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Abstract 
 

We report a detailed experimental and theoretical analysis of the influence of quartz tuning fork (QTF) 

dimensions on the main physical parameters controlling the QTF performance, namely, the quality factor 

Q, the resonance frequency, the fork stiffness, the spring constant, and the electrical resistance. Two 

different gold contact patterns were also compared. As a general trend, the QTF performance in terms of Q 

and electrical conductance values improves at increasing both the crystal thickness T and prong thickness 

w, while decreasing the prongs length Lp. However, since the QTF resonance frequency f0 is proportional 

to T/Lp
2, a trade-off should be found in order to keep f0 < 40 kHz, i.e. well below the typical values of  non-

radiative relaxation rate of a targeted gas absorption lines. 
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 1. Introduction 

Since the 1960s, the quartz crystal tuning fork (QTF) has become a central component for timing and 

frequency measurements, due to its high stability, precision, and low power consumption. Today, these 

high quality-factor resonators are the most commonly used electronic component when a stable frequency 

reference is required for mass produced digital electronic devices such as clocks, smartphones, or 

telecommunication components. Recently, the use of QTFs for other applications, i.e., sensors in atomic 

force (AFM) [1-5] and near-field optical microscopy [6]; optoacoustic gas sensing [7,8]; gas pressure, 

density and viscosity determination [9]; high-resolution measurements of acceleration and velocity for 

accelerometers and gyroscopes [10] have been reported.  These applications rely on different QTF 

parameters (e.g. quality factor, resonance frequency, fork stiffness and spring constant). Since time 

measurements were originally the main application, the QTFs geometry and crystal cut were optimized to 

maintain a selected resonance frequency (typically 215≅ 32.7 KHz) in a wide temperature range . 

With the aim of determining the dependence of the QTF parameters and performance on their relevant 

dimensions and identify the optimal design for optoacoustic gas sensing, we designed a set of QTFs with 

different values of spacing between the prongs, their length and thickness, and crystal thickness. We also 

used two designs for the gold contact pattern in order to test different piezoelectric charge collection 

schemes. In the following sections, we will first provide a theoretical model of the QTF resonator, followed 

by a description of  QTF samples supplied by a commercial vendor based on our design. We describe the 

experimental setup used to determine the  electro-elastic properties of custom QTFs, as well as  a real world 

application, i.e., QTF based optoacoustic gas sensor system, identifying the main figures of merit. 

 

2. Theoretical model of a quartz tuning fork 

QTF acoustic resonators consist of two prongs (or tines) connected at one end. Their resonance 

frequencies are determined by the elastic properties (Young modulus) of the constituent material (i.e. 

quartz) and their shape and sizes. The symmetry of the structure limits the number of allowed modes having 

a high quality factor. Since quartz is a piezoelectric material, a mechanical stress can be converted to an 

electrical signal and vice versa. In terms of elastic modelling, each prong can be described as a single 

harmonic oscillator, neglecting the coupling with the other one. For small amplitude oscillations, the motion 
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of each prong can be described using a one-dimensional model and the resonance frequencies in vacuum 

are given by [11]: 

2
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where ρ = 2650 kg/m3 is the density of quartz, E = 72 GPa is the component of the quartz Young’s modulus 

in the vibrating plane of the QTF. The sizes Lp and T are shown in Fig. 1(a), νn=0 = 1.194 for the lowest 

flexural mode of oscillation (fundamental mode) and νn=1 = 2.988 for the first overtone mode. In the 

fundamental mode, each prong vibrates with an antinode at the tip and a node at the QTF base. The average 

absorbed power is maximum at the fundamental frequency f0 and is given by: 
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where me = 0.24267ρLpTw [6] is the effective mass of one prong and w is the prong thickness (see Fig. 

1(a)). The spring constant (or stiffness) k0 of the fundamental mode of a prong is determined by its 

geometrical parameters and Young modulus as [12]: 
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It is convenient to introduce a QTF quality factor, Q, defined as the ratio of f0 to the full width at half-

maximum (FWHM) value of the resonance curve Δf. Due to the quartz piezoelectric effect, these 

oscillations of the prongs create a current proportional to the speed of the prong top I(t) = a⋅dx/dt, where 

the proportionality constant a, also called fork constant, is given by [13]: 

pL
TwEda 113=                (4) 

where d11 = 2.31·10-12 m/V or C/N is the longitudinal piezoelectric modulus of quartz. The QTF can be 

modelled both as a mechanical oscillator and as an RLC circuit, the relations between mechanical and 

electric characteristics being given by: R = 2meΔf/a2, L = 2me/a2 and C = a2/2k0 [14]. Accordingly, the fork 

constant can be rewritten as:  

R
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The QTF current can be written as I(t) = Iasin(2πft) + Ibcos(2πft), where Ia and Ib are the in-phase and out-

of-phase current components, respectively, which are both functions of the driving frequency f  [14]: 
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where IM is the maximum current value at the resonant frequency f0,vac.  

 

3. Quartz tuning fork resonators 

The schematics of the designed QTFs are shown in Fig. 1(b) together with a standard QTF. 

 

Fig. 1.  (a) Schematic view of QTF dimensions. (b) x-z plane view of standard and custom designed tuning forks.  The 

size scale is shown on the right. (c) Surface and side view of the two different designed gold patterns for 

electrical charge collection. The grey areas stand for uncovered quartz, while the yellow and gold-yellow area 

represent the two electrodes of each pattern. 

A z-cut quartz wafer with a 2° rotation along the x-axis, which provides stable frequency at room 

temperature, was selected for the realization of the custom QTFs. The z-cut is the dominant low frequency 

(up to 50 KHz) crystal-cut, which provides thermally stable flexural vibrational modes frequencies. 

Standard photolithographic techniques were used to etch the QTFs. Cr and Au patterns are 

photolithographically defined on both sides of the wafer. A three-dimensional crystal structure is generated 

by chemical etching in a hydrogen fluoride solution, and finally side electrodes are applied by means of 
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shadow masks. The gap between center electrode and side electrode is 50 µm. A photograph of the realized 

custom QTFs is shown in Fig. 2. 

 

Fig.  2. Picture showing  realized custom tuning forks. The size scale in mm is shown on the right. 

The dimensions and the prongs’ effective mass of the investigated QTFs are listed in Table I. 

 

Table I. Dimensions and prong effective mass me of the standard and custom tuning forks: Lp (QTF prong length), T 

(thickness of the prong), w (thickness of the quartz crystal) and 2s (spacing between prongs). 

 

Parameters 
QTF 

standard 
QTF #1 QTF #2 QTF #3 QTF #4 QTF #5 QTF #6 

Lp (mm) 3.0 3.5 10.0 10.0 11.0 17.0 16.8 

w (mm) 0.34 0.25 0.25 0.5 0.25 0.25 0.8 

T (mm) 0.35 0.2 0.9 1.0 0.5 1.0 1.4 

Prong 
spacing, 

2s (mm) 

0.3 0.4 0.8 0.5 0.6 0.7 0.8 

me (mg) 0.230 0.113 1.447 3.216 0.884 2.733 12.102 

 

QTF#1

QTF#2 QTF#3 QTF#4

QTF#5

QTF#6
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The QTF standard is the typical 32 kHz resonator used in clocks and smartphones. The contact layer dual-

electrode patterns are also visible. The electrodes geometry defines the way in which the deformation occurs 

when an electric field is applied and, conversely, how the charges due to crystal deformation are collected. 

In our case, the electric field is applied along the x-axis of the QTFs (see Fig. 1(a)). Two patterns for the 

electrodes were employed. For QTF#3 and QTF#6 we use the same gold pattern of the QTF standard, while 

for the remaining QTFs we slightly modified the gold pattern in order to collect charges generated in all 

internal side wafer surfaces, as shown in Fig. 1(c). Both employed electrode patterns enhanced the first 

fundamental flexural mode.  
 

4. Quartz tuning forks characterization 

 Experimental measurements were performed using the setup depicted in Fig. 3. 

 

 

Fig. 3. Circuit diagram for QTF characterization. The excitation sine voltage is supplied by a high-resolution 

waveform generator, which also provides the reference TTL signal for the lock-in amplifier. The QTF current 

output is converted to a voltage by means of a transimpedance amplifier with a feedback resistor of RF = 10 

MΩ. The QTF is mounted inside a vacuum chamber allowing low gas pressure measurements. OP: operational 

amplifier. 

A function generator (Tektronix model AFG3102) with a resolution of 2 mHz was used to provide a 

sinusoidal voltage to the QTFs. The in-phase (Ia) and out-of-phase (Ib) components of the current pass 

through a current-to-voltage converter using an operational amplifier. The output voltage is measured by a 

lock-in amplifier (Stanford Research Model SR830). To determine the resonance properties of the QTFs, 
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the frequency of the function generator was varied and processed by the lock-in output via a data acquisition 

(DAQ) card and a computer (CPU). The QTFs resonance curves were fitted  using Eq. (6) to determine IM, 

f0 and Δf. The frequency responses of the investigated QTFs, obtained at a pressure of 50 Torr in standard 

air and with an excitation voltage level of V0 = 0.5 mV are shown in Fig. (4). For each QTF, we measured 

both the experimental in-phase (Ia) and out-of-phase (Ib) components and the related best fit by using Eq. 

(6).  

 

Fig. 4. (Color online) Resonance curves for in-phase Ia (black dots) and out-of-phase Ib (red dots) components of the 

QTF current measured at a fixed excitation level V0 = 0.5 mV and at a pressure of 50 Torr in standard air for custom 

QTFs near the fundamental oscillation mode. The dashed lines indicate the best-fit curves using Eq. (9).  

 

The small left-right asymmetry for Ia with respect to the curve peak and the different asymptotic values for 

Ib are due to parasitic currents caused by stray capacitance between the two pins of the QTF, which  

dominated away from the resonance frequency. From the data of Fig. (4) we can extract the resonance 

frequency of the fundamental flexural mode f0
(exp), the current amplitude IM at the resonant frequency, the 

FWHM of the resonant curve Δf, the quality factor Q and the spring constants (k0
(exp)) by using Eq. (2). In 

Table II we reported these parameters together with the corresponding theoretical resonant frequencies f0,vac 

and spring constants (k0), calculated for vacuum condition by using Eq. (1) and Eq. (3), respectively. 
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Table II. Experimental and calculated physical parameters for the investigated QTFs: f0
(exp) (resonance frequency of 

the fundamental oscillation mode), Δf  (the full width at half-maximum value of the QTF resonance curve), Q (quality 

factor) and k0
(exp) (QTF spring constant of the fundamental oscillation mode). The calculated f0,vac and k0 are also listed. 

 
 f0

(exp) (Hz) f0,vac (Hz) Δf (Hz)       Q k0
(exp) (N/m) k0 (N/m) 

QTF 
standard 32762.84 32743.61 2.02 16206.63 9720.01 9718.33 

QTF #1 14049.20 13746.59 1.89 7323.49 838.81 839.65 

QTF #2 7230.27 7577.81 0.39 18654.18 3277.21 3280.50 

QTF #3 8439.51 8419.79 0.54 25484.95 9033.05 9000.00 

QTF #4 3456.69 3479.25 0.41 8388.12 422.19 422.61 

QTF #5 2869.07 2913.42 0.24 11901.88 914.76 915.94 

QTF #6 4250.01 4176.48 0.11 37712.74 8620.62 8333.33 

 

We obtained a good agreement between the experimental and theoretical f0 and k0 values, which confirms 

that it is possible to predict these two parameters with good accuracy. The small discrepancies (< 5%) 

between experimental and theoretical values are due to the damping of the gas, additional weight of the 

electrode gold layers, dependence of the elasticity modulus of quartz on the crystallographic axes 

orientation and deviations in geometry between the modelled and the real QTFs [11]. From the resonance 

characteristics measured as a function of the excitation voltage amplitude V0, it is possible to determine the 

electrical resistance R= V0/IM, since at resonance the QTF performs as a pure resistor. The measured IM 

versus V0 are shown in Fig. (5).  
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Fig. 5. Results of the peak current amplitude IM (● symbols) at the QTF resonance frequency f0 of the fundamental 

oscillation mode as a function of the applied voltage, for QTF#1-6. The solid lines are the best linear fits. 

 

The resistance R was extracted from a linear fit of the QTF electrical characteristics. From these data we 

estimated the QTF fork constant a(exp) by using Eq. (5) and compared the results with the theoretical values 

a(theo) calculated by using Eq. (4). In addition, the capacitance C = 1/(2πQRf0
(exp)) and inductance L = 

QR/(2πf0
(exp)) can be  calculated. The results are listed in Table III.  

 

Table III. Measured electro-elastic parameters for standard and custom QTFs: R (QTF electrical resistance), a(exp) (fork 

constant), C (electrical capacitance) and L (electrical inductance).  Calculated fork constant values a(theo) are also 

listed. 

 
 R (kΩ) a(exp) (µC/m) a(theo) (µC/m) C (fF) L (kH) 
QTF standard 79.70 19.79 17.11 3.76 6.28 
QTF #1 831.86 7.128 3.61 1.86 69.05 
QTF #2 142.78 11.23 14.05 8.27 58.66 
QTF #3 151.87 24.95 24.08 4.88 73.02 
QTF #4 513.49 5.67 5.97 10.70 198.42 
QTF #5 389.01 7.34 9.23 11.99 256.97 
QTF #6 84.93 33.87 28.15 11.70 120.01 

 

Theoretically R is related to geometrical parameters, since R ~ Lp
2/W√T [15] and in Fig. (6) we reported  

measured R values vs Lp
2/W√T.  
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Fig. 6. Dependence of the QTF resistance (● symbols) versus the ratio Lp
2/w√T. QTF St. is the QTF standard. The 

solid curve is the best linear fit considering only the QTF standard (QTF St.) and QTF#2,3,5,6, using the function 

R=n· Lp
2/w√T, with n= 0.346 kΩ/√mm. 

 

As expected, a linear correlation is observed, except for QTF#1 and QTF#4. However, in an actual device 

other factors contribute to determine the electrical resistance, such as the generated charge collection 

efficiency determined by the gold contacts QTF pattern. The large R-values for QTF#1 and QTF#4 could 

be attributed to a reduced gold coverage of the prongs (< 50% for QTF#1 and <75% for QTF#4) and 

consequently a reduced charge collection and consequently a reduced IM. Consistently, a good agreement 

(within 20% discrepancy) was obtained between experimental and theoretical QTF fork constant values, 

except for QTF#1 and QTF#4, where a 50% difference can be attributed to an overestimation of R.  

The Q-factor was determined by the two main losses mechanisms, extrinsic and intrinsic,  The extrinsic 

losses are due to interactions with the surrounding medium, while the intrinsic losses include different 

contributions, i.e. support losses (interactions with its support structure), surface and volume losses and 

thermo-elastic losses. All these loss contributions can be theoretically estimated [16]. The calculated Q-

factor values may significantly differ from the actual ones due to additional factors such as processing 

anisotropy, crystal quality and gold patterning. However, if we compare the measured Q-factor versus the 
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fork constant (see Fig. (7)) a proportionality is evident. This result indicates the feasibility to empirically 

predict the Q-factor from a calculation of the fork constant a. 

 

 

Fig. 7. Dependence of the QTF quality factor Q (● symbols) versus the theoretical fork constant a(theo) values. The 

solid curve is the best linear fit, using the function Q=m·a, with m= 1203 m/µC. 

 

Under vacuum conditions, no gas damping phenomena are present, while when the QTF operates in a 

viscous fluid, the effective mass increases and the resonance frequency decreases. The complete 

mechanical, electrical and hydro-dynamical model of the tuning fork is described in detail in Ref. [11]. The 

resonance frequency scales linearly with the pressure P of the surrounding gas as: 

Pkff pvac −= ,00                (7) 

where kp = f0,vac·u/(2ρgwT), u is the added mass due to the presence of a fluid and ρg is the fluid density. In 

addition, fluid damping reduces the resonance quality factor Q, since the reaction force due to the presence 

of the gas acts on the vibrating body and causes energy dissipation. A fluid damping parameter can be 

introduced, which is proportional to the density ρg and the viscosity η of the fluid. Assuming that P ∝ ρg 

and η does not noticeably change with P, the influence of the fluid damping on Q can be expressed in terms 

of the energy loss 1/Q(P) at the gas pressure P, and Q(P) can be defined as:  

cbPQ
QPQ

0

0

1
)(

+
=                (8) 



12 
 

where Q0 is the quality factor of the QTF under vacuum, including all the intrinsic losses mechanisms, and 

b and c are parameters related to the QTF geometry and surrounding fluid viscosity. In fact, QTFs are used 

for density, viscosity and velocity measurement of fluids [14,17]. In order to investigate the damping effects 

induced by the environmental gas (air in our experiments) on the quality factor and the resonant frequency, 

we measured the in-phase Ia and out-of-phase dispersion component Ib of the QTF output current, at a fixed 

excitation level, V0 = 0.5 mV, as a function of the air pressure (see Fig. (8)). 

 

 

Fig. 8. QTF resonance frequency f0 (● symbols) measured as a function of the standard air pressure for all six custom 

QTFs. Solid lines are the linear fit of the data. The related slopes are reported in Table IV. 

 

According to Eq. (7), f0 shows a linear dependence from the gas pressure in the investigated range of 

pressures (10 Torr - 760 Torr). The intercept with the vertical axis yields the resonant frequency f0,vac. 

Similarly, in Fig. (9) we reported the quality factor as a function of the pressure for all the investigated 

custom QTFs and the best fit obtained by using Eq. (8). 
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Fig. 9. Quality factor Q (● symbols) measured as a function of the standard air pressure for the six custom QTFs. 

Solid curves are the best fit obtained using Eq. (8). The related fit parameters are reported in Table IV. 

 

The Q-factor shows a large pressure dependence, as predicted, and rapidly decreases with gas pressure. In 

Table IV, we listed 5 the parameters obtained by the fitting procedures. 

 

Table IV. Values extracted from the best fits of the dependence of the resonance frequency (see Fig. (8)) and the 

quality factor (see Fig. (9)) of the fundamental flexural mode from the surrounding gas pressure, for the six custom 

QTFs. The values obtained for the standard QTF are also reported. 

 
 f0,vac (Hz) kp (mHz/torr) Q0 b (torr-0.5) c 

QTF standard 32763.31 9.26 88718.69 8.02 X 10-6 0.47 

QTF #1 14049.60 6.93 10862.49 5.17 X 10-6 0.51 

QTF #2 7230.24 0.69 36563.52 3.31 X 10-6 0.52 

QTF #3 8439.61 1.78 47020.06 2.68 X 10-6 0.53 

QTF #4 3456.72 1.17 23282.04 1.89 X 10-5 0.36 

QTF #5 2869.09 0.57 34800.37 9.82 X 10-6 0.44 

QTF #6 4250.06 1.26 50129.89 2.80 X 10-7 0.77 

 



14 
 

5. Quartz tuning forks for quartz-enhanced photoacoustic spectroscopy 

Apart from timing and frequency applications, one of the most successful implementation of QTF crystals 

is quartz-enhanced photoacoustic spectroscopy (QEPAS), an optical trace-gas sensing technique based on 

photoacoustic detection [18]. QEPAS utilizes QTFs as sharply resonant acoustic transducers to detect weak 

photoacoustic excitation generated by the surrounding target gas [7,8]. When laser radiation at a specific 

wavelength is absorbed by the gas sample, the excited molecules will subsequently relax to the ground 

state, either through emission of photons or by means of non-radiative processes. The latter produce 

localized heating in the gas, which in turn results in an increase of the local pressure. If the incident light 

intensity is modulated, the generation of thermal energy in the sample will also be periodic and an acoustic 

wave is generated in the gas. 

In QEPAS, the QTFs are excited in the fundamental flexural mode and under this condition, QTFs act as 

acoustic quadrupoles. Accordingly, only sound waves from a source located between the two QTF prongs 

can give rise to a photoacoustic signal. The best way to realize this condition is to focus the excitation laser 

beam on the QTF axis, i.e., through the gap between the prongs without illuminating them. Otherwise, an 

undesirable background occurs due to laser-induced QTF heating contributions [19,20]. The intensity of 

the QTF current is proportional to the gas sample concentration covering a large dynamic range (up to nine 

orders of magnitude). In order to obtain the best performance, the modulation frequency of the laser has to 

match the resonant frequency f0 of the QTF. Under this operating condition and instantaneous vibration-

translation (V-T) or rotational-translation (R-T) gas energy relaxation, the detected photoacoustic signal 

can be expressed as SQEPAS ∝ PL·α·Q⋅ε, where is PL is the laser power, α is the absorption coefficient (which 

is proportional to the cross section of the optical transition and the concentration of the target gas [7]) and 

ε is the optoacoustic transduction efficiency (i.e., the conversion efficiency of the absorbed optical radiation 

power into acoustic energy [21]). Thus, for a constant laser power gas absorption coefficient and conversion 

efficiency ε, Q can be considered as the figure of merit for QEPAS.  

Thus, to enhance the Q-factor one should design a QTF with a large Tw/L factor since Q is proportional to 

the fork constant (see Fig. 7), In addition, the QEPAS signal is proportional to the generated piezoelectric 

current and, at the resonance, the most representative figure of merit for charge generation capability is the 

electrical conductance R-1. If we consider that R-1 ~ w√T/Lp
2, it would be necessary to decrease the prong 

lengths Lp and increase both the prong thickness T and crystal thickness w. However, the QEPAS signal 
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also strongly depends  on the gas sample pressure, since the Q-factor decreases with increasing pressures 

(see Fig. 9). The peak optical absorption increases with decreasing pressure, especially at low pressures 

(<30 Torr), while the V-T and R-T relaxations are faster at higher pressures, resulting in more efficient 

acoustic excitation. The gas must relax the excess thermal energy after each laser modulation pulse in order 

to maximize the QEPAS signal [7]. At low pressures, it is necessary to reduce the QTF resonance frequency 

in order allow efficient gas excess energy relaxations. In this way, the thermal waves can follow changes 

of the laser induced molecular vibration excitation in the gas. To reduce f0 one has to design QTFs with 

small thickness T and large prongs length Lp. Thus, the larger the crystal thickness w the bigger should be 

the Q-factor and R-1. However chemical etching of a crystal of w > 1 mm cannot guarantee sharp edge 

profiles. Short Lp and large T provides a good quality factor and QTF conductance, but resulting in an 

increase of the resonance frequency. This means that the optimum QTF geometry depends on the gas target 

species to be detected. If detecting fast relaxing molecules such as H2O and SF6 [22], QTFs with large T/Lp
2 

ratio should be employed, with f0  not exceeding 40 kHz [23], while for slow relaxing gases such as CO2 

and NO [19], the ratio T/Lp
2 should be kept small. 

Even if the electro-elastic properties of QTFs are not influenced by the prong spacing 2s, this parameter 

plays a crucial role in the acousto-electric transduction efficiency, i.e., the conversion efficiency of the 

amplitude of the acoustic wave in piezoelectric charge production. For a focused laser beam, in the 

approximation of cylindrical symmetry, the amplitude of the acoustic wave incident on the prong surface 

decays as 1/√s [24], with s being the distance of the QTF axis position (see Fig. 1(a)) from the internal 

prong surface. The size of the cross-sectional area of the focused beam is determined by diffraction to beam 

waist values of the order of the laser wavelength. The larger the focused beam cross area-size, the larger 

has to be the prong spacing, in order to avoid that a part of the laser radiation is incident on the QTF. For 

example, for near-IR laser radiation, a prong spacing of < 100 µm can be employed, while for a THz laser 

source, it is better to use prong spacings of > 700 µm in QEPAS sensors [11,25,26]. In the mid-IR range 

up to now QTFs with prongs spacing ≥ 300 µm have been utilized [7]. All these considerations suggest 

there is no unique, optimum QTF design for QEPAS, but one should employ large crystal thickness w and 

the smallest possible prong spacing 2s, while the best selection of Lp and T depends on the gas target 

relaxation rates and the three operating spectral ranges: visible to near-IR, mid-IR and THz, all compatible 

with the optical design constrains.  



16 
 

 

6. Conclusions 

In this manuscript, we reported an extensive investigation of the electro-elastic properties of QTFs with 

different shapes and sizes. We assessed the dependence of the Q-factor, the resonance frequency, the fork 

stiffness, the spring constant, and the electrical resistance from the QTF dimensions.  We also identified 

the optoacoustic gas sensing figures of merit and studied their dependence from the QTFs relevant 

dimensions. For QEPAS applications, our results show that R should be kept low and Q as high as possible. 

Both conditions can be obtained by increasing w and the ratio T/Lp. However, the resonance frequency f0 

increases as T/Lp
2, and f0 should not exceed 40 KHz. Moreover, the smallest possible prong spacing 2s must 

be chosen to enhance the amplitude of the acoustic wave incident on the internal prong surface, avoiding 

that the focused laser beam illuminates the QTF. Therefore, the optimal prong spacing selection is mainly 

determined by the wavelength of the exciting laser beam and its spatial quality. Finally, an optoacoustic 

investigation in different spectral ranges, selecting both slow and fast relaxing gas species, is needed to 

evaluate the influence of the V-T and R-T relaxation rates on the optoacoustic transduction efficiency ε. 
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