning

mass gyroscope presents different technological problems. Differently, vibrating and

optical gyroscopes can be effectively miniaturized, leading to MEMS and integrated

optical gyroscopes. However, there is an intrinsic limit in a further miniaturization

of MEMS gyroscopes up to micro- and nanometric dimensions: the sensitivity of the

sensor depends on the physical mass of the inertial part of the device. Whereas,

the limit in a further integration of optical gyroscopes to the micrometric scale is

that in the Sagnac effect the phase shift between counterpropagating waves is pro-

portional to the radius of the ring. So, a different approach is necessary to develop

a new generation of gyroscopes, that can be scaled to micrometric and nanometric

dimensions.

(a) (b)

Figure 2: Spinning mass gyroscope [2] (a). Ring Laser Gyroscope [2] (b).

Recent advances in the integration of optical gyroscopes

There are many applications where angular velocities in the range of 0.1-100°/h need

to be detected. Despite ring laser gyroscopes can easily reach such a precision, it

is out of reach in fully integrated platforms, where the area of the loop is gener-

ally smaller. Moreover, the resolution of optical gyroscopes is often limited by the

lock-in effect, due to unwanted coupling between the two counterpropagating modes

[4]. Currently, several research groups are trying to implement chip-scale laser gyro-
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scopes. One approach uses a Mach-Zehnder Interferometer into the coupling region

between a ring resonator and a straight waveguide. [5] An alternative solution is

an integrated resonant optical gyroscope constructed by active long-range surface

plasmon-polariton (LRSPP) waveguide resonator [6]. In [7], a monolithic micro cav-

ity is shown, capable of detecting rotations as low as 22 deg/h using counterpropagat-

ing laser fields. The proof-of-concept gyroscope features an 18-mm silica-on-silicon

disk resonator with an intrinsic Q-factor over 200 million. In [8] a novel highly in-

tegrated optical gyroscope using low loss silicon nitride waveguides is proposed and

analysed. Active three-dimensional vertically coupled resonators have been proposed

in [9] to be used as a gyroscope, the sensitivity of which is enhanced by loss com-

pensation, unidirectional propagation and large sensing area, while maintaining the

same bulk volume. In [10] a gyroscope structure with tailored local dispersion profile

to enhance sensitivity has been proposed, which uses lithium niobate (LiNbO3) thin

film as the on-chip material of gyroscope resonator. The structure of the gyroscope

proposed in [11] is claimed to achieve very high sensitivities, reaching a theoretical

sensitivity enhancement of 106 with respect to a classical Sagnac gyroscope, by ex-

ploiting the concept of parity-time symmetry. Moreover, it overcomes the problem

of the lock-in effect, using only unidirectional waves.

Contribution of this thesis

The contribution of this thesis in the field of optical gyroscopes will start by analysing

the parity-time symmetric solution proposed by [11]. It will be shown that in such

configuration, a real splitting is not visible in the spectrum of the light exiting the

gyroscope, when set in rotation. This is due to the presence of the imaginary part

of the complex eigenfrequencies on the output spectrum. It will be shown that,

differently from what is claimed in [11], the output transfer function of the light

exiting the device does not exhibit any spectral splitting. It will be demonstrated,

instead, that the full width at half maximum (FWHM) of the output transfer func-

tion is proportional to the square root of the angular velocity of the frame if the

system is designed to be at the exceptional point. These results have been pub-

lished in [12]. Secondly, a new configuration about an anti-parity-time symmetric

gyroscope will be proposed. Anti-parity-time symmetry will be investigated as a new

solution for solving the problem of the integration of angular velocity sensors. In par-
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ticular, it will be demonstrated that anti-parity-time-symmetric gyroscope presents

several advantages in terms of easiness of readout and stability with respect to the

parity-time-symmetric one. The used device exploits a U-shaped configuration to

indirectly couple two optical resonators. The anti-parity-time-symmetric gyroscope

here proposed has been published in [13]. Thirdly, another new configuration for an

anti-parity-time-symmetric gyroscope will be presented. The main advantage of this

configuration with respect to the one with the U-shaped waveguide is the fabrication

robustness.

Optomechanical forces

A brief history

The term “optomechanics” is recently being adopted especially for the particular

area of this subject dealing with optomechanical forces. Optical forces are very

feeble forces that manifest themselves only in particular conditions (e.g. during

star formation) [14]. Light, in fact, carries a momentum, that can be transferred to

material objects. The tails of the comets are one of the examples of the manifestation

of optical forces. Being the forces of the order of pico- and nanonewtons per milliwatt,

the applications of these forces are especially interesting in integrated devices. The

trend of the miniaturization of devices and sensors reaching the microscale is perfectly

compatible with the orders of magnitude of optomechanical forces. Optical forces are

usually divided into two categories: radiation pressure, acting along the direction of

propagation of light, and optical gradient force, acting transversely to the direction

of propagation of light.

The concept that electromagnetic radiation can exert a force on material objects

was theoretically predicted by Maxwell [15], and the radiation pressure of light was

first observed experimentally more than a century ago [16].

Braginskǐi firstly investigated the ability of radiation pressure to provide cooling

for large objects [17]. He considered the dynamical influence of radiation pressure on

a suspended end mirror of an optical cavity. With his analysis, the retarded nature

of the force was revealed, due to the finite cavity lifetime. Such effect resulted

on damping or antidamping of mechanical motion, that he demonstrated using a
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microwave cavity.

In the 1970s, Ashkin demonstrated that focused laser beams can trap and control

dielectric particles, including feedback cooling [18]. In 2018 Ashkin was awarded a

Nobel Prize in Physics for his work on optical trapping.

In 1975, the non-conservative nature of radiation pressure force and the conse-

quent possibility of using it for cooling atomic motion were pointed out [19, 20].

Consequently, laser cooling was experimentally realized in 1980s, becoming an im-

portant technique [21]

Recently, the interest for optomechanical devices has led to a lot of work about

the manipulation of the center-of-mass of motion of mechanical oscillator, includ-

ing macroscopic mirrors in the Laser Interferometer Gravitation Wave Observatory

(LIGO) project [22], nano- or micromechanical cantilevers [23, 24, 25], vibrating mi-

crotoroids [26, 27] and membranes [28]. Cooling of motion has been demonstrated

using positive radiation pressure damping, whereas negative damping permits para-

metric amplification of small forces [26, 29].

(a) (b)

Figure 3: Classical optomechanical cavity (a). Arrow lines representing optical gra-
dient forces evaluated through Maxwell Stress Tensor (b).
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Recent advances

Thanks to recent advances in nanophotonics, the dimensions of optical devices have

been reduced to micro and nanometers, making optical actuation possible even for

levels of power of microwatts [26]. In these cases, optical forces can be scaled to

higher values through high-Q resonance enhancement [30, 31]. Such results paved

the way to light-driven mechanically variable systems for trapping [32, 33], actuation

[34, 31] and manipulation of nanoscale objects [32]. Since the optical state of a

system is linked to its mechanical state, mechanical forces can be used to realize

variable directional couplers [35, 33], parametric optical processes [26, 36, 31], ultra-

widely tunable microcavities [32], and microcavity athermalization via self-adaptive

optomechanical behaviours [32, 37]. The possibility to arrange an optical system to

generate optical torques has been used to realize microscopic machines [38, 39, 40]

and integrated light devices for actuation, trapping and sensing [41, 42, 43, 44].

In order to proper design such optomechanical systems, an easy tool is needed.

In fact, Maxwell Stress Tensor (MST) is well known to be useful for calculating op-

tical forces, but it is computationally expensive, especially in complex systems with

resonant architectures (three-dimensional FDTD needs to be performed). Moreover,

the MST method is reliable, but it is not intuitive to design a system with a desired

optical force profile. In [45], Rakich developed a general analytical formalism which

can handle the calculation of optical forces in complex optical systems. Before the

Response Theory of Optical Forces (or RTOF) by Rakich, the optical field distri-

bution was needed for computing optical forces. The RTOF method enables the

evaluation of optical forces in open lossless mechanically variable optical systems us-

ing a formalism which takes into account the energy and photon number conservation

principles in the context of such systems.

It has been widely demonstrated that high-quality-factor resonant systems are

interesting for the generation of large optical forces [30, 31].

Contribution of this thesis

In this thesis, a generalized version of RTOF method will be presented, which takes

into account also the presence of gain or loss sources. Using the generalized RTOF

method, it will be shown that resonant optical structures can produce a further en-
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hancement of optical forces, when the system approaches the parity-time symmetry

condition. These results have been published in [46]. Then, a proposal for the mod-

elling of the dynamics of coupled suspended optical waveguides will be presented

and a numerical algorithm to predict and design the transient behaviour of optome-

chanical devices will be shown. The results have been published in [47]. Finally,

an experimental work on an optomechanical switch will be shown. The experiment

includes the fabrication and the optical measurement, performed at the Optoelec-

tronics Research Centre of the University of Southampton.

Quartz-Enhanced PhotoAcoustic Spectroscopy

Photoacoustic Spectroscopy

PhotoAcoustic Spectroscopy (PAS) is an indirect absorption spectroscopy based on

the photoacoustic effect and typically using lasers as excitation sources [48]. When

light at a specific wavelength is absorbed by the gas sample, the excited molecules

will subsequently relax to the ground state either through emission of photons or

by means of non-radiative processes. These processes produce localized heating in

the gas, which in turn results in an increase of the local pressure. The local pres-

sure contains information about the gas in the proximity of the light beam and its

measurement can be used to calculate the composition of the gas mixture in its prox-

imity. If the incident light intensity is modulated, the generation of thermal energy

in the sample will also be periodic and a pressure wave, i.e. a sound wave, will be

produced at the same frequency of the light modulation. The PAS signal can be

amplified by tuning the modulation frequency to the acoustic resonance of the gas

sample cell. The advantage is that no optical detector is needed for this technique

and commercially available hearing aid microphones can be used to sense the sound

waves. PAS has been successfully applied in trace gas sensing applications, which

include atmospheric chemistry, volcanic activity, agriculture, industrial processes,

workplace surveillance, and medical diagnostics.
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Quartz-Enhanced PhotoAcoustic Spectroscopy

Quartz-Enhanced PhotoAcoustic Spectroscopy (QEPAS) is an alternative approach

to PAS, using a quartz tuning fork (QTF) as a sharply resonant acoustic transducer

[49] to detect weak photoacoustic excitation, thus permitting the use of very small

volumes. QTFs have a quality factor of the order of 105 or higher in vacuum and 104

at normal atmospheric pressure [49]. Usually QTFs with resonant frequency of 32768

Hz are used. This means that the light is modulated at the same frequency, meaning

an acoustic wavelength of around 1 cm. The only way to excite the QTF (with 1 mm

distance between the two prongs) is to use a source located between the two QTF

prongs, without touching them. To enhance the QEPAS signal and to confine the

sound wave, a mechanical microresonator is employed. Usually it consists of two thin

tubes aligned perpendicularly to the QTF plane (Figure 4). The complete module

including the QTF sensor and the microresonator is called Acoustic Detection Module

(ADM) [50, 51, 52]. It is critical for the laser beam entering the microresonator to

avoid touching the walls of the resonator, to prevent photothermal effects. The

overall quality factor of the system decreases with the use of microresonators, since

the total losses increase. However, the intensity of the pressure signal is increased.

Moreover, the laser beam must not hit the prongs of the QTF since otherwise a large

undesirable non-zero background arises due to the laser contribution, hence limiting

the sensor detection sensitivity [53]. This problem triggered several solutions, for

instance the use of the Hollow Core Waveguides (HCW) to be coupled with the laser

sources for guiding the light and clean up the laser beam mode profile [54, 55, 56].

The short optical pathlength, the capability to reach high detection sensitivity,

high compactness and robustness represent the main distinct advantages which made

QEPAS the leading-edge technique mature for out-of-laboratory operation, target-

ing in-situ applications such as environmental monitoring and leak detection [57, 58].

Nevertheless, for those applications in which sensors must work in challenging en-

vironments like downhole analysis of natural gas or early fire detection empowered

by the drone technology, the further miniaturization step requires a different level of

integration of the opto-acoustic components [59, 60, 61].
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Figure 4: Acoustic Detection Module (ADM).

Contribution of this thesis

In this thesis a modelling of the QEPAS state-of-the-art sensor will be shown. More-

over, a new approach will be presented, aimed at miniaturizing the QEPAS sensor,

making it available for those applications where compactness is a key requirement.

Exploiting optical resonance and mechanical cavities, a semi-integrated version of

the QEPAS sensor will be demonstrated to achieve performance comparable with

the state-of-the-art sensor. These results have been published in [62]

Principles of Fabrication technology

All the thesis is focused on the integration of optomechanical devices. The fabrication

processes behind the manufactoring of integrated devices make use of lithography to

transfer a pattern on a resist and then transfer the pattern from the resist to a thin

film of a material or a bulk substrate, through etching processes [63]

Photolithography and Electron-beam lithography

Nowadays, the most used approaches in lithography are photolithography and electron-

beam lithography. Photolithography is a process using light to transfer a geometric

pattern from an optical mask to photosensitive material called “photoresist” [64].
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Electron-beam lithography (often abbreviated as e-beam lithography, EBL) is the

practice of scanning a focused beam of electrons to draw custom shapes on a surface

covered with an electron-sensitive film called “resist”. The electron beam changes

the solubility of the resist, thus enabling the selective removal of the exposed or the

non exposed region of the resist, when immersed in a solvent. [65]

The aim of both the lithography processes is to create very small structures in

the resist that can be transferred to the material on the wafer, often by etching

technique. The key advantage of the electron-beam lithography is the sub-10 nm

resolution. Whereas the most important advantage of the photolithography is the

presence of a photomask that can be reused for massive production.

Etching

The etching process consist in transferring the pattern from the resist to a thin film

of material or to a substrate. Traditionally the process of etching consisted on the use

of strong acid to cut the unprotected part of metal surfaces to create a design incised

in the metal [66]. In modern manufactoring different chemicals are used and several

materials can be incised. The etch-speed depends on the chemical used and on the

material to be etched. Often, a calibration is needed before the etching process.

Figure 5 shows the complete process of lithography and etching.

Deposition or growth

Sometimes etching is not sufficient to create a pattern we need on the microfabricated

chip. The deposition of thin films of materials is needed for different applications

[67]. For example, in optical devices a thin film of silicon dioxide is often used as

cladding of optical waveguides. Some examples of deposition techniques are:

� Thermal oxidation

� Local oxidation of silicon

� Chemical vapor deposition (CVD)

� Physical Vapor Deposition

� Epitaxy
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Micromachining

The recent industrial interest in Micro-Electro-Mechanical-Systems (MEMS) has in-

creased the ability in microfabrication technologies as micromachining. The term

micromachining refers to the fabrication of micromechanical structures with the aid

of etching techniques to remove part of the substrate or a thin film [68]. Having

excellent mechanical properties, silicon is an ideal material for micromachining and

has been widely used in the field of MEMS. Usually techiniques as vapor HF etch-

ing or wet HF etching combined with Critical Point Drying (CPD) are required to

selectively underetch thin films or the substrate.

Figure 5: Microfabrication processes of integrated devices including lithography and
etching.
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Focused Ion Beam

A Scanning Electron Microscope (SEM) is a microscope that scans a focused beam

of high-energy electrons to produce images of samples. A Focused Ion Beam (FIB)

instrument is almost identical to a SEM, but uses a beam of ions rather than electrons

[69]. At low beam currents, FIB can be used for imaging. However, unlike the SEM,

the FIB is inherently destructive to the specimen. Consequently the focused ion

beam can “mill” the specimen surface, via a sputtering process (Figure 6). Because

of the sputtering capability, the FIB is used as micro- and nano-machining tool, to

modify or machine materials at the micro- and the nanoscale. The smallest milled

features are of the order of 10 nanometers.

Figure 6: FIB milling process via a beam of Ga+ ions.



Chapter 1

Exceptional points for optical

gyroscopes

In this chapter an overview about Sagnac gyroscopes will be shown. Then, new

results about the modelling and the design of a parity-time-symmetric gyroscope

will be presented. Next, a proposal about an anti-parity-time-symmetric-gyroscope

will be shown. Finally, a different configuration about an anti-parity-time symmetric

gyroscope will be presented.

1.0.1 Optical gyroscopes

Gyroscopes are devices mounted on a frame, able to sense angular velocity. There

are different classes of gyroscopes, depending on the physical principles they use.

Optical gyroscopes operate by sensing the difference in propagation time between

counter-propagating beams travelling in opposite directions in closed or open optical

paths. A rotation-induced change in the path lengths generates a phase difference

between the counter-propagating light beams. This rotation-induced phase difference

is called Sagnac effect, and is the basic operating principle of all optical gyroscopes

[2]. Based on the measurement technique of the Sagnac effect, it is possible to classify

optical gyroscopes. The two main different typologies of optical gyroscopes consist

in active and passive architectures (see Figure 1.1). In the active configurations, the

closed-loop optical path (i.e., the ring cavity) contains the optical source, forming

a ring laser. The active configurations can be built in Bulk Optics or in Integrated

27
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Optics technology, although only the Bulk Optics solutions have achieved commercial

maturity. Among the ring laser gyros, there are different categories depending on

the method employed to overcome the lock-in effect (a condition for which the active

gyroscope response results insensitive to low rotation rates) which occurs at low

rotational rates (tens of degrees/hour). Lock-in can be reduced by introducing a

mechanical dither, a magneto-optic biasing, or by using of multiple optic frequencies

configuration. Differently, in passive architectures, the optical source is external

to the closed optical loop (i.e., a fibre coil) as in the Interferometric Fibre Optic

Gyroscope. Ring Laser Gyroscopes and Interferometric Fibre Optic Gyroscopes,

whose features differ in terms of size, weight, power requirements, performance, and

cost, are the more diffused optical gyroscope technology. [2].

Figure 1.1: Classes of optical gyroscopes [2]
.

Sagnac effect

The Sagnac effect is the operating principle of almost all optical gyroscopes. It was

discovered in 1913 by George Marc Sagnac as a result of the study of dynamics of

Earth rotation by Michelson-Morley [70]. The effect manifests itself in a setup called

“ring inteferometer”. The relative phase between two optical beams counterpropa-

gating in a ring structure changes of a quantity proportional to the angular velocity

of the ring structure (which rotates over a rotational axis perpendicular to the plane
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of the structure). Let’s consider a ring configuration with a radius R, that rotates

over a rotational axis perpendicular to the plane of the ring with angular velocity Ω.

The two optical counterpropagating beams experience two different optical paths,

due to the rotation of the frame:

L± = 2πR−RΩt± = c±t± (1.1)

with t± the time needed to cover the distance L± and c± the light speed of the two

counterpropagating beams.

We can obtain:

∆t = t+ − t− = 2πR

[︃
2RΩ(c+ − c−)

c+c−

]︃
(1.2)

Figure 1.2: Counterpropagating beams in a ring structure, and revolution times.

Let’s consider that the light is propagating into a medium with refractive index

n and let’s consider the relativistic composition of propagation speed and tangential

speed of medium. The speeds c− and c+ can be rewritten as [2]:

c− =
c/n+RΩ

1 +RΩ/(nc2)
=
c

n
+RΩ

(︃
1− 1

n2

)︃
+ ..., (1.3)
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c+ =
c/n−RΩ

1−RΩ/(nc2)
=
c

n
−RΩ

(︃
1− 1

n2

)︃
+ ... (1.4)

where c is the speed of light in vacuum and the right terms of the equations are the

Taylor series expanded at the first term.

So using Eqs. 1.3 and 1.4 in Eq. 1.2, we obtain:

∆t = t+ − t− = 2πR

[︃
2RΩ− 2RΩ(1− 1/n2)

c/n2

]︃
=

4πR2Ω

c2
. (1.5)

The relative phase can be found using the definition of the phase:

∆Φ =
2πc∆t

λ
=

8πA

λc
Ω (1.6)

with A the area of the ring resonator. It could be shown that the formula is valid

also for non-circular closed paths. The last equation provides an easy way for set-

ting up an angular velocity sensor. By reading the intereference signal between the

two counterpropagating waves in a ring structure, we can obtain information about

the angular velocity of the frame on a rotational axis orthogonal to the plane of

the structure. When this kind of sensor is realized using optical fibres, it is called

Interferometric Fibre Optic Gyroscope (IFOG).

If the ring structure is a closed loop, resonance conditions arise for both the

counterpropagating modes. In particular, the resonance condition happens when the

optical path (n±
effL

±, with n±
eff the effective index of the clockwise (CW) and coun-

terclockwise (CCW) modes in the resonator) is an integer multiple of the wavelength:

n±
effL

±

λ±R
= m. (1.7)

withm an integer representing the order of resonance, equal to the order of resonance

in the absence of rotation m = nL/λR (with λR the resonance wavelength in the

absence of rotation and L the absolute length of the resonator). The effective index

of the counterpropagating modes, n±
eff , can be calculated as the ratio between the

speed of light in vacuum and the effective speed of light of the mode, v±. Moreover,

the effective speed of light of the counterpropagating waves is the ratio between the

effective length and the time required to cover it (v± = L±/t±), so:
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λ±R =
ct±

Ln
λ. (1.8)

Thus, we have:

∆λR =
c∆t

Ln
λ =

2RΩ

cn
λ. (1.9)

The splitting between the angular resonances become:

∆ωR =
4πRΩ

nλ
. (1.10)

(a) (b)

Figure 1.3: Structure of a resonant ring Sagnac gyroscope (a). Resonance peaks of
the CCW and CW waves during rotation. (b).

A sensor of angular velocity can be easily set up by reading the distance between

the resonance frequencies of the CW and the CCW resonant modes. This is what is

called Resonant Micro Optic Gyroscope (RMOG) [2]. The limitation of this kind of

sensor is the sensitivity. In fact, in Equation 1.10, the splitting between the resonance

angular frequencies is linearly dependent on the radius of the ring structure. That’s

the main reason why the integration of optical gyroscopes is still an open challenge in

research. In fact, in the presence of the lock-in effect (acting as a noise source) a small

resonance splitting could be impossible to be read. In order to let the miniaturization

of these devices, other solutions should be investigated.
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Lock-in effect

In the presence of undesired backscattering in the medium where the modes coun-

terpropagate, the phase shift ψ between the counterpropagating optical signals can

be modelled by the following differential equation [1]:

dψ

dt
= SΩ + b sinψ (1.11)

where S is a sensitivity term (related to geometrical parameters of the gyroscope and

to the laser operating wavelength) and b is the backscattering coefficient which has

units of frequency and takes into account all the back-reflections. If b is comparable

with SΩ, the differential equation exhibits a stationary solution and the frequency

difference between the CW and the CCW signals vanishes [1]. So, the backscattering

acts as a source of noise for the optical gyroscope and creates the so called “dead

band”, that is a region of angular velocities that cannot be detected. In order to

reduce the lock-in effect, an external controlled constant bias is applied to let the

gyroscope operate in the unlocked region (for example a constant physical known

rotation to the gyroscope).

Figure 1.4: Lock-in effect.
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1.0.2 Parity-time symmetry

In this thesis, the idea of parity-time (PT) symmetry for enhancing the sensitivity

of classical Sagnac optical gyroscopes is investigated. Since Bender et al. discovered

that non-Hermitian Hamiltonians with PT symmetry can exhibit entirely real spectra

[71, 72] , lots of studies about PT symmetry have been carried on also in optics [73],

such as in whispering-gallery modes [74], nanobeam cavities [75], coupled optical

waveguides [76, 77], photonic lattices [78], plasmonics [79], and pumped lasers at

the exceptional point [80]. In fact, several physical processes are known in optics

to obey equations formally equivalent to that of Schrödinger in quantum mechanics

(e.g. spatial diffraction and temporal dispersion) [73]. In order to satisfy the PT

symmetry condition, the Hamiltonian describing the system must commute with the

PT operator ([PT, Ĥ] = 0) [71], where P is the parity operator and T is the time

reversal operator:

P :

⎛⎜⎝ x

y

z

⎞⎟⎠→
⎛⎜⎝ −x−y
−z

⎞⎟⎠ (1.12)

T : t→ −t (1.13)

The parity-time symmetry is verified when the complex potential (V ) of the

system is subject to the symmetry constraint V (x, y, z) = V ∗(−x,−y,−z) [75], where
the complex conjugation derives from the time reversal transformation as shown in

[81]. In the optical diffraction equation, the complex refractive index distribution

plays the role of an optical potential [73]. So, an optical PT-symmetric system

could be realized by modulating the real part of the refractive index to be an even

function and the imaginary part to be an odd function. One of the most interesting

things about PT-symmetric systems is the existence of a particular condition, called

exceptional point (EP), above which the spectrum ceases to be real and starts to

show imaginary eigenvalues. This means the onset of a spontaneous PT symmetry-

breaking, that is a “phase transition” from the exact to the broken PT phase. This is

the ideal condition for the enhancement of the sensitivity of angular velocity sensors.

The idea of the next section is to combine the enhancement of the sensitivity provided

by exceptional points of parity-time-symmetric system with the Sagnac effect.
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Figure 1.5: Real part and imaginary part of refractive index in parity-time-symmetric
systems.
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1.1 Parity-Time-symmetric gyroscope

1.1.1 Theoretical background

The resonance conditions in a non-rotating optical ring are the same for clockwise

(CW) and counter-clockwise (CCW) propagating modes, whereas, in the presence

of an angular speed (Ω), the resonance angular frequencies associated to CW and

CCW modes are separated by:

∆ω =
8πAΩ

neffLλ
= 2∆ωs (1.14)

where A and L are the enclosed area and the ring perimeter, respectively, λ is the

wavelength of light in vacuum and neff the effective index in the ring resonator. The

idea proposed in [11] uses two coupled rings to avoid the lock-in effect, as in Figure

1.6.

Figure 1.6: Schematic of a PT-symmetric gyroscope system [12].

In a non-rotating frame, if the system is excited as in Figure 1.6, the interplay

between the electric modal fields in the two identical rings can be described through

the following coupled differential equations [82]:
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d

dt
a1 = jω0a1 + g1vga1 − jkca2 − jµsin (1.15)

d

dt
a2 = jω0a2 + g2vga2 − jkca1 (1.16)

where a1/2 represents the energy amplitude in the first/second cavity, normalized

so that |a1/2|2 is the total energy stored in the first/second ring. The term sin is

the amplitude of the wave travelling in the input bus, normalized such that |sin|2

represents the total power flowing through any cross-section; ω0 is the resonance

angular frequency for each uncoupled ring resonator, vg is the light group velocity in

a medium, µ is the mutual coupling coefficient between the ring and the external bus,

kc is coupling strength between the rings. The coefficient g1/2 (expressed in m−1)

represents the amplitude gain (or loss if negative) of the first/second ring. According

to Eqs. 1.15 and 1.16 the term g1/2vg represents the gain rate and is measured in

s−1. In this context the g1/2 coefficient can be expressed as:

g1/2 = − 1

vg

(︃
1

τk
+

1

τe
+

1

τs

)︃
+ gr1/2 = −αk − αe − αs + gr1/2 (1.17)

where 1/τk is the photon decay rate (expressed in s-1) due to the coupling between

rings (τk = 2vg/(2πRk
2
c )); 1/τe is the photon decay rate due to the coupling between

the rings and the external buses (τe = 2/µ2); 1/τs is the photon decay rate related to

the sidewall roughness scattering loss; gr1/2 is the net modal gain (or loss, if negative)

of the first/second ring. In order to make the system PT-symmetric, it is necessary

that parity (P) and time (T) symmetries of the potential of the Hamiltonian of the

system are simultaneously verified [83]. By defining the domains Ring1 and Ring2

as in Figure 1.6 and

g(x, y, z) =

⎧⎪⎨⎪⎩
g1 ∀(x, y, z) ∈ Ring 1

g2 ∀(x, y, z) ∈ Ring 2

0 elsewhere

, (1.18)

the term ω0+ jgvg plays the role of the potential of the Hamiltonian. So, the system

becomes PT-symmetric only when

g(x, y, z) = −g(−x,−y,−z). (1.19)
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It implies that g1=-g2. Since the system is linear and time-invariant, with ω the

angular frequency of the laser emission, the following stationary condition is verified:

d

dt
a1,2 = jωa1,2. (1.20)

Substituting 1.20 in 1.15 and 1.16, and solving them for a1, we find:

a1
sin

= − jµ (jω − jω0 − g2vg)(︁
g1g2v2g − (ω − ω0)

2 − jvg (g1 + g2) (ω − ω0) + k2c
)︁ (1.21)

with eigenfrequencies:

ωPT1,2 = ω0 −
jvg (g1 + g2)

2
±

√︄
(k2c )−

(︃
g1vg − g2vg

2

)︃2

. (1.22)

It is important to observe that these resonance angular frequencies are generally

complex. If the system is PT-symmetric (g1=-g2), the resonance frequencies become

real if k2c > v2g(g1 − g2)2/4, and the splitting of resonances is visible in the spectral

response of the transfer function Sout/Sin (being Sout,in = |sout,in|2). The condition

2kc = vg|g1−g2| represents the exceptional point where the two resonance frequencies
coalesce and only one peak is visible in the spectral response. If the system is rotating,

with reference to an inertial frame, 1.15 and 1.16 can be rewritten as:

d

dt
a1 = jω0a1 + g1

∗vga1 − jkca2 − jµsin (1.23)

d

dt
a2 = jω0a2 + g2

∗vga2 − jkca1. (1.24)

where g∗1 = g1 − j∆ωs/vg and g∗2 = g2 + j∆ωs/vg. Solving for a1, we obtain that the

new eigenfrequencies are (for a PT-symmetric system designed at the exceptional

point 2kc = vg|g1 − g2|):

ωPT 1,2 = ω0 ±
√︃

(k2c )−
(︂

g1vg−g2vg−2j∆ωS

2

)︂2 ∼=
∼= ω0 ± (1 + j)

√
∆ωSkc.

(1.25)

It should be observed that, when the gyroscope system rotates, the resonance

frequencies become complex even at the exceptional point 2kc = vg|g1 − g2|. The
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eigenfrequencies in Eq. 1.25 correspond to those obtained in [11], particularized for

a PT-symmetric system (g1 = −g2). Indeed, according to [74], the PT-symmetry

condition requires an average gain equal to zero ((g1 + g2)/2 = 0). The transfer

function |sout|2/|sin|2 could be obtained through the following relation:

sout = sin − jµa1. (1.26)

A second order system with two complex eigenfrequencies, symmetrically placed

with respect to a central real frequency (ωR,1,2 = ω0 ± (ωD + jωD))), has only one

peak, and a FWHM equal to 2
√
2ωD. So, we obtain a FWHM equal to:

∆ωFWHM = 2
√︁

2 |∆ωS| kc. (1.27)

Figure 1.7a shows the relation between the coupling strength and the full width

at half maximum, at different radius sizes. So, the theoretical full width at half

maximum is:

∆ωFWHM = 4

√︃
2
πAΩ

Lλ0
kc. (1.28)

It is also possible to demonstrate that the peak of the transfer function is pro-

portional to Ω−2.

Sout

Sin

⃓⃓⃓⃓
peak

∝ λ0
R2Ω2k2c

. (1.29)

Under rotative condition, the spectral output of the gyroscope appears like that

shown in Figure 1.7b. It is easy to show that, differently from what is stated in [11],

splitting does not occur. The spectral response appears to have a larger linewidth

with respect to the system at rest, as expected. It should be also observed that, in

order to identify the direction of rotation of the gyroscope, the system cannot be

PT-symmetric at rest.

In Figure 1.8 the spectrum of the power exiting the gyroscope is shown at different

operating conditions. The first line shows the eigenfrequencies of the system in the

complex plane and the simulated output spectrum in PT-symmetric condition, at

the exceptional point in a non-rotative frame. In the second and third lines, the

cases of a PT-symmetric system at rest, not at the exceptional point, are shown.
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The fourth line represents the case of a rotating PT-symmetric system placed at the

exceptional point. The last line represents the case of a system that is outside the

PT-symmetric condition even at rest.

(a) (b)

Figure 1.7: Coupling strength as a function of the full width at half maximum,
at different radius sizes [12] (a). Normalized transfer function Sout/Sin at different
angular velocities, with g1=-g2=5 cm−1, µ=2.17·105 s−1/2 [12] (b).

1.1.2 Numerical results

Waveguide cross-section

In this section a practical configuration is proposed to realize the gyroscope. The

theoretical approach shown in the previous paragraph is completely general. In or-

der to perform our simulations, we chose to use the SiGeSn heterostructures. Even

though silicon and Germanium indirect bandgaps represent a drawback for optoelec-

tronic devices, SiGeSn heterostructures have been demonstrated to be suitable for

advancing monolithic integration of photonic active devices. Indeed, they enable a

complete suite of active on-chip photonic components, guaranteeing good flexibility

in realizing heterostructures working in the mid infrared and far infrared, and being

compatible with CMOS platform, that represents the most popular technology in

the electronic chip design industry [84][85].
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Figure 1.8: Operating conditions (first column); eigenfrequencies in the complex
plane (second column); transfer function of the power exiting the gyroscope (third
column). All the simulations have been performed with g1=-g2=5 cm−1, µ=2.17·105

s−1/2 [12].



CHAPTER 1. EXCEPTIONAL POINTS FOR OPTICAL GYROSCOPES 41

Figure 1.9: Waveguide cross-section: structure design. Inset: TE optical field [12].

The external laser wavelength is chosen to be 3 µm. The gain region has been

realized through a strain-balanced GezSn1−z-SixGeySn1−x−y multiple-quantum-well

(MQW) amplifier, using the structure proposed in [86]. In particular, the structure

in Figure 1.9 shows the cross section of the waveguide composing the active ring

resonator. The same structure could be also used to achieve the needed loss. In

fact, tuning the current density in the multiple-quantum-well structure it is possible

to modulate the loss, up to the needed value. The structure is a ridge waveguide.

A fully strain-relaxed Ge0.88Sn0.12 buffer layer is grown on a 001-oriented Si sub-

strate. Then an n-type Si0.08Ge0.78Sn0.14 layer is grown as the bottom contact. Five

pairs of Ge0.84Sn0.16/Si0.09Ge0.8Sn0.11 quantum-wells (five Ge0.84Sn0.16 wells and six

Si0.09Ge0.8Sn0.11 barriers) are then grown. Finally, a p-type Si0.08Ge0.78Sn0.14 layer

is grown at the top. A silica cover is used to provide a high contrast in the re-

fractive indices and, consequently, a major optical confinement in the ridge. The

width of the ridge is 2 µm, whereas the thickness is 0.6 µm. The well width is set

to 10 nm, whereas the barrier width is set to 9 nm, as proposed in [86]. The doping

concentration is 1019 cm−3 for the p-doped regions and 5·1018 cm−3 for the n-doped

region.
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Gyro design and performance

According to the results in [86], it is possible to reach a material amplitude gain

(gm) with values ranging from -375 cm−1 (loss) to 550 cm−1 (gain), when the total

injected surface carrier densities varies from 1012 cm−2 to 6 ·1012 cm−2. This means

that it is possible to control the loss/gain of the quantum-well region by applying

different values of voltage to the PIN structure. The absorption amplitude loss in the

n-doped layer has been considered equal to 16.44 cm−1 [86], and then, a n-modal loss

(αn) of 6.65 cm−1 has been estimated (being the confinement factor in the n-doped

layer equal to 40.48 %, according to our simulations). The absorption amplitude

loss in the p-doped layer has been considered equal to 92.88 cm−1 [86], and then, a

p-modal loss (αp) of 23.15 cm−1 has been estimated (being the confinement factor in

the p-doped layer equal to 24.93 %, according to our simulations). The net modal

gain (gr1,2) of the structure depends on the confinement factors in the wells (Γw=

6.54 %) and in the p-doped and n-doped regions, according to the following relation:

gr1,2 = Γwgm − αp − αn. (1.30)

This means that the net modal gain ranges from -54.33 cm−1 to 6.16 cm−1, when

the total injected surface carrier density varies from 1012 cm−2 to 6 ·1012 cm−2.

Then, the coupling strength (kc) between the rings has been evaluated by adopting

the method shown in [87], covering all the structure with the same silicon oxide layer

in the proximity of the coupling region. The dimensionless power coupling factor

Krr between the two rings has been calculated as shown in [87] and then kc has been

evaluated as [82]

kc =
Krrvg
2πR

. (1.31)

The value of kc results to be dependent on the distance g0 (gap between the edges

of the ridges of the rings), whereas it is nearly invariant with radius, because of a

quasi-punctual coupling. It is possible to obtain values of kc from 1.6 ·109 s−1 to

0.9 ·109 s−1, for a gap g0 ranging from 50 nm to 150 nm. A gap of 80 nm has been

chosen for our design, which corresponds to a coupling strength of 1.4 ·109 s−1. A

full width at half maximum of 3.37·104 rad/s for a Ω =100 ◦/h can be reached using

this structure, being the radius of the rings equal to 100 µm.
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(a) (b)

Figure 1.10: Coupling strength as a function of gap g0 [12] (a). Mutual coupling µ
as a function of gap gb/r [12] (b).

The mutual coupling between the ring and the bus (µ) has been evaluated in the

same way as for kc (Figure 1.10b). In particular the dimensionless power coupling

factor Krb between rings and buses has been calculated with the same procedure

shown in [87] and then µ has been evaluated as [82]:

µ =

√︃
Krbvg
2πR

. (1.32)

The value of the mutual coupling depends on the distance gb/r, whereas it is nearly

invariant with radius. A distance gb/r between the edges of the ridges of the rings and

the buses of 100 nm has been chosen, which corresponds to a mutual coupling of 4.91·
104 s−1/2 (having a radius of 100 µm). Our investigations show that g1 and g2 can

be tuned from 0 cm−1 to 4.78 cm−1 and from -55.71 cm−1 to 0 cm−1, respectively,

within the considered range of injected carriers. Then, assuming kc=1.4·109 s−1,

the exceptional point condition, 2kc = vg|g1 − g2|, and the PT-symmetry condition,

g1 = −g2, can be achieved with g1=-g2=0.189 cm−1, included within the above-

mentioned ranges. Figure 1.11 shows the operating characteristics of the designed

sensor on a log-log graph and it is compared with the Sagnac spectral shift of a

single ring resonator with the same radius of one of the ring of the PT-symmetric

gyroscope. Differently from [11], in which one ring is shown to act as a laser, in

our approach the active ring acts as a travelling-wave amplifier. So, the direction of
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optical beams is forced by the input signal. This approach drastically reduces the

negative effects of backscattering. In fact, typical values for backscattering decay

rate are one order of magnitude lower than the chosen value of kc.

Figure 1.11: Full width at half maximum of the designed PT-symmetric gyroscope
as a function of the angular velocity (on a log-log graph) compared with the classical
Sagnac spectral shift on a gyroscope with a single ring with the same radius.

1.1.3 Considerations about parity-time-symmetric gyroscope

It has been shown an optical gyroscope in the proximity of the exceptional point of

a PT-symmetric optical system has sensitivity several orders of magnitude higher

than the classical Sagnac gyroscope. Since the sensitivity is proportional to the

square root of the angular velocity rather than to the angular velocity (as it happens

in classical Sagnac gyroscopes), the sensitivity enhancement is only present at low

angular velocities (corresponding to a Sagnac splitting lower than the value of the

coupling strength). For integrated devices the coupling strength can be of the order of

1010 rad/s - 1011 rad/s, so, for reasonable values of angular velocities, the sensitivity

enhancement is still present. However, the stability of the system has not been

verified up to now. In the next section, the concept of anti-parity-time will be

investigated and a new optical anti-parity-time-symmetric gyroscope will be shown.
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1.2 Anti-PT-symmetric gyroscope

1.2.1 Anti-PT symmetry vs PT symmetry

As said, a system is considered to be PT-symmetric provided that its Hamiltonian Ĥ

commutes with the time reversal operator (T ) and the parity operator (P ) ([PT, Ĥ] =

0). Whereas, in an anti-PT-symmetric system, the Hamiltonian satisfies the anti-

commutation relation {PT, Ĥ} = 0 [88] [89]. Anti-PT symmetry is a special case of

charge-conjugation symmetry [90] [91].

In optics, PT-symmetric systems are usually realized through an active cavity

and a passive cavity, with the same resonant frequency, and with perfectly balanced

gain and loss. Anti-PT-symmetric systems have been investigated less than the

parity-time-symmetric ones in literature. However, for some kinds of sensing, they

are better suitable than the PT-symmetric ones.

Eqs. 1.33 and 1.34 describe the energy exchanges between two generic coupled

resonant cavities:

j
da1
dt

= −ω1a1 + jγ1a1 + k1a2, (1.33)

j
da2
dt

= −ω2a2 + jγ2a2 + k2a1 (1.34)

where a1/2 represents the energy amplitude in the first/second cavity, normalized

so that |a1/2|2 is the total energy stored in the first/second cavity; ω1/2 is the res-

onance angular frequency of the first/second isolated cavity; γ1/2 is the gain in the

first/second cavity; k1,2 is related to the mutual energy coupling between the two

cavities.

For ω1 = ω2, γ1 = −γ2 and k1 = k∗2 , the system is parity-time-symmetric.

Relaxing the condition on the gains (with |γ1| ̸= |γ2|), the system is said to be

quasi-PT-symmetric.

In order to be anti-PT-symmetric, a system should have γ1 = γ2, ω1 = −ω2

and k1 = −k∗2. Relaxing the condition on ω1 and ω2 (with |ω1| ≠ |ω2|), the system

can be called “quasi-anti-PT-symmetric” (in analogy with the quasi-PT-symmetric

one). Practically, negative frequencies don’t make sense. So, from now on we will

say anti-PT-symmetric to indicate a quasi-anti-PT-symmetric system.
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It should be noted that, considering reciprocal systems (k1 = k2), k1 and k2 are

real in PT-symmetric systems, whereas k1 and k2 are imaginary in anti-PT-symmetric

systems.

Table 1.1 summarizes the concept of PT- and anti-PT-symmetric resonant sys-

tems. We would like to underline that PT-symmetric and anti-PT-symmetric systems

can be designed also with non-resonant systems [92].

Table 1.1: PT symmetry and anti-PT symmetry summary in resonant systems.
Different colors of rings correspond to different gains.

Gain/loss Resonances Coupling Symmetry

γ1 = −γ2 ω1 = ω2 k1 = k∗2

PT

|γ1| ≠ |γ2| ω1 = ω2 k1 = k∗2

quasi-PT

γ1 = γ2 ω1 = −ω2 k1 = −k∗2
anti-PT

γ1 = γ2 |ω1| ≠ |ω2| k1 = −k∗2
quasi-anti-PT

1.3 Anti-PT-symmetric gyroscope

As seen in the previous sections, resonant angular frequencies related to an optical

beam propagating in a single ring resonator, that is rotating with an angular velocity

Ω changes of a quantity ∆ωs, with respect to a rest condition, that could be evaluated

as:

∆ωs = ±
4πAΩ

Lneffλ
, (1.35)
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where λ is the wavelength in vacuum, neff is the effective index in the ring resonator,

A and L are the area and the perimeter of the surface enclosed by the resonator,

respectively. The sign minus (plus) is chosen if the mechanical rotation is in the

same (the opposite) direction of the rotation of the optical beam in a cavity.

The optical gyroscope that we propose is shown in Fig. 1.12.

Figure 1.12: Example of the structure of an anti-PT-symmetric gyroscope [13].

The equations describing the anti-PT-symmetric system are:

da1
dt

= jω1a1 + ga1 − jµ2(−jµ1)e
−jϕ1a2, (1.36)

da2
dt

= jω2a2 + ga2 − jµ1(−jµ2)e
−jϕ2a1 − jµ2sin, (1.37)

where g is the total gain in each ring, µi is the real mutual coupling between the

buses and the i-th ring, sin is the input field amplitude, normalized so that |sin|2

represents the input power. The terms ϕ1 and ϕ2 are the phase shifts between the

points where a1 and a2 are evaluated:

ϕ1,2 =
2π

λ
neffL1,2 +

2π

λ
neff

πR1

2
, (1.38)

with neff the group index, R1 the radius of the first ring and L1 and L2 the geomet-

rical lengths in Fig. 1.12.
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Eqs. 1.36 and 1.37 can be easily rewritten in the form of Eqs. 1.33 and 1.34,

with k1,2 = −jµ1µ2e
−jϕ1,2 . So, the system will be anti-PT-symmetric, provided that

e−jϕ1 = ejϕ2 . A possible solution is given by ϕ = ϕ1 = ϕ2 = mπ (with m ∈ N),
around ω0 = (ω1 + ω2)/2. We choose L1 and L2 to satisfy that solution. It should

be noted that two indirectly coupled ring resonators have been used to achieve an

imaginary coupling. The concept of imaginary coupling has been already shown in

[93, 94, 95].

Finally, we will choose the same gain γ in both the rings, so:

γ = γ1,ext − 2µ2
1 − α1 = γ2,ext − 2µ2

2 − α2, (1.39)

where γ1,ext and γ2,ext are the external gains in first and second rings, respectively,

and α1 and α2 represent the intrinsic losses in each ring resonator. It should be noted

that γ1,ext and γ2,ext will be chosen to keep the total gain (g) negative. In this way

the system doesn’t start to oscillate. This solution will be useful to recognize the

sign of the angular velocity.

Defining kc = −jµ1µ2, Eqs. 1.36 and 1.37 can be rewritten as:

da1
dt

= jω1a1 + ga1 − jkce−jϕa2, (1.40)

da2
dt

= jω2a2 + ga2 − jkce−jϕa1 − jµ2sin. (1.41)

The resonant frequencies of the anti-PT-symmetric system are easily found, by

forcing sin = 0 in the periodic regime:

ωaPT1,2 =
ω1 + ω2

2
− jg ±

√︄(︃
ω1 − ω2

2

)︃2

+ k2c . (1.42)

The exceptional point is reached when the argument of the square root vanishes:

|ω1 − ω2| = 2jkc. (1.43)

Let’s now consider the same system in a frame rotating with an angular velocity

Ω. The resonant frequency of each isolated ring changes according to Eq. 1.35.

If the system is designed to be at the exceptional point when it is at rest, the rota-



CHAPTER 1. EXCEPTIONAL POINTS FOR OPTICAL GYROSCOPES 49

tion forces the system to depart from the exceptional point and the eigenfrequencies

become:

ωEP1,2 =
ω1 + ω2

2
− jg ±

√︁
µ1µ2∆ωΩ, (1.44)

where

∆ωΩ =
4πΩ

λneff

R1 +R2

2
. (1.45)

Recalling from [82] that µ2
1,2 is proportional to the fraction of the power coupled

from the bus to the ring (κ21,2) and to the inverse of the radius of the ring (µ2
1,2 =

κ21,2
vg

2πR1,2
), if the system is designed to have κ1 = κ2 = κ and R1 ≈ R2, we can

rewrite the spectral splitting as:

∆ωEP ≈

√︄
2κ2vg
λneff

Ω. (1.46)

The important result is that the splitting can be approximated to be independent

from the dimension of the device. It means that the intrinsic limitation of the classical

Sagnac effect (due to dependence of the Sagnac splitting on the R−1) is overcome. It

should be observed that the frequency splitting is real, differently from the complex

splitting in the PT-symmetric gyroscope (∆ωPT,EP = (1 + j)
√
kc∆ωS, with ∆ωS

the Sagnac shift in a single ring), causing different measurable output spectra (Fig.

1.13).

The reader could object that κ and the radii R1 and R2 are linked by Eq. 1.43.

However, it should be noted that once κ is fixed for a required sensitivity, the radii

are not uniquely determined. Starting from Eq. 1.43 it could be demonstrated that:

|m1R2 −m2R1|√
R1R2

=
κ2

π
, (1.47)

with m1 and m2 the orders of resonance in each ring resonator. Solving 1.47, it

is easy to prove that, for m1 = m2, R1 and R2 can be always chosen so that the

approximation in Eq. 1.69 is still valid, even for κ = 1.

Fig. 1.13 gives a graphical representation of the resonance splitting in the prox-

imity of the exceptional point of an anti-PT-symmetric gyroscope with R1 = 20µm,



CHAPTER 1. EXCEPTIONAL POINTS FOR OPTICAL GYROSCOPES 50

R2 = 19.95 µm and γ1 = γ2 = −0.5 Mrad/s. The rotation-induced frequency split-

ting is equivalent to moving from the exceptional point to the so called “broken

phase”, unlike the PT-symmetric gyroscope, which, under rotation, exits even from

the condition of the PT symmetry. Fig. 1.14 shows the enhancement of the split-

ting of an anti-PT-symmetric gyroscope at the exceptional point with respect to a

classical Sagnac splitting. It is possible to appreciate a sensitivity enhancement of 6

orders of magnitude thanks to the exploitation of the exceptional point.

Figure 1.13: Normalized output spectrum in the proximity of the exceptional point
of an anti-PT-symmetric gyroscope (with R1 = 20 µm, R2 = 19.95 µm and γ1 =
γ2 = −0.5 Mrad/s) around λ = 1.55 µm. The inset shows the output spectrum of a
PT-symmetric gyroscope (with R1 = 20µm, R2 = 20 µm and γ1 = −γ2 = 1 Trad/s)
[13].
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Figure 1.14: Comparison between the spectral splitting at the exceptional point of
an anti-PT-symmetric gyroscope (with R1 = 20 µm and R2 = 19.95 µm) and the
splitting due to the classical Sagnac effect in a single ring with radius (R1 + R2)/2,
around λ = 1.55 µm [13].

1.3.1 Detectivity of an anti-PT-symmetric gyroscope

A problem in realizing this structure is represented by the accuracy in approaching

the exceptional point and the enhanced noise at the exceptional point [96, 97]. If at

rest condition the system is not at the exceptional point, Eq. 1.66 holds until:

δEP =

⃓⃓⃓⃓
⃓
(︃
ω1 − ω2

2

)︃2

+ k2c

⃓⃓⃓⃓
⃓ << |µ1µ2∆ωΩ| . (1.48)

The minimum detectable angular velocity should satisfy condition in Eq. 1.48.

So, we can give an estimation of the minimum detectable angular velocity by con-

sidering the right term of Eq. 1.48 ten times greater than δEP :

Ωmin ≈ 10πngneff
δEP

κ2ω0

. (1.49)

So, a fine tuning method would be required either on the kc or on the isolated

resonant frequencies, in order to keep the system near the exceptional point. A

feedback loop to control the phase over each of the resonator would be necessary to
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constantly keep the system around the exceptional point. The relative error over the

isolated resonant frequencies could be much less than the relative error over the gains,

that is necessary in PT-symmetric gyroscope to keep the system at the exceptional

point. Moreover, the anti-PT-symmetric gyroscope requires only the exceptional

point condition to be verified, whereas, in the PT-symmetric solution, the condition

γ1 = −γ2 is also critical.

1.3.2 Readout

The presence of two distinct resonances in the measurable output power spectrum

makes the readout process simpler than in the PT-symmetric gyroscope. In partic-

ular, a photodiode connected at the port 2 and followed by an oscilloscope would be

sufficient as a readout system. The low-pass-filtered electronic signal at the oscillo-

scope, would have a resonance peak at the angular frequency ωEP,1 − ωEP,2:

[sin(ωEP,1t) + sin(ωEP,2t)]
2 LPF−−→ cos[(ωEP,1 − ωEP,2)t]. (1.50)

So, for reading the angular velocity in an anti-PT-symmetric gyroscope, it would

be sufficient to apply the Fast Fourier Transform (FFT) to the electrical signal read

by the oscilloscope.

Moreover, in the anti-PT-symmetric gyroscope it is easy to detect the sign of

the angular velocity, differently from the PT-symmetric gyroscope. In order to dis-

tinguish the direction of rotation in the anti-PT-symmetric gyroscope, it should be

noted that the rotation-induced splitting, ∆ωEP , is real only if ∆ωΩ > 0. In case

of rotation in the opposite direction, no real splitting would be appreciated, because

∆ωEP becomes imaginary. Identifying the angular velocity from imaginary frequency

splitting would need a fitting model. A much easier solution would need to inject

the input light from port 3 and read the output at port 4. In this case ∆ωΩ becomes

negative and ∆ωEP real. So, having light sources at both port 1 and 3 would let the

device read the angular velocity in both directions of rotation.
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Stability analysis of parity-time- and anti-parity-time-symmetric gyro-

scopes

We want to underline that the so proposed anti-PT-symmetric gyroscope has the

important advantage over the PT-symmetric counterpart (where ω0 = ω1 = ω2 and

γ1 = −γ2) of exhibiting a real splitting, differently from the complex splitting in the

PT-symmetric gyroscope (∆ωPT,EP = (1 + j)
√
kc∆ωΩ, with kc the direct coupling

strength between the two resonators). The real splitting of the anti-PT-symmetric

gyroscope can be easily read through the beating frequency at the output of the

photoreceiver. The real splitting has an important consequence over the stability

analysis. In order to analyse the stability of the proposed gyroscope, we need to

perform a time-domain analysis. The time behaviour of the of the modes in the

cavities are easily found in the time domain, by using the found eigenfrequencies

[98]:

a1,2 ≈ ejωEP1,2 = e
j
(︂

ω1+ω2
2

±
√

|kc|∆ωΩ

)︂
t
e−γt. (1.51)

These two modes are both stable, because the real part of the argument of the

exponential term is negative (provided that ∆ωΩ > 0).

Whereas, in the PT-symmetric case,

a1,2PT
≈ ejωPT,EP1,2 = ejω0e±

√
kc∆ωΩ , (1.52)

the square root term leads to a divergent mode, making the system unstable. A

solution to make the PT-symmetric stable would be to make it quasi-PT-symmetric,

with the average gain of the resonators being negative (γ′1 + γ′2 < 0), by adding

an additional common loss to both the resonators. However, as the eigenfrequency

splitting is complex, the readout system would be difficult (see Table 1.2).
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PT quasi-PT anti-PT

parity-time: 
resonance perturbation

instability

quasi-parity-time: 
resonance perturbation

anti-parity-time: 
resonance perturbation

parity-time: 
resonance perturbation

unstable

quasi-parity-time: 
resonance perturbation

Difficult
readout

anti-parity-time: 
resonance perturbation

Table 1.2: PT vs quasi-PT vs anti-PT analysis.

1.3.3 Considerations about anti-parity-time-symmetric sys-

tem

In this section the idea of an anti-parity-time-symmetric gyroscope has been devel-

oped. In particular, it has been shown that its sensitivity is independent from the

dimensions of the device. As a result, the device presents an incredibly enhanced sen-

sitivity, even at the microscale. For integrated devices (micrometric dimensions) the

sensitivity of a anti-PT-symmetric device could be 106 times higher than a classical

Sagnac gyroscope. However, the configuration proposed could present some difficul-

ties in terms of fabrication. In particular, making ϕ1,2 in Eq. 1.38 an exact multiple

of π could be experimentally difficult, since the uncertainty on the effective index

during the design. Consequently, kc could show also a real part, and the minimum

detectable angular velocity would increase accordingly to Eqs. 1.48 and 1.49.
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1.4 A real-splitting resonator-waveguide-resonator

anti-parity-time-symmetric integrated optical

gyroscope

1.4.1 Indirect-coupling anti-parity-time-symmetric optical sys-

tems

The configuration for an anti-parity-time symmetric-gyroscope recently proposed in

literature for the first time [13] has been extensively shown in the previous section.

As, demonstrated, the anti-parity-time-symmetric system requires an indirect cou-

pling between optical resonator. The solution for the indirect coupling proposed in

the previous section makes use of an auxiliary U-shaped waveguide to couple two

resonators. However, in such a way, the coupling between the cavities could be

easily nonreciprocal and could be affected by fabrication errors and mismatches be-

tween the length of auxiliary waveguides, causing the system to exit the exceptional

point and vanishing all the advantages of the anti-parity-time-symmetric solution.

A critical control over the design and fabrication constraints on the coupling waveg-

uide would then be necessary. The goal of this section is to design an indirectly-

coupled-resonators anti-parity-time-symmetric optical gyroscope making use of only

one straight auxiliary waveguide to couple the two resonators and achieve reciprocal

indirect coupling. With the proposed design, we can avoid any problem in terms of

design and fabrication errors over the length of the auxiliary waveguides. In order

to achieve this goal a resonator-waveguide-resonator coupler is proposed.

To demonstrate the feasibility of the device, a solution compatible with the InP-

platform will be investigated. The proposed device is shown in Figures 1.15a (config-

uration A, with external buses) and 1.15b (configuration B, without external coupling

buses) in two different configurations. Equation 1.53 describes the energy exchanges

between the optical modes a1 and a2 inside the two resonators in the time domain

for the configuration A [99]:

da

dt
= (jω − γi − γext − Γ)a+ jµextsin,A, (1.53)
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sout = jµa, (1.54)

with

a =

[︄
a1
a2

]︄
,ω =

[︄
ω1 0

0 ω2

]︄
,γi =

[︄
γi1 0

0 γi2

]︄
,γext =

[︄
γext,1 0

0 γext,2

]︄
,

µ =

[︄
µ1

µ2

]︄T

,µext =

[︄
µext,1 0

0 µext,2

]︄
, sin,A =

[︄
sin
0

]︄
,

(1.55)

where the parameters with subscript 1 and 2 correspond to resonators 1 and 2, re-

spectively. The term ω1,2 represents the resonance angular frequency of each isolated

resonator, γi1,i2 is the inverse of the photon lifetime in the isolated ring (net value of

the intrinsic loss and the applied gain), γext,1,ext,2 is the inverse of the photon lifetime

due to the coupling to the external buses, Γ is the decay rate matrix (it takes into

account the energy exchange between the resonators and will be evaluated by using

energy conservation observations), sin is the amplitude of the input wave and µ1,2

(µext1,2) is the coupling strength between the central bus (external buses) and each

resonator and can be evaluated as follows [82]:

µ2
1,2 =

η21,2vg

P1,2

,

µ2
ext1,2 =

η2ext1,2vg

P1,2

,

(1.56)

with η21,2 (η2ext1,2) the fraction of coupled power across the corresponding coupler.

Equation 1.53 can be modified to describe the energy exchanges between the opti-

cal modes a1 and a2 inside the two resonators in the time domain for the configuration

B [99]:

da

dt
= (jω − γi − Γ)a+ jµT sin, (1.57)
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sout = sin + jµa. (1.58)

As shown in [99] the terms µ and Γ can be related using power conservation.

Since the overall power is being conserved, we can evaluate Γ, when all the other

sources of loss are neglected [99]:

d(aa∗)

dt
+ souts

∗
out = −2aΓa∗ + a∗µ∗µa = 0. (1.59)

We can obtain the expression of the matrix Γ:

Γ =
1

2
µ∗µ =

1

2

[︄
µ2
1 µ1µ2

µ1µ2 µ2
2

]︄
, (1.60)

After defining γ′1,2 =
(︂
γi,2 +

µ2
ext,1,2

2
+

µ2
1,2

2

)︂
(with µext,1,2 = 0 for configuration B)

and κ = µ1µ2/2, we can rewrite Eq. 1.53, for the configuration A, as:

da1
dt

= jω1a1 − γ′1a1 − κa2 + jµextsin, (1.61)

da2
dt

= jω2a2 − γ′2a2 − κa1 (1.62)

and Eq. 1.57, for the configuration B, as:

da1
dt

= jω1a1 − γ′1a1 − κa2 + jµ1sin, (1.63)

da2
dt

= jω2a2 − γ′2a2 − κa1 + jµ2sin. (1.64)

For ω1 ̸= ω2, γ
′ = γ′1 = γ′2, after a simple variable change (a1,2˜ = a1,2e

−jω0t, with

ω0 = (ω1+ω2)/2) the system (in both the configurations) is found to be anti-parity-

time-symmetric and we can use this device to design an anti-parity-time-symmetric

gyroscope. We will continue to refer to equations 1.61, 1.62,1.63 and 1.64 since the

properties of the eigenfrequencies are the same without the variable change. The

problem of an accurate design of the length of the coupling waveguides in [13] is thus

overcome, since we have designed an anti-parity-time-symmetric optical system with

a single auxiliary coupling waveguide, without requirements on its length accuracy.
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(a) (b)

Figure 1.15: (a) Indirect-coupling anti-parity-time-symmetric optical system with
external buses (Configuration A). (b) Indirect-coupling anti-parity-time-symmetric
optical system, without external buses (Configuration B).

1.4.2 Anti-PT-symmetric gyroscope

Eigenfrequency splitting

The eigenfrequencies of the anti-PT-symmetric system described by Eqs. 1.61, 1.62,

1.63 and 1.64 are easily found to be:

ωaPT1,2 =
ω1 + ω2

2
+ j

γ′1 + γ′2
2

±

√︄(︃
ω1 − ω2

2

)︃2

− κ2. (1.65)

When the eigenfrequencies coalesce the system is said to be at the exceptional

point (|ω1 − ω2| = 2κ).

If the system is designed to work around its exceptional point when the angular

velocity Ω = 0, for Ω ̸= 0 the eigenfrequencies become:

ωEP1,2 =
ω1 + ω2

2
+ jγ′ ±

√︁
κ∆ωΩ, (1.66)

where

∆ωΩ =
4πΩ

λ
(A1/P1 + A2/P2), (1.67)

where λ is the wavelength in vacuum, Pi and Ai are the perimeter and the enclosed

area of the i-th resonator.
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Recalling from [82] that µ2
1,2 is proportional to the fraction of the power coupled

from the bus to the ring (η21,2) and to the inverse of the length of the cavity (µ2
1,2 =

η21,2
vg
P1,2

), if the system is designed to have A1 ≈ A2 and P1 ≈ P2, we can define:

ci =
Ai

P 2
i

=
2Ri/Li + π(Ri/Li)

2

(2πRi/Li + 2)2
, (1.68)

with Ri and Li the radius of curvature and the length of the straight waveguide of

the racetrack resonator (see Figure 1.15a). Starting from Eq. 1.67 and using Eq.

1.68 and Eq. 1.56, we can obtain:

∆ωEP ≈
√︃

4πη1η2vg
λ

cΩ, (1.69)

where c = c1 ≈ c2.

As in the previously proposed ring-resonator-based PT-symmetric [11] and anti-

PT-symmetric gyroscopes [13], the eigenfrequency splitting is independent on the

dimensions of the device, once the ratios Ri/Li have been chosen. In this way

the limitation of the Sagnac splitting is overcome. As in the PT-symmetric case,

the splitting is proportional to
√
Ω, thus leading to enhanced splitting between the

eigenfrequencies in the proximity of the exceptional point.

Coupling strength control

We want to stress that, using a single waveguide to couple two resonators has an

important advantage. When using the U-shaped waveguide to couple two resonators

(as shown in [13] and [89]), an error over the length of the coupling waveguides

could not only increase the difficulty in approaching the exceptional point condition

(worsening the detectivity of the device), but could also cause the coupling strength

and, consequently, the eigenfrequency splitting to become complex, making the read-

out scheme not efficient. The resonator-waveguide-resonator coupler ensures much

more reliability and control over the coupling strength of the system, by keeping the

value of κ2 real. Moreover, with the proposed structure, an easy way to electrically

fine tune the system around the exceptional point is possible through the control

of the loss/gain in the coupling region and the consequent variation of the coupling

strength.
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Figure 1.16: Design proposal for an optical anti-parity-time-symmetric optical gyro-
scope on InP platform.

In the previous paragraph the coupling mechanism has been supposed to be

lossless, however, when considering a lossy coupler, an additional source of loss should

be accounted in γ′1,2

γ′1,2 =

(︃
γi,2 +

µ2
add,1,2

2
+
µ2
ext,1,2

2
+
µ2
1,2

2

)︃
, (1.70)

where:

µ2
add1,2

=
χ2
1,2vg

(2πR1,2)
, (1.71)

with χ2
1,2 the fraction of power lost in the coupling region.

Design and results

In this section we show our proposal for integrating the anti-parity-time-symmetric

gyroscope on an InP platform, using the configuration A. The proposed architecture

is shown in Fig. 1.16 and will be explained in the following paragraphs.
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Cross-section design

Here the material composition and the thickness of each layer of the cross-section in

Figure 1.17a (where the symbols in brackets represent the type of doping) is listed,

with the corresponding p-type (p) or n-type (n) doping concentration:

-InP-p (1000 nm, p = 1.5 · 1018 cm−3, refractive index=3.17)

-InP-p (250 nm, p = 8 · 1017 cm−3, refractive index=3.17)

-InP-p (150 nm, p = 5 · 1017 cm−3, refractive index=3.17)

-In0.6Ga0.4As0.85P0.15 (250 nm, refractive index = 3.50 [100])

-InP-n (1000 nm, n = 1 · 1018 cm−3, refractive index=3.17)

The material gain of the InGaAsP has been evaluated using the semi-empirical

model proposed in [101], using the parameters used in the simulation tool (Table

I of [101]). The predicted material gain as a function of the carrier density for a

wavelength of 1.55 µm is shown in Figure 1.17b. The predicted gain is the linear

gain of the material, excluding saturation effects. However, since in [101] the gain

refers to power, the values obtained using the model [101] have been halved, in order

to obtain the amplitude gain. Such an approach is a good approximation for small

gains and small field amplitudes, in order to avoid saturation and cross-saturation

effects. Once the confinement factor Γg = 59, 93% has been evaluated, the net gain

can be calculated as γi = −Γggm (by considering the other materials lossless).

Figure 1.17a shows the cross section of the InP waveguide, common to all the

waveguides and the resonators of the designed gyroscope, including the auxiliary

waveguide.

Coupler design

After that, we designed the coupling region with a propagator software. The value of

η1,2 can be obtained by evaluating the fraction of power coupled from the racetrack

to the auxiliary waveguide (same in the opposite direction). After that, Eq. 1.56

can be used to compute µ1,2. It should be noted that the coupling region can be

electrically isolated from the rest of the device (by means of an undoped region in

between), in order to make it possible to control the coupling strength by tuning the

gain in the coupling region, separately from the gain of the two resonators (Figure

1.16). In fact, by controlling the gain in the coupling region, while compensating
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(a)

(b)

Figure 1.17: (a) Normalized electric field and cross section of the waveguide adopted
in all the regions of the integrated gyroscope. (b) Material gain of InGaAsP as a
function of the density of the injected carriers, obtained by halving the material gain
obtained from model in [101] (to obtain the amplitude gain). The marked dots in the
legend represent the values of the carrier density, used in the design of the coupler.

the losses of the InGaAsP material, it is possible to control the quantity η1,2. Figure

1.18 shows the coupling power coefficient for different carrier injection level in the

coupling region, varying with the length of the straight coupling region.

As it can be seen for a InGaAsP material gain ranging from -24 to 0 cm−1

(corresponding to a carrier injection ranging from 2.323× 1017 to 4.465× 1017cm−3,

the coupled power fraction at L1 = L2 = 84 µm goes from less than 10% to 55%.

This means having a wide range of tuneability for κ. The value of the gain is

negative, because we only use carrier injection to partially compensate the losses

due to absorption up to the transparency condition.

Gyroscope design

For evaluating the performances of the device, we designed it at the exceptional

point.

The values chosen for the simulations are summarized in Table 1.3.

In particular, after the isolated eigenfrequencies ω1 and ω2 have been calculated,

by using the effective index (value in Table 1.3) and the lengths of the perimeters of
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Figure 1.18: Coupling efficiency η1,2 for different values of the material gain of the
InGaAsP region, corresponding to the carrier density N marked in Figure 1.17b.

Parameter Value

neff 3.26
R1 50 µm
R2 50.6 µm
L1 84 µm
L2 84 µm
γ′1 5× 104 rad/s
γ′2 5× 104 rad/s

Table 1.3: Parameters used in the simulations.

the racetracks (P1,2 = 2πR1,2 +2L1,2), the coupling strength κ has been designed as:

κ = |ω1 − ω2|/2 (1.72)

Once the value of κ has been obtained (κ ≈ 1.90 × 1011rad/s), we fixed η1 = η2
and evaluated µ1 and µ2 using Eq. 1.56 and knowing that κ = µ1µ2/2. We obtained

µ1 ≈ 6.1783× 105 (rad/s)1/2 and µ2 ≈ 6.1543× 105 (rad/s)1/2 (η21,2 ≈ 0.4989).

We will use consider configuration A to evaluate the internal gain of the res-

onators (-γ′i,1,2). Using γ
′
1,2 in Table 1.3, by neglecting µ2

add,1,2/2 (since the coupler is
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designed near transparency), using the calculated values for µ1 and µ2, and assuming

µext,1,2 = µ1,2 we obtain γi,1 = −9.5022× 1010 rad/s and γi,2 = −9.4284× 1010 rad/s,

corresponding to gains per length of 10.32 cm−1 and 10.24 cm−1, respectively. To

obtain these values approximate carrier injections of 7.37×1017 cm−3 and 7.38×1017

cm−3 are necessary, respectively (calculated using the value of the confinement fac-

tor Γg and the model in Figure 1.17b). It should be noted that these values are

approximated, arising from a simplified model. They should be helpful in the design

of the device, but the external tuning is critical to place the device at the exceptional

point. The results of the output spectrum (|sout|2) are shown in Figure 1.19a. Figure

1.19b shows the eigenfrequency splitting as a function of the angular velocity of the

proposed anti-PT-symmetric gyroscope compared to the classical Sagnac splitting on

a single resonator of the same dimensions of one the designed resonators. The perfor-

mance obtained with the new proposed resonator-waveguide-resonator configuration

is comparable with that obtained in [13]. In fact, equations 1.61-1.64 are formally

equivalent to those describing the anti-PT-symmetric gyroscope in [13]. So, provided

that the coupling strengths are the same, the same sensitivity can be achieved.

Finally, Figures 1.20a and 1.20b show the time behaviour of output optical power

|sout|2 read at a photodetector. In this way it is easy to appreciate that the system is

stable and that it would be possible to extract the angular velocity of the gyroscope

using some basic electronic signal processing.

1.4.3 Final considerations

A new architecture for an anti-PT-symmetric integrated optical gyroscope has been

shown. The gyroscope is realized using two resonators indirectly coupled by means of

one auxiliary waveguide. With respect to the previously proposed anti-PT-symmetric

gyroscope, the use of only one straight auxiliary waveguide drastically reduces the

critical problems in achieving the exceptional point. Moreover, the sensitivity of

the gyroscope has been demonstrated to be independent from the dimensions of

the device, even for racetrack resonators. Such a conclusion represents a noticeable

progress with respect to the classical Sagnac effect, limited by the dependence of the

sensitivity on the radius of the ring resonator.

As a result, the device shows an incredibly enhanced sensitivity with respect to

the classical Sagnac effect on a device of the same dimensions: the sensitivity of
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(a)
(b)

Figure 1.19: (a) Spectrum of the output signal of the gyroscope as a function of the
angular velocity and of the frequency detuning from ω0. (b) Splitting as a function
of the angular velocity.

(a) (b)

Figure 1.20: (a) Normalized real part of the output signal sout in the time domain.
(b) Normalized |sout|2 in the time domain, representing the average optical power at
the photoreceiver.
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an anti-PT-symmetric micrometric gyroscope could be several orders of magnitude

higher than a classical Sagnac gyroscope.

This solution seems to be much more suitable for angular velocity sensing than

the PT-symmetric gyroscope. In fact, the anti-PT-symmetric gyroscope exhibits a

real resonance splitting, with respect to the PT-symmetric one. Finally, we believe

that the device we modelled could pave the way to a new generation of integrated

optical gyroscopes, breaking the limit of micrometric dimensions.



Chapter 2

Optomechanical forces

2.1 Optomechanical forces

In this chapter an overview about optical forces will be presented. Then, new results

will be shown, both theoretical and experimental. In particular, a generalized method

for evaluating optical forces in an optomechanical system using an energetic approach

will be investigated. Next the dynamics of coupled suspended optical waveguides,

excited by optical forces, will be carried on and a numerical algorithm to simulate

the time evolution of the system will be proposed. Finally, an experimental work

about an optomechanical switch, performed at the Optoelectronics Research Centre

of the University of Southampton, will be presented.

2.1.1 Radiation pressure and optical gradient force

Optical forces can be generally divided into two major categories, i.e., radiation pres-

sure and transverse gradient forces. Radiation pressure acts along the light propa-

gation direction. The momentum carried by an electromagnetic wave of irradiance

(power per unit of surface) If is:

p =
If
c
, (2.1)

with c the speed of light in vacuum. If the light is totally absorbed by a black body,

the component of that momentum normal to the surface of the body is transferred to

67
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(a)

(b)

Figure 2.1: Radiation pressure on a moveable mirror (a). Electric field and magnetic
field on a dipole, causing optical gradient force (b).

it. The transferred momentum is called “radiation pressure”. If the body hit by the

electromagnetic wave is a perfect reflector, according to the momentum conservation

law, the radiation pressure is equal to [14]:

p = pincident + pemitted = 2
If
c
. (2.2)

Differently, the optical gradient force acts transversely to the propagation direc-

tion of the light. The force acting on a single charge in an electromagnetic field is

[102]:

F1 = q

(︃
E(x1) +

dx1

dt
×B

)︃
. (2.3)

Let’s suppose to have a dipole (representing a molecule of a dielectric material),
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with a distance between the two charges of x1 − x2:

F = q

(︃
E(x1)− E(x2) +

d (x1 − x2)

dt
×B

)︃
= q

(︃
((x1 − x2) · ∇)E+

d (x1 − x2)

dt
×B

)︃
.

(2.4)

By defining the dipole momentum p = q(x1 − x2) and supposing a linear medium,

with p = αE:

F = (p · ∇)E+
dp

dt
×B = α

[︃
(E · ∇)E+

dE

dt
×B

]︃
. (2.5)

By using the vectorial identity

(E · ∇)E = ∇
(︃
1

2
E2

)︃
− E× (∇× E) (2.6)

and the Maxwell equation

∇× E = −∂B
∂t
, (2.7)

we can find the final expression:

F = α

[︃
1

2
∇E2 − E× (∇× E) +

dE

dt
×B

]︃
= α

[︃
1

2
∇E2 +

d

dt
(E×B)

]︃
. (2.8)

Being E × B proportional to the Poyinting vector, that is constant (or slowly

variable, depending on the case), its derivative in time is equal to zero. So, the final

expression for the optical gradient force is:

F =
1

2
α∇E2 (2.9)

The name of the force arises from the expression of the force that is proportional

to the gradient of the square of the norm of the electric field.
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2.1.2 Maxwell stress tensor

In order to derive a general way to evaluate optical forces, we start with the Lorentz

force law [103]:

F = q(E+ v ×B). (2.10)

The force per unit volume is:

f = ρE+ J×B. (2.11)

By using Gauss’s law and Ampère’s circuital law, we can replace ρ and J and obtain:

f = ϵ0(∇ · E)E+
1

µ0

(∇×B)×B− ϵ0
∂E

∂t
×B. (2.12)

In order to rewrite the time derivative term, we can use the product rule and the

Maxwell equation (∇× E = −dB
dt
)

∂

∂t
(E×B) =

∂E

∂t
×B+ E× ∂B

∂t
=
∂E

∂t
×B− E× (∇× E). (2.13)

The term f can now be rewritten as:

f = ϵ0[(∇ · E)E− E× (∇× E)] +
1

µ0

[−B× (∇×B)]− ϵ0
∂

∂t
(E×B). (2.14)

In order to create a symmetry between E and B, we can add the term (∇·B)B (null

because of one Maxwell equation):

f = ϵ0[(∇ ·E)E−E×(∇×E)]+
1

µ0

[(∇ ·B)B−B×(∇×B)]−ϵ0
∂

∂t
(E×B). (2.15)

Now we can eliminate the curl, using the vector calculus identity

1

2
∇(A ·A) = A× (∇×A) + (A ·∇)A (2.16)

and obtain



CHAPTER 2. OPTOMECHANICAL FORCES 71

f = ϵ0[(∇ · E)E+ (E ·∇)E] + 1
µ0
[(∇ ·B)B+ (B ·∇)B]+

−1
2
∇

(︂
ϵ0E

2 + 1
µ0
B2

)︂
− ϵ0 ∂

∂t
(E×B).

(2.17)

We can finally define the Maxwell Stress Tensor as

σij ≡ ϵ0

(︃
EiEj −

1

2
δijE

2

)︃
+

1

µ0

(︃
BiBj −

1

2
δijB

2

)︃
(2.18)

and rewrite f :

f = ∇ · σ − ϵ0µ0
∂S

∂t
. (2.19)

2.1.3 Optical gradient force in coupled optical waveguides

Using the Maxwell Stress Tensor can be computationally too expensive. So, energetic

approaches are usually preferred, where applicable.

The calculation of the optical gradient force between two optical coupled waveg-

uides is one of the cases where an energetic approach can be used. Let’s suppose

that energy U = Nℏω (with ω the angular frequency, ℏ the Planck constant and N

the number of injected photons) is coupled into an eigenmode (even or odd super-

mode [104]) of the system of two waveguides separated by a distance ξ. An adiabatic

change in separation ∆ξ will shift the eigenmode angular frequency by ∆ω (the wave

vector is conserved because of the preservation of translational invariance) and will

result in the mechanical force [35]:

F = − dU

dξ

⃓⃓⃓⃓
k

= − d(Nℏω)
dξ

⃓⃓⃓⃓
k

= −Nℏ
dω

dξ

⃓⃓⃓⃓
k

. (2.20)

So by using the chain rule, we obtain:

F = −U
ω

dω

dneff

⃓⃓⃓⃓
k

dneff

dξ

⃓⃓⃓⃓
ω

= − U

neff

dneff

dξ

⃓⃓⃓⃓
ω

. (2.21)

Finally, considering a lenght L of the waveguide, the force per unit length is:

F

L
= −P

c

dneff

dξ

⃓⃓⃓⃓
ω

. (2.22)
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(a) (b)

Figure 2.2: Systems of coupled waveguides (a). Closed system of two coupled res-
onators (b).

2.1.4 Optical forces in closed system of coupled resonant

cavities

Coupled resonators are another case where energetic approach is usually used to

evaluate optical forces. Let’s consider a closed system of two resonators separated

by a degree of freedom ξ (Figure 2.2b). Let’s suppose that the eigenmode of the full

system with frequency ω is excited and its energy is U . An adiabatic change in the

separation ∆ξ will shift the eigenfrequency by an amount ∆ω. Since the system is

closed and the change in ξ is adiabatic, the total energy U is conserved, so we obtain

a mechanical force on each object given by:

F = −dU
dξ
. (2.23)

By expressing U = Nℏω, with N the total number of photons in the resonator

and ℏω the energy of each photon and by supposing that the photon number is

unchanged by the adiabatic shift, due to the absence of absorption mechanisms,

F = −d(Nℏω)
dξ

= −Nℏ
dω

dξ
= − 1

ω

dω

dξ
U. (2.24)



CHAPTER 2. OPTOMECHANICAL FORCES 73

2.2 Generalized Modelling of Optomechanical Forces

Applied to PT-Symmetric Optical Microscale

Resonators

The optical force between the two resonators obtained in the previous section is

calculated through an energetic approach. However, the used hypothesis of a closed

system is often not verified. In fact in order to excite an optical resonator an input

waveguide is necessary, that couples the resonator with the external environment,

making the system open. The approximation of optical systems as closed is often

unrealistic. That’s the reason why Rakich developed the Response Theory of Optical

Forces (RTOF) method [45], that is an energetic approach used to evaluate optical

forces, even in cases of open systems. The method by Rakich considers only systems

without gain or loss. In this section a generalization of the RTOF method will

be developed, including gain and loss effects. The method will be then applied to

evaluate optical forces in coupled resonators of a parity-time-symmetric system. The

aim is to demonstrate, that the optical forces can be enhanced by approaching the

parity-time symmetry.

2.2.1 Generalized modelling of optical forces

Let’s consider a reflectionless M-input, N-output system enclosed within a volume

V , outside of which electromagnetic fields are negligible (Figure 2.3).

Let’s consider only one mechanical degree of freedom inside the volume, which is

represented by the knob q. Pi is the total power entering the system, Po is the total

power exiting the system through all the output ports. In the limit of large photon

flux, we can write:

Pi =
M∑︂

m=1

Φi,mℏω = Φiℏω (2.25)

Po (t) =
N∑︂

n=1

Φo,n (t) ℏω′
n (t) , (2.26)

where ℏ is the reduced Plank constant, Φi,m is the photon flux at the m-th input
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Figure 2.3: Black-box model of the optomechanical system [46].

port, ω is the photon frequency at all the input ports, Φo,n and ω′
n(t) are the photon

flux and the mean frequency at the n-th output port. It should be noticed that Pi

is assumed to be constant, even during dynamical evolution of the system, whereas

Po(t) exhibits a dependence from time, because the motion of the degree of freedom

q changes the frequency of the photons transiently stored in the optical system while

modifying the capacity of the system to store energy [45]. The electromagnetic

energy transiently stored in volume V can be expressed as Uin = Nℏωin, where N

is the number of photons transiently stored at a mean frequency ωin. Taking into

account the lost power (Pl = Φl(t)ℏωl(t), with ωl(t) the angular frequency of the

lost photons) and the power increase due to gain (Pg = Φg(t)ℏωg(t), with ωg(t) the

angular frequency of the gained photons), the conservation principles of power and

photon number in the volume V , in the presence of loss and gain, can be expressed

as: ⎧⎨⎩ Pi + Pg (t) =
∂Uin

∂t
+ Pl (t) + Fopt · dqdt + Po (t)

Φi + Φg =
N∑︁

n=1

Φo,n (t) +
dN
dt

+ Φl

, (2.27)

where Fopt is the instantaneous optical force component in the direction of the dis-

placement of the generalized coordinate q, Uin is the optical energy stored in the
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volume V , Φl is the number of photons lost per second, Φg is the number of photons

gained per second, Pg is the optical power flowing into the volume V because of

gain, Pl is the optical power lost, due to optical loss. In the adiabatic hypothesis,

the optical force is only a function of q. By expressing Fopt · dq/dt = −∂W/∂t, with
W the work done on the electromagnetic fields through the displacement of q, the

system of equations 2.27 gives:

N∑︂
n=1

Φo,n (t) ℏω′
n (t)− Φiℏω +

d [N (t) ℏωin (t)]

dt
− Φgℏωg + Φlℏωl =

∂W

∂t
. (2.28)

By expressing ω′
n(t) = ω + ∆ω′

n(t), ωg(t) = ω + ∆ωg(t) and ωl(t) = ω + ∆ωl(t),

and recalling the second equation in the system of equations 2.27, we can write, after

a few algebraic steps:

N∑︁
n=1

Φo,n (t) ℏ∆ω
′
n (t) + d[N(t)ℏωin(t)]

dt
+

−Φgℏ∆ωg (t) + Φlℏ∆ωl (t)− dN
dt
ℏω = dW

dt
.

(2.29)

To simplify the notation, we will include the loss and gain terms in the summation

in the following way:

N+2∑︂
n=1

Φo,n (t) ℏ∆ω
′

n (t) =
N∑︂

n=1

Φo,n (t) ℏ∆ω
′

n (t)− Φgℏ∆ωg (t) + Φlℏ∆ωl (t) , (2.30)

with Φo,N+1 = Φl, ∆ω
′
N+1(t) = ∆ωl(t) and Φo,N+2 − Φg,∆ω

′
N+2(t) = ∆ωg(t). Such

a result can be interpreted as a generalization of the loss and gain photon fluxes as

optical ports, with the convention that the flux of photons due to gain are taken

with the negative sign. By this way, a simplified expression can be obtained as:

N+2∑︂
n=1

Φo,n (t) ℏ∆ω
′

n (t) +
d [N (t) ℏ (ωin (t)− ω)]

dt
=
dW

dt
. (2.31)

As in [45], we will consider the work done by a small continuous change of the

spatial coordinate q, ∆q, over an interval of time ∆t. The coordinate q can be
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expressed as q(t) = qi + f(t)∆q, where f(t) is defined as f(t) = 0 for t ∈ (−∞, 0],
f(t) ∈ [0, 1], for t ∈ (0,∆t) and f(t) = 1 for t ∈ [∆t,+∞). Integrating Eq. 2.31 over

a time interval [0,∆t+ T ], we can find:

∆W =
∆t+T

∫
0

N+2∑︂
n=1

Φo,n (t) ℏ∆ω
′

n (t) dt+ [N (t) ℏ (ωin (t)− ω)]∆t+T
0 , (2.32)

with T much higher than the photon-lifetime (steady-state hypothesis). We define

∆ω′
n(t) := dψn/dt. The expression of Ψn, representing the time-varying phase of the

transmitted wave at the n-th port, is not known. However, after a time ∆t + T , in

the steady state hypothesis, it can be replaced by Φn, that is the steady-state phase

at the n-th output port. Moreover, the steady-state hypothesis requires that, after

a time ∆t+ T , ωin(t) must be equal to ω. So, we obtain:

∆W =
N+2∑︂
n=1

∆t+T

∫
0

Φo,n (t) ℏ∆ω
′

n (t) dt. (2.33)

With a procedure similar to that followed in [45], by expressing the photon flux

as Φo,n(q, t) = Φq
o,n(q, t) + ∆Φo,n(t), with ∆Φo,n(t) a small correction of order ∆q in

smallness, we can obtain:

∆W =
N+2∑︁
n=1

∆t+T

∫
0

[︁
Φq

o,n +∆Φo,n (t)
]︁
ℏ∆ω′

n (t) dt =

=
N+2∑︁
n=1

∆t+T

∫
0

Φq
o,nℏ∆ω′

n (t) dt+
N+2∑︁
n=1

∆t+T

∫
0

∆Φo,n (t) ℏ∆ω′
n (t) dt,

(2.34)

and considering that also ∆ω′
n(t) is of the order of ∆q [45]:

∆W =
N+2∑︂
n=1

Φq
o,n (q) ℏ (ϕn,f − ϕn,i) + k∆q2, (2.35)

with k a constant independent from q. Dividing both terms by ∆q and taking the

limit as ∆q → 0, we can derive the expression of the force:

F = lim
∆q→0

−∆W

∆q
= −

N+2∑︂
n=1

Φq
o,n (q) ℏ

dϕn

dq
. (2.36)
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Then, the final expression for the evaluation of the force (in the adiabatic hy-

pothesis) is:

F = −ℏ
N+2∑︂
n=1

Φq
o,n

dϕn

dq
, (2.37)

with Φo,N+1 = Φl, ∆ω
′
N+1(t) = ∆ωl(t) and Φo,N+2 = −Φg,∆ω

′
N+2(t) = ∆ωg(t).

2.2.2 Optomechanical forces in coupled resonant cavities

We have obtained an easy generalized way to evaluate optical forces, simply using

the information about the amplitude and the phase of the light at the output ports.

The idea of this paragraph is to use the concept of parity-time symmetry to enhance

optical forces. A common way to enhance optical forces is the use of resonant cavities

with a high quality-factor. In this paragraph we evaluate the influence of the PT

symmetry condition in optical forces between coupled cavities, using the generalized

RTOF method, taking into account all the sources of loss or gain. So, let’s consider

two coupled resonant cavities as in Figure 2.4.

Figure 2.4: General scheme of the racetrack coupled cavities under analysis [46].

As noticeable in [30], attractive and repulsive optical forces between two optical

resonators correspond to a symmetric and an antisymmetric optical resonance, re-

spectively. So, in order to excite attractive and repulsive optical forces, we will keep
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the system away from the exceptional point condition. The equations describing

these two coupled resonant cavities [82] are:

d

dt
a1 = jω0a1 + γ1a1 − jkca2 − jµsin, (2.38)

d

dt
a2 = jω0a2 + γ2a2 − jkca1, (2.39)

with the usual notation: a1 and a2 are the energy amplitudes in the first and sec-

ond cavities, respectively (they are normalized such that |a1/2|2 is equal to the total

energy stored in the first/second cavity); sin represents the amplitude of the electro-

magnetic field travelling in the input bus (it is normalized so that |sin|2 is equal to

the total power evaluated at any cross-section); ω0 is the resonant angular frequency

of each uncoupled cavity, µ is the mutual coupling coefficient between each cavity

and the adjacent bus, kc represents the coupling strength between the resonators

[12]. The coefficient γ1,2 represents the gain (or loss if negative) of the first/second

cavity. It should be considered that γ1,2 could be expressed as:

γ1,2 = −
(︃

1

τk
+

1

τe
+

1

τs

)︃
+ γn1,2, (2.40)

where 1/(τκ) represents the photon decay rate due to the coupling between the

cavities (τκ = 2vg/(2πRk
2
c )); 1/τe is the photon decay rate due to the coupling

between the racetracks and the external buses (τe = 2/µ2); 1/τs is the photon decay

rate related to other sources of loss, as the sidewall roughness scattering; γn1 and

γn2 represent the net gain (or loss, if negative) of the first and the second cavities,

respectively [12]. We should notice that only the net gains γn1 and γn2 contribute to

the (N +1)-th and (N +2)-th terms in the expression 2.37. The other terms in 2.40

only handle the photon flux inside the control volume V . To evaluate the optical

forces, we use the following relations [82]:

sout = sin − jµa1, (2.41)

sout2 = −jµa2. (2.42)

In particular, we can evaluate the optical forces between the resonant cavities

by considering that the arms of the racetracks in the coupling region between the
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resonators are suspended. So, the spatial coordinate q is represented by the mean

distance d between the edges of the suspended racetracks of resonant cavities. By

considering d as an average distance, we have neglected the effect of the deflection

of the arms of the racetracks on the force. From 2.37 it results that:

F = −ℏ
N+2∑︂
n=1

Φq
o,n

dϕn

dkc

dkc
dq

= −dkc
dq

ℏ
N+2∑︂
n=1

Φq
o,n

dϕn

dkc
, (2.43)

with N=2, where:

Φq
o,1 (q) = |sout|

2 1

ωℏ
; ϕ1 = ∠

sout
sin

(2.44)

Φq
o,2 (q) = |sout2|

2 1

ωℏ
; ϕ2 = ∠

sout2
sin

(2.45)

Φq
o,3 (q) = −2γn2|a2|

2 1

ωℏ
; ϕg2 = ∠a2 (2.46)

Φq
o,4 (q) = −2γn1|a1|

2 1

ωℏ
; ϕg1 = ∠a1, (2.47)

where the symbol “∠” represents the phase angle of its argument. Evaluating the

relevant forces through a numerical method provides an efficient way to design an

optimized resonant optomechanical device.

2.2.3 Numerical results

In the previous, we derived the analytical expression for the evaluation of the force

between two suspended arms of coupled racetrack resonators, in the presence of gain

and loss (Figure 2.4). In order to demonstrate the application of the shown mod-

elling, the aim of this section is to find the behaviour of attractive and repulsive

forces between the suspended arms, through parametric analysis (using Eq. 2.43).

In addition, we will show the condition for which the system exhibits an equilibrium

point with zero force, necessary for a self-adaptative behaviour similar to that shown

in [32]. The theoretical modelling of the previous section and the parametric simu-

lations of this Section can provide a good starting point for optomechanical applica-
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Figure 2.5: Field Ey in the cross section of the fixed part of each racetrack resonator
[46] (a). Field Ey of the symmetrical mode in the cross section of the movable part
of each racetrack resonator [46] (b).

tions with resonant structures, under the PT symmetry-induced force enhancement.

Although the approach shown in the previous demonstration is general, we have

chosen to perform our simulations using Multi-Quantum-Well SiGeSn heterostruc-

tures, excited by an external laser at 3 µm wavelength. The overall resonant system

consists of two coupled resonant racetrack cavities and two external bus waveguides

(Figure 2.4). One of the arms of each racetrack resonator is suspended in air, rep-

resenting the movable parts of the optomechanical device. The cross-section of the

non-suspended part of the racetrack is designed to be similar to that proposed in

[12], using the results shown in [86]. Materials and dimensions of the structure are

shown in Figure 2.5.a. Five pairs of Ge0.84Sn0.16/Si0.09Ge0.8Sn0.11 quantum-wells (five

10 nm-Ge0.84Sn0.16 wells and six 9 nm-Si0.09Ge0.8Sn0.11 barriers) can realize the gain.

The cross-section of the fixed part of the racetrack is shown in Figure 2.5.a. The

suspended part of the system, including the suspended arms of both the resonators,

has the cross-section shown in Figure 2.5.b.

As a first step we designed the coupling strength kc between the racetracks. The

dimensionless power coupling factorKrr between the two rings has been calculated as

Krr = sin2(∆βdL/2) [105] (with ∆β the difference between the propagation constant

of the symmetric and antisymmetric modes and L the straight part of the racetrack)
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Figure 2.6: Coupling strength kc as a function of the gap d between the edges of the
suspended part of the racetracks [46].

and then kc has been evaluated as kc = Krrvg/Ltot [82], where Ltot is the total length

of each racetrack.

The value of kc as a function of the distance d is shown in Figure 2.6, for a value

of L = 50 µm, R = 50 µm. As known, the coupling strength is not a monotone

function of the distance d. So, recalling Eq. 2.43, for a chosen wavelength, the

sign of the optical force will depend on the distance d. This could lead to the

possibility of realizing a self-positioning optical device, exploiting the presence of a

potential well as in [32]. From Figure 2.7 it is possible to appreciate that when the

system approaches the PT symmetry condition, the peak of the spectral response

Sout/Sin = |sout|2/|sin|2 increases. In perfect PT-symmetric condition, optical forces

would be theoretically infinite (see Eq. 2.43). However, since the PT symmetry

represents an ideal condition that cannot be perfectly met (due to non-linearities

and technological limitations) [74], we have analysed the effect of an average loss

∆PT = −(γ1 + γ2)/2, that takes into account that system cannot be perfectly at

the PT symmetry condition ((γ1+γ2)=0). Figure 2.7 shows the difference between

the output spectrum and the optical force in a lossy case (with propagation losses

equal to 2 dB/cm). It is evident that the approaching PT symmetry allows the

force per input power to be increased from less than 10 pN/mW to more than 300

pN/mW, for ∆PT = 26.4 Grad/s. In order to show the effect of approaching the PT

symmetry condition, the peak of the optical forces as a function of ∆PT for different
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Figure 2.7: Transfer function and optical forces (normalized to the input optical
power) as a function of the angular frequency for different gap d between the straight
arms of the racetracks, in case of lossy resonators (left) and in case of ∆PT equal to
40 Grad/s (center) and 26.4 Grad/s (right) (γ1−γ2 equal to 2 Grad/s). Approaching
the Parity-Time condition, the forces change their sign with respect to the lossy case
[46].

values of distance d is plotted in 2.8. While changing the value of ∆PT , we kept

the difference γ1 − γ2 equal to 2 Grad/s. As expected, the force tends to infinity as

the system approaches the PT symmetry condition. This feature is very important

to enhance the effect of the force and represents an important improvement with

respect to resonant systems, that have been already proposed in literature [30, 32]

to enhance optical gradient forces. We have demonstrated that combining resonant

optical cavities with the PT symmetry condition can increase the force of several

orders of magnitude even for an input signal of the order of a few milliwatts.

In order to appreciate the trend of optical forces in quasi-PT symmetric optical

cavities with respect to those obtained in lossy coupled resonant cavities, Figure 2.9

shows the color map of the optical force as a function of ω and distance d. The map

has been plotted both for a condition of a lossy cavity (propagation loss equal to 2
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Figure 2.8: Optical maximum force as a function of the parameter ∆PT for different
values of the distance d. Dashed lines represent the peak of the optical forces in the
case of lossy cavities. The discontinuity in the first derivative of the function is due
to the changing of the sign of the force [46].

dB/cm) and for a condition with ∆PT = 40 Grad/s and ∆PT = 26.4 Grad/s, with

γ1 − γ2 = 2 Grad/s.

It is evident that when the system approaches PT symmetry, the optical force is

significantly enhanced and its value over a distance d of 200 nm is comparable with

that under 200 nm. Instead, in a lossy case the intensity of the force rapidly decays

with distance d.

The enhancement of the forces due to the quasi-PT symmetry condition can be

interpreted as the extension of the concept shown by Povinelli et al in [30]. Based on

this concept, the optical forces between two optical resonant cavities are proportional

to the quality-factor of the resonators. Large quality-factors mean large energies

stored in the cavities and, consequentially, large forces. In this sense, approaching

the Parity-Time Symmetry means to enhance the effect of the energy storing in

the cavities, leading to larger optical forces. In fact, away from the PT symmetry

condition, the imaginary part of the eigenfrequencies (ω1,2) is directly linked to the

decay rate of the optical energy stored in the cavities (1/τ = Im(ω1) = Im(ω2), being

τ the photon lifetime in the cavities) [12]. A higher photon lifetime means a higher
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Figure 2.9: Optical forces as a function of the angular frequency for different gaps d
between the straight arms of the racetracks [46].

quality-factor [82]. In this context, while approaching PT symmetry (∆PT → 0),

the imaginary part of the eigenfrequencies is reduced [12] and the enhancement of

the overall quality-factor is achieved.

In Figure 2.10, the optical force as a function of the distance d is plotted at

two fixed wavelengths. It is evident that in quasi-PT symmetric condition the force

changes its sign for a distance lower or higher than 175 nm. This phenomenon is

due to the change in sign of dkc/dq in Eq. 2.43. The change of the sign of the force

from positive to negative, for an increasing value of distance, can be interesting to

be used for self-positioning optical circuits. In fact, as in [32], this condition pro-

vides a good solution for all-optical self-adaptative behaviour and cavity-trapping.

As for the experimental side, once the distance between the suspended arms has

been chosen and designed for the required operating point (depending on the de-

vice application), the coupling strength is fixed by the distance between the arms.

Fabrication tolerances would affect the theoretical prediction, but the actual value

of the coupling strength could be experimentally evaluated. Once the losses of the

racetrack resonators have been characterized in a passive configuration, the carrier
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Figure 2.10: Optical forces as a function of the gap d between the internal arms of
the racetracks for two different wavelengths. Optical forces have been evaluated for
ω=626.9561 Trad/s and ω=627.0549 Trad/s in the lossy case and for ω=626.8394
Trad/s and ω=627.1805 Trad/s in the case of ∆PT=40 Grad/s and ∆PT=26.4
Grad/s [46].

injection in the MQW structure shown in Figure 2.5 can be used to control the gain

in each resonator to reach the required value of γ1 and γ2 [86].

2.2.4 Final considerations

In this section a generalized RTOF method has been demonstrated. It can calculate

optical forces in open systems, using only information about the amplitude and the

phase of optical signals at the output ports. The model can be used for generic

open systems where applying Maxwell Stress Tensor can be computationally too

expensive.

The model has then been used to model the optical forces between two suspended

waveguides of two coupled resonators approaching the parity-time symmetry condi-

tion. It has been demonstrated that the optical forces can be enhanced of several

orders of magnitude, with this configuration.
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2.3 Dynamics of optomechanically coupled suspended

silicon waveguides

In the previous section a generalized model of the RTOF method by Rakich has been

shown. In this section the dynamical behaviour of one of the simplest optomechani-

cal component will be developed. In particular, after an analytical modelling of the

elastic response of the waveguides and of the different sources of damping, a nu-

merical algorithm able to predict the time evolution of the motion of the suspended

waveguides will be shown.

2.3.1 Analytical modelling

The device we want to model is shown in Fig. 2.11. By exciting a symmetric

supermode into the structure, it is possible to exert an attractive force between

the waveguides; conversely, an antisymmetric supermode would excite a repulsive

force [35]. The static behaviour of two suspended beams has been widely solved

by using the Euler-Bernoulli equation. However, the dynamic behaviour in transient

phase of suspended waveguide-based optomechanical devices has not been completely

modelled.

In order to evaluate the dynamics of the optomechanical device, we will need to

estimate :

� the optical gradient forces between the silicon waveguides;

� the elastic response of the silicon waveguides, thus treated as deformable ob-

jects;

� the different sources of energy damping emerging during motion.

In the following paragraphs, we will try to give a model for the dynamic re-

sponse of the structure. We know that a precise estimation would need a numerical

simulation (including CFD analysis for fluid domain and/or fluid-structure interac-

tion analysis), however the objective of this study is to give a general idea of the

main parameters involved in the system and indicate some basic design rules of an

optomechanical actuator based upon the previously described configuration.
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Figure 2.11: Structure of the optomechanical device [47].

2.3.2 Elastic response

The silicon waveguides can be considered as Bernoulli beams (the main hypothesis is

that all cross-sections remain persistently straight and perpendicular to the neutral

axis when deformation occurs). For the evaluation of the dynamics of the optome-

chanical device, we chose to use a Finite Element Method (FEM) modelling. After

1-D spatial discretization of each waveguide, the behaviour of the deformable waveg-

uides, thus treated as a series of connected flexural beam elements, can be described

by the general expression (in dynamic regime):

− [M ]f̈ − [C]ḟ − [K]f + Fe = 0, (2.48)

where [M ] is the lumped mass matrix, [C] is the lumped damping matrix, [K] is the

stiffness matrix and Fe is the array of the generalized external forces (both forces

and momenta) applied to each node of the beam, while f represents the array of the

generalized displacements (both translations and rotations) [106].
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2.3.3 Optical forces

The optical gradient forces acting between the two suspended waveguides, due to a

symmetric supermode, could be calculated through the well-known equation [107]:

Fopt = −
P

c0

dneff

dG(x)
L, (2.49)

where P is the input power of the symmetric supermode, c0 is the speed of light in

vacuum, neff is the effective index of the optical symmetric supermode propagating

in the deformable region, L is the length of the deformable region of the waveguides

and G(x) is the gap between the waveguides at the generic position x (Fig. 2.11).

2.3.4 Damping

Damping represents one of the elements influencing the dynamics of the device.

In order to estimate it, we neglected any form of internal material damping (e.g.

viscoelasticity). We considered the air drag and the air squeezing effect between

facing surfaces of the coupled waveguides as the contributions to the total damping.

Knudsen correction for viscosity

In order to evaluate the damping due to the air surrounding nano-scaled objects such

as the two deformable waveguides, it is necessary to evaluate the Knudsen number

to verify whether the fluid could be still considered as a continuum:

Kn =
λ̄

d
, (2.50)

where λ̄ represents the free mean path of air molecules and d is a characteristic

dimension of the structure [108]. Considering d as the hydraulic diameter for our

structure (DH = 4GL/(2G+2L)), it is possible to show that, for the structure in Fig

2.11 (G variable in the order of 102 nm and L = 50 µm), Knudsen number is in the

range 0.01 < Kn < 1; it means that the fluid cannot be considered as a continuum

and a correction should be applied to viscosity.

In particular, as in [108], we can model the effect of rarefaction of air in a Knudsen

flow as a modification of the viscosity into:
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µeff =
µ

1 + f(Kn)
. (2.51)

There are several empirical models to evaluate f(Kn) in Eq. 2.51 [108]. We used

the one proposed by Knudsen:

f(Kn) =
Kn + 2.507

Kn + 3.095

Kn

0.1474
. (2.52)

Because of the attraction of the suspended waveguides, a local pressure raising is

induced into the gap between them (squeeze flow), so the dependence of the mean

free path on pressure should be taken into account [108]:

λ̄(x) =
p0

pgap(x)
λ̄0, (2.53)

where p0 is the pressure of unperturbed air, whereas p(x) is the actual local pressure

between the suspended waveguides. The pressure pgap(x) can be evaluated by averag-

ing the relative pressure p(x, y) [109] along the height H and adding the unperturbed

pressure p0:

p(x, y) =
6µeff

G3(x)
Ġ(x)

[︄(︃
H

2

)︃2

− y2
]︄
, (2.54)

pgap(x) = p0 +
1

H

∫︂ H/2

−H/2

p(x, y) dy. (2.55)

Using the set of equations above, we obtain a nonlinear implicit expression that

should be solved numerically:

µeff =
µ

1 + f(Kn(µeff ))
. (2.56)

It is not immediate to check if this iterative procedure is really necessary or if an

initial approximation of the viscosity could be sufficiently accurate throughout the

whole analysis.



CHAPTER 2. OPTOMECHANICAL FORCES 90

Laminar drag

Reynolds number (Re = ρv̄L/µeff , with ρ the density of the air, and v̄ the average

velocity of each suspended beam in an undamped case) has been calculated to be

1.66 (for P =10 mW), ensuring that we can consider the air flow as laminar. The

air drag on a single beam moving in a fluid could be calculated starting from the

generalized Stokes force [110]:

FS = 3πµeff

(︃
1

3
dn +

2

3
ds

)︃
v, (2.57)

where dn is the diameter of a surface of an equivalent sphere with the same normal

surface and ds is the diameter of a surface of an equivalent sphere with the same

total surface. The effect of the laminar drag can be modelled through the damping

coefficient on the whole beam, considering:

CSt = 3πµeff

(︃
1

3
dn +

2

3
ds

)︃
. (2.58)

Squeeze-film damping

To estimate the squeeze-film damping force (Fsq) caused by the effect of the increasing

air pressure (see Eqs. 2.54 and 2.55) in between the facing surfaces when getting

closer, we used the model shown in [111]:

Fsq =
µeffH

3l

G3(x)
Ġ(x), (2.59)

where l is the length we are considering for the lumped parameters treatment, re-

garding the squeeze-film damping.

In this case the damping coefficient of each translational degree of freedom of a

single waveguide could be evaluated as:

cSq = 2
µeffH

3l

G3(x)
. (2.60)
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2.3.5 Numerical Implementation

Time discretization

We implemented Eq. 2.48 on Matlab® to evaluate the dynamic behaviour of the

beams. We chose a central difference scheme for time discretization:

ḟ =
df

dt
=

f(t+∆t)− f(t−∆t)

2∆t
, (2.61)

f̈ =
d2f

dt2
=

f(t+∆t/2)− f(t−∆t/2)

∆t2
, (2.62)

being ∆t the interval for time discretization. By substituting Eqs. 2.61 and 2.62 into

2.48, it is possible to calculate displacements at every time t.

2.3.6 Damping matrix assembly

The matrix [C] can be assembled considering the contribution of the laminar drag

and the squeezing effect. In particular a diagonal matrix can be built, where the

elements related to the translational degrees of freedom are evaluated as a sum of

csq and cSt = CSt/n (with n the number of the finite elements in each deformable

waveguide).

We neglected the terms related to the rotational degrees of freedom, because they

are orders of magnitude lower than the ones related to the translational degrees of

freedom.

The [C] matrix is updated at each time step, in order to capture the dynamic

evolution of the squeezing and laminar drag forces over time.

2.3.7 Algorithm implementation

Algorithm 1 shows the entire procedure to evaluate the displacements of the finite

elements. At each time step, the external forces Fe(t) and the damping coefficients

are evaluated in order to extrapolate the displacements at the next time step. The

cycle is repeated until the stop condition is satisfied.
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Algorithm 1 Numeric algorithm for the evaluation of the displacement.

1: procedure displacement(Fe, µeff , [C])
2: t← 0
3: while |f̈(t)| > ϵ1 or |ḟ(t)| > ϵ2 do ▷ Stop condition (with ϵ1 and ϵ2 residual

errors on acceleration and speed)
4: Evaluate Fe(t) (Eq. 2.49)
5: Evaluate µeff (t) (Eq. 2.56)
6: Update [C] matrix (Eqs. 2.58 and 2.60)
7: Evaluate f(t+∆t) (Eqs.2.61 and 2.62 in Eq. 2.48)
8: t← t+∆t

9: return f(t)

2.3.8 Numerical results

In this section the main results of the simulation (performed for a temperature of 300

K) are shown. As a first step the optical force between the suspended waveguides

has been calculated as a function of the gap between them, through the Eq. 2.49:

the effective index of the symmetric supermode has been calculated for different

values of the initial gap G0 and the force per unit power and unit length has been

calculated for a cross-section with H = 220 nm and W = 310 nm (Fig. 2.12). The

effective index has been numerically calculated under the hypothesis of translational

invariance using the commercial software COMSOL Multiphysics®. In particular,

with a maximum grid spacing of 10 nm over a total computational domain of 3100

nm x 2200 nm, a relative error lower than 2 · 10−7 was obtained.

Figure 2.13 shows the effective mode index of the symmetric supermode and the

related optical force for an initial gap G0 ranging from 50 nm (reasonably achievable

with e-beam lithography) to 220 nm. We chose a cross section of 220 nm x 310 nm,

since it has been chosen in experimental works, guaranteeing a lower stiffness with

respect to the standard 220nm x 500nm cross-section [112].

Fig. 2.14 shows the maximum displacement δ (δ = G0−G(L/2)
2

)of the central point

of each waveguide as a function of time for different values of the input power (with

L = 50 µm and G0 = 100 nm). For 10 mW of input power, the final displacement is

around 18 nm, decreasing for lower values of input power. The maximum δ is 27.5

nm for 10 mW of input power. It means that the maximum range of G(x) is from
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Figure 2.12: Squared norm of electric field of the symmetric mode in the coupled
waveguides [47].

Figure 2.13: Effective index of the symmetric supermode (left y-axis) and optical
attractive force (right y-axis) as a function of the initial gap G0 [47].
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Figure 2.14: Maximum displacement as a function of time, for three different values
of input power [47].

100 nm to 45 nm during the transient phase of motion. The dynamic response is

underdamped in all of the cases and the settling time is of the order of microseconds.

For low input powers, the forces and the maximum displacements decrease and so

the damping; the latter is justified by the dependence of µeff on the velocities ḟ(t)

and the dependence of the squeezing effect on the cube of the distance G(x). This is

the reason why for higher values of input power the system settles in a lower time.

It is not easy to compare these results to the ones experimentally obtained in

literature, because, to our knowledge, in those works only one of the waveguides

is excited, leading to a resulting beating mode (superposition of a symmetric and

antisymmetric supermodes). This brings to a totally different behaviour of the optical

forces [113].

In Figure 2.15, the time evolution of µeff (with L = 50 µm and G0 = 100 nm and

different values of input power) is shown. Such a result could be used to estimate

the error that the model would imply, by considering the initial effective viscosity as

a constant value for the entire analysis. In the presented cases, a maximum relative

error of around 29% over the effective viscosity would have been accepted, if the

initial viscosity had been used for the entire analysis.
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Figure 2.15: The value of µeff as a function of time, during the settling of the silicon
waveguides [47].

In Figure 2.16, the time evolution of the damping coefficients is shown. The

laminar drag is always lower than the squeezing effect, that results to be the dominant

contribution, during all the settling phases.

Fig. 2.17 shows the settling time as a function of the initial gap G0 (with L

= 50 µm). It can be seen that the lower the initial gap, the lower the settling

time. This could be interpreted as a result of the squeezing damping force, that

is proportional to G−3(x). By increasing the damping, the system moves from a

condition of underdamping to the condition of critical damping (corresponding to

the minimum settling time).

Fig. 2.18 shows the settling time as a function of a correction factor (CF ) multi-

plying the overall damping coefficient formulated in the previous sections (with L =

50 µm and G0 = 100 nm and different values of input power). The settling time has

been considered as the time necessary for the displacement of the central point (δ)

to enter in an error range included between +10% and −10% of the regime value.

The minimum settling time is reached for a damping correction factor CF of 3.9

(corresponding to the condition of critical damping), evaluated for an input power

of 10 mW.
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Figure 2.16: Damping coefficients (due to laminar drag and squeezing effect): time
evolution.

Figure 2.17: Settling time ts as a function of initial gap G0.
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Figure 2.18: Settling time ts as a function of the damping coefficient [47].

2.3.9 Final consideration

An algorithm to evaluate the dynamic mechanical response of a deformable sus-

pended waveguide-based optomechanical device has been presented. It has been

demonstrated that the settling time of the proposed configuration is of the order

of microseconds. Acting on damping, the minimum achievable value of the settling

time would be of the order of hundreds of nanoseconds. Moreover, we demonstrated

that the settling time of the device is influenced by the input power of light, because

the higher the power, the more the damping due to the squeezing effect.



CHAPTER 2. OPTOMECHANICAL FORCES 98

2.4 Optomechanical switch

In this final section of the chapter, an experimental work about an optomechanical

switch will be shown. The work has been performed at the Optoelectronics Research

Centre of the University Southampton. The idea of this work is to show the possi-

bility of controlling the light behaviour through the exploitation of optical forces.

2.4.1 Idea of an optomechanical switch

The central idea is to create an optomechanical switch. By setting up a directional

coupler with two suspended waveguides and by applying an optical force between

the two suspended arms it is possible to change the distance between the suspended

waveguides and, consequently, the fraction of the power of a signal input coupled from

one arm to the other one of the directional coupler. When a signal of power (P0)

is injected in one waveguide of a directional coupler, the fraction of power coupled

from the first to the second waveguide of the coupler will be given by the formula

[114]:

Pc = P0 sin
2

(︃
πL∆ns

λ

)︃
, (2.63)

with ∆ns the difference between the effective indices of the even and the odd super-

modes, L the length of the coupler and λ the wavelength of the signal. The term

∆ns is function of the distance between the optical waveguides. So, by tuning that

distance using optical forces, it is possible to redirect light to one output or the other.

Figure 2.19: Working principle of the directional coupler.
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In order to exert an attractive optical force between the two suspended arms

it is necessary to excite the coupled suspended waveguides with an even optical

supermode (Figure 2.20), using a pump source (the pump source will be counter-

propagating to avoid interference) as in Figure 2.21. The optical force will decrease

the gap between the suspended waveguides and change ∆ns. So the coupled optical

force, will vary according to Eq. 2.63.

(a) (b)

Figure 2.20: Electric field of an even (a) supermode and an odd supermode (b)

Figure 2.21: Working principle of the switch. The pump input excites an attractive
force and the input signal is directed to one of the output ports.
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2.4.2 Design

The complete device was designed as in Figure 2.22. The inset of Figure 2.22 cor-

responds to the directional coupler of Figure 2.21. In order to excite the symmetric

supermode from the pump source, three MMIs (Multi Mode Interferometers) have

been used, acting as power splitters. The pump input power is divided in two waveg-

uides, thus reaching the suspended region and exciting a supermode on the suspended

waveguides after two different optical paths (Figure 2.23a)(the optical path differ-

ence is ∆Lneff , with neff the effective index of all the waveguides and ∆L is the

geometrical path difference between the two paths shown in 2.22). In this way, by

controlling the wavelength of the pump input, it is possible to control the phase

difference between the two pump signals reaching the suspended region in P1 and

P2 after two different optical paths (Figure 2.23a). If the optical path difference

(∆Lneff ) is an even multiple of the pump wavelength, a symmetric supermode will

be excited in the suspended waveguides (attractive force), whereas, if the phase dif-

ference is an odd multiple of the pump wavelength, an antisymmetric supermode will

be excited (repulsive force). Moreover, by controlling the power of the pump input,

we can control the intensity of the optical force between the suspended waveguides,

Figure 2.22: Design of the optomechanical switch
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Figure 2.23: Working principle of the optomechanical switch. The pump input power
in (a) is divided in two paths with an optical path difference ∆Lneff . Depending
on the wavelength of the pump input, a symmetric or antisymmetric supermode (or
a combination of both) can be excited in A and B, thus exciting optical forces. So,
the input signal power coupled fraction can be controlled (b).

thus adjusting the input signal power coupled fraction (Figure 2.23b), according to

Eq. 2.63. The power of the pump is supposed to be much higher than the signal.

Two different designs have been tried to fabricate the device, because the process

of underetching the suspended region is crucial and was not completely standardized

in the facilities of the Optoelectronics Research Centre. In particular a design with

strip waveguides and one with rib waveguides have been tried. The waveguides have

been designed to have a width of 500 nm in the strip design, and a width of 450 nm

in the rib design (with a rib of 70 nm). A standard 2 µm-SiO2/220nm-Si wafer has

been used for both the designs.
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2.4.3 Fabrication process - first design: strip waveguides

The first design uses strip waveguides. In order to fabricate a chip with suspended

waveguides, the process has been divided into three steps:

� Waveguides etching

� Grating couplers etching

� Suspended waveguide underetching

Grating couplers are Bragg gratings useful to couple light from an external optical

fibre to the chip. Due to the reciprocity of light the same grating couplers can be used

to couple light from the chip to the optical fibres. In the first two steps, a wet HF

etching approach has been used. Whereas, in the third step the wet HF etching would

cause the suspended waveguides to get stuck during the drying process. So, a different

approach has been chosen. In particular a Vapor HF etching process has been used.

It needed to be characterized on some dummy chips, to know the etching rate of the

process. After 30 minutes of vapor HF etching, dummy waveguides (220nm high and

500 nm wide) were completely suspended. Figure 2.28 shows the SEM image of the

suspended waveguides in cross section, after a Focused Ion Beam (FIB) Milling in

the dummy chip. It could be seen that the underetch was complete. The suspended

waveguides are touching the SiO2 substrate because of the electrostatic discharge

Figure 2.24: Test suspended waveguides after vapor HF
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happened during the FIB milling. The complete fabrication steps are listed below.

Figure 2.26 shows the process flow.

Waveguides etching

� Mask design for waveguides

� ZEP spin coating

� E-beam lithography

� ZEP Development

� Silicon etching

� Ashing (to remove the ZEP)

Grating couplers etching

� Mask design for grating couplers

� ZEP spin coating

� E-beam lithography

� ZEP Development

� Silicon etching

� Ashing (to remove the ZEP)

SiO2 underetching

� Mask design for windows of suspended regions

� ZEP spin coating

� E-beam lithography

� ZEP Development
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Figure 2.25: HF bubbles under ZEP after Vapor HF

� Vapor HF - Etching

� Ashing (to remove the ZEP)

The attempt of using vapor HF with a ZEP mask to underetch the waveguides

has been shown to be not a good solution. In fact, some bubbles appeared on the top

of ZEP after the vapor HF etching, causing vapor HF to be trapped under the ZEP

mask. This solution is too dangerous for health and cannot be used for underetching.

Partial WET - HF and Vapor HF

An attempt to solve this problem has been tried. In particular the idea was to replace

the Vapor HF - Etching step with a different procedure: a partial underetching of

the suspended waveguides with wet etching using a ZEP mask and, then, a vapor

HF etching. This solution is illustrated in the last two steps of Figure 2.26. The

SEM image after the FIB milling of the suspended region after the wet HF etching

and before the vapor HF etching is shown in 2.27b
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Figure 2.26: Process flow with strip design

(a) (b)

Figure 2.27: SEM pictures: cross section of suspended waveguides after wet etching
(a) and zoom of the same picture with dimensions (b)
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2.4.4 Fabrication process - second design: rib waveguides

In this second approach rib waveguides are used for the unsuspended waveguides.

Whereas, the suspended waveguides have been designed to be strip. The idea is to

use vapor HF in the last step of fabrication without the ZEP mask. The process flow

is the following:

SiO2 Hard Mask

� SiO2 Hard Mask Deposition PECVD - 50 nm

Waveguides etching

� Waveguides Mask design

� ZEP spin coating

� E-beam lithography

� ZEP Development

� SiO2 full etch and intermediate silicon etch (170 nm)

� Ashing (to remove the ZEP)

Windows

� Mask design for windows of suspended regions

� ZEP spin coating

� E-beam lithography

� ZEP Development

� Silicon full etching - residual

� Ashing (to remove the ZEP)
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Grating couplers etching

� Grating Mask design

� ZEP spin coating

� E-beam lithography

� ZEP Development

� SiO2 full etching and silicon - partial etching (70 nm)

� Ashing (to remove the ZEP)

Vapor HF

� Vapor HF to underetch SiO2

Figure 2.28: Process flow with rib design and hard mask
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Figure 2.29 shows SEM pictures of the fabricated device before the last step

(Vapor HF). Figure 2.30 shows microscope images of the final fabricated device with

three different zooms on the suspended part.

(a) (b)

Figure 2.29: SEM pictures: cross section of suspended waveguides before the last
step (Vapor HF), before (a) and after (b) FIB

(a) (b) (c)

Figure 2.30: Microscope image of the fabricated device with three different zooms
on the suspended part.
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2.4.5 Experimental Results

The experimental results that will be shown in this section have been obtained on

the rib design. The measurement system has been set up with the use of:

� 1 Erbium Doped Fibre Amplifier (EDFA)

� 1 Optical Circulator

� 1 Optical Isolator

� 2 Optical tunable Lasers

� 2 Optical Polarizers

The input signal, after passing through a polarizer (manually adjusted to maxi-

mize the output transfer function) goes into an isolator and then is coupled to the

chip thanks to the input grating coupler. The pump signal passes through a polarized

and then through an Erbium Doped Fibre Amplifier (EDFA) to reach the power of

hundreds of milliwatts. Then, it goes from port 1 to port 2 of a circulator and then

is injected into port 3 of the chip. In order to avoid any influence of the pump signal

on the output, a lock-in amplifier has been connected between the signal input and

the photodetector.

In order to check if the optomechanical switch is working, we redirected the

output signal at port 3 of the device to the port 2 of the circulator and, then, the

port 3 of the circulator to a photodetector (PD).

In fact, considering the amplitudes A and B of the optical signals exiting the two

suspended waveguides, we will find (according to Eq. 2.63):

A =
⃓⃓
cos

(︁
πL∆ns

λ

)︁⃓⃓
,

B =
⃓⃓
sin

(︁
πL∆ns

λ

)︁⃓⃓
.

(2.64)

The power exiting from port 3 of the device can be described as the square of the

interference between two optical signals of amplitudes A and B, with a difference in

their optical path of ∆Lneff

Po =
1

2

[︃
A sin(ωt) +B sin

(︃
ωt+

2π∆Lneff

λ

)︃]︃2
. (2.65)
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Figure 2.31: Conceptual setup for experimental measurement.

Figure 2.32: Photo of the experimental setup for the measurement. In the picture
the two fibres are visible, together with a moveable stage where the integrated chip
is fixed.

So, we obtain an average measurable power of:

Po,avg =
1

2

[︃
1 + sin

(︃
2πL∆ns

λ

)︃
sin

(︃
2π∆Lneff

λ

)︃]︃
. (2.66)

In conclusion we expect the power read at port 3 of the circulator to vary with

∆ns, that depends on the optical force between the suspended arms, and so on the

pump input power.

Figure 2.32 shows a part of the measurement setup. Figure 2.33 shows the nor-

malized output power measured at the photodetector, for different signal wavelengths

and for a fixed pump wavelength of 1570.5 nm (that excites the attractive force ac-
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Figure 2.33: Normalized output power as a function of the wavelength of the input
signal, for different amount of optical power at the pump input. The power of the
mode exerting the optical force is estimated to be 20-30 times lower than than laser
injected power, due to the grating couplers and the MMIs losses.

cording to our experiments). It is possible to appreciate that a change in the signal

output spectrum for different values of the power of the pump input. This shows

the expected behaviour of the device. Actually, the results in Figure 2.33 can be in-

terpreted as follows: the attractive optical force generated by the pump input varies

the term ∆ns; consequently, the output power measured at port 3 of the circulator

is varied according to Eq. 2.66. Unfortunately, the device stopped working after

the pump power was increased up to 800 mW. We imagine that the attractive force

between the suspended waveguides could have stuck them. If verified, this behaviour

could be exploited for non-volatile memories.

2.4.6 Final considerations

In this section it has been experimentally demonstrated that optical forces can enable

the possibility of designing new devices, as optomechanical switches and other useful

components for optical networks and other applications. Optomechanical solutions

could pave the way to a new generation of all optical chips and provide completely

new functionalities.



Chapter 3

Quartz-Enhanced PhotoAcoustic

Spectroscopy

3.1 Introduction to Quartz-Enhanced PhotoAcous-

tic Spectroscopy

Photoacoustic spectroscopy (PAS) is an indirect absorption spectroscopy based on

the photoacoustic effect and typically using lasers as excitation sources [48]. When

light at a specific wavelength is absorbed by the gas sample, the excited molecules

will subsequently relax to the ground state either through emission of photons or

by means of non-radiative processes. These processes produce localized heating in

the gas, which in turn results in an increase of the local pressure. If the incident

light intensity is modulated, the generation of thermal energy in the sample will

also be periodic and a pressure wave, i.e. a sound wave, will be produced at the

same frequency of the light modulation. The PAS signal can be amplified by tuning

the modulation frequency to one of the acoustic resonances of the gas sample cell

[115]. The key advantage of this technique is that optical detector is not required,

and the resulting sound waves can be detected by a commercial hearing aid micro-

phone. The latest evolution of the PAS technique is Quartz Enhanced Photoacoustic

Spectroscopy (QEPAS), which employs quartz tuning forks (QTF) as core sensitive

element [49]. The QTF acts as a sharp resonator and piezoelectric transducer at the

same time. The use of QTFs has elevated the QEPAS technique to the best candi-

112
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date for in-situ and real-time trace gas detection, because of an unmatchable level

of compactness, extremely high sensitivity (down to ppt), immunity to environmen-

tal noise and numerous possibilities of development and upgrade of this technique

[116]. QTFs are employed in different applications fields and in most of the case are

used for timing and sensing aims. Their main features are: i) resonance frequencies

typically falling in the kHz-MHz range, depending on prongs dimensions and quartz

crystal properties; ii) high frequency stability of these resonances, with frequency

shifts approximately of 0.04 ppm/(°C)2 over a wide temperature range, from -40 °C

to 90 °C; iii) high quality factors, of few tens of thousands in air at the atmospheric

pressure; iv) QTFs have a low cost and small size, thus enabling mass-production

[117]. Until 2013, all QEPAS sensors reported in literature made use of QTFs de-

signed for timing applications to vibrate at a resonance frequency of 32,768 Hz. The

two prongs of these QTFs are typically 3 mm long, 0.35 mm wide and 0.34 mm thick

and are separated by a gap of 0.3 mm. They have a quality factor as high as 30,000

in air, increasing up to 100,000 in vacuum [49]. In QEPAS, to increase the effective

interaction length between the radiation-generated sound and the QTF, an acoustic

resonator is also usually installed. The acoustic system composed of the QTF and

the acoustic resonator is referred as QEPAS spectrophone. The resonators used so

far consist of two metallic tubes aligned perpendicular to the QTF plane (on beam-

QEPAS) [118], parallel to the QTF plane (off-beam QEPAS) [119] or one single tube

placed between the QTF prongs with a pair of small slits in correspondence of the

pressure maximum [120]. One of the main issues with QEPAS based sensor systems

is the required focusing of the laser excitation beam between the QTF prongs. The

laser beam must not hit the prongs since otherwise a large undesirable non-zero

background arises due to the laser contribution, hence limiting the sensor detection

sensitivity [53]. This problem triggered several solutions, for instance the use of the

Hollow Core Waveguides (HCW) to be coupled with the laser sources for guiding

the light and clean up the laser beam mode profile [54, 55, 56]. The short optical

pathlength, the capability to reach high detection sensitivity, high compactness and

robustness represent the main distinct advantages which made QEPAS the leading-

edge technique mature for out-of-laboratory operation, targeting in-situ applications

such as environmental monitoring and leak detection [57, 58]. Nevertheless, for those

applications in which sensors must work in challenging environments like downhole



CHAPTER 3. QUARTZ-ENHANCED PHOTOACOUSTIC SPECTROSCOPY114

analysis of natural gas or early fire detection empowered by the drone technology,

the further miniaturization step requires a different level of integration of the opto-

acoustic components [59, 60, 61]. The approach we propose in this work is meant

to exploit the enhancement of light provided by resonant cavities together with a

mechanical microresonator to make the performances of a semi-integrated QEPAS

sensor comparable with those obtained in free space. The integration of a laser

source on silicon chips is today possible thanks to bonding processes [121]. There-

fore, the possibility of integrating all the optical components of a QEPAS system on

a silicon chip, apart from the QTF, could represent a promising alternative. Due

to some limitations of integrated waveguides, such as a small confinement factor on

cladding [122], it is not easy to achieve performances comparable to the state-of-art

QEPAS. Thus, a feasibility study on semi-integrated versions of QEPAS setups will

be here presented and supported by numerical simulation in COMSOL Multiphysics.

In this study five different configurations, schematically depicted in Figure 3.1, will

be investigated and compared:

� FS-QEPAS (Free Space QEPAS): standard configuration without mechanical

resonators

� MR-QEPAS (Mechanical Resonator QEPAS): a free space configuration using

a mechanical microresonator to enhance the pressure signal (state-of-art)

� SI-QEPAS (Semi-Integrated QEPAS): semi-integrated version without mechan-

ical resonators

� MRSI-QEPAS: (Mechanical Resonator, Semi-Integrated QEPAS): semi inte-

grated version with a mechanical resonator

� OMRSI-QEPAS: (Optical and Mechanical Resonators, Semi-Integrated QEPAS):

semi-integrated version with a mechanical resonator and an optical resonator
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(a) FS-QEPAS (b) MR-QEPAS (c) SI-QEPAS

(d) MRSI-QEPAS (e) OMRSI-QEPAS

Figure 3.1: Different configurations of QEPAS setups analysed in this work. FS-
QEPAS (a) is a simple QEPAS configuration without any mechanical resonator. MR-
QEPAS (b) is a free space configuration with a mechanical resonator. SI-QEPAS (c)
is a semi-integrated version of QEPAS without mechanical resonators. MRSI-QEPAS
(d) is a semi-integrated version of QEPAS with a mechanical resonator. OMRSI-
QEPAS (e) is a semi integrated version of QEPAS with a mechanical resonator and
an optical resonator (fed by an optical bus). [62]
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3.2 A semi-integrated QEPAS sensor

3.2.1 Macroscopic modelling of QEPAS

In photoacoustic spectroscopy, as well as in QEPAS, the signal S obtained from the

acoustic-electrical transducer, i.e. the microphone or the tuning fork, is proportional

to the absorption coefficient α of the gas sample, the radiation-to-sound conversion

efficiency ϵ, the QTF quality factor and the optical power P available from the laser

source [116]:

S ∝ αQPϵ. (3.1)

In order to design a semi-integrated version of the QEPAS sensor with perfor-

mances comparable with the standard QEPAS systems, we initially try to model the

soundwave generated by photoacoustic effect starting from the fraction of optical

power interacting with the target gas. The light absorbed by the gas is converted

into a heat source (H) proportional to the absorbed optical intensity I [123]:

H(r, t) = αI(r, t), (3.2)

where α is the power absorption coefficient per unit length. The generated heat H

and the consequent energy relaxation gives rise to acoustic waves. The Helmholtz

equation in the harmonic regime can be written as follows [48]:(︃
∇2 +

ω2

v2

)︃
p(r, ω) = −γ − 1

v2
jωH(r, ω), (3.3)

where p is the local pressure, v is the local speed of sound, γ is the ratio between

the specific heat at constant volume (CV ) and the specific heat at constant pressure

(CP ) and ω is the angular frequency of the laser excitation.

The solutions of the wave equations are determined by the boundary conditions.

In particular, the solution p can be expressed as an expansion over the modes pj with

amplitudes Aj [48]:

p(r, ω) =
∑︂

pj(r)Aj(ω). (3.4)
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It can be found that under rigid-walls boundary conditions (good approximation

for the boundary condition of microresonators) [48]:

Aj(ω) =
−jω
ωj

2 [(γ − 1)/VC ]
∫︁
p∗jHdV

1− ω2

ω2
j
− j ω

ωjQj

, (3.5)

where ωj is the resonance angular frequency of the j-th mechanical resonant mode,

Qj is the quality factor of the j-th mode, Vc is the volume defined by the boundary

conditions.

By approximating H as a two-dimensional Dirac-delta input for the Helmholtz

equation (possible if the linear dimensions of the cross-section of the beam are much

smaller than the acoustic wavelength) and by considering z the direction of propa-

gation of the light beam:

H(r, t) = αPgasδ(x, y), (3.6)

with Pgas the fraction of the optical power interacting with the target gas. Thus, Eq.

3.6 becomes:

Aj(ω) =
−jω
ωj

2 [(γ − 1)/SC ]p
∗
j(0, 0, z)αPgas

1− ω2

ω2
j
− j ω

ωjQj

, (3.7)

with SC the area of the cross section delimited by the boundary conditions. Using

Eq. 3.4:

p =
∑︂

pjAj = αPgas

∑︂ −jω
ωj

2 [(γ − 1)/SC ]p
∗
j(0, 0, z)

1− ω2

ω2
j
− j ω

ωjQj

pj(r). (3.8)

So, we obtained that the amplitude of the pressure, and thus the QTF signal is

proportional to the optical power interacting with the target gas (Pgas).

In free space, all the power of the laser interacts with air, whereas in integrated

optical devices, the light is guided into a medium, thus, only a small fraction of the

power propagates outside the guide as an evanescent wave and interacts with the gas.

The air confinement factor (Γgas) is defined as the fraction of the power propagating

in air divided by the total power propagating through the waveguide (PP ):
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Γgas =

∫︁
gas

SzdS∫︁
total

SzdS
=
Pgas

PP

, (3.9)

with Sz the Poynting vector along the direction of propagation z.

It means that with the same amount of power consumption and under the same

boundary conditions, the pressure amplitude p of the sound wave, photoacoustically

generated by the evanescent wave in waveguide-based structure Γgas times lower in

a waveguide-based structure than in free space.

(a) (b)

Figure 3.2: Light mode in waveguide-based structure for a waveguide width W =
600nm and height H = 500nm (a) and Confinement Factor Γgas for different values
of the widths of the waveguide (with H = 500nm) for TE and TM modes (b) [62].

Figure 3.2b shows the Γgas as a function of the widthW of a silicon waveguide (for

a standard waveguide height of 500 nm) or a propagating radiation with a wavelength

λ = 3345 nm, useful for detecting methane and ethane in the infrared region. As it

can be seen, the maximum achievable confinement factor is around 18% for this kind

of strip waveguides (Fig. 3.2b).

We considered that the dominant source of loss for this waveguide is due to the

bulk loss in SiO2 (10 dB/cm at a wavelength of 3.345 µm [124]). Consequently,

the optimal waveguide design for this application is a trade-off between the fraction

of evanescent power in air (Γgas) and the total loss of the waveguide. We chose a

width of 675 nm, for which the fraction of power in SiO2 is 27%, meaning a total

propagation loss of 2.7 dB/cm (propagation loss in silicon is negligible). Figure 3.2
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shows the designed waveguide (500 nm x 675 nm) and the chosen mode (TE) that

will be used for all the integrated configurations in the next sections.

3.2.2 Perfomances comparison without microresonators: FS-

QEPAS vs SI-QEPAS

The key idea of this study is to demonstrate that a semi-integrated configuration of

a QEPAS setup can potentially replace the standard free-space configuration mak-

ing the space occupation much lower and eliminating any optical alignment issue.

As a first step, we simulated the photoacoustic generation when a free-space laser

beam propagates between the prongs of a bare QTF (FS-QEPAS, Fig. 3.1.a) which

represents a non-interactive element in the following analysis.

Then, the FS-QEPAS model has been compared with a similar structure exploit-

ing an integrated waveguide on a silicon chip (SI-QEPAS, Fig. 3.1.c)

The fully mechanical simulations have been performed by implementing the

Helmholtz equation (Eq. 3.3) on the “Pressure Acoustic, Frequency Domain” mod-

ule of COMSOL Multiphysics, with the heat source H obtained by combining eq. 3.2,

using Eq. 3.9. The wavelength selected is resonant with an optical transition related

to the C-H bond stretching of methane at wavenumber ∼ 2989 cm−1 (wavelength ∼
3345 nm) and having an absorption coefficient of α ∼ 12cm−1 at a pressure of 1 atm

and a temperature of 296 K [125].

The QTF selected as a reference to model the non-interacting probe in our design

is a tuning fork having a resonance frequency of 15.8 kHz, a prong thickness of 250

µm, a prong spacing of 800 µm and thus slightly different from the one investigated in

ref [126], which has an enlarged prong spacing of 1.5 mm. The other dimensions of the

QTF have no influence on the simulations, because the prong internal surfaces were

treated as hard wall boundary conditions. An implementation of Helmholtz equation

was used in COMSOL Multiphysics to simulate the pressure signal generated from

a heat source located between the free ends of the QTF. In fact, the QTF is aligned

so that the light beam propagates perpendicular to the QTF plane and exactly

centred between the top of the prongs, where the vibrational antinode is theoretically

expected [49]. In the FS-QEPAS case, the light beam has been simulated with an

equivalent 100 µm radius uniform power beam, whereas in the SI-QEPAS case, the
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light propagates into a waveguide on the surface of an integrated chip (TE mode of a

675 nm x 500 nm silicon strip waveguide in Figure 3.2a) and has been simulated with

an equivalent 0.5 µm-radius uniform beam with equivalent power equal to PPΓgas.

The length of the waveguide has been varied between 400 µm and 1 mm. For these

lengths, the propagation losses due to SiO2 have not been accounted into simulation,

because negligible. In both cases a total input power PP = 1mW was considered.

Figure 3.3a shows the pressure signal in static conditions (for non-vibrating prongs)

for a waveguide length L of 1 mm. It is easy to appreciate that for the SI-QEPAS

configuration, the pressure signal in the proximity of the prongs is almost one order

of magnitude lower than in FS-QEPAS case.

(a) (b)

Figure 3.3: Acoustic pressure field (Pa), with optical power of 1mW without res-
onators in FS-QEPAS configuration (a) and SI-QEPAS configuration (b) [62].

3.2.3 Perfomances comparison with microresonators: MR-

QEPAS vs MRSI-QEPAS

The employment of acoustic resonator tubes has been widely exploited in literature

and in sensor prototypes to increase the SNR of the piezoelectric signal. In the

on-beam configuration, a pair of tubes are aligned perpendicular to the QTF plane,

with the tube axes at the same height of the fundamental vibration mode antinode

and at a distance from the QTF typically of several tens of micron [118]. Thus, when

the modulated laser radiation propagates through the dual tube system, a standing

soundwave is photoacoustically generated, with its pressure peak occurring at the
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vibrational antinode between the prongs. The schematic of the dual tube on-beam

configuration, here referred as MR-QEPAS, is shown in Fig. 3.1.b. acting as a

micromechanical resonator enhancing the pressure of the photoacoustic soundwave.

This is the most used QEPAS configuration [118]. The MR-QEPAS simulated for this

investigation is composed of a cylindrical microresonator open at its end faces. The

distance between the internal edges of the tubes was set to 310 µm to accommodate

a QTF for sensing the pressure variations. Each tube is 10.3 mm long, with an inner

diameter of 1.27 mm. These tube dimensions demonstrated to provide the highest

SNR when acoustically coupled with a 15 kHz custom QTF [126]. The MR-QEPAS

was then compared to a SI-QEPAS configuration in which a closed micromechanical

resonator was added in order to obtain a further enhancement of the pressure in the

proximity of the QTF prongs. The micromechanical resonator is made up of a closed

semicylinder with a central gap where the QTF is located. If the laser radiation is

delivered through the micro mechanical resonator by means of a feeding bus, the

light can be coupled again to the waveguide so that the Γgas portion of the input

power can interact with the target gas over a length L (Figure 3.1d, MRSI-QEPAS).

The size of the gap at the center of the microresonator is the same as in the MR-

QEPAS). The inner diameter of the semicylindrical resonator is 1.27 mm and the

total microresonator length is 2 mm. The pressure signal per input power obtained

at the base of the QTF prongs was simulated and compared in the MR-QEPAS

and in the semi-integrated version MRSI-QEPAS. The light beams were simulated

as indicated in the previous paragraph. The colormaps in Figures 3.4a and 3.4b

show the pressure signal per input power on the central cross-section for both the

configurations (with L = 1mm in the MRSI-QEPAS case).

In the case of MRSI-QEPAS, since the system is closed, all the optical power

absorbed should be converted into a pressure signal. Through an energetic approach

it is possible to find the dependence of the pressure signal on the length of the ab-

sorption path in the MRSI-QEPAS (approximation of closed system). In particular,

when considering an optical mode propagating in an integrated waveguide, the frac-

tion (Pabs,int) of the total power propagating in the waveguide (PP ) that has been

absorbed by the target gas over a length L (in the hypothesis of small absorption) is

[127]:
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(a) (b)

Figure 3.4: Acoustic pressure field (Pa), with optical power of 1mW without res-
onators in the MR-QEPAS configuration (a) and MRSI-QEPAS configuration (b)
[62].

Pabs,int = PPΓgasαL. (3.10)

Consequently, in MRSI-QEPAS we expect p to be proportional to the length of

absorption L. The simulation results confirm that the pressure amplitude per input

power varies linearly with the absorption length.

As it is possible to see in Figure 3.5, the pressure signal obtained in MRSI-QEPAS

is one order of magnitude lower than in the MR-QEPAS. However, the guidance of the

laser light can be further and more effectively exploited by implementing an optical

resonant cavity to be directly coupled with the waveguide modeled and simulated in

SI-QEPAS and MRSI-QEPAS configurations.

3.2.4 Optical resonant enhancement: OMRSI-QEPAS

The results of the previous paragraphs showed that the integrated solutions (SI-

QEPAS and MRSI-QEPAS) produce a pressure signal one order of magnitude lower

than the corresponding free space configurations (QEPAS and MR-QEPAS). In order

to achieve better performances in terms of signal amplitude with a semi-integrated

setup, an optical-resonant-cavity architecture in the MRSI-QEPAS is here proposed,

with the aim of increasing the optical power interacting with the target gas starting

from the same input power simulated in the previous configurations. The modifica-
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Figure 3.5: Pressure signal per input power (S) as a function of the length of the
waveguide in the SI-QEPAS and MRSI-QEPAS compared to the pressure signal per
input power in QEPAS and MR-QEPAS [62].

tion to the MRSI-QEPAS setup is shown in figure 3.1.e. It is possible to see that an

optical resonator is fed by an optical bus. The racetrack resonator is designed to have

a total length L and a gap between the two long-side waveguide of 80 µm (bend ra-

dius of 40 µm) It is easy to demonstrate that the enhancement factor EF, calculated

as the ratio between the power circulating into a section of the cavity (Pcav) (modu-

lated at the resonance frequency of the tuning fork) and the input power within the

feeding bus (PP ) is [128]:

EF =
Pcav

PP

=
e−αwgLκ2

(1− e−
αwg
2

L
√
1− κ2)2

≈ 4κ2

(αwgL+ κ2)2
, (3.11)

with κ2 the nondimensional power coupling efficiency between a feeding waveguide

and the resonator and with αwg the propagation loss of the waveguide (in the absence

of target gas).

In order to estimate the enhancement factor, we considered the propagation loss

already estimated (2.7 dB/cm) and bend losses. The bend losses were estimated by

evaluating the superposition of the optical mode in the straight waveguide and in

the bent waveguide (equal to 99.6%, with a curvature radius of 40 µm).
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Parameter Symbol Value
Cavity length L 1000.63 µm

Order of resonance m 488
Resonance wavelength λ0 3.34555 µm

Q-factor Q 19749
Finesse F 40.5

Free spectral range FSR 6.86 nm

Table 3.1: Parameters of the optical resonator.

A bend loss of around 0.013 dB per roundtrip (0.013dB/L, with L the length of

the resonator) was obtained. So, αwg = 2.7 dB/cm + 0.013dB/L. The parameters

of the final designed resonator are summarized in Table 3.1.

Figure 3.6 shows the enhancement factor as a function of the coupling efficiency

and the length of the resonator. By properly designing the distance dgap between

the feeding bus and the resonator, the power coupling efficiency κ2 can be calculated

end engineered through the following expression (valid for straight couplers) [114]:

κ2 = sin2

(︃
πLcp∆n(dgap)

λ

)︃
. (3.12)

Once the κ has been designed for the necessary pressure amplitude, the distance

dgap between the feeding bus and the resonator can be designed through the following

expression (valid for straight couplers) [114]:

κ2 = sin2

(︃
πLcp∆n(dgap)

λ

)︃
. (3.13)

Here ∆n(dgap) is the difference between the effective indices of the even and the

odd modes in the coupling region, where the evanescent coupling between feeding

bus and resonator takes place. Lcp is the length of the coupling region and λ is the

wavelength of input light. Figure 3.7a shows the pressure amplitude at a central cross

section obtained for an optical resonator with a length of L = 1mm in an OMRSI-

QEPAS configuration. Figure 3.7b shows the performance of the OMRSI-QEPAS as

a function of L at different values of κ, compared with the pressure value obtained

with MR-QEPAS. As it can be easily argued from the figure, in an OMRSI-QEPAS
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(a) (b)

Figure 3.6: Enhancement factor as a function of κ for different values of L (a) and
enhancement factor as a function of L for different values of κ, with estimated loss
αwg = 0.69dB/cm (b) [62].

configuration comparable or higher-pressure values for the sound wavefront can be

achieved with respect to a standard MR-QEPAS approach. Table 3.2 summarizes the

peak pressure signals obtained for each simulated configuration. The obtained results

demonstrate that an integrated configuration of QEPAS (in particular the OMRSI-

QEPAS) can exceed the performances of the state-of-art QEPAS configurations. The

use of optical enhancement can overcome the problem of a low air confinement factor

thanks to the use of optical resonators. Figure 3.8 shows the final configuration

of the OMRSI-QEPAS setup. Thanks to the possibility of bonding an external

laser to a SOI chip, it is possible to feed the optical resonator through a feeding

optical bus entering the mechanical resonator. The laser source should be placed

sufficiently distant from the mechanical resonator and the QTF to guarantee an

effective heat dissipation/cooling and avoid that temperature gradients in the gas

affect the photoacoustic generation and response. As for the fabrication process, the

initial step would be to etch the waveguides and the resonator on a standard Si/SiO2

chip (500 nm of silicon layer). Then, the external laser would be bonded upon the

SOI chip, which can be mounted inside an HHL-like package. As for the mechanical

resonator, the simplest approach would be to mechanically bond it to the SOI chip.

Finally, the QTF would be connected from the base to the upper enclosure of the
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Configuration Signal amplitude
SI-QEPAS (1-mm source) 0.047 Pa

FS-QEPAS 0.361 Pa
MRSI-QEPAS (1-mm source) 0.443 Pa

MR-QEPAS 5.550 Pa
OMRSI-QEPAS (1-mm source, κ = 0.3) 6.396 Pa

Table 3.2: Comparison of signal amplitude for different configurations.

packaging and then coupled with the ring resonator upside down.

(a) (b)

Figure 3.7: Pressure signal (Pa) per input power of 1 mW over a central cross section
in OMRSI-QEPAS (a) and Pressure signal per input power (S) as a function of the
length of the waveguide in OMRSI-QEPAS, compared with MR-QEPAS (b) [62].
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Figure 3.8: Final configuration of the OMRSI-QEPAS setup [62].

3.2.5 Final considerations

In this work it has been demonstrated that using an integrated chip for QEPAS sens-

ing could represent a valid alternative to standard QEPAS that will make the sensor

smaller and more stable, avoiding the necessity of optical alignment and allowing

comparable performances to be achieved. Despite a limited confinement factor of

integrated silicon waveguides for a wavelength of 3.345 µm, the use of a mechanical

microresonator and optical resonant enhancement allows a significant pressure signal

to be achieved with the same power consumption of standard QEPAS setups. The

proposed device could represent a promising solution for miniaturizing the dimen-

sions of a QEPAS sensor, since all the optical parts could be integrated on a chip,

except for the quartz tuning fork, still necessary to guarantee a high mechanical

quality factor.



Conclusion

In this thesis, the concept of Optomechanics has been investigated in its broad mean-

ing. The interaction between the light and mechanics enables several possibilities

both for sensing and for actuation. Optical gyroscopes are one of the most fa-

mous examples where mechanical motion affects light behaviour. According to the

relativistic effect called Sagnac effect, the resonance frequencies of two counterprop-

agating modes in a ring resonator are separated by a quantity proportional to the

angular velocity of the frame. However, the possibility of miniaturizing the opti-

cal gyroscope is limited by the fact that the resonance splitting is proportional to

the radius of the ring resonator. In the first chapter we introduced the concept of

parity-time symmetry as a solution for the integration of angular velocity sensors. By

setting up two coupled optical resonators designed to be at the so called “exceptional

point”, it could be demonstrated that the eigenfrequency splitting is proportional to

the angular velocity of the device, with a sensitivity several orders of magnitude

higher than the classical Sagnac gyroscope. In this thesis it was demonstrated that

one problem of the parity-time symmetric gyroscope is the instability of the optical

eigenmodes when the system is in rotation. That’s why the idea of the anti-parity-

pime-symmetric gyroscope was proposed, using a U-shaped auxiliary waveguide to

indirectly couple two optical resonators. The proposed solution has been shown to

be an interesting alternative for angular velocity sensing, thanks to the easy readout

scheme and the absence of modes instability. A simple broadband source, together

with a photodetector could be used to read the output of the sensor. Finally, a new

configuration for an anti-parity-time-symmetric gyroscope has been proposed. It is

different from the U-shaped configuration and uses only an auxiliary straight waveg-

uide to indirectly couple two optical resonators. This architecture has been shown

to be much more robust, insensitive to some fabrication errors, with respect to the

128
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U-shaped one.

In the second chapter optomechanical forces have been investigated. In particular

a generalized model able to calculate the mechanical displacement of only one degree

of freedom of the optomechanical setup. In particular the model, initially proposed

by Rakich, has been extended to systems where gain or loss are considered. Then, the

model has been used to evaluate the effect of optical forces in parity-time symmetric

system with suspended waveguides in the coupling region. It has been demonstrated

that it is possible to enhance the optical forces thanks to condition of parity-time

symmetry. Secondly, an analytical modelling of the dynamics of optomechanically

coupled suspended optical waveguides has been proposed, including a modelling of

the damping, with the squeezing effect. Such an analytical model, together with the

numerical proposed algorithm can be used to find the evolution of the system in the

time domain even for complex optomechanical structures, such as optomechanical

switches. Also, an experimental work on an optomechanical switch has been shown.

In particular all the fabrication steps to fabricate the integrated optomechanical

device has been explained. The most critical part during the fabrication has been

the underetching of suspended waveguides. In fact, using a wet HF etching process

caused the suspended waveguides to get stuck. Using a ZEP mask and a vapor HF

etching, unexpected HF bubbles appeared on the surface. So, a hard mask has been

used to guarantee the successful underetching of the device. Finally the experimental

measurement on the chip showed the expected behaviour of the device.

In the last chapter the state-of-art QEPAS sensor has been investigated and

a completely new semi-integrated sensor has been proposed. One problem of the

state-of-art QEPAS sensors is the necessity of alignment for optical components.

Moreover, the dimension of all the devices involved in the setup makes it difficult

to realize portable and compact sensors. The idea proposed in this thesis is to

integrate all the optical components needed to guide the light in the proximity of the

Quartz Tuning Fork to drastically reduce the dimension of the overall setup and to

avoid the problem of optical alignement. The possibility of using integrated optical

waveguides to guide light makes it possible to use optical resonators to enhance the

photoacoustic signal that is read through a Quartz Tuning Fork. The proposed setup

is meant to use an integrated laser bonded to a silicon chip, where all the waveguides

are realized. In this case a very small mechanical resonator can be bonded over
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the silicon chip, in order to enhance the amplitude of the pressure signal. In such a

way, performance comparable with the state-of-art QEPAS sensor can been achieved.

Such a result could pave the way to a new generation of compact QEPAS sensor,

that could overcome the problem of the size of the setups and of the alignment of

optical components.



Appendix A

Appendix

In this appendix another important result of my PhD course is presented, which

doesn’t belong to the field of Optomechanics. This study is about a proposal for

an electric vehicle with two motors combined via planetary gear train. The idea is

to maximize the energy efficiency of an electric vehicle by combining two electric

motors. The results of this study have been published in [129].

A.1 Introduction

Electric motors represent one of the prominent actuation technologies, offering very

high efficiency at their nominal working point. However, their efficiency varies

strongly with speed and torque [130, 131]. This is an issue as in robotics as in

electric urban vehicles, where motors are required to work at a wide range of work-

ing points, thus implying low average efficiency. [132] The electrical vehicle is an

interesting and efficient solution for transportation, especially for environmental rea-

sons [133, 134, 135]. However, since motor efficiency rapidly changes with speed and

torque [136], the average efficiency in frequently varying operating conditions can be

very low [137, 138, 139]. In electric vehicles nominal power of a motor is calculated

in the condition of maximum requirement of user power, necessary when the vehicle

is running at its highest speed. However, in the majority of its use, the motor runs in

very low efficiency condition, since it is required to work at values of speed and torque

rapidly changing in time. In particular, in urban condition the speed of the vehicle (in

131
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case of single motor one-speed transmission) is very low, thus leading to very low en-

ergy efficiency and it becomes necessary to use efficiency maps [131, 140] to evaluate

the average efficiency during time in standard urban cycles. Drive electronics for elec-

tric motor have been improving with powerful processors, much smaller and cheaper

than in the past. Such a condition allows designers to implement more complex con-

trol algorithms to achieve a better energy efficiency of electric vehicles. In literature

several references dealt with the optimization of the efficiency of electrical motors:

in [141, 142, 143, 144] the cycle is reduced to some points where the consumption is

the highest, to evaluate and then maximize the energy consumption of the machine

over the cycle. In [145] and [146], the torque-speed plane is divided into several

uniform areas, replaced by their barycentre. The performance of the motor is evalu-

ated weighting the consumptions of these points with the ratio between the number

of points in each area and the total number of points on the cycle. These methods

usually combine finite element analysis and analytical model. In [147] the technology

of a series of gearless electrical continuously variable transmission propulsion system

is developed (E-CVT). In that work, a differential evolution algorithm coupled with

finite element method is adopted to optimize torque, energy efficiency and torque

ripples of the E-CVT system. In [148] the design of an efficiency-optimized induction

motor is considered, where genetic algorithm is chosen as the tool for optimization.

In [149] an evolutionary optimization procedure for the design of permanent-magnet

motors for electric vehicle applications is proposed, considering a specific drive cycle,

with multiple operating points. The optimization technique is performed through an

adaptive differential evolution algorithm using a dynamic variation of the mutation

factor, combined with finite-element and circuit models. Several alternatives have

also been proposed in literature to use an electric motor in the point of its best ef-

ficiency [150], such as the combination of variable transmissions with a series spring

[151]. In [140] a system with an Infinitely Variable Transmission has been proposed

to maximize the efficiency of an electric motor. In [152] a planetary gear has been

studied to maximize the energy stored by a wind system. In such a configuration, the

analytical optimization has been made possible by the analytical relation between

the torque and the speed of the wind turbines. The use of a planetary gear also

allows the combination of the power of two motors to avoid transmission nonlinear-

ities [153]. In [154] a high-level algorithm is developed to adaptively split the load
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between two sources for an electric vehicle adopting a hybrid energy storage system

that can effectively reduce power stress applied to batteries. Currently, the motor

of electric vehicles is directly connected to the wheels with a gear-train, with fixed

ratio. Consequently, this architecture makes the motor speed directly dependent on

the speed of the vehicle. So, for example when the vehicle is traveling at low speed,

the motor often runs at low efficiency-working conditions. In this work, we propose

the use of two electrical motor drives combined through a planetary gear train. The

aim of the work is to increase the energy efficiency of the vehicle, by optimizing the

combined speeds of two motors. Such a solution is possible thanks to the degree of

freedom provided by the planetary differential. With respect to the work in [136]

we propose the application of such a system to electric vehicles, to demonstrate that

using that approach for an electric vehicle could be more efficient from an energetic

point of view than a single motor with one speed transmission. In particular, we will

optimize the speed of each motor in order to achieve the maximum efficiency of the

system. The obtained driving curves of each motor will be used as the driver for the

control unit of the electrical vehicle. Moreover, we propose the optimal choices for

the power ratings of the motors and the gear ratio ρ to maximize the energy efficiency

during a standard ECE-15 urban cycle. The main aim of the work is: a) Evaluating

the improvement in the energy efficiency during an urban cycle, using the proposed

architecture for an electric vehicle; b) Determine the nominal specifications of the

planetary gear and of the electric motors maximizing the efficiency; c) Evaluating

the speed and the torques of each motor in order to maximize the efficiency of the

vehicle in every working condition of the vehicle

A.2 Model of a two motors-electric vehicle with a

planetary gear

The electric vehicle that is here considered is provided of two induction motors,

supplied by an inverter, and a planetary gear. The idea we propose is that the global

efficiency of the system can be optimized by exploiting the degree of freedom provided

by the planetary gear. Indeed, the planetary gear has a degree of freedom we can

exploit in the choice of the speeds of the combined motors, for each value of the speed
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required by the vehicle. We modeled the efficiency of each electrical motor through a

standard efficiency map. It is known that the efficiency of the motor is high for high

speed and low torque. However, the efficiency drops for high torques and low speeds.

This is a typical condition for induction motors. A motor drive directly connected

to the wheels with a gear train would work in a low efficiency condition when the

vehicle is running at low speed, especially during a standard urban cycle. Since the

electrical vehicle is mainly designed for urban cycles, it often runs in a low-efficiency

working condition. A further improvement of the proposed architecture is that it

requires two motor drives with a half nominal power with respect to a single motor

used in the standard electrical motor. As a result, when low power is required by

the vehicle, only one motor will work, leading to a great improvement, due to the

much higher proximity to its nominal power.

A.2.1 Velocities Analysis

A usual planetary gearbox consists of a sun gear, a ring gear, planetary gears and a

carrier. Usually the ring is grounded, whereas the sun is used as input and the carrier

as the output. In the following model we will consider a dual-motor actuation, where

also the ring is used as input in order to achieve a maximization of the efficiency of

the planetary gear system. We will consider the system in Figure A.1, where the

sun, the ring and the carrier rotate with velocities ωS, ωR, ω0, respectively.

In order to design our system, we need the relations between the velocities of the

sun (ωS), the ring (ωR) and the carrier (ωo). In particular, if we consider an observer

on the carrier, he will see the sun rotating with a velocity ωS −ωo and the ring with

a velocity ωR − ωo. It is possible to evaluate the Willis ratio as:

τw =
ωR − ω0

ωS − ω0

=

(︃
− rS
rP

)︃(︃
rP
rR

)︃
= − rS

rR
τw =

ωR − ω0

ωS − ω0

= −1

ρ
, (A.1)

with ρ= rR/rS, it is possible to obtain the relation between the velocities of the

carrier, the ring and the sun:

ωo =
1

1 + ρ
ωS +

ρ

1 + ρ
ωR. (A.2)

From this relation it is evident that, once fixed ρ on the basis of geometrical
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Figure A.1: Schematic of a classical planetary gear [129].

constraints, the speed of carrier ωo results to be a weighted sum of the speeds of the

sun and the ring. Equation A.2 represents the only kinematic equation describing

the system, while ωS and ωR are the two variables (for each operative condition).

Once defined the working point, there is one remaining degree of freedom in the

choice of the sun and the ring speeds. Once defined the speed ratio i=ωR/ωS, it is

possible to obtain the expressions of ωS and ωS:

ωS =
1 + ρ

1 + ρi
ωo, (A.3)

ωR =
(1 + ρ) i

1 + ρi
ωo. (A.4)

The ratio i represents the variable we used for the parametric optimization pro-

cess.
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A.3 Torques analysis

Let’s consider the reference system in Figure A.1. The rotation equilibrium equation

is:

TR + TS + To = 0, (A.5)

where TS and TR are the torques on the sun and on the ring, respectively. The power

balance is represented by (Figure A.2):

ηpd (TRωR + TSωS) + Toωo = 0, (A.6)

with ηpg the efficiency of the planetary gear. Eq. A.6 is correct for steady state

conditions, but it is also a good approximation in dynamic conditions. In fact, it is

possible to show that the inertia of the planetary gear is negligible with respect to

the one of the vehicle.

A.3.1 Efficiency definition

In order to determine the efficiency of the planetary gear system, we used the model

shown in Figure A.2.

Figure A.2: Schematic of the system to be optimized: power flow with both motors
supplying power [129].

In particular, by considering the same orientation for the speed and the torque,

both the motors of the ring and the sun are supplying power, so the power at the
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carrier (Po) is:

Po = −ηpg (ηRPelR + ηSPelS) = −ηtotPel = −ηtot (PelR + PelS) , (A.7)

where PelR/S is the electric power supplied by the ring/sun motor and ηR/S is the

efficiency of the ring/sun motor, defined as:

ηR/S = −
PmeR/S

PelR/S

, (A.8)

with PmeR/S the mechanical power supplied by the first/second motor and PelR/S the

electrical power supplied by the first/second motor. We can now express a general

expression for the efficiency using equations A.7 and A.8.

ηtot = ηpg
PmeR + PmeS

PmeR

ηR
+ PmeS

ηS

. (A.9)

In regenerative working condition, the regenerative efficiency would be written

as:

ηtot,reg = ηpg,reg
PmeRηR,reg + PmeSηS,reg

PmeR + PmeS

, (A.10)

with ηreg,R and ηreg,S the regenerative efficiencies of the ring and the sun motor,

respectively.

A.4 Optimization and results

A.4.1 Optimization setup

Here we develop the idea of improving the efficiency performance of an electric vehicle

that is meant to run in urban conditions. We want to show that, by using a planetary

gear, we can achieve better performances in terms of efficiency with respect to a single

motor drive directly connected to the wheels through a gear train. In order to do

that, we want to optimize the speeds of the two motors connected to a planetary gear

with the aim of maximizing the efficiency over each operative point (first step of the

optimization). On a second step, we want to optimize the geometrical constraints on

the planetary gear and the power constraints on the two motors connected to it with
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the aim of maximizing the average efficiency over an ECE-15 urban cycle (second

step) like the one shown in Figure A.3a. The urban cycle contains information about

the speed (proportional to the angular speed of the wheels, ωo) and the power (Po)

required by the user.

(a) (b)

Figure A.3: Speeds (a) and power (b) of a vehicle during a ECE-15 urban cycle [129].

In order to perform our optimization algorithm, we calculated the torque (To)

to assure that the vehicle is running on the horizontal plane, by using the following

equation [140] (Figure A.3b):

Po = Toωo =
1

2
dairCxSω

3
0R

3 +Mω̇oωoR
2 + fvMgωoR, (A.11)

with all the parameters defined in Table A.1. It is possible to demonstrate that the

inertia of the motor could be neglected. For the optimization method, in this work

the value of ηpg is evaluated as in [155, 156]. The proposed planetary gear has been

optimized with the aim of maximizing the overall efficiency. In order to perform the

optimization algorithm, we referred to the efficiency map shown in Figure A.4 for

each of the electrical induction motors.

In particular, starting from data in Figure A.4, after a second order polynomial

regression, we obtained the efficiency map shown in the colormap in Figure A.5. We
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Parameter Definition Value
dair Air density 1.225 kg/m3
Cx Aerodynamic drag coefficient 0.32
S Frontal area 1.2 m2

M Vehicle mass 1500 kg
fv Rolling friction coefficient 0.01
R Radius of the wheel 0.35 m

To,max
Maximum torque required

by the user during urban cycle
585.2 Nm

ωo,max
Maximum angular velocity required

by the user during urban cycle
39.68 rad/s

Po,max
Maximum power required

by the user during urban cycle
14.45 kW

Table A.1: Parameters of the vehicle and of the user requirements.

Figure A.4: Efficiency map of an electrical motor [140].
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Coefficient Value
a 1017
b 770
p00 94.01
p10 0.02059
p01 -0.08092
p20 -0.00002967
p11 0.0001241
p02 0.00001428

Table A.2: Coefficients of the efficiency map in Figure A.5.

can model such efficiency map using the following expression:

ηR/S (ωo, To) = η0 (ωo, To) =

⎡⎣ p00 + p10
(︂

ω0

ωmax
· a

)︂
+ p01

(︂
To

Tomax
· b
)︂
+

+p20
(︂

ω0

ωmax
· a

)︂2

+ p11
(︂

ω0

ωmax
· a

)︂(︂
To

Tomax
· b
)︂

+ p02
(︂

To

Tomax
· b
)︂2

⎤⎦ /100,
(A.12)

where the values of a, b and pij are defined in Table A.2.

The same efficiency map has been considered for the motors during power re-

generation of power. We guess that the choice of the efficiency map will not affect

the generality of the work, because the algorithm could be easily reused for different

efficiency maps.

Without loss of generality, we will consider a 1500 kg electrical vehicle, modeled

with the parameters shown in Table A.1. In order to make a fair comparison, we

considered: case (A) of a single motor directly connected (after a gear train) to the

wheels that can supply exactly the maximum torque and maximum power (and also

satisfies the requirement on the maximum speed) required by the vehicle; case (B)

of two motors connected to a planetary gear, able to supply the same total power of

the single motor of the case A.

In Figure A.6a and A.6b, the working points (To, ωo) of a user during the urban

cycle proposed in Figure A.3a and A.3b are shown over the efficiency map.
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Figure A.5: Efficiency map of a standard electric motor [129].

(a) (b)

Figure A.6: Working points during an urban cycle over the efficiency map during
supplying (a) and regeneration (b) of power [129].
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A.5 Optimization algorithm and results

The optimization process has been performed in two steps: 1) Optimizing the ratio

i to maximize the efficiency ηtot in every operating point (ωo,To) for given values of

ρ and ωmaxR. 2) Optimizing ρ and ωmaxR to maximize the average efficiency over an

urban cycle ( ηcyc ).

A.5.1 First step

The first step of the optimization process has been performed by choosing, for each

operative point (torque and speed of the user), the combination of speeds (in par-

ticular the ratio i between them) of the two motors in the planetary gear, which

guarantees the best efficiency, for a fixed value of the planetary gear ratio ρ and for

a fixed value of the maximum speed of the ring motor. The optimization function

can be represented as:

ηtot,max (ωo, To) = max {ηtot (ωo, To, i)} , (A.13)

under the constraint in Equation A.2. For the regenerative part, it becomes:

ηtot,reg,max (ωo, To) = max {ηtot,reg (ωo, To, i)} , (A.14)

under the same constraint in Equation A.2. Algorithm 2 shows the pseudo-code for

calculating ηtot,max.

Algorithm 2 Pseudo-code for calculating ηtot,max.

1: procedure ratioOpt(ρ, ωmaxR, ωmaxS)
2: for cycle on ω0 do
3: for cycle on To do
4: for cycle on i do
5: store ηtot (ωo, To, i)

6: return ηtot,max (ωo, To) = max {ηtot (ωo, To, i)}

Figure A.7a and A.7b show the difference between the efficiency map of the

optimized system (ηtot) and the efficiency map of a single motor ensuring the same
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power supply (η0). They are shown both in case of supply and regeneration of power.

It is easy to see that the highest difference between the efficiency of the optimized

planetary gear system and a single motor is obtained for low values of speeds and

high values of torques. The maximum of the difference is around 0.25 and is reached

for a torque form 80% and 100% and speeds around 15% and 20% of the maximum

user speed.

(a) (b)

Figure A.7: Difference between the efficiency map of the optimized system and that
of a single motor during power supply (a) and power regeneration (b) for ρ=3,
ωmaxR=0.8ωo,max and ωmaxS=1.6ωo,max [129].

A.5.2 Second step

The maximization in Eqs. A.13 and A.14 can be repeated for different values of the

planetary gear ratio ρ, combined with different values of the maximum speed of the

ring motor to optimize the overall efficiency during an urban cycle. In particular,

the values of the planetary gear ratio ρ and of the maximum speed of the ring motor

(ωmaxR) have been chosen to maximize the energy efficiency over the urban cycle

(ηcyc). The energy efficiency is defined as the ratio between the mechanical energy

available for the user and the electrical energy request by the motors during the

period of time defined by an urban cycle (u.c.):
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ηcyc =
∫u.c. ωo (t) · To (t) dt
∫u.c.

ωo(t)·To(t)
ηtot,max(ωo(t),To(t))

dt
. (A.15)

In particular, the planetary gear ratio ρ has been varied between 2 and 5 at step

of 0.2. For the maximum speed of the ring motor (ωmaxR), five equidistant values

have been chosen between ω0/2 and ω0·ρ/(ρ+1) (which represents the maximum

speed of the ring motor, corresponding to a null power of the sun motor) for every

different value of ρ. It should be noticed that, once the maximum speed of the ring

has been fixed (ωmaxR), the maximum speed of the sun (ωmaxS) is determined by the

requirement of having the sum of the powers of the sun and the ring motors equal to

the maximum power required by the user. The optimization algorithm is so defined

by the following expression:

ηcyc,max = max {ηcyc (ρ, ωmaxR)} . (A.16)

Algorithm 3 shows the pseudo-code for calculating ηcyc,max.

Algorithm 3 Pseudo-code for calculating ηcyc,max.

1: procedure rhoOmegaOpt
2: for cycle on ρ do
3: for cycle on ωmaxR do
4: ηtot,max (ωo,To) = ratioOpt(ρ,ωmaxR, ωmaxS)

5: store ηcyc =
∫u.c. ωo(t)·To(t) dt

∫u.c.
ωo(t)·To(t)

ηtot,max(ωo(t),To(t))
dt

6: return ηcyc,max = max {ηcyc (ρ, ωmaxR)}

Figure A.8 shows some of the values of ρ and ωmaxR that have been analysed

during the second step of the optimization. It is evident that even varying ρ and

ωmaxR over a wide range has a small effect over the average efficiency during the

urban cycle. This guarantees a high robustness and flexibility over the nominal

powers of motors and the planetary gear. The values of ωmaxR, ωmaxS, TmaxR, TmaxS

and ρ which maximizes the average efficiency over the urban cycle are summarized

in Table A.3. The results show that using two motors with the same efficiency

map guarantees an overall efficiency over the urban cycle (ηcyc,max) of 90.13 %, with

respect to an efficiency η0,avg of 82.43 % obtained in the case of a single motor with
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Figure A.8: ηcyc for different combinations of ρ and ωmaxR [129].

the same efficiency map of that in Figure A.5. A regeneration efficiency ηcyc,max,reg

of 89.76 % over the regenerative part of the urban cycle has been achieved with

the proposed planetary gear system with respect to an efficiency η0,avg,reg of a single

motor during the same urban cycle of 80.24 %. As shown, the best improvement

of the proposed configuration is given for high values of torques and low values

of speed, typical working conditions of a city vehicle. This is the reason why the

average efficiency ηcyc,max, evaluated over an urban cycle (classically characterized

by low speeds and high torques), is increased by 9.34 % with respect to a single

motor of the same overall performances. The best improvement is obtained for the

two motors with two nominal powers equal to 36 % (sun motor) and 64 % (ring

motor) of the maximum power required by the vehicle.

A.6 Driving curves and power distribution

Figure A.9a and A.9b show the value of the speed of the sun and the ring motors

allowing the maximization of the overall efficiency of the rotatory system, for the

optimal values of ρ = 4, ωmaxS = 1.8, ωo,max, ωmaxR = 0.8 ωo,max.
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Parameter Optimization Value
ρ 4

η0,avg 0.8243
ηcyc,max 0.9013
η0,avg,reg 0.8024
ηcyc,max,reg 0.8976
ωmaxS 1.8 ωo,max

TmaxS 0.2 To,max

PmaxS 0.36 Po,max

ωmaxR 0.8 ωo,max

TmaxR 0.8 To,max

PmaxR 0.64 To,max

Table A.3: Parameters optimizing the overall averaged efficiency.

(a) (b)

Figure A.9: Speed of the motor of the ring (a) and the sun (b) maximizing the overall
efficiency during power supply [129].

The angular speeds (ωR, ωS) for each working point (To, ωo) represent the values

of the optimized system. It is evident that for low values of speed of the vehicle, the

ring motor is the only one that is rotating, whereas there is a region for intermediate

values of speed, where the sun motor supplies the majority of the required power. For

the maximum values of the speed of the vehicle, both motors work simultaneously.
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This is due to the fact that, as designed, the sum of the power of the two motors

is equal to the maximum power required by the user. In Figure A.10 it is possible

to see the distribution of the power during the urban cycle between the sun and the

ring motors.

Figure A.10: Power distribution of the optimized system over the sun and the ring
motors [129].

The power distribution during the urban cycle shows that during power supplying

of power the sun motor is the only working for low values of required power and high

torque. For high values of speed and low values of torque (constant high speed) the

ring motor is the only motor supplying power. As the required power reaches the 80

% - 90 % of the maximum power, both the motors work together.

A.6.1 Final considerations

In this study a planetary gear which combines the torques and the velocities of two

electrical motors in electric vehicles has been proposed. This kind of system, through

an optimization algorithm, can obtain an average efficiency during the supply of

power of 90.13 %, with respect to that of 82.43 % of a single motor guaranteeing the

same total power, same maximum torque and maximum velocity. During regenera-

tion, a regeneration efficiency of 89.76 % has been obtained with respect to one of
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80.24 % of a single motor. The efficiency maps of the optimized system show that

the best improvement is achieved for high values of the torques and low values of

the speeds. This means that this kind of configuration represents a perfect solution

for a city electric vehicle or every kind of motor usually working with high values of

torques and low levels of speed. The solution we proposed is aimed at improving the

energetic efficiency of electrical motors when rapidly changing operating conditions

are required by the vehicle. However, the optimized values for the gear ratio of the

planetary gear and the maximum speeds and torques of the motors can be easily

found for any type of cycle with the optimization algorithm here proposed. In this

sense this study could represent a relevant framework for improving the efficiency

performance of electric vehicle.
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model of the squeezed gas film in a silicon accelerometer,” Sensors and Actu-

ators A: Physical, vol. 48, pp. 239–248, may 1995.

[109] Y. Sun, M. Bao, H. Yang, and Y. Huang, “Modified reynolds equation for

squeeze-film air damping of slotted plates in mems devices,” Pan Tao Ti Hsueh

Pao/Chinese Journal of Semiconductors, vol. 27, pp. 473–477, 03 2006.

[110] D. Leith, “Drag on nonspherical objects,” Aerosol Science and Technology,

vol. 6, pp. 153–161, jan 1987.

[111] J. Starr, “Squeeze-film damping in solid-state accelerometers,” in IEEE 4th

Technical Digest on Solid-State Sensor and Actuator Workshop, IEEE, 1990.

[112] H. Cai, K. J. Xu, A. Q. Liu, Q. Fang, M. B. Yu, G. Q. Lo, and D. L. Kwong,

“Nano-opto-mechanical actuator driven by gradient optical force,” Applied

Physics Letters, vol. 100, p. 013108, jan 2012.

[113] T. F. D. Fernandes, C. M. K. C. Carvalho, P. S. S. Guimaraes, B. R. A.

Neves, and P.-L. de Assis, “Center-of-mass acceleration in coupled nanowaveg-

uides due to transverse optical beating force,” Journal of Lightwave Technology,

vol. 36, pp. 1608–1614, may 2018.

[114] H. Nishihara, Optical Integrated Circuits. McGraw-Hill Professional, jan 1989.

[115] G. A. West, J. J. Barrett, D. R. Siebert, and K. V. Reddy, “Photoacoustic

spectroscopy,” Review of Scientific Instruments, vol. 54, pp. 797–817, July

1983.

[116] P. Patimisco, A. Sampaolo, L. Dong, F. K. Tittel, and V. Spagnolo, “Recent

advances in quartz enhanced photoacoustic sensing,” Applied Physics Reviews,

vol. 5, p. 011106, Mar. 2018.

[117] P. Patimisco, A. Sampaolo, H. Zheng, L. Dong, F. K. Tittel, and V. Spag-

nolo, “Quartz–enhanced photoacoustic spectrophones exploiting custom tuning

forks: a review,” Advances in Physics: X, vol. 2, pp. 169–187, Dec. 2016.



BIBLIOGRAPHY 161

[118] L. Dong, A. A. Kosterev, D. Thomazy, and F. K. Tittel, “QEPAS spectro-

phones: design, optimization, and performance,” Applied Physics B, vol. 100,

pp. 627–635, May 2010.

[119] K. Liu, X. Guo, H. Yi, W. Chen, W. Zhang, and X. Gao, “Off-beam quartz-

enhanced photoacoustic spectroscopy,” Optics Letters, vol. 34, p. 1594, May

2009.

[120] H. Zheng, L. Dong, H. Wu, X. Yin, L. Xiao, S. Jia, R. F. Curl, and F. K.

Tittel, “Application of acoustic micro-resonators in quartz-enhanced photoa-

coustic spectroscopy for trace gas analysis,” Chemical Physics Letters, vol. 691,

pp. 462–472, Jan. 2018.

[121] Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,”

Light: Science & Applications, vol. 4, pp. e358–e358, Nov. 2015.

[122] V. Passaro, C. Tullio, B. Troia, M. Notte, G. Giannoccaro, and F. Leonardis,

“Recent advances in integrated photonic sensors,” Sensors, vol. 12, pp. 15558–

15598, Nov. 2012.

[123] P. Yoh-Han, Optoacoustic spectroscopy and detection. Academic Press, nov

1977.

[124] S. A. Miller, M. Yu, X. Ji, A. G. Griffith, J. Cardenas, A. L. Gaeta, and

M. Lipson, “Low-loss silicon platform for broadband mid-infrared photonics,”

Optica, vol. 4, p. 707, June 2017.

[125] L. Rothman, I. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. Bernath,

M. Birk, L. Bizzocchi, V. Boudon, L. Brown, A. Campargue, K. Chance,

E. Cohen, L. Coudert, V. Devi, B. Drouin, A. Fayt, J.-M. Flaud, R. Gamache,

J. Harrison, J.-M. Hartmann, C. Hill, J. Hodges, D. Jacquemart, A. Jolly,

J. Lamouroux, R. L. Roy, G. Li, D. Long, O. Lyulin, C. Mackie, S. Massie,

S. Mikhailenko, H. Müller, O. Naumenko, A. Nikitin, J. Orphal, V. Perevalov,

A. Perrin, E. Polovtseva, C. Richard, M. Smith, E. Starikova, K. Sung,

S. Tashkun, J. Tennyson, G. Toon, V. Tyuterev, and G. Wagner, “The HI-

TRAN2012 molecular spectroscopic database,” Journal of Quantitative Spec-

troscopy and Radiative Transfer, vol. 130, pp. 4–50, Nov. 2013.



BIBLIOGRAPHY 162

[126] S. D. Russo, M. Giglio, A. Sampaolo, P. Patimisco, G. Menduni, H. Wu,

L. Dong, V. M. N. Passaro, and V. Spagnolo, “Acoustic coupling between

resonator tubes in quartz-enhanced photoacoustic spectrophones employing a

large prong spacing tuning fork,” Sensors, vol. 19, p. 4109, Sept. 2019.

[127] A. Mason, Sensing technology : current status and future trends IV. Cham:

Springer, 2014.

[128] D. G. Rabus, Integrated Ring Resonators: The Compendium (Springer Series

in Optical Sciences). Springer, may 2007.

[129] M. D. Carlo and G. Mantriota, “Electric vehicles with two motors combined

via planetary gear train,” Mechanism and Machine Theory, vol. 148, p. 103789,

June 2020.

[130] M. R. Tucker and K. B. Fite, “Mechanical damping with electrical regeneration

for a powered transfemoral prosthesis,” in 2010 IEEE/ASME International

Conference on Advanced Intelligent Mechatronics, IEEE, July 2010.

[131] T. Verstraten, G. Mathijssen, R. Furnémont, B. Vanderborght, and D. Lefeber,

“Modeling and design of geared DC motors for energy efficiency: Comparison

between theory and experiments,” Mechatronics, vol. 30, pp. 198–213, Sept.

2015.

[132] T. Verstraten, R. Furnémont, P. López-Garćıa, D. Rodriguez-Cianca, B. Van-
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