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Abstract: Several fractional-order operators are available and an in-depth knowledge of the selected
operator is necessary for the evaluation of fractional integrals and derivatives of even simple functions.
In this paper, we reviewed some of the most commonly used operators and illustrated two approaches
to generalize integer-order derivatives to fractional order; the aim was to provide a tool for a full
understanding of the specific features of each fractional derivative and to better highlight their
differences. We hence provided a guide to the evaluation of fractional integrals and derivatives
of some elementary functions and studied the action of different derivatives on the same function.
In particular, we observed how Riemann–Liouville and Caputo’s derivatives converge, on long
times, to the Grünwald–Letnikov derivative which appears as an ideal generalization of standard
integer-order derivatives although not always useful for practical applications.

Keywords: fractional derivative; fractional integral; Mittag–Leffler function; Riemann–Liouville
derivative; Caputo derivative; Grünwald–Letnikov derivative

1. Introduction

Fractional calculus, the branch of calculus devoted to the study of integrals and derivatives of
non integer order, is nowadays extremely popular due to a large extent of its applications to real-life
problems (see, for instance, [1–8]).

Although this subject is as old as the more classic integer-order calculus, its development and
diffusion mainly started to take place no more than 20 or 30 years ago. As a consequence, several
important results in fractional calculus are still not completely known or understood by non-specialists,
and this topic is usually not taught in undergraduate courses.

The presence of more than one type of fractional derivative is sometimes a source of confusion
and it is not occasional to find wrong or not completely rigorous results in distinguished journals as
well. Even the simple evaluation of a fractional integral or derivative of elementary functions is in
some cases not reported in a correct way, which is also due to the difficulty of properly handling the
different operators.

For instance, in regards to the exponential, the sine and the cosine functions, the usual and
well-known relationships:

dn

dtn etΩ = ΩnetΩ,
dn

dtn sin tΩ = Ωn sin
(

tΩ +
nπ

2

)
,

dn

dtn cos tΩ = Ωn cos
(

tΩ +
nπ

2

)
, (1)
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which hold for any n ∈ N and turn out extremely useful for simplifying a lot of mathematical
derivations, are in general no longer true with fractional derivatives, unless a very special definition is
used, which presents some not secondary drawbacks.

The main aim of this paper is to provide a tutorial for the evaluation of fractional integrals and
derivatives of some elementary functions and to show the main differences resulting from the action
of different types of fractional derivatives. At the same time, we present an alternative perspective for
the derivation of some of the most commonly used fractional derivatives in order to help the reader to
better interpret the results obtained from their application.

In particular, the more widely used definitions of fractional derivatives, namely those known as
Grünwald–Letnikov, Riemann–Liouville and Caputo, are introduced according to two approaches:
One based on the inversion of the generalization of the integer-order integral and the other based on
the more direct generalization of the limit of the difference quotients defining integer-order derivatives.
Although they lead to equivalent results, the second and less usual approach allows for a more
comprehensive understanding of the nature of the different operators and a better explanation of the
effects produced on elementary functions. In particular we will observe when relationships similar to
Equation (1) apply to fractional derivatives and the way in which fractional derivatives deviate from
Equation (1).

Some of the material presented in this paper is clearly not new (proper references will be given
through the paper). Nevertheless, we think that it is important to collect in a single paper a series
of results which are scattered among several references or are not clearly exposed, thus to provide a
systematic treatment and a guide for researchers approaching fractional calculus for the first time.

The paper is organized as follows: In Section 2 we recall the fractional Riemann–Liouville
integral and some definitions of fractional derivatives relying on its inversion. We hence present in
Section 3 a different view of the same definitions by showing, in a step-by-step way, how they can
be obtained as a generalization of the limit of different quotients defining standard integer-order
derivatives after operating a replacement of the function to cope with convergence difficulties. Since
the Mittag–Leffler (ML) function plays an important role in fractional calculus, and indeed most of
the results on derivatives of elementary functions will be based on this function, Section 4 is devoted
to present this function and some of its main properties; in particular, we provide a useful result on
the asymptotic behavior of the ML function which allows to investigate the relationships between
the action of the different fractional derivatives on the same function. Sections 5–7 are devoted to
presenting the evaluation of derivatives of some elementary functions (power, exponential and sine
and cosine functions), to study their properties and to highlight the different effects of the various
operators. Clearly the results on the few elementary functions considered in this paper may be adopted
as a guide to extend the investigation to further and more involved functions. Some concluding
remarks are finally presented in Section 8.

2. Fractional Derivatives as Inverses of the Fractional Riemann–Liouville Integral

To simplify the reading of this paper we recall in this Section the most common definitions in
fractional calculus and review some of their properties. For a more comprehensive introduction
to fractional integrals and fractional derivatives we refer the reader to any of the available
textbooks [3,5,9–12] or review papers [13,14]. In particular, we follow here the approach based on the
generalization, to any real positive order, of standard integer-order integrals and on the introduction
of fractional derivatives as their inverse operators. We therefore start by recalling the well-known
definition of the fractional Riemann–Liouville (RL) integral.

Definition 1. For a function f ∈ L1([t0, T]
)

the RL integral of order α > 0 and origin t0 is defined as:

Jα
t0

f (t) =
1

Γ(α)

∫ t

t0

(t− τ)α−1 f (τ)dτ, ∀t ∈ (t0, T]. (2)
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As usual, L1([t0, T]
)

denotes the set of Lebesgue integrable functions on [t0, T] and Γ(x) is the
Euler gamma function

Γ(x) =
∫ ∞

0
tx−1e−tdt, (3)

a function playing an important role in fractional calculus since it generalizes the factorial to real
arguments; it is indeed possible to verify that Γ(x + 1) = xΓ(x) and hence, since Γ(1) = 1, it is:

Γ(n + 1) = n! for any n ∈ N.

It is due to the above fundamental property of the Euler gamma function that the RL integral (2)
can be viewed as a straightforward extension of standard n-fold repeated integrals:∫ t

t0

∫ τ1

t0

· · ·
∫ τn−1

t0

f (τn)dτn · · ·dτ2 dτ1 =
1

(n− 1)!

∫ t

t0

(t− τ)n−1 f (τ)dτ

where it is sufficient to replace the integer n with any real α > 0 to obtain RL integral (2).
In the special case of the starting point t0 → −∞ the integral on the whole real axis:

Jα
−∞ f (t) = lim

t0→−∞
Jα
t0

f (t) =
1

Γ(α)

∫ t

−∞
(t− τ)α−1 f (τ)dτ, t ∈ R, (4)

is usually referred to as the Liouville (left-sided) fractional integral (see [12] (Chapter 5) or [10] (§2.3))
and satisfies similar properties as the integer-order integral, such as Jα

−∞eΩt = Ω−αeΩt.
Once a robust definition for fractional-order integrals is available, as the RL integral (2), fractional

derivatives can be introduced as their left-inverses in a similar way as standard integer-order
derivatives are the inverse operators of the corresponding integrals.

To this purpose let us denote with m = dαe the smallest integer greater or equal to α and,
since m− α > 0, consider the RL integral Jm−α

t0
. Thanks to the semigroup property Jm−α

t0
Jα
t0

f (t) =

Jm
t0

f (t) [9] (Theorem 2.1) which returns an integer-order integral, it is sufficient to apply the
integer-order derivative Dm to obtain the identity:

Dm Jm−α
t0

Jα
t0

f (t) = Dm Jm
t0

f (t) = f (t);

the concatenation Dm Jm−α
t0

hence provides the left-inverse of Jα
t0

and therefore justifies the following
definition of the RL fractional derivative.

Definition 2. Let α > 0, m = dαe and t0 ∈ R. The RL fractional derivative of order α and starting point t0 is:

RLDα
t0

f (t) := Dm Jm−α
t0

f (t) =
1

Γ(m− α)

dm

dtm

∫ t

t0

(t− τ)m−α−1 f (τ)dτ, t > t0. (5)

The RL derivative (5) is not the only left inverse of Jα
t0

and in applications, a different operator is
usually preferred. One of the major drawbacks of the RL derivative is that it requires to be initialized
by means of fractional integrals and fractional derivatives. To fully understand this issue it is useful to
consider the following result on the Laplace transform (LT) of the RL derivative [10].

Proposition 1. Let α > 0 and m = dαe. The LT of the RL derivative of a function f (t) is:

L
(

RLDα
t0

f (t) ; s
)
= sαF(s)−

m−1

∑
j=1

sm−1−j RLDα−m+j
t0

f (t)
∣∣∣
t=t+0
− sm−1 Jm−α

t0
f (t)

∣∣∣
t=t+0

,

with F(s) the LT of f (t).
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A consequence of this result is that fractional differential equations (FDEs) with the RL derivative
need to be initialized with the same kind of values. The uniqueness of the solution y(t) of a FDE
requires that initial conditions on Jm−α

t0
y(t)

∣∣
t=t+0

and RLDα−m+j
t0

y(t)
∣∣
t=t+0

, j = 1, . . . , m− 1, are assigned
(e.g., see [9] (Theorem 5.1) or [10] (Chapter 3)).

In the majority of applications, however, these values are not available because they do not have
a clear physical meaning and therefore the description of the initial state of a system is quite difficult
when the RL derivative is involved. This is one of the reasons which motivated the introduction of
the alternative fractional Caputo’s derivative obtained by simply interchanging differentiation and
integration in RL Derivative (5).

Definition 3. Let α > 0, m = dαe and t0 ∈ R. For a function f ∈ Am([t0, T]
)
, i.e., such that f (m−1) is

absolutely continuous, the Caputo’s derivative is defined as:

CDα
t0

f (t) := Jm−α
t0

Dm f (t) =
1

Γ(m− α)

∫ t

t0

(t− τ)m−α−1 f (m)(τ)dτ, t > t0, (6)

where Dm and f (m) denote integer-order derivatives.

Unlike the RL derivative, the LT of the Caputo’s derivative is initialized by standard initial values
expressed in terms of integer-order derivatives, as summarized in the following result [9].

Proposition 2. Let α > 0 and m = dαe. The LT of the Caputo’s derivative of a function f (t) is:

L
(

CDα
t0

f (t) ; s
)
= sαF(s)−

m−1

∑
j=0

sα−1−j f (j)(t0),

with F(s) the LT of f (t).

It is a clear consequence of the above result that FDEs with the Caputo’s derivative require, to
ensure the uniqueness of the solution y(t), the assignment of initial conditions in the more traditional
Cauchy form y(j)(t0) = y0,j, j = 0, 1, . . . , m − 1, thus allowing a more convenient application to
real-life problems.

Although different, the Caputo’s derivative shares with the RL derivative the property of being
the left inverse of the RL integral since CDα

t0
Jα
t0

f = f [9] (Theorem 3.7). However, CDα
t0

is not the right
inverse of Jα

t0
since [9] (Theorem 3.8),

Jα
t0

CDα
t0

f (t) = f (t)− Tm−1[ f ; t0](t), (7)

where Tm−1[ f ; t0](t) is the Taylor polynomial of f centered at t0,

Tm−1[ f ; t0](t) =
m−1

∑
k=0

(t− t0)
k

k!
f (k)(t0). (8)

The polynomial Tm−1[ f ; t0](t) is important for establishing the relationship between fractional
derivatives of RL and Caputo type. After differentiating both sides of Formula (7) in the RL sense it is
possible to derive:

CDα
t0

f (t) = RLDα
t0

(
f (t)− Tm−1[ f ; t0](t)

)
. (9)

Although several other definitions of fractional integrals and derivatives have been introduced in
the last years, we confine our treatment to the above operators which are the most popular; the utility
and the nature of some of the operators recently proposed is indeed still under scientific debate and
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we refer, for instance, to [15–19] for a critical analysis of the properties which a fractional derivative
should (or should not) satisfy.

3. Fractional Derivatives as Limits of Difference Quotients

To better focus on their main characteristic features, we take a look at the fractional derivatives
introduced in the previous section from an alternative perspective. We start from recalling the usual
definition of the integer-order derivative based on the limit of the difference quotient:

f ′(t) = lim
h→0

f (t)− f (t− h)
h

,

where obviously we assume that the above limit exists. By recursion this definition can be generalized
to higher orders and, indeed, it is simple to evaluate:

f ′′(t) = lim
h→0

f ′(t)− f ′(t− h)
h

= lim
h→0

f (t)− 2 f (t− h) + f (t− 2h)
h2

f ′′′(t) = lim
h→0

f ′′(t− h)− f ′′(t)
h

= lim
h→0

f (t)− 3 f (t− h) + 3 f (t− 2h)− f (t− 3h)
h3

and, more generally, to prove the following result whose proof is straightforward and hence omitted.

Proposition 3. Let t ∈ R, n ∈ N and assume the function f to be n-times differentiable. Then,

f (n)(t) = lim
h→0

1
hn

n

∑
j=0

(−1)j
(

n
j

)
f (t− jh), (10)

where the binomial coefficients are defined as:

(
n
j

)
=

n(n− 1) · · · (n− j + 1)
j!

=


n!

j!(n− j)!
j = 0, 1, . . . , n,

0 j > n.
(11)

Formula (10) is of interest since a possible generalization to fractional-order can be proposed by
replacing the integer n with any real α > 0. While this replacement in the power hn of Formula (10) is
straightforward, some difficulties arise in the other two instances of the integer-order n in Formula (10):
the upper limit of the summation cannot be replaced by a real number and the binomial coefficients
must be properly defined for real parameters.

The first difficulty can be easily overcome since binomial coefficients vanish when j > n. Thus,
since no contribution in the summation is given from the presence of terms with j > n, the upper
limit in Formula (10) can be raised to any value greater than n and, hence, the finite summation in
Formula (10) can be replaced with the infinite series:

f (n)(t) = lim
h→0

1
hn

∞

∑
j=0

(−1)j
(

n
j

)
f (t− jh). (12)

To extend binomial coefficients and cope with real parameters we use again the Euler gamma
function in place of factorials in Formula (11); generalized binomial coefficients are hence defined as:(

α

j

)
=

α(α− 1) · · · (α− j + 1)
j!

=
Γ(α + 1)

j!Γ(α− j + 1)
, j = 0, 1, . . . . (13)

Note that the above binomial coefficients are the coefficients in the binomial series:

(1− x)α =
∞

∑
j=0

(−1)j
(

α

j

)
xj (14)
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which for real α > 0 converges when |x| ≤ 1. However, they do not vanish anymore for j > α when
α 6∈ N.

Combining Equation (12) with Equation (13) provides the main justification for the following
extension of the integer-order derivative (10) to any real order α > 0 which was proposed
independently, and almost simultaneously, by Grünwald [20] and Letnikov [21].

Definition 4. Let α > 0. The Grünwald–Letnikov (GL) fractional derivative of order α is:

GLDα f (t) = lim
h→0

1
hα

∞

∑
j=0

(−1)j
(

α

j

)
f (t− jh), t ∈ R. (15)

Referring to Equation (15) as the Grünwald–Letnikov fractional derivative is quite common in
the literature (e.g., see [10] (§2.8) or [12] (§20)). Moreover, once a starting point t0 has been assigned,
for practical reasons the following (truncated) Grünwald–Letnikov fractional derivative [9,22] is often
preferred since it can be applied to functions not defined (or simply not known) in (−∞, t0).

Definition 5. Let α > 0 and t0 ∈ R. The (truncated) GL fractional derivative of order α is:

GLDα
t0

f (t) = lim
h→0

1
hα

N

∑
j=0

(−1)j
(

α

j

)
f (t− jh), N =

⌈
t− t0

h

⌉
, t > t0. (16)

Although they are both named as Grünwald–Letnikov derivatives, GLDα and GLDα
t0

are different
operators. We note however, that GLDα corresponds to GLDα

t0
when t0 → −∞, namely GLDα = GLDα

−∞.
There is a close relationship between the RL derivative and Equation (16). Indeed, it is possible to

see that whenever f ∈ Cm[t0, T], with m = dαe, then [9] (Theorem 2.25),

GLDα
t0

f (t) = RLDα
t0

f (t), t ∈ (t0, T]. (17)

The GL derivative (15) possesses similar properties to integer-order derivatives, such as GLDαtk = 0,
for k < α, and generalizes in a straightforward way the relationships of Equation (1) since, for instance
GLDαeΩt = ΩαeΩt when Re Ω ≥ 0 (we will better investigate these properties later on). Since this
last relationship was the starting point of Liouville for the construction of the fractional calculus, the
derivative (15) is sometimes recognized as the Liouville derivative (we refer to some papers on this
operator and its application, for instance, in signal theory [23,24]).

It is also worthwhile to remark that the GL derivative (15) is closely related to the Marchaud
derivative as discussed, for instance, in [12] (Chapter 20) and [25].

Another interesting feature is the correspondence between the standard Cauchy’s integral formula:

f (n)(z) =
n!

2πi

∫
C

f (u)
(u− z)n+1 du, z ∈ C, n ∈ N,

and its analogous generalized Cauchy fractional derivative which, as proved in [23], once C is chosen
as a complex U-shaped contour encircling the selected branch cut, it is equivalent to GLDα, namely:

GLDα f (z) =
Γ(α + 1)

2πi

∫
C

f (u)
(u− z)α+1 du, z ∈ C, α > 0.

In view of all these attractive properties, the GL derivative GLDα may appear as the ideal
generalization, to any positive real order, of the integer-order derivative. Unfortunately, there are
instead serious issues discouraging the use of the GL derivative in most applications. We observe that:

• The evaluation of GLDα f (t) at any point t requires the knowledge of the function f (t) over the
whole interval (−∞, t];



Mathematics 2019, 7, 407 7 of 21

• The series (15) converges only for a restricted range of functions, as for instance for bounded
functions in (−∞, t] or functions which do not increase too fast for t→ −∞ (we refer to [12] (§4.20)
for a discussion about the convergence of GLDα).

To face the above difficulties, the function f (t) can be replaced with some related functions.
Two main options are commonly used to perform this replacement and, as we will see, they actually
lead to the RL and Caputo’s fractional derivatives introduced in the previous Section.

3.1. Replacement with a Discontinuous Function: The RL Derivative

Once a starting point t0 has been selected, the function f (t) can be replaced, as illustrated in
Figure 1, by a function f R(t) which is equal to f for t ≥ t0 and equal to 0 otherwise:

f R(t) =

{
0 t ∈ (−∞, t0)

f (t) t ≥ t0
;

namely all the past history of the function f is assumed to be equal to 0 before t0.

t0

f(t)
fR(t)

Figure 1. Replacement of f (t) (dotted and solid lines) by f R(t) (solid line) for a given point t0.

It is quite intuitive to observe the following relationship between the GL derivative of f R(t) and
the truncated GL derivative (16) of the original function f (t) and, in the end, of its RL derivative.

Proposition 4. Let α > 0, m = dαe and f ∈ Cm[t0, T]. Then, for any t ∈ (t0, T] it is:

GLDα f R(t) = GLDα
t0

f (t) = RLDα
t0

f (t).

Proof. The application of the GL fractional derivative GLDα to f R(t) leads to:

GLDα f R(t) = lim
h→0

1
hα

∞

∑
j=0

(−1)j
(

α

j

)
f R(t− jh) = lim

h→0

1
hα

N

∑
j=0

(−1)j
(

α

j

)
f (t− jh)

where N = d(t− t0)/he is the smallest integer such that f R(t− jh) ≡ 0 for j = N + 1, N + 2, . . . and
hence GLDα f R(t) = GLDα

t0
f (t). The second equality comes from (17).

Unless f (t0) = 0, the replacement of f (t) with f R(t) introduces a discontinuity at t0 and, even
when f (t0) = 0, the function f R(t) may suffer from a lack of regularity at t0 due to the discontinuity of
its higher-order derivatives. As we will see, this discontinuity seriously affects the RL derivative of
several functions which, indeed, are often unbounded at t0. Therefore, to provide a regularization and
reduce the lack of smoothness introduced by f R(t), a different replacement is proposed.

3.2. Replacement with a More Regular Function: The Caputo’s Derivative

An alternative approach is based on the replacement, as depicted in Figure 2, of f (t) with a
function having a more regular behavior at t0, and whose regularity depends on α. The proposed
function is a continuation of f (t) before t0 in terms of its Taylor polynomial at t0, namely:
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f C(t) =

{
Tm−1[ f ; t0](t) t ∈ (−∞, t0)

f (t) t ≥ t0

where Tm−1[ f ; t0](t) is the same Taylor polynomial of f centered at t0 introduced in (8) and m = dαe.
It is clear that, unlike f R(t), the function f C(t) preserves a possible smoothness of f (t) at t0 since:

f C(t)
∣∣∣
t→t−0

= f (t0),
d
dt

f C(t)
∣∣∣
t→t−0

= f ′(t0), . . . ,
dm−1

dtm−1 f C(t)
∣∣∣
t→t−0

= f (m−1)(t0).

t0

f(t)

T0[f, t0](t)

T1[f
, t0](

t)

fC (t)

Figure 2. Replacement of f (t) (dotted and solid lines) by f C(t) (solid line) for a given point t0 and for
m = 0 (branch labeled T0[ f , t0](t)) and m = 1 (branch labeled T1[ f , t0](t)).

Before showing the effects of the replacement of f (t) by f C(t) we first have to consider the
following preliminary result.

Lemma 1. Let α > 0 and m = dαe. For any integer k = 0, 1, . . . , m− 1 it is:

∞

∑
j=0

(−1)
(

α

j

)
jk = 0.

Proof. When α ∈ N we refer to [26] (Proposition 2.1). Assume now α 6∈ N and, after using the
alternative formulation of the binomial coefficients, one obtains:

∞

∑
j=0

(−1)
(

α

j

)
jk =

1
Γ(−α)

∞

∑
j=0

Γ(j− α)

Γ(j + 1)
jk.

From [26] (Theorem 3.2) we know that the following asymptotic expansion holds:

n

∑
j=0

Γ(j− α)

Γ(j + 1)
jk =

∞

∑
`=0

F`nk−α−`, n→ ∞,

with coefficients F` depending on α and k but not on n. The proof hence immediately follows since
k− α < 0.

We are now able to study the relationship between the GL derivative of f C(t) and the truncated
GL derivative (16) and the Caputo’s derivative (6) of f (t).

Proposition 5. Let α > 0, m = dαe and f ∈ Cm[t0, T]. Then, for any t ∈ (t0, T] it is:

GLDα f C(t) = GLDα
t0

(
f (t)− Tm−1[ f ; t0](t)

)
= CDα

t0
f (t).

Proof. The application of the GL fractional derivative GLDα to f C(t) leads to:
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GLDα f C(t) = lim
h→0

1
hα

∞

∑
j=0

(−1)j
(

α

j

)
f C(t− jh)

= lim
h→0

1
hα

[
N

∑
j=0

(−1)j
(

α

j

)
f (t− jh) +

∞

∑
j=N+1

(−1)j
(

α

j

)
Tm−1[ f ; t0](t− jh)

]
Observe now that:

Tm−1[ f ; t0](t− jh) =
m−1

∑
k=0

(t− jh− t0)
k

k!
f (k)(t0) =

m−1

∑
k=0

1
k!

f (k)(t0)
k

∑
`=0

(
k
`

)
(t− t0)

`(−jh)k−`

and hence,

∞

∑
j=N+1

(−1)j
(

α

j

)
Tm−1[ f ; t0](t− jh) =

m−1

∑
k=0

1
k!

f (k)(t0)
k

∑
`=0

(
k
`

)
(−h)k−`(t− t0)

`
∞

∑
j=N+1

(−1)j
(

α

j

)
jk−`.

Since from Lemma 1 it is:

∞

∑
j=N+1

(−1)j
(

α

j

)
jk = −

N

∑
j=0

(−1)j
(

α

j

)
jk

we obtain,

∞

∑
j=N+1

(−1)j
(

α

j

)
Tm−1[ f ; t0](t− jh) = −

m−1

∑
k=0

1
k!

f (k)(t0)
k

∑
`=0

(
k
`

)
(−h)k−`(t− t0)

`
N

∑
j=0

(−1)j
(

α

j

)
jk−`

= −
N

∑
j=0

(−1)j
(

α

j

) m−1

∑
k=0

1
k!

f (k)(t0)
k

∑
`=0

(
k
`

)
(−hj)k−`(t− t0)

`

= −
N

∑
j=0

(−1)j
(

α

j

)
Tm−1[ f ; t0](t− jh)

from which the first equality follows. The second equality is consequence of Proposition 4 together
with Equation (9).

4. The Mittag–Leffler Function

The Mittag–Leffler (ML) function plays a special role in fractional calculus and in the representation
of fractional derivatives of elementary functions and will be better investigated later on. It is therefore
mandatory to recall some of the main properties of this function.

The definition of the two-parameter ML function is given by:

Eα,β(z) =
∞

∑
k=0

zk

Γ(αk + β)
, z ∈ C, (18)

where α and β are two (possibly complex, but with Re α > 0) parameters.
The importance of the ML function in fractional calculus is particularly related to the fact that it is

the eigenfunction of RL and Caputo’s fractional derivatives. It is indeed possible to show that for any
t > t0 and j = 0, 1, . . . , m− 1, with m = dαe, it is:
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RLDα
t0

y(t) = Ωy(t), y(t) = (t− t0)
α−j−1Eα,α−j

(
Ω(t− t0)

α
)
,

CDα
t0

y(t) = Ωy(t), y(t) = (t− t0)
jEα,j+1

(
Ω(t− t0)

α
)
,

and therefore the ML function has in fractional calculus the same importance as the exponential in the
integer-order calculus (indeed, the ML function generalizes the exponential since E1,1(z) = ez).

It is useful to introduce the Laplace transform (LT) of the ML function which, for any real t > 0
and z ∈ C, is given by:

L
(

tβ−1Eα,β(tαz) ; s
)
=

sα−β

sα − z
, Re s > 0, |zs−α| < 1, (19)

and, for convenience, we impose a branch cut on the negative real semi-axis in order to make the
function sα single valued.

The special instance E1,β(z) of the ML function will be encountered in the representation of
fractional integrals and derivatives of some elementary functions. E1,β(z) is closely related to the
exponential function and, as for instance emphasized in [27], it is:

E1,β(z) = ez · P̂β(z), P̂β(z) =
1

Γ(β− 1)

∞

∑
k=0

(−z)k

k!(β− 1 + k)
.

It is however more convenient to express the ML function as a deviation from the exponential
function according to the following result which will turn out to be useful in the subsequent sections.

Theorem 1. Let Ω ∈ C with | arg(Ω)| < π. For any β > −1 and t ≥ 0 it is:

t−βE1,1−β(Ωt) = ΩβetΩ + Fβ(t; Ω), (20)

where,

Fβ(t; Ω) =
sin
(

βπ
)

π

∫ ∞

0
e−rt rβ

r + Ω
dr. (21)

Proof. Thanks to Formula (19) for the LT of the ML we observe that:

L
(

t−βE1,1−β(Ωt) ; s
)
=

sβ

s−Ω
;

thus, the formula for the inversion of the LT allows to write this function as:

t−βE1,1−β(Ωt) =
1

2πi

∫ σ+i∞

σ−i∞
est sβ

s−Ω
ds, σ > max{0, Re Ω}.

The Bromwich line (σ− i∞, σ + i∞) can be deformed into an Hankel contour Hε starting at
−∞ below the negative real semi-axis and ending at −∞ above the negative real semi-axis after
surrounding the origin along a circular disc |s| = ε. Since Ω does not lie on the branch cut, the contour
Hε can be collapsed onto the branch-cut by letting ε→ 0. The contour thus passes over the singularity
Ω and the residue subtraction leads to:

t−βE1,1−β(Ωt) = Res
(

est sβ

s−Ω
, Ω
)
+ Fβ(t; Ω)

where, for shortness, we denoted:

Fβ(t; Ω) = lim
ε→0

1
2πi

∫
Hε

est sβ

s−Ω
ds.

The residue can be easily computed as:
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Res
(

est sβ

s−Ω
, Ω
)
= ΩβeΩt,

whilst to evaluate Fβ(t; Ω) we first decompose the Hankel contour into its three main paths:

Hε = γ1 + γ2 + γ3,


γ1 : s = re−iπ , ∞ > r ≥ ε,
γ2 : s = εeiθ , −π < θ < π,
γ3 : s = reiπ , ε ≤ r < ∞,

thanks to which we are able to write:

1
2πi

∫
Hε

est sβ

s−Ω
ds = I1 + I2 + I3, I` =

1
2πi

∫
γ`

est sβ

s−Ω
ds, ` = 1, 2, 3.

Since eiπ = e−iπ = −1, it is possible to compute:

I1 =
1

2πi

∫ ε

∞
e−rt rβe−iβπe−iπ

−r−Ω
dr = −e−iβπ

2πi

∫ ∞

ε
e−rt rβ

r + Ω
dr

I2 =
εβ+1

2π

∫ π

−π

eεt cos θ+i[(β+1)θ+εt sin θ]

ε cos θ −Ω + iε sin θ
dθ

I3 =
1

2πi

∫ ∞

ε
e−rt rβeiβπeiπ

−r−Ω
dr =

eiβπ

2πi

∫ ∞

ε
e−rt rβ

r + Ω
dr

and we observe that, due to the presence of the term εβ+1, where we assumed β > −1, the integral I2

vanishes when ε→ 0. For the remaining term I1 + I2 we note that:

eiβπ

2πi
− e−iβπ

2πi
=

sin βπ

π
,

and, hence, the representation (21) of Fβ(t; Ω) easily follows.

The relationship between the ML function and the exponential is even more clear in the presence
of an integer second parameter.

Proposition 6. Let m ∈ N and Ω ∈ C. For any t ∈ R it is:

tmE1,1+m(Ωt) =
1

Ωm

(
eΩt −

m−1

∑
j=0

Ωjtj

j!

)
,

t−mE1,1−m(Ωt) = ΩmeΩt.

Proof. The first equality directly follows from the definition (18) of the ML function since it is:

tmE1,1+m(Ωt) =
1

Ωm

∞

∑
k=0

Ωk+mtk+m

Γ(k + 1 + m)
=

1
Ωm

∞

∑
j=m

Ωjtj

Γ(j + 1)
=

1
Ωm

(
∞

∑
j=0

Ωjtj

j!
−

m−1

∑
j=0

Ωjtj

j!

)

whilst the second equality is a special case of Theorem 1.

The following result will prove its particular utility when studying the asymptotic behavior of
the fractional derivatives of some functions which will be expressed, in the next sections, in terms of
special instances of the ML function.

Proposition 7. Let β > −1, Ω ∈ C, | arg Ω| < π, and t ≥ 0. Then,

Fβ(t; Ω) = CβΩ−1t−β−1
(

1 +O
(
t−1)) , t→ ∞,
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with Cβ independent of t and Ω.

Proof. By a change of the integration variable we can write:

Fβ(t; Ω) = Ωβ sin βπ

π

∫ ∞

0
e−rΩt rβ

r + 1
dr = Ωβ sin βπ

π
Γ(β + 1)U(β + 1, β + 1, Ωt)

where U(a, b, z) is the Tricomi function (often known as the confluent hypergeometric function
of the second kind) defined for Re a > 0 and Re z > 0 and by analytic continuation
elsewhere [28] (Chapter 48). After putting Cβ = Γ(β + 1) sin(βπ)/π, it is therefore [29] (Chapter 7,
§ 10.1),

Fβ(t; Ω) ∼ t−β−1CβΩ−1
∞

∑
j=0

(−1)j Γ(β + 1 + j)
Γ(β + 1)

t−jΩ−j, t→ ∞, | arg Ω| ≤ 3
2

π − δ

for arbitrary small δ > 0. Hence the proof follows since the selection of the branch cut on the negative
real semi-axis.

5. Fractional Integral and Derivatives of the Power Function

Basic results on fractional integral and derivatives of the power function (t− t0)
β, for β > −1, are

available in the literature; see, for instance [9] for the RL integral:

Jα
t0
(t− t0)

β =
Γ(β + 1)

Γ(β + α + 1)
(t− t0)

β+α, (22)

for the RL derivative (as usual, m = dαe):

RLDα
t0
(t− t0)

β =

 0 β ∈
{

α−m, α−m + 1, . . . , α− 1
}

Γ(β + 1)
Γ(β− α + 1)

(t− t0)
β−α otherwise

(23)

and for the Caputo’s derivative:

CDα
t0
(t− t0)

β =


0 β ∈

{
0, 1, . . . , m− 1

}
Γ(β + 1)

Γ(β− α + 1)
(t− t0)

β−α β > m− 1

non existing otherwise

(24)

The absence of the Caputo’s derivative of (t− t0)
β for real β < m− 1 with β 6∈

{
0, 1, . . . , m− 1

}
is related to the fact that once the m-th order derivative of (t − t0)

β is evaluated the integrand in
Equation (6) is no longer integrable.

For general power functions independent from the starting point, i.e., for tk instead of (t− t0)
k,

we can provide the following results.

Proposition 8. Let α > 0 and m = dαe. Then for any k ∈ N:

1. GLDαtk = 0 for k < α;

2. RLDα
t0

tk =
k

∑
`=0

k!
(k− `)!Γ(`+ 1− α)

(t− t0)
`−αtk−`

0 ;

3. CDα
t0

tk =


0 if k < α

k

∑
`=m

k!
(k− `)!Γ(`+ 1− α)

(t− t0)
`−αtk−`

0 otherwhise
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Proof. For GLDαtk we first write:

(t− jh)k =
k

∑
`=0

(
k
`

)
t`(−h)k−` jk−`

and hence by using the Definition 4 it is possible to see that:

GLDαtk = lim
h→0

1
hα

∞

∑
j=0

(−1)j
(

α

j

)
(t− jh)k = lim

h→0

1
hα

k

∑
`=0

(
k
`

)
t`(−h)k−`

∞

∑
j=0

(−1)j
(

α

j

)
jk−` = 0

where we applied Lemma 1. For RLDα
t0

tk we expand:

tk =
k

∑
`=0

(
k
`

)
(t− t0)

`tk−`
0

and hence the proof immediately follows from Equation (23). Similarly for CDα
t0

tk by using
Equation (24).

Note that GLDαtk diverges when k > α. A representation of CDα
t0

tβ, for general real but not integer
β, is provided in terms of the hypergeometric 2F1 function in [9] (Appendix B).

6. Fractional Integral and Derivatives of the Exponential Function

The exponential function is of great importance in mathematics and in several applications, also
to approximate other functions. We therefore study here fractional integral and derivatives of the
exponential function.

Proposition 9. Let α > 0, m = dαe and t0 ∈ R. For any Ω ∈ C and t > t0 the exponential function eΩ(t−t0)

has the following fractional integral and derivatives:

Jα
t0

eΩ(t−t0) = (t− t0)
αE1,1+α(Ω(t− t0)),

RLDα
t0

eΩ(t−t0) = (t− t0)
−αE1,1−α(Ω(t− t0)),

CDα
t0

eΩ(t−t0) = Ωm(t− t0)
m−αE1,m−α+1(Ω(t− t0)),

and, moreover, for any t ∈ R and Re(Ω) ≥ 0 it is:

GLDαeΩt = ΩαeΩt.

Proof. By applying a term-by-term integration to the series expansion of the exponential function:

eΩt =
∞

∑
k=0

Ωktk

k!
, (25)

and thanks to Equation (22) and to Definition (18) of the ML function, we obtain:

Jα
t0

eΩ(t−t0) =
∞

∑
k=0

Ωk

k!
Jα
t0
(t− t0)

k =
∞

∑
k=0

Ωk

Γ(k + α + 1)
(t− t0)

k+α = (t− t0)
αE1,1+α(Ω(t− t0)).

For the evaluation of the RL derivative RLDα
0 eΩ(t−t0) we again consider the series expansion

Equation (25) and, by differentiating term by term thanks to Equation (23), it is:
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RLDα
t0

eΩ(t−t0) = RLDα
t0

∞

∑
k=0

Ωk(t− t0)
k

k!
=

∞

∑
k=0

Ωk

k!
RLDα

t0
(t− t0)

k =
∞

∑
k=0

Ωk(t− t0)
k−α

Γ(k− α + 1)

from which the proof follows thanks again to Definition (18) of the ML function. We proceed in a
similar way for CDα

t0
eΩ(t−t0) for which it is:

CDα
t0

eΩ(t−t0) = CDα
t0

(
m−1

∑
k=0

Ωk(t− t0)
k

k!
+

∞

∑
k=m

Ωk(t− t0)
k

k!

)
=

∞

∑
k=m

Ωk

k!
CDα

t0
(t− t0)

k =
∞

∑
k=m

Ωk(t− t0)
k−α

Γ(k− α + 1)

and, after a change j = k−m in the summation index and rearranging some terms we obtain:

CDα
t0

eΩ(t−t0) =
∞

∑
j=0

Ωj+m(t− t0)
j+m−α

Γ(j + m− α + 1)
= Ωm(t− t0)

m−α
∞

∑
j=0

Ωj(t− t0)
j

Γ(j + m− α + 1)

from which, again, the proof follows from Definition (18) of the ML function. To finally evaluate the
GL derivative GLDαeΩt we first apply its definition from Equation (15)

GLDαeΩt = lim
h→0

1
hα

∞

∑
j=0

(−1)j
(

α

j

)
eΩ(t−jh) = eΩt lim

h→0

1
hα

∞

∑
j=0

(−1)j
(

α

j

)
e−jhΩ

and, since we are assuming Re(Ω) ≥ 0, it is |e−hΩ| ≤ 1 and hence the binomial series converges:

∞

∑
j=0

(−1)j
(

α

j

)
e−jhΩ =

(
1− e−hΩ)α (26)

thanks to which we can easily evaluate:

GLDαeΩt = eΩt lim
h→0

(1− e−hΩ)α

hα
= eΩt lim

h→0

(
1− e−hΩ

h

)α

= ΩαeΩt

to conclude the proof:

Whenever α ∈ N, and hence m = α, the standard integer-order results,

Jm
t0

eΩ(t−t0) =
1

Ωm

(
eΩ(t−t0) −

m−1

∑
j=0

(t− t0)
j

j!

)
, DmeΩ(t−t0) = ΩmeΩ(t−t0)

are recovered. This is a direct consequence of Proposition 6 for Jα
t0

and RLDα
t0

whilst it comes from the
equivalence ez = E1,1(z) for CDα

t0
. It is moreover obvious for GLDα, for which we just observed that the

restriction Re(Ω) ≥ 0 is no longer necessary when α ∈ N since the binomial series (26) has just a finite
number of nonzero terms and hence converges for any Ω ∈ C.

The correspondence GLDαeΩt = ΩαeΩt appears as the most natural generalization of the
integer-order derivatives but it holds only when Re(Ω) ≥ 0. By combining Proposition 9 and
Theorem 1 it is immediately seen that RLDα

t0
eΩ(t−t0) and CDα

t0
eΩ(t−t0) can be represented as a deviation

from ΩαeΩt as stated in the following result.

Proposition 10. Let α > 0, m = dαe and t0 ∈ R. For any Ω ∈ C, | arg Ω| < π, and t > t0 it is:

RLDα
t0

eΩ(t−t0) = ΩαeΩ(t−t0) + Fα(t− t0; Ω),
CDα

t0
eΩ(t−t0) = ΩαeΩ(t−t0) + ΩmFα−m(t− t0; Ω).
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The terms Fα(t − t0, Ω) and ΩmFα−m(t − t0, Ω) describe the deviation of RLDα
t0

eΩ(t−t0) and
CDα

t0
eΩ(t−t0) from the ideal value ΩαeΩ(t−t0). From Proposition 7 we know that these deviations

decrease in magnitude, until they vanish, as t → ∞. Consequently, RLDα
t0

eΩ(t−t0) and CDα
t0

eΩ(t−t0)

asymptotically tend to ΩαeΩ(t−t0) (and hence to GLDαeΩ(t−t0) when Re Ω ≥ 0), namely:

RLDα
t0

eΩ(t−t0) ∼ CDα
t0

eΩ(t−t0) ∼ ΩαeΩ(t−t0), t→ ∞, | arg Ω| < π.

This asymptotic behavior can be explained by recalling that the above derivatives differ from the
way in which the function is assumed before the starting point t0 and the influence of the function on
(−∞, t0) clearly becomes of less and less importance as t goes away from t0, namely as t→ ∞.

We observe from Figure 3, where the values α = 0.7 and Ω = −0.5 + 2i have been considered,
that actually both RLDα

t0
eΩt and CDα

t0
eΩt converge towards ΩαeΩt, in quite a fast way, as t increases.

In all the experiments we used, for ease of presentation, t0 = 0 and the ML function was evaluated by
means of the Matlab code described in [30] and based on some ideas previously developed in [31].
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Figure 3. Comparison of RLDα
0 eΩt and CDα

0 eΩt with ΩαeΩt for α = 0.7 and Ω = −0.5 + 2i.

The unbounded nature of the real part of RLDα
t0

eΩt at the origin is due to the presence of the factor
(t− t0)

−α (see Proposition 9) but it can also be interpreted as a consequence of the replacement of
f (t) by f R(t) in the RL derivative, as discussed in Section 3.1, which introduces a discontinuity at the
starting point; the same phenomena will be observed for the cosine function but, obviously, not for the
sine function for which the value at 0 is the same forced in (−∞, 0).

It is not surprising that RLDα
t0

eΩt and CDα
t0

eΩt have the same imaginary part (which indeed overlap
in the second plot of Figure 3) when 0 < α < 1. The imaginary part of the exponential is indeed zero at
the origin and hence RL and Caputo’s derivatives coincide since relation in Equation (9) for 0 < α < 1
simply reads as CDα

t0
f (t) = RLDα

t0

(
f (t)− f (t0)

)
.

From Figure 3 we observe that the RL derivative converges faster to ΩαeΩt than the Caputo
derivative. This behavior can be easily explained by observing from Proposition 10 that as t→ ∞:

RLDα
t0

eΩ(t−t0) −ΩαeΩ(t−t0) = Fα(t− t0; Ω) ∼ (t− t0)
−α−1

CDα
t0

eΩ(t−t0) −ΩαeΩ(t−t0) = ΩmFα−m(t− t0; Ω) ∼ (t− t0)
m−α−1

which tell us that while CDα
t0

eΩ(t−t0) converges towards ΩαeΩ(t−t0) according to a power law with
exponent −1 < m− α− 1 < 0, the RL derivative RLDα

t0
eΩ(t−t0) converges according to a power law

with exponent −α− 1 < −1.
Similar behaviors, showing the convergence for t→ ∞ of the different derivatives, are obtained

also for α = 1.7 and Ω = −0.5+ 2i as we can observe from Figure 4. In this case, however, the imaginary
parts of RLDα

t0
eΩt and CDα

t0
eΩt are no longer the same since when 1 < α < 2 the relationship between

the two derivatives is given by CDα
t0

f (t) = RLDα
t0

(
f (t)− f (t0)− (t− t0) f ′(t0)

)
and the imaginary part

of f ′(t0) is not equal to 0 as the imaginary part of f (t0).
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Figure 4. Comparison of RLDα
0 eΩt and CDα

0 eΩt with ΩαeΩt for α = 1.7 and Ω = −0.5 + 2i.

7. Fractional Integral and Derivatives of Sine and Cosine Functions

Once fractional derivatives of the exponential are available, the fractional derivatives of the basic
trigonometric functions can be easily evaluated by means of the well-known De Moivre formulas:

sin Ωt =
eiΩt − e−iΩt

2i
, cos Ωt =

eiΩt + e−iΩt

2
,

which allow to state the following results.

Proposition 11. Let α > 0, m = dαe and Ω ∈ R. For t ≥ t0 the function sin
(
Ω(t− t0)

)
has the following

fractional integral and derivatives:

Jα
t0

sin
(
Ω(t− t0)

)
=

(t− t0)
α

2i

(
E1,1+α(+iΩ(t− t0))− E1,1+α(−iΩ(t− t0))

)
RLDα

t0
sin
(
Ω(t− t0)

)
=

(t− t0)
−α

2i

(
E1,1−α(+iΩ(t− t0))− E1,1−α(−iΩ(t− t0))

)
CDα

t0
sin
(
Ω(t− t0)

)
= imΩm (t− t0)

m−α

2i

(
E1,m−α+1(+iΩ(t− t0))− (−1)mE1,m−α+1(−iΩ(t− t0))

)
and, moreover, for any t ∈ R it is:

GLDα sin
(
Ωt
)
= Ωα sin

(
Ωt + α

π

2
)
.

Proof. The proof for Jα
t0

sin
(
Ω(t− t0)

)
, RLDα

t0
sin
(
Ω(t− t0)

)
and CDα

t0
sin
(
Ω(t− t0)

)
is a straightforward

consequence of Proposition 9. For GLDα sin
(
Ωt
)

we observe that the direct application of Proposition 9
leads to:

GLDα sin
(
Ωt
)
=

(+i)αΩαe+iΩt − (−i)αΩαe−iΩt

2i
(27)

and since e±iΩt = cos Ωt± i sin Ωt and (±i)α = e±iαπ/2, the proof follows from the application of
basic trigonometric rules.

Note that the assumption Re Ω ≥ 0 is no longer necessary for GLDα sin
(
Ωt
)

since the arguments
of the exponential functions in Equation (27) are always on the imaginary axis. Similar results can also
be stated for the cosine function and the proofs are omitted since they are similar to the previous ones.
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Proposition 12. Let α > 0, m = dαe and Ω ∈ R. For t ≥ t0 the function cos
(
Ω(t− t0)

)
has the following

fractional integral and derivatives:

Jα
t0

cos
(
Ω(t− t0)

)
=

(t− t0)
α

2

(
E1,1+α(+iΩ(t− t0)) + E1,1+α(−iΩ(t− t0))

)
RLDα

t0
cos
(
Ω(t− t0)

)
=

(t− t0)
−α

2

(
E1,1−α(+iΩ(t− t0)) + E1,1−α(−iΩ(t− t0))

)
CDα

t0
cos
(
Ω(t− t0)

)
= imΩm (t− t0)

m−α

2

(
E1,m−α+1(+iΩ(t− t0)) + (−1)mE1,m−α+1(−iΩ(t− t0))

)
and, moreover, for any t ∈ R it is:

GLDα cos
(
Ωt
)
= Ωα cos

(
Ωt + α

π

2
)
.

As for the exponential function, we observe that with the basic trigonometric functions, the GL
derivative GLDα generalizes the known results holding for integer-order derivatives.

Furthermore, in this case, with the help of Proposition 1, it is possible to see that the RL and
Caputo’s derivatives of sin

(
Ω(t − t0)

)
and cos

(
Ω(t − t0)

)
can be expressed as deviations from

Ωα sin
(
Ωt + α π

2
)

and Ωα cos
(
Ωt + α π

2
)

respectively. The following results (whose proof is omitted
since it is obvious) can indeed be provided.

Proposition 13. Let α > 0, m = dαe and Ω ∈ R. Then for any t ≥ t0 it is:

RLDα
t0

sin
(
Ω(t− t0)

)
= Ωα sin

(
Ω(t− t0) + α

π

2
)
+

Fα(t− t0; iΩ)− Fα(t− t0;−iΩ)

2i
CDα

t0
sin
(
Ω(t− t0)

)
= Ωα sin

(
Ω(t− t0) + α

π

2
)
+ imΩm Fα−m(t− t0; iΩ)− (−1)mFα−m(t− t0;−iΩ)

2i
RLDα

t0
cos
(
Ω(t− t0)

)
= Ωα cos

(
Ω(t− t0) + α

π

2
)
+

Fα(t− t0; iΩ) + Fα(t− t0;−iΩ)

2
CDα

t0
cos
(
Ω(t− t0)

)
= Ωα cos

(
Ω(t− t0) + α

π

2
)
+ imΩm Fα−m(t− t0; iΩ) + (−1)mFα−m(t− t0;−iΩ)

2

Since the function Fβ(t;±iΩ) asymptotically vanishes when t→ ∞, we can argue that:

RLDα
t0

sin
(
Ω(t− t0)

)
∼ CDα

t0
sin
(
Ω(t− t0)

)
∼ Ωα sin

(
Ωt + α

π

2
)
, t→ ∞

RLDα
t0

cos
(
Ω(t− t0)

)
∼ CDα

t0
cos
(
Ω(t− t0)

)
∼ Ωα cos

(
Ωt + α

π

2
)
, t→ ∞

(28)

as we can clearly observe from Figure 5 and 6.
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Figure 5. Comparison of RLDα
0 sin Ωt and CDα

0 sin Ωt with Ωα sin
(
Ωt + α π

2
)

for Ω = 1.5, α = 0.7
(left plot) and α = 1.7 (right plot).
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Figure 6. Comparison of RLDα
0 cos Ωt and CDα

0 cos Ωt with Ωα cos
(
Ωt + α π

2
)

for Ω = 1.5, α = 0.7
(left plot) and α = 1.7 (right plot).

The above results are mainly useful for studying the asymptotic behavior of different operators
applied to the sine and cosine functions. The representation of integrals and derivatives can be
simplified thanks to the following results.

Proposition 14. Let α > 0, m = dαe and Ω ∈ R. For t ≥ t0 the function sin
(
Ω(t− t0)

)
has the following

fractional integral and derivatives:

Jα
t0

sin
(
Ω(t− t0)

)
= Ω(t− t0)

1+αE2,2+α(−Ω2(t− t0)
2)

RLDα
t0

sin
(
Ω(t− t0)

)
= Ω(t− t0)

1−αE2,2−α(−Ω2(t− t0)
2)

CDα
t0

sin
(
Ω(t− t0)

)
=

{
(−1)

m−1
2 Ωm(t− t0)

m−αE2,m−α+1(−Ω2(t− t0)
2) odd m

(−1)
m
2 Ωm+1(t− t0)

m−α+1E2,m−α+2(−Ω2(t− t0)
2) even m

Proof. By using the series expansion of the ML function in Equation (18), for any β ∈ C it is:

Gm,β(z) := E1,m+β(+iz)− (−1)mE1,m+β(−iz) =
∞

∑
k=0

ikzk

Γ(k + m + β)

(
1− (−1)m+k)

and since,

1− (−1)j =

{
0 even j
2 odd j

,

it is simple to evaluate:

Gm,β(z) =


2

∞

∑
k=0

even k

ikzk

Γ(k + m + β)
= 2

∞

∑
k=0

i2kz2k

Γ(2k + m + β)
= 2E2,m+β(−z2) odd m

2
∞

∑
k=0

odd k

ikzk

Γ(k + m + β)
= 2

∞

∑
k=0

i2k+1z2k+1

Γ(2k + 1 + m + β)
= 2izE2,m+β+1(−z2) even m

.

Moreover it is sufficient to observe, thanks to Proposition 11, that:

Jα
t0

sin
(
Ω(t− t0)

)
=

(t− t0)
α

2i
G0,1+α(Ω(t− t0))

RLDα
t0

sin
(
Ω(t− t0)

)
=

(t− t0)
−α

2i
G0,1−α(Ω(t− t0))

CDα
t0

sin
(
Ω(t− t0)

)
= imΩm (t− t0)

m−α

2i
Gm,1−α(Ω(t− t0))

from which the proof immediately follows.
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Proposition 15. Let α > 0, m = dαe and Ω ∈ R. For t ≥ t0 the function cos
(
Ω(t− t0)

)
has the following

fractional integral and derivatives:

Jα
t0

cos
(
Ω(t− t0)

)
= (t− t0)

αE2,1+α(−Ω2(t− t0)
2)

RLDα
t0

cos
(
Ω(t− t0)

)
= (t− t0)

−αE2,1−α(−Ω2(t− t0)
2)

CDα
t0

cos
(
Ω(t− t0)

)
=

{
(−1)

m+1
2 Ωm+1(t− t0)

m−α+1E2,m−α+2(−Ω2(t− t0)
2) odd m

(−1)
m
2 Ωm(t− t0)

m−αE2,m−α+1(−Ω2(t− t0)
2) even m

Proof. The proof is similar to the proof of Proposition 14 where we consider now the function:

Hm,β(z) := E1,m+β(+iz) + (−1)mE1,m+β(−iz) =
∞

∑
k=0

ikΩk(t− t0)
k

Γ(k + m + β)

(
1 + (−1)m+k)

with,

1 + (−1)j =

{
2 even j
0 odd j

and for which we obtain:

Hm,β(z) =


2

∞

∑
k=0

odd k

ikzk

Γ(k + m + β)
= 2

∞

∑
k=0

i2k+1z2k+1

Γ(2k + 1 + m + β)
= 2izE2,m+β+1(−z2) odd m

2
∞

∑
k=0

even k

ikzk

Γ(k + m + β)
= 2

∞

∑
k=0

i2kz2k

Γ(2k + m + β)
= 2E2,m+β(−z2) even m

thanks to which the proof follows by applying Proposition 12.

The representation of RLDα
t0

sin
(
Ω(t− t0)

)
and RLDα

t0
cos
(
Ω(t− t0)

)
, together with other related

results, was already provided in [32] ([Remark 3). The above Propositions allow to extend to the RL
integral and to the Caputo’s derivative the results given in [32] solely for the RL derivative.

8. Concluding Remarks

We have discussed the evaluation of fractional integrals and fractional derivatives of some
elementary functions. An alternative way of deriving RL and Caputo’s derivatives from the GL has
also been presented. We have observed that for several functions, the GL derivative generalizes, in a
quite direct way, classic rules for integer-order differentiation. The RL and Caputo’s derivatives of
exponential, sine and cosine function have also been evaluated and represented in terms of special
instances of the ML function. We have also shown that they appear as deviations from the GL
derivative. The RL derivative converges, as the independent variable t→ ∞, faster than the Caputo’s
counterpart towards the GL derivative and an analytical explanation based on the asymptotic behavior
of the ML function has been provided. Thanks to available codes for the evaluation of the ML function,
the accurate computation of fractional derivatives of several elementary functions is possible.
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