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Abstract

Development of a multiphysics solver for complex coupled problems
involving thin shells: fluid-structure-electrophysiology interaction

by Alessandro Nitti

The present work is devoted to the development of a multiphysics solver for simulating two
classes of coupled problems.

A computational framework is designed to accurately predict the elastic response of thin shells
undergoing large displacements induced by local hydrodynamic forces, as well as to resolve the
complex fluid pattern arising from its interaction with an incompressible fluid. Within the con-
text of partitioned algorithms, two different approaches are employed for the fluid and structural
domain. The fluid motion is resolved with a pressure projection method on a Cartesian structured
grid. The immersed shell is modeled by means of a NURBS surface, and the elastic response is
obtained from a displacement-based Isogeometric Analysis relying on the Kirchhoff-Love theory.
The two solvers exchange data through a direct-forcing Immersed Boundary approach, where the
interpolation/spreading of the variables between Lagrangian and Eulerian grids is implemented
with a Moving Least Squares approximation, which has proven to be very effective for moving
boundaries. In this scenario, the isoparametric paradigm is exploited to perform an adaptive col-
location of the Lagrangian markers, decoupling the local grid density of fluid and shell domains
and reducing the computational expense. The convergence rate of the method is verified by re-
finement analyses, segregating the Eulerian/Lagrangian refinement, which confirms the expected
scheme accuracy in space and time. The effectiveness of the method is then verified against
different test–cases of engineering and biologic inspiration, involving fundamentally different
physical and numerical conditions, namely: i) a flapping flag, ii) an inverted flag, iii) a clamped
plate, iv) a buoyant seaweed in a free stream. Both strong and loose coupling approaches are
implemented to handle different fluid-to-structure density ratios, providing accurate results.

In second instance, we propose an IGA approximation of the system of equations describing
the propagation of an electrophysiologic stimulus over a thin cardiac tissue with the subsequent
muscle contraction. The underlying method relies on the monodomain model for the electri-
cal sub-problem. This requires the solution of a reaction-diffusion equation over a surface in
the three-dimensional space. Exploiting the benefits of the high-order NURBS basis functions
within a curvilinear framework, the method is found to reproduce complex excitation patterns
with a limited number of degrees of freedom. Furthermore, the curvilinear description of the
diffusion term provides a flexible and easy-to-implement approach for general surfaces.
The electrophysiological stimulus is converted into a mechanical load by means of the well-
established active strain approach. The multiplicative decomposition of the deformation gradient
tensor is grafted into the classical finite elasticity weak formulation, providing the necessary ten-
sor expressions in curvilinear coordinates. The expressions derived provides what is needed to
implement the active strain approach in standard finite-element solvers without resorting to ded-
icated formulations. Such a formulation is valid for general three-dimensional geometries and
isotropic hyperelastic materials. The formulation is then restricted to Kirchhoff-Love shells by
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means of the static condensation of the material tensor. The purely elastic response of the struc-
ture is investigated with simple static test-cases of thin shells undergoing different active strain
patterns. Eventually, various numerical tests performed with a staggered scheme illustrate that
the coupled electromechanical model can capture the excitation-contraction mechanism over thin
tissue and reproduce complex curvature variations.

Keywords: Multiphysics problems, Partitioned solvers, Fluid-structure interaction, Kirchhoff-
Love shell, Incompressible flows, Electromechanical activation, Monodomain model, Active
strain
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1 Introduction

1.1 Coupled multiphysic solvers

The increase in computational capability for the purpose of scientific prediction or engineering
design, makes the coupling of multiple physical phenomena very popular in the scientific com-
munity. The report by Brown et al. [1], Scientific grand challenges: Crosscutting technologies
for computing at the exascale, emphasizes that:

“The issue of coupling models of different events at different scales and governed by different
physical laws is largely wide open and represents an enormously challenging area for future
research.”

Following the semantic definition provided in [2], a multiphysic system consists of more than one
component governed by its own principle(s) for equilibrium, conservation or constitutive laws.
The coupling may occur in the bulk, i.e. through source terms or constitutive relations active in
the overlapping domains of the individual sub-problems, otherwise it may occur over an ideal-
ized interface that is lower dimensional, or a narrow buffer zone. Such a distinction represents
a fundamental issue for analysts because each of the two coupling provide different numerical
challenges to be addressed.
The leading motivations for investing computational resources on multiphysic computing are to
relax assumptions of decoupling and to provide insights on the coupling mechanisms themselves
[2]. However, the claim for a coupled multiphysics might not correspond to actual mathemati-
cally coupled solvers. Operator splitting or segregated solvers are often the choice to overcome
computational and algorithmic difficulties. However, coupling individual simulations may in-
troduce limitations on stability, accuracy, or robustness that are more severe than the limitations
imposed by the individual components. Hence, care must be taken in the coupling of segregated
solvers.
On the other hand, many reasons push analysts to pull back on monolithic solvers. These often
rely on algebraic paradigms whose linearization brings a discrete equation in which individual
components are represented by diagonal blocks and the coupling between them, as off-diagonal
blocks [2]. Such formulations often let the analysts face serious numerical issues such as ill-
conditioned matrices, unpractical numerical stability limits, complications in the parallel imple-
mentation, problematic handling of the coupling variables.
In the present work we conceptualize two coupled solvers in separate frameworks. First a Fluid-
Structure Interaction (FSI) solver is presented and analyzed, then a Electromechanical activation
solver is proposed. Both coupled problems are resolved in a segregated arrangement. The mathe-
matical models and the algorithmic formulations are presented, with focus on numerical aspects,
including coupling issues.
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1.2 Fluid-structure interaction: objectives and contribution

The development of accurate numerical techniques to investigate the interaction of a shell struc-
ture and an incompressible flow is still a challenging task in computational mechanics. In this
connection, the fluid-structure interaction issue consists of resolving: i) the elastic response of a
shell undergoing finite displacements induced by local hydrodynamic forces, ii) the simultaneous
flow–field evolution arising from the interaction with the body interface. The inherently nonlin-
ear nature of these applications requires robustness, minimal numerical dissipation and accuracy
in time and space, to genuinely capture the desired FSI mechanism.
A partitioned approach is presented in this work, with the aim of providing the most suitable
solution technique for the fluid and structural sub–problems. The elastic problem is resolved by
means of a finite element formulation in the Isogeometric Analysis (IGA) context [3]. IGA has
shown superior convergence properties compared to classical finite elements on a per degree-of-
freedom basis [4, 5], resulting in a computationally attractive option within a partitioned–FSI
framework. Moreover, the NURBS-based IGA [6, 7], employed in the present work, has proven
to be perfectly suitable for C1 conforming thin shells [8, 9]. The flow field is instead resolved
in a Finite Difference (FD) environment. Beyond the numerical simplicity of this approach, a
low–order FD approximation of spatial derivatives on a staggered grid does preserve kinetic en-
ergy and circulation in absence of time-differencing errors and viscosity [10, 11]. This makes the
FD approximation convenient for the resolution of separated flow regions and complex vortex
dynamics at moderate Reynolds numbers [12]. A reasonable computational expense would be
required to perform Direct Numerical Simulations (DNS) of such flows with an adequate grid
scaling. To the knowledge of the authors, this represents the first implementation of an IGA tool
into a FD environment for FSI applications. Successful partitioned algorithms for FSI applica-
tions can be found in [13, 14, 15, 16]. With minimal interweaving of solvers data structure, the
coupling operations might be simplified, but the ensuing time-staggered procedure can lead to
numerical instabilities in case of low phase–density ratios [17, 18, 19].
The FSI tool presented here is devoted to the simulation of FSI at moderate and low Reynolds
number regimes, which represent a broad range of real cases occurring in many biologic and
engineering areas. Different numerical features of the present approach are revealed by inves-
tigating the interface conditions and the variable transfer. Then, the numerical framework is
verified against several three-dimensional cases, involving different numerical and physical chal-
lenges: the flapping of a hinged flag, the dynamic regimes of an inverted flag, the flow-induced
vibrations of a plate, the reconfiguration of a buoyant seaweed. Moreover, an accuracy analysis
of the overall procedure is provided with respect to the pinned flag case.
The author would like to clarify that limited analyses are presented on the unplugged fluid
dynamic- and shell-solver, since they have been developed and extensively validated by other
authors. To this extent the corresponding references are provided.

1.3 Electrophysiologic stimulation: objectives and contribution

The second part of this works is devoted to the development of a Galerkin solver which aims at
simulating the coupled electromechanical excitation of a thin cardiac muscle or a tissue slice. It
potentially represents an attractive tool for computational biologists, to assist and optimize the
expensive experimental practice. A numerical framework for the electromechanical activation
of cardiac tissues can be exploited for variegated purposes, from the replication of pathological
states [20] to the possibility to perform clinical studies with patient specific simulations of iso-
lated muscular films [21]. On the other hand, numerical simulations can help engineers in the
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realization of actuators and soft robotic devices for bio-inspired locomotion built with cultured
animal myocardial tissue [22].
In this scenario we propose a segregated approach, in which both the electrophysiologic and
mechanical problem is resolved by means of IGA. The propagation of an electrophysiological
stimulus is described by the monodomain model, consisting of a reaction-diffusion partial differ-
ential equation accompanied by a set of nonlinear ordinary differential equation describing the
evolution of the ionic current fluxes. A numerically effective discretization approach is proposed,
both in time and space. A novel contribution lays in the IGA implementation of the diffusion term
where a local curvilinear description of the differential operators is exploited to offer a flexible
approach for arbitrary surfaces in the three-dimensional space. Moreover, the effectiveness of
the IGA approximation is tested with different ionic current integration strategies. Eventually,
the physical accuracy of the method is validated against benchmark tests from recent literature,
whereas the numerical implementation is verified by means of convergence analyses and numer-
ical experiments.
The determination of the loading condition arising from the electrophysiologic excitation re-
quires the knowledge of the mechanical effect deriving from the contraction of the sub-cellular
components in the muscle tissue. A common practice in computational electrophysiology, is the
approximation of the mechanical response of the tissue with a continuum model, based on the
concept of active strain or active stress. In the present work the active strain approach [23] is
embedded in the weak formulation for Kirchhoff-Love shells. This imply that the fiber contrac-
tion is rewritten in the mechanical balance of forces as a prescribed deformation, rather than as
an additive stress contribution. This approach allows a direct incorporation of the micro-level
information on the fiber contraction in the kinematics, without the intermediate transcription
of their role in terms of the stress [24]. To the knowledge of the author this represents the first
implementation of the active strain approach in a shell model. Such and approach entails the mul-
tiplicative decomposition of the tensor deformation gradient, where the active part is provided
by a phenomenological relation with the transmembrane potential. In our numerical framework
the active strain treatment is embedded in a classical total Lagrangian weak formulation for finite
elasticity, whereas the majority of the analysts make use of an Euler-Lagrange formulation. The
necessary tensor calculations are provided in order to facilitate the implementation of the active
strain treatment in a common finite elasticity solver. Furthermore, all quantities are presented in
local curvilinear coordinates for general three-dimensional solids. In second instance the shell
hypotheses are enforced by the static condensation of the material tensor. The passive elastic
response of the unplugged active strain solver is investigated by numerical experiments and con-
vergence analyses. Eventually, we tested the coupled electromechanical method with two simple
cases providing in-plane and out-of-plane deformations.

1.4 Outlines

The thesis is outlined as follows. Chapters 3-6 are dedicated to the fluid-structure interaction
solver, while chapters 7-9 are for the electromechanical solver:

Chapter 2: The basics of NURBS-based Isogeometric Analysis are reviewed. Brief re-
marks on the NURBS surface representation are provided. The IGA paradigm is presented
with emphasis on the differences to traditional FEA;

Chapter 3: The formulation of the isogeometric Kirchhoff-Love (KL) shell is presented.
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First, the geometric approximation of the KL model are provided. Subsequently, the com-
patibility and constitutive equations are drawn. Eventually, the spatial and temporal dis-
cretization is briefly discussed.

Chapter 4: The governing equations and the numerical method used for the Direct Numer-
ical Solution (DNS) of the incompressible Navier-Stokes equations are described;

Chapter 5: A brief overview of most widespread Immersed Boundary methods for incom-
pressible flows is provided. The Immersed Boundary procedure employed in the present
work is described in detail;

Chapter 6: The fluid- and solid-phase solvers are verified against simple benchmark cases.
The FSI tool is then tested with numerical experiments to verify the accuracy of the
methodology. Several numerical results are provided, covering a wide range of numeri-
cal and physical challenges;

Chapter 7: The physiologic excitation of cardiac muscle is described from the macroscopic
perspective, and the main issues concerning the continuum-level modeling are addressed.
The bidomain and monodomain models, are derived from electrostatic arguments:

Chapter 8: The implementation of the monodomain model over a surface, within an IGA
framework is described. Such an implementation is assessed by means of convergence
analyses, as well as it is tested against physical accuracy based on the depolarization front
velocity. The curvilinear description of the diffusion effects is checked by comparing the
results against a classical two-dimensional finite element method.

Chapter 9: An active strain model for the activation is presented and efficiently embedded
in a total Lagrangian IGA formulation. The enforcement of the KL shell approximation is
provided by static condensation of the material tensor. The unplugged active strain solver
is assessed by convergence analyses. Eventually, two simple coupled electromechanical
tests are presented and analyzed.
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2 NURBS-based Isogeometric Analysis

2.1 The concept of Isogeometric Analysis

The Isogeometric Analysis (IGA) was developed by Hughes et al. [6, 3] as an exact-geometry,
cost-effective alternative to classical Finite Element Analysis (FEA). The initial motivation be-
hind the IGA was the desire to reduce the engineering time taken for the generation of a suitable
computational mesh, by using a single mathematical representation for both Computer Aided
Design (CAD) and analysis.
In traditional FEA, low-order Lagrange polynomials (mostly linear) are used as basis functions
for the analysis, whereas CAD technologies make use of splines-like objects since they provide
enhanced control on local derivatives. Thus, the geometric model arising from the CAD stage
needs to be converted into an object suitable for the analysis. The CAD model is approximated
into a piecewise-linear mesh, whose quality of the approximation depends on the mesh density.
The meshing phase is a time-consuming process which introduces a geometric approximation,
and it presents several challenges for analysts, who have to take care of the mesh regularity and
smoothness. The isogeometric analysis allows to bypass the meshing stage by exploiting the ba-
sis functions used to define the geometry as test functions for the solution field. In classical FEA
instead, the basis functions which define the polygonal mesh are exploited as basis functions
for analysis (isoparametric paradigm). Furthermore, the higher regularity of IGA basis functions
with respect to FEA provides a superior convergence rate in all the fields in which high continuity
plays a crucial role, e.g., the study of structural vibrations [4, 25], the analysis of nearly incom-
pressible solids [26], biologic structural elements [27, 28], turbulent flows and fluid–structure
interaction [29]. A remarkable example has been presented in [27], and it is reported here to
provide a quantitative analogy between IGA and FEA. IGA was tested against classic FEA in
a bending analysis on a endovascular stent, and it provided more accurate results with at least
one order of magnitude fewer degrees of freedom than classical FEA, both on local and global
quantities (see Fig.2.1).
All functions employed for a CAD model could be used as basis functions for IGA, provided that
they fulfill the necessary conditions for basis functions, which are listed in the following section.
NURBS (Non-Uniform Rational B-Splines) are the most widespread technology in today’s CAD
programs and their basis functions fulfill the mathematical requirements of test functions, there-
fore NURBS represent a straightforward choice for analysis. Further arguments which led the
author to the choice of a NURBS-based IGA solver are illustrated in the next sections.

2.2 NURBS surface representation

NURBS are a generalization of B-Splines and most of the features of the B-Spline technology are
extended to NURBS, therefore some introductory considerations about B-Splines are provided.
A B-Spline is a non-interpolating, piecewise polynomial curve. It is defined by a set of control
points Pi, i = 1...n, a polynomial degree p and a so called knot vector Ξ = [ξ1, ξ2, ..., ξn+p+1].
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Figure 2.1: Convergence plots for a nonlinear bending analysis of a carotid artery
stent, presented in [27]. The deformed configuration is reported on the right
panel, whilst in the other panels are reported the convergence plot of a local and

an integral quantity.

The knot vector is a set of parametric coordinates ξi in non-descending order which divide the B-
Spline into sections. A B-Spline basis function is C∞ continuous inside a knot span, i.e. between
two distinct knots, and Cp−1 continuous at a single knot. A knot value can have multiplicity
greater than one. At a knot of multiplicity k the continuity is Cp−k. If the first and the last knot
has multiplicity p + 1, the knot vector is called open. In a B-Spline with an open knot vector the
first and the last control point are interpolated and the curve is tangential to the control polygon
at the start and the end of the curve. Open knot vectors are standard in CAD applications and are
assumed for the remainder of this work.
B-Spline basis functions are computed by the Cox-deBoor recursion formula [30]. It starts for
p = 0 with:

Ni,0(ξ) =

 0 ξi ≤ ξ < ξi+1 ,
1 otherwise .

(2.1)

For p ≥ 1:

Ni,p(ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1(ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni,p−1(ξ) . (2.2)

From this formulation some important properties of B-Spline basis functions can be deduced:

• Local support. A basis function Ni,p(ξ) is non-zero only in the interval [ξi, ξi+p+1];

• Partition of unity:
∑n

i=1 Ni,p(ξ) = 1;

• Non-negativity: Ni,p(ξ) ≥ 0;

• Linear independence:
∑n

i=1 αiNi,p(ξ) = 0, with alphai real coefficients;

A B-Spline surface is computed by the tensor product of B-Spline curves in two parametric
dimensions ξ and η. It is defined by a net of n × m control points, two knot vectors Ξ and H ,
two polynomial degrees p and q (which do not need to be equal), and the corresponding basis
functions Ni,p(ξ) and M j,q(η). It is described by the formula:

S(ξ, η) =

n∑
i=1

m∑
j=1

Ni,pM j,q(ξ)Pi j . (2.3)
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NURBS are non uniform rational B-Splines. For NURBS each control point has additionally to
its coordinates an individual weight wi. Such a point Pi(xi, yi, zi,wi) can be represented with ho-
mogeneous coordinates Pw

i (wixi,wiyi,wizi,wi) in a projective R4 space if one consider a NURBS
curve C(ξ) as the projection of a B-Spline in R4 with homogeneous control points onto R4 [30]:

C(ξ) =

∑n
i=1 Ni,p(ξ)wiPi∑n

i=1 Ni,p(ξ)wi
(2.4)

Then, a NURBS surface is defined as:

S(ξ, η) =

∑n
i=1

∑m
j=1 Ni,p(ξ)M j,q(η)wi, jPi, j∑n

k=1
∑m

l=1 Nk,p(ξ)Ml,q(η)wk,l
. (2.5)

NURBS are able to exactly represent some important geometric entities, like e.g. conic sections
(i.e. circles, cylinders, spheres etc.). Moreover, a B-Spline is a special case of a NURBS where
all weights are equal and is therefore automatically contained in all the derivations for NURBS-
based elements. Fig. 2.3 shows an example of a NURBS patch defined with cubic basis functions
and open knot vectors, also illustrated within the index space. The patch control net is identified
by red dots. Due to the open knot vectors the control points at the vertices of the surface are
interpolatory. The black lines laying on the surface mark the knots which divide the surface into
elements.
The intrinsic nature of NURBS patches entails interpolatory control points at the patch edges,
therefore only C0 continuity is obtained in those edges. The C0 continuity means that only the
primitive field variables are coupled at the patch interface, but not their derivative. For instance,
in a mechanical sense, the C0 continuity represents a hinge connection, where the respective
bending moments cannot be transferred. It represents an obstacle in the original intent of ex-
ploiting the same geometry for CAD representation and analysis. This is often verified in the
context of NURBS-based IGA, because the tensor-product nature of NURBS patches makes the
representation of even simple object impossible without inner interpolatory control points. For
instance, any revolution surface have to be represented with C0 edges. However, the enforce-
ment of the local suitable continuity has been subject of intensive research since the first IGA
applications, and several solutions have been presented in literature [31, 32, 33].

2.3 The IGA element

The NURBS representation, with the features illustated above, provides remarkable enhance-
ments in the analysis. Following the most widespread nomenclature, a NURBS element is de-
fined by the knot span. Each element is thus limited by knots of arbitrary multiplicity. However,
differently from FEA, the knots do not constitute the nodes of the analysis, which are defined
instead at the control points. They carry the degrees of freedom for the analysis and boundary
conditions are applied to them.
The non-interpolatory feature of NURBS control points provide superior accuracy in the repre-
sentation of thin layers, discontinuities and steep gradients in the solution of linear and nonlinear
problems, whereas it is well known that typical finite element shape functions, such as Lagrange
polynomials, oscillate in attempting to fit nearly-discontinuous data. In this respect, an example
proposed by [6] is reported in Fig. 2.2 for a clarity purpose. In the left panel Lagrange polynomi-
als of orders three, five, and seven interpolate a discontinuity represented by eight data points in
a two-dimensional space. As the order is increased, the amplitude of the oscillations increases.
NURBS behave very differently when the data are viewed as control points. In the right panel the
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Figure 2.2: Lagrange interpolation oscillates when faced with discontinuous data
(left panel). NURBS functions exhibit the variation diminishing property for the

same data (right panel). Figure adapted from [6].

NURBS curves exhibit a monotone trend, illustrating the so called variation diminishing prop-
erty of NURBS.
In IGA, each element has its corresponding basis functions, which are not confined to one ele-
ment but extend over the neighborhood elements. This is a very important difference to classical
finite elements because it allows high continuity of shape functions over the element boundaries.
The high-order nature of the basis functions generally results in higher accuracy compared to
low-order elements. Furthermore, the high continuity in the element basis functions allows for
a smoother representation of the solution derivatives. This features was found to provide more
accurate derived physical quantities, such as strains and stresses. On the other hand one must
consider that the elements are interconnected and not independent of each other, then an uncon-
ventional implementation strategy might be necessary.

2.4 Mesh refinement

Both h-refinement and p-refinement strategies assume a different connotation in NURBS-based
IGA with respect to FEA. The h-refinement is performed by a knot insertion procedure, and the
p-refinement is performed by degree-elevation of the basis functions [30]. It is worth noting that
these refinement strategies do not change the topology of the NURBS patch. This means that in
each refinement step, the geometry is represented exactly and therefore a refined mesh can be
further refined without the necessity of going back to the original CAD model.
The knot insertion procedure allows the arbitrary subdivision of the elements in the compu-
tational domain. Nevertheless, the tensor-product definition of a NURBS patch lets any knot
inserted in the ξ-direction extend over the whole patch in the η direction and vie-versa. Hence,
pure local refinement is not possible for NURBS patches. Such a drawback has been addressed
by using T-Splines as alternative representation, which are not confined to a tensor product struc-
ture [34].
The p-refinement provides a superior convergence rate in case of Gaussian quadrature rule at
the cost of a minimal increase in degrees of freedom, since it produces a minimal increase in
the number of control points with respect to h-refinement. p-refinement and h-refinement do not
commute because while order elevation preserves the local continuities, the insertion of a knot
decreases the continuity at its location. As a matter of fact, in common practice order elevation
is always performed before knot insertion.
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Figure 2.3: Schematic illustration of a NURBS surface with relevant spaces.
Open knot vectors and quadratic C1-continuous basis functions are used. Also
depicted are C1-quadratic basis functions determined by the knot vectors. Figure

taken from [3].

2.5 Motivation

Most of the features of the NURBS-based IGA approach make this tool computationally efficient
for the problems addressed in this work. In first instance, IGA provided a new effective frame-
work for the discretization of high-order derivatives over the computational domain. Hence, the
high continuity of the geometry matches the necessity of discretizing the second derivative of
the curvature, which is required by the Kirchhoff-Love weak formulation. Since a minimum C1

continuity can be easily achieved at the internal surface points, no specific treatment are needed
to implement a Kirchhoff-Love shell model.
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In second instance, the IGA approach is expected to provide superior performance in the ap-
proximation of the electropysiological excitation mechanisms. The excitation of an active tissue
take place through the propagation of a depolarization front over a reactive domain. Such a phe-
nomenon requires the solution of a reaction-diffusion equation with nearly-discontinuous scalar
fields. The high continuity of NURBS basis function an the variation diminishing property of
the IGA approach can lead to a superior accuracy in the front velocity, and reduced oscillations
in the representation of the discontinuities, on a peer-degrees-of-freedom basis with respect to
classic FEA.
According to these arguments, NURBS-based IGA is employed as analysis tool in the present
work.
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3 A Kirchhoff-Love shell model

3.1 Geometry of a Kirchhoff-Love shell

The Kirchhoff-Love (KL) shell theory belongs to the category of direct approaches, where the
kinematics of the body is formulated from proper assumptions, and not from a degeneration
of the three-dimensional continuum mechanics. Hence, the shell is treated as two-dimensional
manifold in the three-dimensional space ab initio. All direct shell theories do neglect the normal
strains and stresses in the thickness direction. Furthermore, the mechanics of a Kirchhoff-Love
shell is founded on the additional assumptions:

• Any cross section is assumed to remain straight during deformation.

• Any cross section that is normal to the middle surface, remains normal to the middle sur-
face in the deformed configuration.

A straight cross section in the deformed configuration entails a linear strain distribution through
the thickness. In second instance, the assumption of normal cross section in the deformed con-
figuration means that the shell can be completely represented by its middle surface. A geometric
description of the middle surface with the relevant base vectors used in this work is presented in
Fig. 3.1. From a mechanical perspective, the assumption of cross sections remaining normal to
the midsurface means that transverse shear strains are neglected. Commonly this is considered
a reasonable assumption for a shell slenderness ratio r/h > 20, with r being the local radius of
curvature and h being the shell’s thickness [35][36].
In the present chapter, these assumptions are applied to the kinematic, constitutive, and equilib-
rium equations of solid mechanics in total Lagrangian form. Italic letters a, A indicate scalars,
lower case bold letters a indicate vectors, upper case bold letters A indicate second order ten-
sors and upper case blackboard-bold letters A indicate fourth order tensors. The operators “·”,
“×” and “⊗” denote the scalar product, the vector product ant the tensor product of general vec-
tors, respectively, whereas the operator “:” denotes the double contraction between tensors. All
geometric variables denoted by ˚(·) refer to the reference configuration. The compact (matrix)
notation is used when convenient for the presentation of general equations, while detailed deriva-
tions are presented in index notation. Latin indices take on values {1, 2, 3}, while Greek indices
take on values {1, 2}. Convective curvilinear coordinates θi are used, where θα are the surface
coordinates of the shell’s midsurface and θ3 is the thickness coordinate. The letter a indicates
a base vector on the shell’s midsurface while g indicates a base vector in the shell continuum.
Eventually, indices denote contravariant entities and pedices refer to covariant entities. Given a
point r on the midsurface, the tangent covariant base vectors of the midsurface, and the normal
base vector are obtained by:

aα =
∂r
∂θα

, (3.1)

a3 =
a1 ∧ a2

|a1 ∧ a2|
. (3.2)
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Figure 3.1: Geometry of a surface in the three-dimensional space. Figure adapted
from [37]

A representation of the local and global frames of reference is provided in figure 3.1. The global
Cartesian base vectors are denoted by the ei, the local Cartesian base vectors by Ai, the local
curvilinear base vectors by aα. The metric coefficients of the midsurface are obtained by the first
fundamental form of surfaces [36]:

Aαβ = aα · aβ . (3.3)

Curvature coefficients of the midsurface are obtained by the second fundamental form:

Bαβ = −aα ·
∂a3

∂θβ
. (3.4)

The position vector x in the shell continuum is defined as:

x = θαaα + θ3a3 , (3.5)

whose derivative with respect to a curvilinear coordinate yields the base vectors gα:

gα =
∂x
∂θα

= aα + θ3 ∂a3

∂θα
, (3.6)

g3 = a3 . (3.7)

The base vectors can be used to define the metric tensor G, which can be expressed in terms of
covariant and contravariant basis:

G = Gαβ gα ⊗ gβ = Gαβ gα ⊗ gβ . (3.8)

According to the definition (3.5), the metric coefficients in the shell continuum are defined by:

Gαβ = Aαβ − 2θ3Bαβ +
(
θ3

)2 ∂a3

∂θα
∂a3

∂θβ
. (3.9)
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For thin and moderately thick shells, the quadratic term is neglected [36]:

Gαβ = Aαβ − 2θ3Bαβ . (3.10)

3.2 Kinematic measures on surfaces

The deformation gradient F is defined by the base vectors in the reference and current configura-
tions:

F = gi ⊗ g̊i , (3.11)

FT = g̊i ⊗ gi , (3.12)

F−1 = g̊i ⊗ gi , (3.13)

F−T = gi ⊗ g̊i . (3.14)

A suitable strain measure used for finite strain applications is given by the Green-Lagrange strain
tensor [38]:

E =
1
2

(
FT F − I

)
. (3.15)

Recalling that the identity tensor I is identical to the metric tensor in the reference configuration,
it results:

E =
1
2

[(
g̊i ⊗ gi

) (
g j ⊗ g̊ j

)
−Gi j

(
g̊i ⊗ g̊ j

)]
=

1
2

(
Gi j − G̊i j

) (
g̊i ⊗ g̊ j

)
.

(3.16)

In a Kirchhoff-Love shell only the in-plane coefficients of the strain tensor are considered:

Eαβ =
1
2

(
Gαβ − G̊αβ

)
. (3.17)

Following the definition of metric coefficients in the shell continuum (3.10), the previous equa-
tion yields the split of the deformation tensor into membrane and bending (out-of-plane) effects:

Eαβ =
1
2

(
Aαβ − Åαβ

)
+ θ3

(
B̊αβ − Bαβ

)
(3.18)

It is worth noting that the strain coefficients are constant through the thickness.
The right Cauchy-Green deformation tensor is defined in the shell continuum instead, as it must
be integrated over the thickness to provide the stress resultant:

C = FT F = Gi j
(
g̊i ⊗ g̊ j

)
. (3.19)

According to Eq. (3.19), which is valid for a general 3D continuum, the covariant coefficients
of the deformation tensor are identical to the metric coefficients of the deformed configuration,
i.e., Ci j = Gi j. However, following the assumptions of the thin shell model, Ci3 = C3i = 0,
while in the transverse normal direction C33 = 1. Accordingly, the covariant deformation tensor
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coefficients are:

Ci j =

 G11 G12 0
G21 G22 0

0 0 1

 . (3.20)

3.3 Constitutive equations

The relation between stress and strain is provided by the constitutive equation. Similarly to the
strain tensor, there exist different definitions of stress tensor. The energetically conjugate quantity
to the Green-Lagrange strain tensor E is the second Piola- Kirchhoff (PK2) stress tensor S. This
can be formulated as the derivative of the strain energy function Ψ with respect to the tensors E
or C, depending on the functional dependence of Ψ:

S =
∂Ψ

∂E
= 2

∂Ψ

∂C
. (3.21)

In linear elasticity stress and strain tensor are related by the fourth-order material tensor C:

C =
∂2Ψ

∂E∂E
= 4

∂2Ψ

∂C∂C
. (3.22)

though the relation:
S = C : E . (3.23)

In the present work, we use both a St.Venant-Kirchhoff material model and a Hyperelastic mate-
rial model. The constitutive law treatment, in the context of the shell model, is presented in the
following sub-sections.

3.3.1 Linear material treatment

The St.Venant-Kirchhoff material model provides a linear relation between strains and stresses.
The constitutive equation (3.23) have to be integrated in the material continuum. In the KL shell
model, the stress distribution through the thickness is assumed to be linear, thus, the material law
can be pre-integrated through the thickness analytically. The separation of the strain variable into
membrane and bending contribution (3.39) is repeated for the stress variable, yielding the stress
resultant N for normal forces and M for bending moments:

N =

∫ h/2

−h/2
S dθ3 = hC : ε , (3.24)

M =

∫ h/2

−h/2
S θ3 dθ3 =

h3

12
C : κ . (3.25)

Thus, the constitutive equations in the local Cartesian frame of reference, reads, in Voigt notation: n11

n22

n12

 = h D

 ε11
ε22
2ε12

 ,

 m11

m22

m12

 =
h3

12
D

 κ11
κ22
2κ12

 . (3.26)
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being D the material matrix, which for isotropic materials is written in terms of the Young’s
modulus E and the Poisson’s ratio ν:

D =
E

1 − ν


1 ν 0
ν 1 0
0 0 1−ν

2

 . (3.27)

3.3.2 Nonlinear material treatment

If large strains are considered, the transverse normal strain and the corresponding thickness
stretch cannot be neglected. With the aim of keeping the present kinematic description of the
shell, the transverse normal strain is statically condensed using the ”plane stress” condition
(which refers to the state of zero transverse normal stress). As a consequence, the shell kine-
matics can still be thoroughly described by the midsurface.
Under these assumptions, the additional unknown in the formulation is represented by the thick-
ness deformation C33. If C33 = G33 = 1 is used, as stated for linear materials, the plane stress
conditions is violated, since:

S 33 = 2
∂Ψ

∂C33
, 0 . (3.28)

Accordingly, the transverse normal deformation C33 needs to be determined such that S 33 = 0
is satisfied. Since no boundary conditions can be applied in the thickness direction, this can be
done iteratively. An analytical method is presented instead in [28] for incompressible materials.
Once the plane stress condition is enforced, it can be used to eliminate the transverse normal
strain E33 by static condensation of the material tensor:

S 33 = C33αβEαβ + C3333E33 = 0 , (3.29)

implying:

E33 = −
C33αβ

C3333 Eαβ . (3.30)

The coefficients of the statically condensed material tensor are indicated by C̃αβγδ and are ob-
tained as:

C̃αβγδ = Cαβγδ −
Cαβ33C33γδ

C3333 . (3.31)

The iterative procedure to enforce the plane stress condition has been presented in [8], and will
be described in Section 9.5 in the context of the Active Strain approach. In the present work,
only hyperelastic compressible materials are treated.

3.4 Weak formulation for Kirchhoff-Love shells

A total potential energy functional defined with respect to an equilibrium field u, whose direc-
tional derivative yields the principle of virtual work, is, in the material configuration:

Π(u) =

∫
Ω0

[
Ψ(C) + ρ ü · u + b0 · u

]
dV +

∫
∂Ω0

t0 · u dS , (3.32)
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where Ω0 represents the initial configuration, ρ ü is the body inertial effect, and b0 and t0 are
the vectors of body forces and boundary forces respectively. The strain energy density function
Ψ is assumed to have a functional dependence on the right Cauchy-Green deformation tensor
Ψ = Ψ(C). In the following derivation the inertial effect is neglected for conciseness of notation.
Under assumptions of external forces independent of the displacement fields, the stationary posi-
tion of the above functional is obtained by equating to zero its derivative in an arbitrary variation
δu:

DδuΠ(u) =

∫
Ω0

∂Ψ

∂C
: DδuC dV +

∫
Ω0

b0 · δu dV +

∫
∂Ω0

t0 · δu dS , (3.33)

DδuΠ(u) =

∫
Ω0

S : DδuE dV +

∫
Ω0

b0 · δu dV +

∫
∂Ω0

t0 · δu dS , (3.34)

This is a nonlinear system of equation which needs to be linearized in order to solve it. By lin-
earizing in the direction of the arbitrary incremental displacement ∆u, the corresponding Newton
equation reads:

D2
δu,∆uΠ(u) = −DδuΠ(u) , (3.35)

where the right hand side represents the residual vector in the corresponding discrete formulation.
The second derivative of the potential functional only contains the derivative of the strain energy
due to the assumption of displacement-independent external loads:

Dδu,∆uΠ(u) =

∫
Ω0

D∆u (S : DδuE) dΩ0

=

∫
Ω0

D∆uS : DδuE + S : D2
δu,∆uE dΩ0

=

∫
Ω0

D∆uE : C : D∆uE + S : D2
δu,∆uE dΩ0 ,

(3.36)

provided that the directional derivative of the Kirchhoff strain tensor is specified by applying the
chain rule:

D∆uS(E) =
∂S(E)
∂E

: D∆uE = C : D∆uE . (3.37)

Exploiting the separation of membrane and bending action, it yields:

DδuΠi =

∫
Ω0

S : δε + S : θ3δκ dΩ0 , (3.38)

where:

ε =
1
2

(
Aαβ − Åαβ

) (
åα ⊗ åβ

)
, κ =

(
B̊αβ − Bαβ

) (
åα ⊗ åβ

)
. (3.39)

Provided that the strain variables are not dependent on the thickness (3.18), and considering the
body and traction loads constant through the thickness, it yields:

DδuΠ(u) =

∫
A0

N : δε + M : δκ dA0 + h
∫

A0

b0 · δu dA0 + h
∫

l0
t0 · δu dl0 (3.40)

with:

N =

∫ h/2

−h/2
S dθ3 , (3.41)
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M =

∫ h/2

−h/2
S θ3 dθ3 , (3.42)

and T and B representing the vector of boundary and body forces respectively. A0 and l0 represent
the area of the NURBS patch and the edge along which the traction load is applied, respectively.
The same treatment is applied to the left hand side of Eq. (3.35):

D2
δu,∆uΠ(u) =

∫
A0

∫ h/2

−h/2
D∆u

(
ε + θ3κ

)
: C : δ

(
ε + θ3κ

)
+ S : D∆uδ

(
ε + θ3κ

)
dh dA0

=

∫
A0

∫ h/2

−h/2
D∆uε : C : δε + D∆uε : C : θ3δκ + θ3D∆uκ : C : δε+(

θ3
)2

D∆uκ : C : δκ + S : D∆uδε + S : θ3D∆uδκ dh dA0

=

∫
A0

D∆uε : D1 : δε + D∆uε : D2 : δκ + D∆uκ : D2 : δε + D∆uκ : D3 : δκ+

N : D∆uδε + M : D∆uδκ dA0 .
(3.43)

where:

D1 =

∫ h/2

−h/2
C dθ3 , (3.44)

D2 =

∫ h/2

−h/2
C θ3 dθ3 , (3.45)

D3 =

∫ h/2

−h/2
C

(
θ3

)2
dθ3 . (3.46)

Prior to numerical approximation of the midsurface integrals (3.35), the stress resultants (3.41),(3.42)
and the material matrices (3.44)-(3.46) must be integrated over the thickness. This can be per-
formed analytically for linear materials, and numerically for hyperelastic materials, as shown in
the section ahead.

3.5 Finite element approximation

The variations in Eq. (3.35) are considered as suitable trial functions fulfilling the topological
requirement to guarantee the existence and uniqueness of the weak solution. According to the
IGA approach, the space spanned by the NURBS basis functions is considered as the finite di-
mensional space of the approximate solution of the elastic problem. Thus, the displacement can
be approximated as a linear combination of basis functions and discrete nodal values:

u ≈ û =

nsh∑
i

Niui , (3.47)

where Na are the NURBS shape functions. nsh is the total number of shape functions, and ui is the
nodal displacement vector. A detailed derivation of the discrete strain and curvature derivatives
can be found in [9, 28]. After substitution of the discrete nodal displacement in Eq. (3.35), and
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application of the suitable test functions, it yields the Newton-Raphson equation:

∂R
∂un+1

∆un+1 = −R , (3.48)

or, for the acceleration variation:
∂R
∂ün+1

∆ün+1 = −R , (3.49)

where R represents the residual vector and its derivatives provide the tangent stiffness matrix (it
accounts for the mass matrix too in time-dependent problems). In other words R represents the
discrete form of the right hand side of Eq. (3.35). It is worth noting that the tangent stiffness
matrix contains the second derivative of the displacement, as a consequence of the Kirchhoff-
Love shell formulation. Hence, a C1 parametric continuity is needed to fulfill the compatibility
condition. In this scenario, where a minimum C1 continuity can be easily achieved at the inter-
nal surface points, the NURBS-based IGA allows to exploit such continuity to implement the
Kirchhoff-Love model without a specific treatment.
In the present implementation, strain and stresses are integrated over the surface by a classic
Gauss-Legendre quadrature rule with (p + 1) × (q + 1) quadrature points within one element,
being p and q the polynomial orders of the shape functions. However, more efficient quadra-
ture rules, which account for the precise smoothness of the shape functions across the element
boundaries, have been derived [39].

3.6 Time discretization

The equations of motion are integrated in time by the generalized-α scheme [40]. This al-
gorithm allows to introduce controlled algorithmic damping in the unresolved high frequency
modes. This is certainly a desirable feature when solving highly nonlinear FSI problems. The
generalized–α scheme has had successful implementations in different FSI frameworks [41, 42,
43]. Hereafter, the scheme is presented in a predictor–multicorrector form [3].
Assuming a constant velocity predictor, the kinematic variables are initialized at the time tn+1 as:

u̇0
n+1 = u̇n ,

ü0
n+1 =

γ − 1
γ

ün ,

u0
n+1 = un + ∆t u̇n +

(∆t)2

2

[
(1 − 2 β) ün + 2 β ü0

n+1

]
,

(3.50)

where the superscript indicates the iteration index, the subscript denotes the time step counter.
Expressions (3.50) are obtained from the classic Newmark formulas [44], where β and γ are
the Newmark coefficients. In the corrector stage, kinematic variables and external load are in-
terpolated at a time instant in between two discrete time steps tn and tn+1 by the interpolation
coefficients α f and αm:

ui = α f un+1 + (1 − α f )un ,

u̇i = α f u̇n+1 + (1 − α f )u̇n ,

üi = αmün+1 + (1 − αm)ün ,

Fext
i = α f Fext

n+1 + (1 − α f )Fext
n .

(3.51)
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In this section the subscript i denotes the time–interpolated quantities. Fext
n+1 is the load array

assembled by integrating the stresses computed in the last fluid dynamic solution. A detailed
discussion about the solver coupling in time is provided in Section 5.5. The intermediate solution
is used to assemble the linearized problem, which is solved for the acceleration increment:

∂Ri

∂ün+1
∆ün+1 = −Ri . (3.52)

After repeated application of the chain rule, this yields:(
αm M + α f β (∆t)2 K (ui)

)
∆ün+1 = −M üi − Fint

i + Fext
i . (3.53)

The linear system stated in Eq. (3.53) is solved by a LU decomposition with partial pivoting.
Given the FSI procedure presented in chapter 5, the proportion in the computational effort be-
tween the linear systems in (3.53) and (4.12) is biased towards the fluid side, even for the sim-
plest FSI case. Then, the solution of Eq. (3.53) does not require more sophisticated solution
algorithms. Once ∆ün+1 is obtained, the variables for the next iteration loop are computed by a
Newmark update:

ük+1
n+1 = ük

n+1 + ∆ün+1 ,

u̇k+1
n+1 = u̇n + ∆t

(
(1 − γ) ün + γ ük+1

n+1

)
,

uk+1
n+1 = un + ∆tu̇n +

1
2

(∆t)2
(
(1 − 2 β) ün + 2 ük+1

n+1

)
.

(3.54)

The corrector procedure, from Eq. (3.51) to Eq. (3.54), is repeated until convergence to a prede-
fined tolerance on the L2 norm of the residual vector [44]. The convergence (relative) tolerance
is set to a value within the interval ε ∈

[
10−6, 10−8

]
, depending on the numerical stiffness of the

problem.
According to [40], the interpolation coefficients are parametrized by ρ∞, the spectral radius of the
iteration matrix, in order to achieve an optimal numerical damping. Following this, the Newmark
parameters are build for second order accuracy and unconditional stability [3]:

αm =
2 − ρ∞
1 + ρ∞

,

α f =
1

1 + ρ∞
,

β =
1
2

(
1 − α f + αm

)2
,

γ =
1
2
− α f + αm .

(3.55)

Values within the interval ρ∞ ∈ [0.4, 0.6] are adopted in the present work. This allows to damp
out the unresolved high frequencies introduced by the numerical discretization while preserving
most of the natural ones.
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4 An incompressible Navier-Stokes
solver

Immersed Boundary (IB) methods [45] represent a flexible and computationally attractive tool
for the simulation of flows around complex-shaped bodies on structured grids. Hence, a straight-
forward reduction in the computational cost of the FSI method can be obtained by employing
efficient numerical schemes for the solution of the fluid phase, such as Fast Fourier transform
algorithms, alternating direction implicit methods, and geometric multigrid methods. In this sce-
nario, a numerical approach for the discretization of the Navier-Stokes equations is presented
hereafter.

4.1 Governing Equations

A system of four scalar equations with parabolic and elliptic terms must be resolved. Their
nondimensional and non-conservative form reads:

∂q
∂t

+ (q · ∇) q = −∇p +
1

Re
∇2q + f ,

∇ · q = 0 ,
(4.1)

where the nondimensional variables q, p, and f denote the flow velocity, the pressure, and the
external volume force respectively. t indicates the time variable. The governing parameter is the
Reynolds number Re = ρ f QL/µ, defined with respect to the scale parameter array ( ρ f ,Q, L, µ )T ,
which contains fluid density, bulk velocity, characteristic length, and dynamic viscosity.

4.2 Discrete approach

The present finite-difference implementation follows a staggered approach [46], where scalar
quantities are located at the cell center, and velocity components at the face center (see Fig. 4.1).
The staggered arrangement, coupled with a projection method, makes differential operators as
compact as possible and does not require ad hoc boundary conditions for pressure and pressure-
like variables within the majority of time-schemes [12]. Furthermore, it can be proved that with
a low-order approximation of spatial derivatives on a staggered mesh, and in the absence of
time discretization errors and viscosity, global conservation of momentum, kinetic energy, and
circulation are preserved. Eventually, the staggered arrangement, in conjunction with a direct
forcing IB approach, is recognized to provide a smaller error on the interface condition with
respect to collocated-grid schemes [47].
All derivatives are discretized in space with centered finite differences.
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Figure 4.1: Staggered grids on which discrete grid functions are defined. Grid
nodes (black dots) and cell-centered (green dots) locations are defined on the left
figure. Face-centered grid functions (blue dots) are defined on the right. Figure

adapted from [47]

4.2.1 Time discretization

The implicit Crank-Nicholson scheme is employed for the viscous terms, whereas the convective
terms are discretized by the explicit three-steps Runge-Kutta scheme. This yields the discrete
momentum equation for the k-th Runge-Kutta substep:

q̃ − qk

∆t
= −αk∇pk + βk [

(q · ∇) q
]k

+ γk [
(q · ∇) q

]k−1
+

αk

2Re
∇2

(
q̃ + qk

)
+ f̃ , (4.2)

where f̃ is the external body force term arising from the immersed boundary treatment. The
time advancement coefficients for three substep levels [48] are α = [8/15, 2/15, 1/3], β =

[8/15, 5/12, 3/4], γ = [0, −17/60, −5/12]. This yields a self-starting scheme with second
order accuracy in time. The third order Runge-Kutta method is chosen for the convective terms
because it allows for a larger stability limit on the CFL. It has been proved with numerical inves-
tigations that the immersed boundary treatment does not affect the theoretical limit on the CFL
number. This means that stable integration is possible in proximity of the limit prescribed for the
Runge-Kutta scheme.
The presence of the pressure in this equation, defined at the cell center, requires the evaluation of
the pressure gradient at the old time step, thus a pressure interpolation is needed to compute the
right-hand-side (RHS) of equation (8) at the face centers. Second-order accurate interpolation
operators are used to get mixed convective derivatives in points were velocities are not defined.

4.2.2 Helmholtz solver

Each substep of the time scheme is resolved by means of a classical fractional step scheme [49],
with the pressure gradient introduced in the first stage [50]. Firstly, a non-solenoidal intermediate
velocity field is computed using a blend of old and new variables, as stated in Eq. (4.2); then, a
pressure-correction equation is solved to project the provisional field onto a solenoidal one [50,
10].
Eq. (4.2) must be solved for the provisional velocity q̃. Since a semi-implicit scheme is imple-
mented, the computation of the forcing field f̃ would require the use of an implicit solution for
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the immersed boundary interpolation procedure, due to the dependence of f̃ on q̃. A straightfor-
ward way to address this issue with a minimal increase in the computational expense is to take a
preliminary explicit step for the purpose of evaluating the forcing function, as proposed by Kim
et al. [51]. Thus, a preliminary field q̂ can be computed as:

q̂ = qk + ∆t
[
−αk∇pk + βk [

(q · ∇) q
]k

+ γk [
(q · ∇) q

]k−1
+
αk

Re
∇2qk

]
. (4.3)

The evaluated field q̂ is used to compute the forcing function f̃ by means of the interpolation
technique described in Appendix A. Once the forcing function has been computed, Eq. (4.2)
can be retrieved to get the provisional velocity field q̃ in incremental form. This leads to the
Helmholtz equation:

(1 − ξ∇2) ∆q̃ = Sk + ∆t f̃ , (4.4)

with ξ = (αk∆t)/(2Re), and

∆q̃ = q̃ − qk , (4.5)

Sk = ∆t
[
−αk∇pk + βk [

(q · ∇) q
]k

+ γk [
(q · ∇) q

]k−1
+
αk

Re
∇2qk

]
. (4.6)

Note that the preliminary evaluation of q̂ does not require any additional computational step,
since the terms in square brackets in Eq. (4.3) are then used as part of the right-hand-side in the
Helmholtz equation. It should be pointed out that modeling a no-slip condition with an external
force field within a pressure projection scheme introduces an error of the same order of magni-
tude of the standard scheme truncation error [52].
Given the implicit treatment of the viscous components, the computation of q̃ requires the inver-
sion of large sparse matrices. An approximate factorization method [53] is employed to reduce
the large band of the coefficient matrices to a set of tridiagonal matrices, while preserving the
scheme accuracy in time. The use of iterative solvers is avoided in the present work, because in a
partitioned FSI framework the convergence procedure would make the global time-advancement
loop inefficient. Furthermore, in presence of highly stretched and refined grids, matrix precon-
ditioning or multigrid methods would be mandatory to increase the convergence rate. Although
very efficient preconditioning techniques have been developed for similar purposes [54], these
approaches are avoided to limit the overall complexity of the method.
The approximate factorization [53] for discrete parabolic and hyperbolic problems belongs to
the class of Alternating Direction Implicit (ADI) methods. The spatial operator is split in three
one-dimensional components, each corresponding to an implicit problem over a single coordi-
nate. As a result of the splitting a set of tridiagonal system must be solved sequentially. The
discrete Laplace operator corresponding to a five-points centered finite differences is denoted
with a simplified notation as:

∇2q ≈
qi−1, j,k − 2qi, j,k + qi+1, j,k

∆x2 +
qi, j−1,k − 2qi, j,k + qi, j+1,k

∆y2 +

qi, j,k−1 − 2qi, j,k + qi, j,k+1

∆z2 = δ2
xq + δ2

yq + δ2
z q

(4.7)

If this notation is applied to equation (4.4), and the right-hand-side is indicated for simplicity by
RHS i, j,k, one can write in index notation:[

(1 − β
(
δ2

x + δ2
y + δ2

z

)]
∆qi, j,k = RHS i, j,k (4.8)
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The Laplace operator is split as:(
1 − βδ2

x

) (
1 − βδ2

y

) (
1 − βδ2

z

)
∆qi, j,k = RHS i, j,k (4.9)

Thus the linear system is solved in three sequential steps:

STEP 1:
(
1 − βδ2

x

)
∆q∗∗i, j,k = RHS i, j,k

STEP 2:
(
1 − βδ2

y

)
∆q∗i, j,k = ∆q∗∗i, j,k

STEP 3:
(
1 − βδ2

z

)
∆qi, j,k = ∆q∗i, j,k

(4.10)

In step 1 a tridiagonal system must be resolved for each grid node j, k of the plane i, because
only the finite difference in direction x is implicit. The procedure is repeated in the other direc-
tions exploiting the intermediate quantities ∆q∗i, j,k and ∆q∗∗i, j,k. Tridiagonal systems are inverted
by means of the Thomas algorithm with Sherman-Morrison perturbation if the solution direction
has periodic boundary conditions [55].
The order in which calculations for each one-coordinate problem (4.10) are performed is indiffer-
ent for three-periodic problems. In the present framework, where wall-bounded flows are subject
of study, the inhomogeneos direction is resolved last [12] since explicit boundary conditions must
be imposed just after the provisional field calculation.
Unlike original ADI methods, the approximate factorization leads to an unconditionally stable
scheme which preserves the order of accuracy in time even in three-dimensional problems, since
a factorization error O(∆t3) is introduced [56].

4.2.3 Pressure correction

It can be proved that the intermediate velocity q̃ is globally divergence-free, but not locally [12].
Thus, a scalar variable φ is introduced to project the provisional field onto a divergence-free field.
This operation allows to evaluate the velocity at the time step n + 1 via the formula [50]:

qn+1 = q̃ − αk ∆t∇φ . (4.11)

In order to get the scalar φ, the discrete divergence operator is applied to Eq. (4.11), then the left-
hand-side is set to zero for the local mass conservation. By enforcing the continuity condition,
the following Poisson’s equation for the scalar φ is obtained:

∇2φ =
∇ · q̃
α∆t

. (4.12)

The velocity field at the time-step n + 1 can finally be computed from Eq. (4.11), whereas the
new pressure field is updated by [50]:

pn+1 = pn + φ − ξ∇2φ . (4.13)

The solution of the elliptic equation (4.12) would require a large computational effort, similarly
to Eq. (4.4). In the simulation of unsteady flows the pressure-correction equation must be solved
to a tight tolerance to ensure mass conservation at each time step. Hence, no iterative methods
are employed at this stage. The large band of the coefficient matrix is reduced here relying on
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one-dimensional Fast Fourier Transform (FFT) for equally-spaced grid directions. Being X the
uniform grid direction, the pressure correction equation is reduced in the Fourier space to:(

−ω2
x,i +

∂2

∂y2 +
∂2

∂z2

)
F (φ) = F

(
∇ · q̃
αk ∆t

)
, (4.14)

whereF (·) denotes the one-dimensional FFT operator, andω2
x,i is the m-th modified wavenumber

in the X direction. Thus, nx equations must be solved for each modified wave number. The
uniform grid spacing in direction X has been exploited to reformulate the three-dimensional
Poisson problem in a more effective way; a 1D-FFT in direction X followed by nx bi-dimensional
Poisson problem. The FFT with periodic boundary conditions requires approximately nx log nx

operations to be computed, therefore the computational saving is relevant with regards to direct
or iterative solvers on uniform grids.
Afterwards, the solution of the Poisson problem in the Y-Z plane is accelerated by means of the
eigendecomposition of the discrete operator matrices. This technique is well suited to problems
in which a repeated solution of the Poisson’s equation is required [57], as in time-dependent
problems over staggered grids, where just the forcing terms change at each time step. The two-
dimensional Poisson problem, arising from (4.14) can be rewritten in matrix notation as:

Dyφ̃l + φ̃lDT
z = S̃l , (4.15)

where φ̃ is the unknown matrix of dimension Ny × Nz in the Fourier space, Dy and Dz are the
penta-diagonal matrices arising from the centered difference operators of dimensions Ny × Ny

and Nz × Nz, respectively; S̃l represents the transformed right–hand side of dimension Ny × Nz.
By exploiting the symmetry and the orthogonality of Dz, one can write:

DT
z = QzΛΛΛzQT

z , (4.16)

where Qz represents a real matrix whose column are the eigenvectors associated with Dz, and
ΛΛΛz a diagonal matrix containing the corresponding eigenvalues. Following this, one can get the
two-dimensional problem:

Dyφ
∗
l + φ∗lΛz = S∗l . (4.17)

Therefore, the decomposition of the finite difference operator in direction Z leads to a computa-
tionally simplified problem which can be solved as Nz independent problems in direction Y by
projecting the unknown matrix on a diagonal operator (4.17). Thus each plane Poisson equation
(corresponding to the m-th wavenumber) is reduced to a set of tridiagonal problems in the form:[

Dy +
(
λm − k

′2
1l

)
Iy
]
φ∗lm = S∗lm . (4.18)

After equation (4.18) has been solved for each point k, and φi has been assembled, it is possible
to recover the unknown scalar field by φ̃ = φ∗QT

z .
The algorithm for solving the Poisson equation provides for the a priori calculation of eigenvec-
tor and eigenvalues of the finite difference coefficient matrix in z direction. Then, it proceeds
with the following time-dependent operations:

• Perform a real-to-complex Fourier transform in the x direction;

• For each wavenumber compute φ∗ = φ̃Qz and S ∗ = S̃ Qz;

• For each wavenumber solve Dyφ
∗ + φ∗Λz = S ∗;
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• For each wavenumber compute φ̃ = φ∗QT
z ;

• Perform the complex-to-real inverse Fourier transform in the x direction.

This found various applications tailored for specific boundary conditions or domain configura-
tions [58][59]. In the present case the problem can be reformulated applying the eigendecom-
position to the operator Dy as well, as illustrated in [58]; however, the procedure involving the
resolution of Nz tridiagonal matrices of order Ny was considered to better perform on domain
elongated in z direction, which are often employed herein.

4.3 Boundary conditions treatment

The resolution of the momentum equation by means of the increment:

∆qn = q̂ − qn , (4.19)

yields a provisional velocity field with second order accuracy in time [60]. Thus, the physical
boundary conditions for un+1 can be equivalently assigned to û:

q̂ = qn+1 + O
(
∆t2

)
. (4.20)

As well as natural boundary conditions, the IB forcing term is included at this stage. However,
it should be pointed out that the forcing condition imposed at the internal faces is then spoiled
within the correction step in order to enforce continuity at local level. A numerically exact
enforcement of mass conservation and internal interface conditions cannot be achieved at the
same time with the present method, without setting ad-hoc boundary conditions on the Poisson
equation (4.12).
In the present work the outflow boundary condition is reproduced by means of a radiative outlet
[61]. A two-dimensional wave equation is solved at the outlet face to allow the propagating
structures to exit the computational domain with minimal distortions:

∂q
∂t

+ c
∂q
∂z

= 0 , (4.21)

where z is the outflow direction. The convective velocity c is a priori assumed to be within
the range [0.8Q,Q]. Numerical and experimental investigation found that it is an acceptable
assumption for the simulation of flows across bluff bodies if a suitable downstream domain extent
is considered [62][63].
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5 An immersed boundary method for
moving boundaries

5.1 Role of computational FSI

Fluid–Structure Interaction is a class of problems with mutual dependence between the fluid and
solid phases. The fluid-dynamics depends on the configuration of the structure and its kinematics,
and the deformation of the structure depends on the hydrodynamic loads acting on the structure.
FSI occurs at every biological length scale, as well as in many industrial applications. The first
category includes multiscale sophisticated mechanisms such as the projection of lamellipodia
and bleb-like protrusions by motile cells, the flow of blood in the heart and throughout the circu-
lation, the locomotion of swimming fishes and flying birds and insects, and the dispersal of seeds
and pollen by the wind. Among the more relevant FSI phenomena in industrial applications one
can mention the fluttering of lifting wings, the deflection of wind-turbine blades, the inflation of
automobile airbags, the dynamics of spacecraft parachutes, the rocking motion of ships.
In engineering applications, FSI plays an important role and influences the decisions that go into
the design of systems of contemporary interest. On the other hand, the FSI mechanism can pro-
vide insight on complex biological mechanisms. Therefore, truly predictive FSI methods, which
help address the problems of interest, are in high demand in industry, research laboratories, med-
ical fields, space exploration, and many other contexts. In the present chapter the FSI framework
including the techniques for the information transfer between the segregated solvers described in
chapters 3 and 4, is thoroughly described.

5.2 Immersed boundary methods for fluid-structure interaction

In IB methods, the procedures to transfer variables from the fluid domain to the structural domain
and vice versa are necessary to satisfy the boundary conditions on the interface because the fluid
mesh does not conform to the body interface. For an elastic body, the computational domain is di-
vided into elements. The position, velocity and acceleration of each element are determined from
the balance among the inertia force of the element, surface integration of the Cauchy traction vec-
tor along the interface of the element, and internal force within the element. A schematic of the
field variables involved in the information transfer is provided in Fig. 5.1. The information trans-
fer at the interface constitutes a key feature of every FSI method. Boundary-fitted approaches
have the advantage of satisfying kinematic constraints by construction, but, when large displace-
ments are induced on the immersed body, these approaches require the re-meshing of the fluid
domain and the field variables interpolation in time. Sophisticated algorithms must be employed
to achieve a well–conditioned grid at each time–step with limited computational effort [65, 66].
However, certain problems might lead to severe mesh distortions with ensuing degradation of the
spatial accuracy of the fluid solution. The most widespread approaches belonging to the class of
deforming domain methods are the Arbitrary Lagrangian–Eulerian (ALE) formulation, and the
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Figure 5.1: schematic of the field variables involved in the information transfer
between structural and fluid solvers in a general FSI framework. Figure taken

from [64]

Deforming–Spatial–Domain/Stabilized Space–Time (DSD/SST) formulation. A comprehensive
overview of these methods can be found in [41].
In the original IB method by Peskin [67], the structure is assumed to consist of massless La-
grangian nodes and springs connecting them. The velocity on a Lagrangian node is imposed
by interpolating the velocities at surrounding Eulerian grids through a Discrete Delta Function
(DDF), and the momentum forcing at the node is transferred to nearby Eulerian grid points
through DDF. Such momentum forcing at the node is obtained from the balance of the spring
force and momentum forcing. Peskin [68] further developed an IB method to handle the mass of
an elastic body. However, it is not possible to apply this IB treatment to FSI of a rigid body, since
it represents a limit condition for the lagrangian node stiffness. Kim and Peskin [69] applied an
IB method based on a penalty approach to FSI of a rigid body by introducing massless and mas-
sive boundaries, in which the momentum forcing at a Lagrangian node on the massless boundary
is obtained through a feedback loop using the difference between the positions of massless and
massive boundaries. However, this IB method severely restricts the size of computational time
step owing to large values of parameters required for the feedback loop. Borazjani et al. [13]
and Luo et al. [70] applied IB methods based on velocity reconstruction to FSI of rigid and
elastic bodies, respectively, where the no-slip condition is satisfied by transferring the velocity of
structure at an interface to fluid mesh, and the Cauchy’s stress theorem is satisfied by transferring
the velocity gradient and pressure of fluid at an interface to structure. However, spurious force
oscillations occur when Eulerian grids are changed from a fluid state to a solid state or vice versa
due to the movement of an interface [71]. To this extent, Uhlmann [72] developed an IB method
to reduce spurious force oscillations and avoid excessive restrictions on the computational time
step size. The momentum forcing is obtained at a Lagrangian node through the Navier-Stokes
equations using the interpolated fluid and structure velocities and it is distributed to nearby Eu-
lerian nodes through a transfer function. One of the most widespread transfer functions is that
computed by a Moving-Least-Square interpolation [73]. Direct momentum forcing through a
feedback approach induces small spurious force oscillations for FSI but smears the interface,
which leads to failure of resolving the boundary layer and satisfying the no-slip condition. To
reduce the error on the no-slip condition, a few strategies have been suggested. A multidirect
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forcing technique was applied to enforce the fluid velocity updated from the governing equations
of fluid flow equal to the structure velocity at a Lagrangian node through an iterative imposition
of additional momentum forcing [74]. Alternatively Kempe et al. [75] imposed additional mo-
mentum forcing by repeating the forcing step in a semi-implicit fashion.
A better enforcement of the interface condition is provided by the class of ”sharp-interface”
methods [76, 77, 14, 13]. These methods modify the finite-difference stencil near the immersed
boundary to ensure an accurate representation of the fluid boundary layer. Typically they con-
sider the immersed boundary to be a boundary of the flow domain and solve the equations of
fluid dynamics on only one side of the interface. Although they present severe spurious force
oscillations with moving boundaries, efficient solutions to damp out these oscillations have been
found [78].
Two fundamental issues regarding FSI with IB methods are the problems associated with low

(a) (b)

Figure 5.2: Flows around a circular cylinder (a) and sphere (b) at various
Reynolds numbers and density ratios, obtained with with different IB methods:
direct momentum forcing, velocity reconstruction, monolithic and segregated ap-

proaches. Figure taken from [64].

density ratio of solid to fluid phase ρs/ρ f and high Reynolds number. Fig. 5.2 depicts the spec-
trum of ρs/ρ f and Re under which different authors performed simulations of the flows around
a circular cylinder and a sphere, with different IB methods. Their effort has been focused on re-
ducing the density ratio up to value lower than unity and increasing the Reynolds number above
104.
A low density ratio, often observed in biological FSI applications, was found to be source of
numerical instability when an explicit FSI coupling (staggered) scheme is employed [18]. To
achieve numerical stability, several solution have been experimented: the governing equations
of fluid and solid phases have been solved in a semi-implicit fashion for time advancement, by
means of iterative or predictor-corrector schemes [13, 64]. Alternative solutions are presented in
[75], where an indirect way to calculate fluid force on a sphere is proposed, and in [79], where a
virtual mass approach to the linear momentum balance is proposed.
At high Reynolds number, it is important to resolve a thin boundary layer to capture the flow
transition from laminar to turbulent. So far, most of the simulations using IB methods have been
confined to relatively low Reynolds number because of the limited resolution at the boundary
layer. Among the mentioned methods, the direct-forcing sharp interface method provided the
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most accurate reconstruction of the boundary layer, therefore it is expected to provide the most
accurate results at high Re. Local refinement has been also used in Cartesian mesh to resolve a
thin boundary layer. A few examples are provided by the flow around a sphere at Re = 10, 000
[80], flow around a rotating wind turbine at Re = 17, 000 based on the turbine diameter [81] and
flow around an Eppler 387 airfoil at Re = 30, 000 based on the chord length [82]. On the other
hand, IB methods with velocity reconstruction can save the number of grids near the wall by
imposing a velocity profile based on a wall model rather than a linear velocity profile [83].

5.3 Embedded boundary reconstruction

Following the direct forcing scheme proposed by Uhlmann [72], the information is transferred
among arbitrary Lagrangian and Eulerian positions. The no-slip condition at the body interface
is enforced by applying a consistent body force on a cluster of Lagrangian markers laying over
the immersed interface. This approach was proposed as a solution to the spurious force oscilla-
tions observed in earlier direct–forcing methods for moving–boundary problems [84, 85]. This
matches the computational requirements of FSI applications with deformable bodies, where the
load approximation plays a crucial role for the correct resolution of the FSI dynamics [71, 75, 86].
Since the position of the Lagrangian markers and Eulerian nodes almost never coincides, the fluid

(a) (b)

Figure 5.3: (a) Projection of the Eulerian grid lines (dashed lines) over the
NURBS surface. (b) Lagrangian markers (red dots) and consistent surface tes-

sellation (red lines).

solution at each marker must be reconstructed by an interpolation technique. A Moving-Least-
Squares (MLS) approach was originally proposed by Vanella and Balaras [73], with the aim of
building a transfer function able to provide a smooth pressure distribution when applied to mov-
ing boundaries. The MLS interpolation allows for a satisfactory compromise between consistent
sharp-like distribution of the field variables over the surface and smoothing of the local force
discontinuities when crossing the Eulerian cells [80, 87]. Recently the MLS-Lagrangian forcing
has been applied to FSI problems involving deformable shell-like structure [16, 88]. On the heels
of these works, in the present implementation the MLS procedure is adjusted for the information
transfer between a Cartesian grid and a C1-continuous NURBS surface. The introduction of a
discrete forcing function in the time-stepping scheme was already described in Section 4.1.

The fundamental steps of the forcing procedure are summarized as follows:
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(a) An Eulerian grid density distribution is retrieved by detecting the local grid size at the shell
interface. A three-dimensional Cartesian grid must be projected over a surface. Hence, the
grid spacing at each Cartesian direction is acquired, then the two smallest cell spacing
distribution are selected. The discrete distribution is interpolated by a cubic spline law;
then, a Cartesian grid of Lagrangian markers is collocated in the NURBS parametric space
accordingly to the interpolated distribution. Before collocation, the marker distribution is
scaled by a predefined value ∆l/∆x, which is needed to avoid a “porous” representation of
the surface in terms of body force condition. A sketch of the marker collocation over the
surface with respect to the local Eulerian grid spacing is provided in Fig. 5.3.

(b) The Eulerian cell containing each Lagrangian marker is detected. A support domain of ne

cells is created by collecting the nearest neighbor cells, as depicted by a two-dimensional
projection in Fig. 5.4. In the three-dimensional space ne = 27. The fluid solution q̂ is
then retrieved in the faces belonging to the support domain. Thus, the velocity component
q̂l

i, at the Lagrangian point location X, is computed by means of the interpolating surface
constructed with the MLS operator Φ:

q̂l
i(X) = ΦT (X) q̂i =

ne∑
k=1

Φl
k(X) q̂k

i , (5.1)

where ΦT (X) is the MLS transfer function built at run time for the velocity component i,
and q̂i = [q̂1

i q̂2
i ... q̂

e
i ]T is the array of collected velocity components in the support domain.

The index k enumerates the cells contained in the support domain. A detailed description
of the transfer operator construction is provided in A.

(c) A volume force component Fi is computed at each Lagrangian point via:

Fi =
u̇i − q̂l

i

∆t
, (5.2)

being u̇i the shell velocity component at X. Fl
i is the force that one needs to impose on the

flow field to get the desired flow velocity at the interface.

(d) At this stage, the computed body force must be spread back over the fluid faces within
the support domain. Namely, a Lagrangian body force Fl

i is transformed into a smooth
distribution of Eulerian loads f l

i by means of the same transfer operator defined in Eq. (5.1).
Hence, the corresponding volume force at the Eulerian point k is evaluated as:

f k
i (xk) =

nl∑
l=1

cl Φl
k(xk) Fl

i , (5.3)

where nl denotes the number of Lagrangian points associated with the Eulerian node k,
i.e., Lagrangian points whose support domain contains the selected k-th Eulerian point,
and cl is the scaling factor needed to preserve the local conservation of momentum in the
forcing operation. The forces arising from Eq. (5.3) are collected into a three-dimensional
forcing field and included in Eq. (4.4) to finally enforce the desired boundary condition.
The scaling coefficient cl is obtained by imposing the conservation of the total force acting
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on the fluid within the support domain:

net∑
k=1

f k
i (xk) ∆Vk =

nlt∑
l=1

Fl
ix

l ∆V l , (5.4)

being net the total number of forced grid points, and nlt the total number of Lagrangian
markers. ∆Vk and ∆V l are the forcing volumes associated with the Eulerian and La-
grangian points involved in the information transfer. By convention, the former corre-
sponds to the Eulerian cell volume and the latter is computed as the product of the local
patch area Al associated to the selected Lagrangian marker, and the average local cell size
hl:

∆V l = Al hl , (5.5)

hl =
1
3

ne∑
k=1

Φl
k (∆xk + ∆yk + ∆zk) . (5.6)

The area Al associated to each marker is obtained by tessellation of the NURBS surface just
after the collocation of the markers themselves. The tessellation of the surface is performed
considering the integral conservation of the surface area. By substituting expression (5.3)
in (5.4), one obtains the scaling coefficient:

cl =
∆V l∑ne

k=1 Φl
k ∆Vk

. (5.7)

In this scenario, the torque is conserved if the cell volume across the stencil is kept constant
for each marker. This is trivially satisfied in case of uniform grids, however, in case of
moderate stretching the departure from equivalence is limited to a small fraction of the
local torque [73].

The process described above is repeated at each time-step for each Lagrangian marker in an
explicit fashion. This results in the superposition of the support domain stencils for adjacent La-
grangian markers; this effect actually corrupts the local conservation of the momentum achieved
by (5.7). The explicit treatment of the MLS interpolation allows for a reduced computational
cost (see A), but it leads to a local error on the momentum conservation which mitigates the
smoothing properties of the approach. This problem might be solved by assembling the MLS
operator implicitly [87], or including a further continuity constraint in the transfer function [89].
Nevertheless, both techniques imply a larger computational expense at run-time.

A reduction of the relative Lagrangian spacing ∆l/∆x is found to reduce the error on the en-
forced condition and reduce the permeability of the surface up to a certain threshold, beyond
which a further reduction of ∆l/∆x does not affect the interface resolution. Such a threshold is
investigated in Section 6.4.3.

An important advantage of the present implementation arises from the flexibility of the marker
collocation procedure. The isoparametric paradigm allows for a simple collocation of the La-
grangian markers through parametric coordinates, and for a full decoupling of the relative node
density in the shell and fluid solvers. It should be however highlighted that the isoparametric
mapping has been successfully applied also to spring-network solvers to meet this achievement
[82]. Secondly, a flexible marker collocation is suitable for a body moving across a stretched
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Figure 5.4: Schematic of the IBM forcing with MLS reconstruction. The cell
centers of all Eulerian cells involved in the forcing procedure are marked; the
support domain corresponding to the selected Lagrangian marker is highlighted

by a blue stencil.

Eulerian grid. The collocation can be repeated every time step without affecting the shell dis-
cretization, with minimal computational effort; this is a remarkable feature for bodies moving
within a near-wall region, where a significant Eulerian node stretching is needed for the resolu-
tion of the boundary layer gradients [90].

5.4 Hydrodynamic load evaluation

For non-boundary conforming approaches the computation of the local hydrodynamic force on
the immersed surface is not a trivial task. Following the procedure introduced by [16, 73], the
load distribution is obtained exploiting the MLS approach described in the previous subsection.
Given the present immersed boundary treatment, the flow field across the surface presents a
smooth transition layer whose thickness takes at most two Eulerian cells, as shown by [16] with
numerical experiments. Therefore, the field variables are corrupted by the reconstruction proce-
dure at the surface location. This feature was found to induce an underestimation of the actual
hydrodynamic forces [73]. One way to address this issue is the interpolation of the field variables
at a probe created along the normal direction at a distance hp from the surface. For an open sur-
face, pressure and velocity derivatives are evaluated at the outward (n+) and inward (n−) probe
locations, in correspondence of the shell quadrature points. Thus, at each Gaussian point, two
probes and two support domains are created (see Fig. 5.5), then the MLS procedure is repeated
twice. The probe distance hp is computed from (5.6) as the local average grid size. The pres-
sure interpolated at the probe is transported on the surface pgp with a simplified boundary layer
equation:

pgp = pp + hp
Dqgp

Dt
· ngp , (5.8)
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Figure 5.5: Schematic of the field variable interpolation for the calculation of the
hydrodynamic load over the surface.

being pp and qp the pressure and fluid velocity on the probe, ngp the outward/inward unit normal
vector, and Dqgp/Dt the material derivative of the fluid velocity at the quadrature point location
[73], which is approximated by the corresponding Gaussian point acceleration. The velocity
derivatives at each Gaussian point ∂qi/∂x j, needed for the evaluation of the viscous stresses, are
computed by differentiating Eq. (5.1):(

∂qi

∂x j

)gp

=

ne∑
k=1

(
∂Φk

∂x j
q̂k

i

)p

. (5.9)

The solution of Eq. (5.9) requires an additional computational effort for the evaluation of the
derivative of the transfer function. Given the fact that hp is comparable with the local grid size,
and assuming a linear variation of the velocity near the body, the derivatives at the probe location,
computed from (5.9) are a good approximation for the corresponding derivatives at the surface
[73]. From a purely physical perspective, this corresponds to the assumption that the probe relies
inside the linear region of the boundary layer of the flow. This is a reasonable approximation
in case of adequately refined grid in proximity of the body. The local stress at the surface is
assembled as:

tgp = −(pgp+ − pgp−)I · ngp+ + 2 µ(E+ − E−) · ngp+ , (5.10)

E =
1
2

(
∇qgp +

(
∇qgp)T

)
, (5.11)

and integrated over the surface with a Gaussian integration rule. A wide campaign of numerical
test (Section 6.4) proves that the force evaluation procedure does provide a sufficiently smooth
load distribution for moving boundaries without underestimating the local load peaks. This ap-
proach was shown to give accurate results, comparable with those of sharp direct-forcing ap-
proaches, as well as manage high pressure differences across the surface [16].
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𝑡𝑛 𝑡𝑛+1

fluid

shell

fluid velocity, pressure, hydrodynamic force
shell displacement, velocity, acceleration
no-slip condition, explicit predictor
hydrodynamic force, explicit predictor
no-slip condition, corrector
hydrodynamic force, corrector

Figure 5.6: Schematic of the iterative FSI time coupling.

5.5 Partitioned solvers for time coupling

The present FSI implementation follows a partitioned approach, where fluid and structural solu-
tions are staggered in time. However, a staggered procedure does not reflect the instantaneous
mutual interaction between the flow field and the shell. The fluid method needs the actual node
displacement and velocity to enforce the no-slip condition at the interface, but the structural
method needs the hydrodynamic loads to integrate the equations of motion. It has been found in
previous studies that a time–staggered solution degrades the temporal accuracy of the FSI proce-
dure as long as the the phase-density ratio ρs/ρ f reduces [91]. The lower the shell relative density,
the more sensitive the shell dynamics to local fluid accelerations. Consequently, for highly scat-
tered and sharp acceleration fields, the structural solver undertakes a stiff system of equations,
and possibly loses convergence. In other words, for ρs/ρ f ∼ O(1) the fluid acts as an extra mass
on the structural degrees of freedom at the coupling interface [18]. Thus, such added mass effect
restricts the numerical stability of the staggered (weak) coupling [17][92]. Moreover, the added
mass destabilizing effect is found in partitioned solvers regardless of the spatial discretization
scheme, but it is rather an inherent property of sequentially staggered methods [18]. As shown in
section 6.4.3, this feature was recognized in the present implementation. The temporal accuracy
in the FSI dynamics could be restored with an iterative transfer of coupling variables at the body
interface. Nevertheless, the iterative coupling dramatically increases the computational expense
per time step. In this case many works have been focused on the reduction of the computational
effort for the strong coupling, as well as the enlargement of the applicability limits of weak cou-
pling schemes [93, 94, 43]. A general iterative procedure is proposed in the present work.
In the following, both weak and strong coupling procedures are summarized. Circled letters
stand for the fundamental operators: fluid dynamic solver F , hydrodynamic load L, shell mo-
tion solver S. Square and curly brackets contain input (initial solution) and output variables for
each operator, respectively; the round brackets contain the information needed for time integra-
tion. Subscripts contain the time advancement indices, whereas superscripts denote the iteration
indices for the strong coupling procedures.

Staggered (weak) coupling

a. [qn, pn] (un, u̇n)⇒ F ⇒ {qn+1, pn+1},

b. [qn+1, pn+1] (un, ün)⇒ L ⇒ {FFS I
n+1 },

c. [FFS I
n+1 ] (un, u̇n, ün)⇒ S ⇒ {un+1, u̇n+1, ün+1}.
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The iterative coupling is presented as a predictor-multicorrector scheme, where convergence is
checked on the Root Mean Square Error (RMSE) of the structural displacement of each degree
of freedom. A schematic of the iterative coupling is provided in Fig. 5.6 for sake of clarity. The
predictor stage corresponds to the staggered coupling described above, with the superscript p
denoting the predicted solution variable. The convergence tolerance was set to ε = 10−8. Within
this framework a low order time stepping of the FSI operators could result in a slow convergence
rate. Thus, the strong coupling procedure is combined with the Aitken adaptive under-relaxation
technique [95][96]; this was shown to effectively accelerate the convergence procedure in iter-
ative FSI methods [13]. In the following procedural scheme the symbol ← indicates a variable
assignment.

Iterative (strong) coupling
Predictor stage

a. [qn+1, pn+1] (un, u̇n)⇒ F ⇒ {qp
n+1, pp

n+1},

b. [qp
n+1, pp

n+1] (un, ün)⇒ L ⇒ {Fp
n+1},

c. [Fp
n+1] (un, u̇n, ün)⇒ S ⇒ {up

n+1, u̇p
n+1, üp

n+1},

d. u̇p
n+1 ← u̇k

n+1, u̇p
n+1 ← u̇k

n+1, üp
n+1 ← ük

n+1, Fp
n+1 ← Fk

n+1, qp
n+1 ← qk

n+1, pp
n+1 ← pk

n+1.

Corrector stage

e. [qk
n+1, pk

n+1] (uk
n+1, u̇k

n+1)⇒ F ⇒ {qk+1
n+1, pk+1

n+1},

f. [qk+1
n+1, pk+1

n+1] (uk
n+1, ük

n+1)⇒ L ⇒ {Fk+1
n+1},

g. [Fk+1
n+1] (uk

n+1, u̇k
n+1, ük

n+1)⇒ S ⇒ {ũk+1
n+1,

˜̇uk+1
n+1,

˜̈uk+1
n+1},

h. Compute the under-relaxation coefficient and correct the computed solution ũk+1
n+1,

i. Check for convergence on the shell displacement: RMSE (ũk+1
n+1 − uk

n+1) < εQ,

j. if not converged, increment k by one and return to step e.,

k. u̇k
n+1 ← u̇k+1

n+1, u̇k
n+1 ← u̇k+1

n+1, ük
n+1 ← ük+1

n+1, Fk
n+1 ← Fk+1

n+1, qk
n+1 ← qk+1

n+1, pk
n+1 ← pk+1

n+1.

l. if converged, update solution variables in time: u̇n+1 ← u̇k+1
n+1, u̇n+1 ← u̇k+1

n+1, ün+1 ←

ük+1
n+1, Fn+1 ← Fk+1

n+1, qn+1 ← qk+1
n+1, pn+1 ← pk+1

n+1.

The under-relaxation is applied to the acceleration array as:

ük+1
n+1 = ük

n+1 + λk+1
(
˜̈uk+1

n+1 − ük
n+1

)
, (5.12)

being ˜̈uk+1
n+1 the solution returned by the structural solver, before the under-relaxation. Then, veloc-

ity and displacement are retrieved by the Newmark update formulas (3.54). The under-relaxation
factor is dynamically determined from the Aitken method [95] by exploiting information from
the last two FSI iterations:

λk+1 = −λk

(
˜̈uk

n+1 − ük−1
n+1

)T {(
˜̈uk

n+1 − ük
n+1

)
−

(
˜̈uk

n+1 − ük−1
n+1

)}
∥∥∥∥( ˜̈uk

n+1 − ük
n+1

)
−

(
˜̈uk

n+1 − ük−1
n+1

)∥∥∥∥2 (5.13)
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For the first iteration a predefined guess value for λ is set to 0.5; in the proceeding time-steps the
initial value is taken from the last FSI iteration λ1

n+1 = λm
n , where m is the last FSI iteration step

at the previous time index n.
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6 Fluid-Structure Interaction:
benchmarking and numerical
experiments

6.1 Verification and validation

The reliability of multiphysic models as predictive tools for engineering scenarios is an issue of
fundamental concern in computational science, especially when dealing with multi-degree-of-
freedom models. In the present work the level of confidence assigned to a computer prediction
of a complex event relies on the collection of procedures described in [97] named ”verification
and validation”. The verification process addresses the quality of the numerical treatment of
the model used in the prediction and the validation process addresses the quality of the model
itself. The verification of the numerical solution, which concerns the accuracy and the order of
convergence of the numerical implementation, is provided for the simplest test-cases considered,
and the relative results are judged by means of tolerances supplied by the vast majority of the
analysts in the corresponding field. The validation process addresses the analysis of meaningful
physical indicators or the comparison against reproducible and widely accepted experimental
measurements.
In the present chapter, the implementation of the unplugged solvers is firstly verified, by simple
examples. Subsequently, the reliability of the coupled FSI solver is investigated against different
test-cases of engineering and biologic inspiration, involving fundamentally different physical and
numerical conditions.
In the numerical experiments, a combination of the following boundary conditions are applied
on the boundary faces of the fluid domain:

• Periodic: Dirichlet conditions are applied to achieve domain periodicity;

• Wall: Dirichlet conditions are employed to get zero normal flux at the domain face;

• Inflow: a uniform streamwise velocity Q∞ and zero cross-stream velocity are specified.
Furthermore the normal pressure gradient is set to zero;

• Outflow: a convective boundary condition is applied by resolving the Eq. (4.21) for mini-
mal distortions and minimal reflections.

Similarly, the shell boundary conditions are defined as follows:

• Hinged edge: Dirichlet conditions are specified at the boundary by setting the displacement
to zero for the specified degrees of freedom;

• Clamped edge: displacements and normal rotations of the clamped edge are prescribed by
fixing the first two rows of control points.
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Simulations are carried out with a constant time-step size. It has been proven with numerical
investigations that the present immersed boundary implementation does not affect the theoretical
limit on the CFL number of 0.6 [60]. This means that stable integration is possible in proximity
of the limit prescribed for the Runge-Kutta scheme. However, this limit is impractical for FSI
simulations involving mutual interaction between segregated solvers; a much smaller time inte-
gration step is required to capture the actual FSI dynamics. Hence, simulations are carried out
within the CFL range [0.05 − 0.2].

6.2 Verification of the immersed boundary method

Most of the IBM analysts introduced their verification studies with the investigation of the flow
past an isolated sphere. Such a test relies on extensive numerical and experimental results
providing local and integral measurements of the quantities of interest. Moreover, the topol-
ogy of the sphere presents all possible intersections with a Cartesian grid, thus the approxi-
mation of the flow field in the near-wall region can be investigated to assess the accuracy of
the results. We investigate the flow past a sphere at different values of the Reynolds number
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Figure 6.1: Steady flow past a sphere. Pressure coefficient distribution over the
sphere surface at Re = 100 (a). Length of the separation bubble ad different

Reynolds numbers (b).

Re = {30, 50, 100, 200}, in which the flow field is steady and axisymmetric. A computational
domain of extension [−5D, 5D] × [−5D, 5D] × [−4D, 16D] is considered, being Z the stream-
wise direction. We use a non-uniform Cartesian grid with cubic spline coarsening far from the
body-wake region. We adopt a minimum grid spacing of ∆x = 0.02D in the body region and
a time step size of ∆t = 0.005 U/D. By using an Eulerian-Lagrangian refinement ratio of 0.6,
as discussed in section 5.3, we end up with 22326 Lagrangian markers. Our implementation of
the immersed boundary method, along with the fluid solver, is compared with the experimental
results by Taneda et al. [98], with the data obtained by Johnson et al. [99] and Fornberg at al.
[100] with a body-fitted method, and with the results obtained by Fadlun with a direct forcing IB
method [76]. The comparison is based on several local and integral factors: (i) the distribution
of the pressure coefficients over the surface (Fig. 6.1), defined as cp = 2(p − p∞)/ρU2, where p
is the pressure at the sphere wall and p∞ is pressure in the undisturbed flow field, (ii) the length
of the separation bubble Lw/D, intended as the axial distance between the sphere surface and
the central stagnation point in the sphere wake (Fig. 6.1), (iii) the drag coefficient of the sphere
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Figure 6.2: Steady flow past a sphere. Visualization of the flow streamlines
superposed to the pressure contours over a section of the flow field at Re = 100

(a). Evolution of the drag coefficient with the Reynolds number (b).

cD = 8 Fz/ρU2πD2 (Fig. 6.2). A satisfactory agreement is found between the present calculations
and the reference results, showing good accuracy both in the flow field and in the local forces
over the surface. Specifically, we obtain a value of drag coefficient for the Re = 100 case equal
to cD = 1.041, which is slightly underestimated with respect to the reference values, cD = 1.085
for Fornberg [100] and cD = 1.079 for Fadlun [76].
In second instance we test the effectiveness of the solver in handling moving bodies. A falling
sphere in a quiescent fluid is simulated. This test cases is performed in a domain of extension
[−3.5D, 3.5D]× [−2D, 8D]× [−3.5D, 3.5D] with a periodic boundary condition in the directions
X, Z, and viscous wall conditions in the Y direction. The rigid body motion is resolved by inte-
grating the Newton equations of motion with an Adams-Bashforth explicit scheme. The gravity
force act along the Y direction. A further scope of this test is the assessment of the interaction
between the boundary condition of the fluid domain and the immersed boundary treatment. To
this extent we implement the collision/lubrication model presented in [101] for the simulation
of 2-ways coupled particle leaden flows. Such a model, which is not presented here for brevity,
provides a penetration penalty factor to estimate the normal collision force, thus allowing a min-
imal superposition of the immersed boundary with the fluid domain edge. We employ a uniform
Cartesian grid with spacing ∆x = 0.035D, and a time step size of ∆t = 0.002D/U. We run the
simulation from the release of the sphere up to the restoration of the rest condition after four re-
bounds. The bouncing dynamics makes the body undergo very large accelerations in the impact,
forcing the IB treatment to deal with a temporal discontinuity in the forcing function. The sphere
is released at y/D = 8 with zero initial velocity.
The kinematics of the sphere is compared with the experimental results of Gondret et al. [102] in
terms of Y-trajectory and velocity (Fig. 6.3). Specifically, we simulate a case with Stroual number
S t = 152, relative particle density ρ = 7.8, Reynolds number Re = 163, and normal restitution
coefficient en = 0.97. Our simulations match the experimental measurements, confirming the
effectiveness of the IBM method with moving bodies, in the limit case of extreme accelerations
and superposition with the fluid domain boundary. The well-known near-wall primary vortex
dynamics [73, 103] is observed in the fluid motion after the impact (Fig. 6.4). [!h]
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Figure 6.3: Trajectory (a) and velocity evolution in time (b) of the center of mass
of a bouncing sphere in a quiescent fluid. The variable tc defines the instant of

the sphere-wall contact.

Figure 6.4: Snapshots of the sphere-wall interaction with a restitution coefficient
en = 0.97 and modeled lubrication forces. The spurious fluid motions inside the

sphere are intentionally illustrated.

6.3 Verification of the shell solver

The shell solver is embedded in the FSI framework by re-implementing the software developed
by Kiendl. et al [8], which has been extensively tested in previous works [28, 104, 31]. Hence,
only a simple verification case is presented in this thesis. A freely vibrating, undamped beam is
considered. The beam dimensions are 1× 0.1× 0.001 m (length × width × thickness). The mate-
rial parameters are E = 210.1×1010 Pa, ν = 0.3, ρ = 7850 kg/m3. The plate is clamped at the left
edge and initially deformed corresponding to a static load of F = 225 ẑ N/m at the right edge. At
time t = 0, the load is removed so that the beam is subject to free vibrations. The validity of the
solution is verified comparing the present simulation with the results presented in [104], in terms
of tip displacement (see Fig. 6.5). The present simulation, obtained with 10 cubic elements in
the bending direction and 4 linear elements in the other direction, matches the reference solution
in terms of amplitude and frequency. A time step-size of ∆t = 0.01 s is employed. In Fig. 6.5
the solution obtained with a Newmark time-stepping rule is presented to illustrate the necessity
of controlled numerical damping. The Newmark method (γ = 1/2, β = 1/4), which is a conser-
vative scheme, presents non-physical oscillations arising due to the unresolved high frequency
modes. The spurious oscillations bring the solver to a divergent solution within the first period.
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Figure 6.5: Freely vibrating beam in the configuration corresponding to the
largest displacements (a). Time traces of the tip z-displacement (b): present
solution obtained with a Generalized-α integration (black circles), present solu-
tion obtained with a Newmark integration (red circles) reference solution (black

crosses).

On the contrary, the Generalized-α method provides a regular kinematics. The numerical dissi-
pation introduced with the Generalized-α scheme [40] is essential in the FSI framework, where
large displacements and a highly scattered load distribution are experienced by the structure.

6.4 Numerical tests for Fluid-Structure Interaction

The aim of this Section is the validation of the proposed mathematical approach for the sim-
ulation of fluid-structure interaction problems. A number of significant test have been selected
among a variety of literature cases to get a meaningful sample of different physical and numerical
conditions.

6.4.1 Hinged flag

The first test consists of a widespread benchmark case for FSI schemes involving large dis-
placements and a fully three-dimensional dynamics. A flat plate invested by a uniform flow is
simulated, as first investigated by Huang et al. [105] with the aim of replicating a flag-in-the-
wind problem. The numerical challenges associated with the rigid body motion modes and the
complex blending of inertial and elastic effects, still make this case a demanding test for any
FSI procedure. In fact its dynamics was broadly investigated [105, 106] under different flag
material properties and inflow conditions, as well as it was proposed in several works as vali-
dation problem [107, 16]. The flag is modeled as a square plate hinged at the leading edge.
The leading edge is aligned with the Z-axis, with its midpoint coinciding with the origin of
the Eulerian coordinate system. The flag is initially held at an angle α = 0.1π from the ZX
plane, being Z the streamwise direction. In the present work, a computational domain of extent
[−1.5L, 1.5L] × [−5L, 5L] × [−2L, 8L] is employed. The boundary conditions of the fluid prob-
lems are: periodic in the X direction, inviscid wall in the Y direction and inflow/radiative outflow
in the Z direction (Fig. 6.6). The Eulerian grid is uniform with spacing ∆ = 0.02L, while the
flag is discretized by 14 third order elements in both parametric directions. A constant time step
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Figure 6.6: Schematic of the computational domain and boundary conditions for
the FSI simulation of a hinged flag subject to uniform free stream.

size of ∆tQ/L = 0.001887 was considered in order to get a bulk CFL = Q∞∆t/∆x = 0.1. The
simulation is carried out at a Reynolds number Re = 200.
The shell model presented by Huang et al. [105] was derived from a definition of elastic energy
based on a decoupling of bending and membrane strains, therefore the Poisson’s ratio is chosen
to be ν = 0. The nondimensional bending stiffness and the mass ratio are assumed to be:

γ =
Eh3

12
(
1 − ν2) ρ f Q2L3 = 0.001 , µ =

ρsh
ρ f L

= 1.0 . (6.1)

The former assumptions allow to keep the physical consistency with the problem illustrated in
[105], despite the fact that very different shell models have been employed. Buoyancy effects are
neglected in the present simulation.
The problem is initialized with a uniform flow field at the target bulk velocity Q∞, then the flag
undergoes about 8 transient oscillations before settling to a periodic flapping motion. Time-traces
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Figure 6.7: Time traces of the middle trailing edge point (a). Projection of the
middle trailing edge point position on the YZ plane (b). Filled circles indicate
the time instant at which the vortical structures are shown in Fig. 6.9. The figures

refer to the hinged flag test case.
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Figure 6.8: Time evolution of the lift (a) and drag (b) coefficients of the hinged
flag case within the periodic flapping regime.

of three periods are shown in Fig. 6.7, as proof of agreement with numerical results of the Huang
and Sunge [105]. The fidelity of the numerical results is further investigated by inspecting the
evolution of the force coefficients cD = 2Fz/(ρ f Q2

∞L2), cL = 2Fy/(ρ f Q2
∞L2). A satisfactory

agreement (Fig. 6.8) is found with the results presented by Lee and Choi [106]. Eventually, the
instantaneous vortical structures, identified by a Q-criterion (isosurface of Q = 0.0) are reported
in Fig. 6.9, showing the characteristic hairpin-like structure shed at each flapping [105, 106].

6.4.2 Accuracy analysis

The hinged flag problem is then used to perform a refinement study with the aim of investigating
the accuracy of the FSI procedure. Given the partitioned nature of the present FSI method, two
independent refinement analyses have been performed for the fluid and the structural solver.
Each solver involves nonlinear phenomena and different convergence rate, as well as different
discretization approaches. To this extent errors are evaluated as:

Figure 6.9: Instantaneous vortical structures around the flapping flag described
by isosurfaces of Q = 0.0, at the time instant tQ/L = 33.89, corresponding to the

filled circle in Fig. 6.7.
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ε(θ) =
|θ − θr |

θr . (6.2)

First, the FSI convergence rate under Eulerian grid refinement is investigated. Four uniform
Cartesian grids are employed with a constant refinement ratio of 1.5. A corresponding La-
grangian marker spacing equal to 0.6 times the Eulerian grid size is adopted. In order to in-
vestigate the method accuracy both in space and time, the time step size is selected with the aim
of keeping the CFL = Q∞∆t/∆x = 0.1; however, the actual CFL value never exceeds 0.2 in each
simulation. For the accuracy analyses the fluid domain is [−L, L] × [−4L, 4L] × [−L, 7L]. The
reduced extension of the computational domain and the refinement ratio allow to keep a reason-
able computational expense for the analysis. The relative errors are evaluated as in Eq. (6.2) with
respect to an extrapolated solution, which was obtained following the procedure proposed by
[108]. A summary of the accuracy study is reported in Tables 6.1, 6.2. A quantitative measure

i refinement x nodes y nodes z nodes ∆ time step
ratio size

1 - 29 113 113 0.0714L 7.143e-3
2 1.5 43 169 169 0.0476L 4.762e-3
3 1.5 65 257 257 0.0313L 3.125e-3
4 1.5 97 385 385 0.0208L 2.083e-3

Table 6.1: Summary of the computational setting for the Eulerian grid refinement
study. The shell resolution is kept constant for each case.

j shell elements refinement shape functions m
per side ratio order

1 4 - 3 147
2 6 1.5 3 243
3 9 1.5 3 432
4 14 1.5 3 867

Table 6.2: Summary of the computational setting for the shell h-refinement study.
The shell resolution is kept constant for each case.
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Figure 6.10: Relative error convergence with respect to the Eulerian grid refine-
ment for a pinned flag in a free stream.
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Figure 6.11: Relative error convergence with respect to the shell h-refinement
for a hinged flag in a free stream. The overall degrees-of-freedom number m is

denoted on abscissa.

of the accuracy is provided by means of the relative error defined in Eq. (6.2) with respect to
the selected variable: the flapping amplitude A, the flapping period T , the nondimensional strain
energy, defined by:

Es =

1
2 uT Ku
ρ f Q2L3 . (6.3)

The local variables are measured with respect to the tenth period, while the error on the strain
energy is computed with respect to a time-averaged value. The relative errors are plotted against
grid spacing in Fig. 6.10, showing a consistent convergence rate on the finer grids. In the present
case it is verified that the overall FSI procedure does not degrade the order of accuracy of the
fundamental solvers.
In the second instance, the FSI convergence rate under shell h-refinement is investigated. In the
framework of IGA, the h-refinement is intended as a knots insertion procedure which leads to a
larger partitioning of the NURBS surface without affecting the surface topology. To reduce the
complexity of this study, the basis function order is kept constant and equal to 3, and h-refinement
is carried out equally on both NURBS parametric directions. Four uniform knot vectors were
employed with a constant refinement ratio of 1.5. The fluid solver setting corresponds to the
finer case extracted from the Eulerian grid refinement (i = 4 from Table 6.1). Lagrangian marker
spacing and time step size both followed this choice. As depicted in Fig. 6.11, the refinement
analysis shows an overall accuracy superior to second order in the finer cases. Fig. 6.12 provides
the results of the refinement studies in terms of trailing edge middle point transverse location,
showing a reduction in the displacement error with respect to the reference solution.

6.4.3 Numerical features

The present subsection is devoted to the investigation of some numerical features highlighted in
the description of the numerical method. The hinged flag test is taken as a basis for measuring the
effectiveness of the no-slip condition enforcement as well as the added mass effect. The following
numerical experiments are performed with the same discretization setting employed in section
6.4.1 with which literature results are matched. First, the Root Mean Square Error of the no-slip
condition over the net of Lagrangian markers is evaluated. The velocity field interpolated at the
Lagrangian marker should ideally match the local body velocity, because the forcing function is
computed from the local velocity difference (5.2). However, the pressure correction step disrupts
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Figure 6.12: Time traces of the transverse location of the trailing edge middle
point for the hinged flag case at different shell refinement levels (top), and at
different Eulerian grid resolutions (bottom). Magenta curves correspond to the

reference solution.
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Figure 6.13: Time evolution of the root mean square error of the velocity compo-
nents at the Lagrangian marker location (bottom), compared with the time-traces

of the flag trailing edge middle point (top).
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Figure 6.14: Time-averaged root mean square error of the normal flux on the
surface as function of the ratio between Lagrangian marker spacing and Eulerian

grid spacing.
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Figure 6.15: Time evolution of the L∞ norm of the FSI coupling error evaluated
on the surface degrees of freedom.

the prescribed no-slip condition to enforce the continuity of the fluid solution at local level. The
forcing procedure is repeated at each Runge-Kutta (RK) substep, but the detection of the marker
position is performed just at the first substep. The final discrepancy between local body velocity
and interpolated fluid velocity is measured after the third RK substep, by interpolating again the
final velocity field at each marker. As depicted in Fig. 6.13, the RMSE of all velocity components
is maintained as a O(10−4) fraction of the intrinsic bulk velocity. The same order of magnitude
was found in a similar forcing scheme by [74] for both stationary and moving boundaries. In the
present test, the error on the velocity component Z is magnified in correspondence of the peak
flag deflection (Fig. 6.13), i.e. when the largest local accelerations are encountered. The error is
thus amplified when the fluid field is forced to a severe redistribution of the local momentum, like
in the case of a uniform flow meeting a normal wall. Beyond a certain threshold the no-slip con-
dition error is insensitive to the CFL as well as to the time-step size of the simulation; according
to the experience of the authors, this refinement threshold does not provide a limit in the method
efficiency, since it is often less stringent than the refinement necessary to capture the correct FSI
dynamics.
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Another relevant issue in the no-slip condition enforcement is the local spacing between La-
grangian markers. In the present implementation it represents an independent variable; the mark-
ers are collocated in the NURBS parametric space with the aim of matching the local Eulerian
grid resolution. A resolution match is necessary to avoid a “porous” representation of the shell
in the fluid solution. Numerical experiments show that an optimal Lagrangian marker resolu-
tion can be achieved. The hinged flag test is repeated with different marker spacing values.
Then, the RMSE of the normal flux is evaluated with respect to a very fine net of check markers
(0.005L×0.005L). On each check marker the normal flux is evaluated with respect to the relative
local flow velocity fc = (qc − uc) · nc. The time-averaged surface flux (Fig. 6.14) is assumed to
be converged at the relative spacing ∆l/∆x = 0.6. Hence, this value is considered as an optimal
choice for all the test cases presented. It should be mentioned that the marker projection is re-
peated at each time step, thus a large surface stretching would not affect the mean surface flux
value.
The accuracy of the load computation is investigated, too. High density-ratio cases (ρs/ρ f >> 1)
allow for a time-staggered FSI coupling, where the solution at previous time step is used to com-
pute loads for the structural solver. An explicit treatment becomes less accurate in time as the
density-ratio gets closer to one. The hinged flag case is repeated with the strong coupling proce-
dure at four decreasing density ratios (ρs/ρ f = [500, 100, 10, 1]), and the effect of the time-lag
is measured by the L∞ norm of the hydrodynamic forces error between the predicted and the
corrected solution (the reader should refer to the iterative coupling procedure described in Sec-
tion 5.5). The first 1000 time steps are presented (Fig. 6.15) to isolate the effects of different
density ratios from the effects of a markedly different dynamics. A different order of magnitude
in ρs/ρ f corresponds to a different order of magnitude in the force error. Until the force error
has the same order of magnitude as the no-slip conditions, the weak coupling could be consid-
ered sufficient for reproducing the global FSI dynamics. The hinged flag case can be taken as a
numerically challenging example in terms of added mass effects because of the presence of rigid
body modes. The predictive capability of the iterative coupling procedure is tested against an
experimental investigation in Section 6.4.7, where a significant numerical challenge is provided
by a shell-to-fluid density ratio lower than one.

6.4.4 Sealed channel

The intrinsic error in the interface conditions is further investigated by assessing the volume con-
servation on a simple test-case. As a consequence of the approximate interface conditions, the
fluid volume conservation within a subset of the computational domain suffers from a system-
atic error. This is an issue of fundamental relevance in the simulation of capsules and closed
vesicles, where such error can lead to a spurious changes in the internal volume. Several efforts
have been done to address this issue in direct-forcing schemes, with different degrees of com-
plication [109, 110, 47]. In the present implementation, the causes of the volume conservation
error on a subset of the fluid domain are connected mainly to the aforementioned effects of the
pressure correction, as well as to the fact that the forcing function comes from the interpolation
of a locally non-solenoidal field. It should be pointed out that staggered-grid schemes showed
superior volume conservation properties with respect to collocated-grid schemes [111]. On the
former schemes, further developments were made by using forcing/spreading operators with in-
trinsic conservation properties, ensuring that the interpolated velocity is constructed to be nearly
divergence-free [47].
In order to limit the complexity of the interpolation/spreading operations, a simple iterative forc-
ing is proposed in the present section: the volumetric flow rate leakage can be reduced up to
two order of magnitude by reiterating the forcing procedure within each Runge-Kutta substep
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(Fig. 6.17). The repetition of the forcing/spreading procedure produces smaller local volume
forces at each iteration which bring little changes in the momentum. The reduction in the in-
terface velocity error is thus linked to a relative reduction of the interpolation/spreading errors.
However, the accuracy enhancement is limited by the subsequent pressure correction stage.

This solution is assessed by measuring the mass flow rate in a viscous channel subject to a

Figure 6.16: Schematic of the computational domain and boundary conditions
for the FSI simulation of a channel sealed by an elastic membrane.

constant pressure gradient, but completely sealed by an elastic shell. As shown in Fig. 6.16, a
channel of dimension [−0.125H, 0.125H]×[0,H]×[−2H, 2H] is set to have a viscous wall condi-
tion on the Y faces, and periodic conditions on the other faces. The fluid domain is discretized by
the spacing ∆z = 0.007H, ∆x = ∆y = 0.01H, whereas the shell is discretized by 32 second order
elements. A constant pressure gradient ∂p/∂x = −12(ρ f Q2)/(Re H), corresponding to the driv-
ing load required to get the mean channel velocity Q for a laminar, planar flow, is applied to an
initially quiescent fluid field. The Reynolds number and the shell properties are set to Re = 100,
E/(ρ f Q2) = 0.01H, t = 0.01H, ρs/ρ f = 100.0H, ν = 0.3, respectively. After a short transient
behavior, fluid and structure reach an equilibrium configuration where the elastic force provided
by the deformed shell balances the pressure gradient applied at the channel.
The effect of the iterative forcing is evaluated by measuring the volumetric flow rate fraction
across the channel section for several forcing loops n = {1, 2, 3, 5, 10}, at different time step
sizes, corresponding to CFLx = {0.5, 0.2, 0.05}. The flow rate V̇ is given in percentage of
the target volumetric flow rate of an incompressible laminar flow between infinite flat plates,
V = V̇/(QL2) · 100%. The reduction in the flow rate with the number of forcing loops follows
a nearly asymptotic trend, which is mitigated by reducing the CFL number. As suggested by
[74], a computationally-effective choice for the reduction of the flow leakage across the inter-
face would occur at n = 2. At different CFL conditions, the error is more than halved after the
second forcing iteration. At CFL = 0.2, the relative error drops below 1% after two iterations:
Vn=2 = 0.447%,Vn=3 = 0.213%,Vn=5 = 0.0785%.

6.4.5 Inverted flag

The dynamics of a flag invested by a uniform flow was broadly investigated in the literature to
find the conditions under which the self-excited flapping occurs. In this context, the configuration
where the flag is free at the leading edge and clamped at the trailing edge is referred to as inverted
flag. Besides the purpose of understanding the physics of the self-excited motion, this problem
raised interest for the possibility of energy harvesting by means of a piezoelectric device. In fact,
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Figure 6.17: Pressure contours (p− < p >)/(ρQ2) of a sealed channel sub-
ject to a prescribed constant pressure gradient in the equilibrium configuration at
CFLx = 0.2 (a). Volumetric flow rate within the sealed channel at the equilib-
rium configuration; values are given in percentage of the target volumetric flow

rate of an incompressible laminar flow between infinite flat plates (b).

once the kinetic energy of the fluid flow is converted in strain energy of the flag, the piezoelectric
layers accumulate electric charge in response to the mechanical stress. An efficient application
of the concept requires an accurate design of the flag, which should easily become unstable at
low inflow velocity and have an high excitation amplitude [112]. Experimental and numerical
investigations have shown that the dynamic response of the flag can undergo three regimes. A
straight regime, where the flag just vibrates around the initial equilibrium position; a flapping
mode, where the flag undergoes large amplitude oscillations; a deflected mode, in which the
flag flutters with small oscillations around a highly bent configuration. The flag motion which
maximizes the harvested energy depends on many parameters such as the flag geometry, bend-
ing stiffness, inflow velocity. Thereby a computational model which accurately reproduces the
mechanics of the problem would be an effective tool for optimization purposes or design space
exploration [113, 114, 115].
In order to compare results with the experimental campaign carried out by Kim et al. [112], the
following governing parameters have been considered for the present test:

β =
Eh3

12
(
1 − ν2) ρ f Q2L3 , µ =

ρsh
ρ f L

, Re =
ρ f QL
µ f

, a =
H
L

, (6.4)

where β indicates the nondimensional bending stiffness, µ is the mass ratio, Re is the Reynolds
number, and a is the flag aspect ratio. A set of five simulations β = [0.06, 0.1, 0.18, 0.26, 0.32]
contemplating the three different regimes is carried out. For each regime the parameter β is
varied by changing the Young’s modulus, whereas the other nondimensional parameters are kept
constant: µ = 0.29, a = 1.1. All simulations are performed at Re = 200. Even though
experiments by Kim et al. [112] were conducted at higher Reynolds numbers (Re ≈ 104), it has
been found that the leading edge vortex dynamics, crucial for the large amplitude flapping, was
reproduced similarly at much lower Reynolds numbers [113]. A fluid domain of dimension
[−2L, 2L] × [−5L, 5L] × [−2L, 10L] is employed, and a local grid size of ∆ = 0.02L is adopted
in the flapping region [−2L, 2L] × [−2L, 2L] × [−0.5L, 3.5L]; however the grid was stretched far
from the body with a cubic spline law. The fluid domain arrangement is similar to that of the
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Figure 6.18: Time trace of the middle leading edge point y coordinate for
β = 0.1; superposition with the experimental results by Kim et al. [112] and

computational results by Gilmanov et al. [14].
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Figure 6.19: Strouhal number as a function of the nondimensional bending stiff-
ness for the flapping regime of the inverted flag case (a). Mean (circles) and
maximum (squares) normalized bending energy against nondimensional bend-

ing stiffness (b).

hinged flag test, sketched in Fig. 6.6. The flag is clamped on the trailing edge at an angle equal
to 1.5 degrees with the inflow direction. This allows to brake the symmetry in the problem and
accelerate the rise of unstable modes without affecting the hysteresis loop [112], even though a
slightly asymmetric flapping is observed. In the experiments, the gravity force acted along the
spanwise direction, where negligible deflections were observed, therefore its contribution was
omitted in the present simulations. The shell is discretized by 14 cubic isogeometric elements in
the flow direction, whereas 6 quadratic elements are employed in the spanwise direction, since
the flapping dynamics is expected to be mostly bi-dimensional. A constant nondimensional time
step of ∆tQ/L = 10−3 is used; this allows to have more then 12000 time steps within one period
at β = 0.26.
The strain energy associated with the bending modes is crucial for energy harvesting applications.
Therefore, the nondimensional bending energy is measured along the flag center-line on a local
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curvilinear axis s = s(x(t)). The definition provided by Kim et al. [112] is:

Eb(t) =

1
2

∫ L
0 BK(s, t)2ds

ρQ2L2 =
1
2
β

∫ 1

0
κ(s, t)2d

( s
L

)
. (6.5)

Mean and maximum bending energy values are plotted for the set of bending stiffness value
considered (Fig. 6.19 b). As shown by the maximum Eb values, two bifurcations in the flag
dynamics are found in proximity of β = 0.1 and β = 0.3, consistently with the experimental
observations of Kim et al. The simulations confirm the nature of the nonlinear dynamics and
the presence of two fixed points and one limit cycle in between. A detailed stability analysis
of the problem was provided by [116]. Furthermore, the maximum bending energy associated
to the limit-cycle flapping mode is found to be substantially larger than the deflected mode;
despite a higher bending stiffness, the flag in the flapping mode can bend more downstream
(Fig. 6.20) and achieve higher curvature values near the trailing edge. This was widely recognized
in experimental and numerical studies [112, 113].
The time traces of the vertical displacement of the leading edge is provided in Fig. 6.18 for
the largest amplitude flapping (β = 0.1). A comparison with the experimental measurements
shows a good agreement. Our method is clearly able to capture the inertial over-bending of
the tip when the flag reaches the amplitude peak: this is reflected in a local minimum in the
leading edge time-traces (Fig. 6.18) which was observed in the experimental investigation, too.
Furthermore, the computational data provided by [14] are also reported to show the consistency
with simulations carried out at the actual Reynolds number, with a highly turbulent wake. Finally,
the Strouhal number (defined as S t = f A/Q) plot reveals a satisfactory agreement in terms of
flapping amplitude and flapping period (Fig. 6.19 a). A little mismatch in the Strouhal number
and bending energy is found for β = 0.26. This can be attributed to the sensitivity to initial
conditions of the system in the transition region from straight mode to flapping mode; as a matter
of fact, Ryu et al. defined a further regime, named biased regime, in the phase space spanned by
Reynolds number and bending stiffness [116].

6.4.6 L-shaped plate

The present case consists of a L-shaped plate invested by a wall-bounded flow, as sketched in
Fig. 6.21. The flexible plate is clamped at its shortest edge, therefore the shank of the plate inter-
acts with the boundary layer. This test case was first proposed by Glück et al. [117] as benchmark
for lightweight structures occurring in Civil Engineering. This was chosen to corroborate the sen-
sitivity of the implementation against an FSI case dealing with a complex strain pattern involving
torsion and bending. According to [117] the plate was kept fixed until t = 20 s, when the flow
field is fully developed and a periodic solution is reached. Thereafter, the shell solver is activated,
and the plate is able to develop structural oscillations. Because of the sudden release of the plate,
the displacement overshoots several times the steady state deformation, which are reached after
a large transient. The numerical experiment is repeated three times for different values of the
nondimensional elastic modulus E∗ = E/(ρ f Q2) = [1.165 ·105, 0.350 ·105, 0.177 ·105]. The first
value of E∗ was adjusted to achieve the tuning of the main vortex shedding frequency and the first
eigenfrequency of the plate [117], so that self-excited oscillations occur once the transient is fin-
ished. A schematic of plate dimensions is reported in Fig. 6.21. Thickness, density, Poisson’s ra-
tio and Reynolds number are assumed to be h = 0.01L, ρs/ρ f = 1200.0, ν = 032, Re = 200. The
fluid domain is [4L, 4L]×[0, 5L]×[−8L, 25L]. Here, the forward domain region along Z-direction
is fundamental for the test outcome since it affects the thickness of the boundary layer investing
the plate. The flow fleld is uniformly discretized in the region [4L, 4L] × [0, 2.5L] × [−2L, 4L],
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(a) β = 0.32 (b) β = 0.26 (c) β = 0.18

(d) β = 0.10 (e) β = 0.06

Figure 6.20: Snapshots of the inverted flag motion for decreasing bending stiff-
ness values.

Figure 6.21: Schematic of the computational domain and boundary conditions
for the FSI simulation of an L-shaped plate (left). Proportions of the plate and

location of the vertex V (right).

where local grid spacings ∆x = ∆y = 0.02L, ∆z = 0.016L are employed. The present grid reso-
lution was deemed sufficient to capture the boundary layer gradients. The plate is represented by
means of three patches (Fig. 6.21) to achieve a simple one-to-one correspondence of the interface
control points. By doing so, the necessary C1 continuity is enforced with a trivial master-slave
approach [5]. Third order basis functions and 16 elements per unit length L have been employed
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Figure 6.22: Time-traces of the streamwise coordinate of the vertex V of the
L-plate, from plate release to periodic oscillations regime (a). Superposed plate
configurations at tQ/L = 220 for different E∗ values; the black dot highlights the

displacement of the vertex V (b).

for the shell discretization. Calculations are performed with a nondimensional time step size
∆t = 0.005tQ/L, in order to resolve one oscillation period with the first plate eigenfrequency by
at least 50 time steps.
For E∗ = 1.165 · 105 the plate is damped up to a self-excited periodic oscillation state, therefore
the condition described by Glück et al. is met. The other cases led to steady plate configurations.
As pointed out in Fig. 6.22, the mean displacement of the vertex V is accurately reproduced in
the three cases.
The vibrating plate E∗ = 1.165e5 was found to oscillate with a dimensional frequency f =

1.16Hz, against the value f = 1.19Hz measured by Glück et al. A spectrum plot of the vertex
V streamwise oscillation is provided in Fig. 6.23. The agreement with results from Glück et al.
can be considered satisfactory. This case had to deal with very small amplitude oscillations in
the periodic regime, whose condition represents a demanding task, given the approximate en-
forcement of the no-slip condition. The largest peak-to-peak length is expected to be entirely
contained in one fluid cell. However, the information transfer operator is sufficiently sensitive
to the local flow field changes to capture such self-excited oscillations. A comparison of the
transient regime with the results available in literature are presented in Fig. 6.23 (left), where an
envelop curve of the plate transient was fitted on the peaks of the present simulations and super-
posed to the oscillation peaks reported in the reference work. The linear trend over a logarithmic
time scale actually confirms a pure viscous damping mechanism.

6.4.7 Clamped seaweed

The next case is selected in order to test the robustness of the strong FSI coupling against a
problem involving large accelerations and a low shell-to-fluid density ratio. The case concerns
the reconfiguration of a buoyant seaweed induced by the seawater flow. Luhar and Nepf
performed laboratory-flume experiments on a single seaweed-like specimen to investigate the
seaweed posture in the marine environment [118]. The experimental data have already been
used in the literature to check iterative coupling algorithms with reduced computational expense
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Figure 6.23: Normalized transient envelop of the stramwise displacement of
the L-plate vertex V (a). Dashed horizontal lines show the local grid spacing
in Z-direction; self-excited oscillations occur within one fluid cell. Frequency
spectrum of the vertex V streamwise displacement for E∗ = 1.165 · 105 in the

self-exciting regime (b).

[107, 43]. A blade resembling a specimen of the seagrass Zostera Marina is modeled as a
clamped plate of width L, height H = 5L and thickness h = 0.2L, 0.04L [118]. The fluid domain
extends to [−4.5L, 4.5L]× [0, 15L]× [−5L, 20L]. Inviscid wall and periodic boundary conditions
are applied respectively in directions Y and X; a radiative outflow boundary condition is used at
the flow outlet. In the reference experiment [118], the blade was positioned above the bottom
boundary layer to get a uniform flow speed over the length of the model blade by means of the
blade holder. This condition is reproduced numerically by setting a free-slip condition on the
bottom wall. A schematic of the fluid domain and boundary conditions is provided in Fig. 6.24.
The shell is discretized by 6 quadratic elements in the width direction and 14 cubic elements in
the height direction because the deformation is expected to be mostly two-dimensional. Two
simulations are performed in fluid-dynamic similitude with the experimental conditions [118],
providing a Reynolds number Re = 1490. The buoyant force, which plays a relevant role in the
seaweed reconfiguration, is applied as a net surface load fg = g/(ρ f )(ρs/ρ f − 1)h to be integrated
over the surface. Simulations are carried out on a fluid grid uniformly refined within the subset
[−4.5L, 4.5L] × [0, 8L] × [−2L, 5L] where a local grid spacing of ∆ = 0.025L is achieved; a
constant nondimensional time-step size ∆t = 0.002Q/L is employed in all the simulations, with
the CFL number never exceeding 0.2. A resume of the simulations and global outcomes is
reported in Table 6.3. The results are compared in terms of drag coefficient cD = 2Fz/(ρ f Q2LH),
and time-averaged streamwise and transverse displacements of point P (Fig. 6.24). In each
simulation the fluid density and dynamic viscosity of the seawater at laboratory conditions are
assumed: ρ f = 1025.0kg/m3, µ = 0.0011Ns/m2. The materials employed by Luhar and Nepf in
their experiments are modeled as follows: Sylicone foam (ρs/ρ f = 0.678, E/(ρ f Q2) = 1.905e4,
ν = 0.4, h/L = 0.2, 4gL/Q2 = 3.831) and HDPE (ρs/ρ f = 0.951, E/(ρ f Q2) = 3.544e7, ν = 0.46,
h/L = 0.04, gL/Q2 = 3.831). Under the experimental conditions, the flexible plates settle down
to a nearly static conditions, were small amplitude oscillations in the ZY plane are observed. The
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Figure 6.24: Schematic of the computational domain and boundary conditions
for the FSI simulation of a seaweed.

Figure 6.25: Instantaneous out of plane vorticity magnitude ωL/Q over the
X = 0.0 section (top) and the Y = 2.5L section (bottom). The contours refer
to the Silicone Foam seaweed specimen at experimental inflow conditions, at

t = 10.0Q/L. Contours are plotted over a subset of the fluid domain.

steady configuration achieved in the present simulations corresponds to the minimal drag force
as compared with the corresponding rigid plate. The reconfigured plate at experimental inflow
conditions is superposed to the experimental observation in Fig. 6.26, showing a satisfactory
agreement. The instantaneous contours of out-of-plane vorticity magnitude are plotted at two
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Re ρs/ρ f cD Dz/b Dy/b

present work 1490 0.678 1.12 2.22 0.61
1490 0.951 1.40 0.37 0.03

Luhar and Nepf [118] (experimental) 1490 0.678 1.15 2.14 0.59
1490 0.951 1.39 0.52 0.05

Tian et al. [107] (computational) 1600 0.678 1.03 2.14 0.59

Kim et al. [43] (computational) 1600 0.678 1.12 2.19 0.59

Table 6.3: Mean drag coefficients and mean streamwise and transverse displace-
ment of the point P. A comparison with results available in literature is provided.
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Figure 6.26: Steady blade posture for two different material properties with su-
perposed experimental observations. Silicone foam (a) and HDPE (b).

cross-sections of the computational domain (Fig. 6.25). Despite complex vertical structures
are exhibited in the wake, the characteristic vortex-shedding pattern of a bluff body can be
recognized in the ZX plane. A shear layer vortex periodically detaches from the free edge of
the plate. The present test proved that the method is able to cope with a very low shell-to-fluid
density ratio without incurring in numerical instabilities. In all simulations, the iterative FSI
coupling converged to the predefined tolerance in 2-8 iterations, depending on the magnitude of
the local accelerations in the shell.
Eventually, a general over-bending of the plate is observed in the simulations at a lower density
ratio. This is attributed to the absence of the blade thickness, which could lead to a smaller flow
recirculation region in the body downstream.
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7 Electrophysiological excitation of
thin muscular tissues

7.1 A computational approach to electrophysiology

Computational methods for the simulation of electrical excitation of biologic tissues have expe-
rienced tremendous advances in the last decades. The diffusion of high-performance-computing
infrastructures allowed the computational science community to realize accurate organ-scale sim-
ulations of the propagation of electrical impulses over the muscular tissues. Detailed anatomical
models have been developed, both on cellular- and tissue-level. The purposes of such mod-
els are the comprehension of multiscale mechanisms, the study of pathological states [20], the
conceptualization of next-generation prosthetic devices [119], and ultimately, the possibility to
perform clinically relevant studies with patient-specific simulations [21, 120]. However, the in-
trinsic multiscale nature of the electrophysiological phenomena still offers significant challenges
to computational analysis. The acceptance of computational methods in the medical commu-
nity will largely depend on their efficiency, robustness and reliability, which are currently open
avenues of research [121]. On the other hand, computational approaches are recognized as a
valuable tool to assist the experimental procedures bearing in mind that replicable in-vivo mea-
surements are certainly difficult to obtain.
The roots of the mathematical formulation of electrophysiological models date back to the work
of Hodgkin and Huxley [122] on modeling the electrical propagation in squid giant axons. Fol-
lowing their work, a large number of electrophysiological models, especially focused on my-
ocardial cells and pacemaker cells have been proposed in the literature [123]. The computational
research has been focused mainly on cardiac tissues [124], providing in recent years multiphysic,
multiscale solvers for fully coupled electro-mechano-fluidic ventricle simulations that incorpo-
rate detailed mechanical contraction models, crossbridge dynamics, and the fluid-structure inter-
action [124]. Recently, similar electrophysiological models found application in the study of the
locomotion of simple organisms, with the scope of understanding its nature or building artificial
swimmers with in-vitro cultured tissues. [22, 125].
Currently, the scientific community distinguishes two main classes of electrophysiological mod-
els: biophysical and phenomenological models. Biophysical models [126, 127, 128] aim at
describing the complex exchanges occurring at the excitable cell membrane, by quantifying the
transmembrane fluxes of the main ionic species (Calcium, Potassium, Sodium and Chlorides
ions) through the ion channels. Differently, phenomenological models [129, 130, 131] neglect
the sub-cellular ion dynamics and propose simplified formulations which mimic the transmem-
brane potential shape. Regardless of their nature, all deterministic electrophysiological models
result in a reaction–diffusion equation [132] whose reaction term falls into one of the model’s
category aforementioned. In this scenario, the choice of the numerical method strongly depends
on the range of temporal and spatial scales which one aims at describing. The molecular mech-
anisms develop at scales orders of magnitude smaller than those of muscle contraction (see Fig.
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7.1), but each stage of the electrophysiological chain is connected with biochemical and mechan-
ical processes. A full level modeling is practically impossible, but the mutual interaction of the
different scales is often necessary to obtain physiologically meaningful results.

Figure 7.1: Spatial scales of the mechanisms contributing to the electrophysio-
logic activation of the heart. Each of these stage has a strong functional coupling

with the others. Figure taken from https://cardsslab.org/.

7.2 Thin muscular tissues

The present work aims at providing an efficient numerical tool for the simulation of the electro-
mechanical activation of thin muscular tissues. Recent experimental and computational studies
have turned their attention to the electro-mechanics of thin tissues, as objects of layer-wise car-
diac tissue engineering [133], or actuators for bio-inspired robots for aquatic locomotion [125].
Different research groups have found that artificial cultured tissues can match certain temporal,
spatial, or force regimes typical of biological muscle [134], although they cannot fully repli-
cate all the electro-chemical mechanisms, nor can they use the same high-density energy sources
[22]. Unlike mechanical actuators, cultured tissues demonstrated moderate contractile force, fast
actuation, large strain, possible remote control by electric field imposition, and low power con-
sumption [135]. Thus, soft engineered tissues proved their superiority with respect to classical
robotics due to their ability to replicate the hierarchical architecture typical of biological systems,
which allows for the replication of some complex biologic functionalities. The efficiency of arti-
ficial muscles can be easily enhanced if the biochemical actuation is coupled with the ability of
shell-like structures to carry large transversal loads with minimal volume. Recently, Feinberg et
al. [22] built thin micro-actuators with a combination of a polydimethylsiloxane substrate and rat
ventricular cardiomyocytes, cultured on top of the former. In their experiments, the substrate and
the interface have been designed to provide a strong anisotropy in the tissue architecture, which
induces a visible bending of the substrate during contraction of the excitable cells. Based on
the ability of 2D planar shapes to adopt complex 3D conformations, they leveraged the inherent
contractility of the cardiomyocytes to create a variety of soft robotic devices [22]. Nawroth et al.
[125] reported the construction of a freely swimming medusoid (see Fig. 7.2), built from chemi-
cally dissociated rat tissue and silicone polymer. They employed a traditional reverse engineering
approach to build a millimeter-scale construct from living and synthetic materials that emulates
the jellyfish locomotion. They demonstrated how a synthetic tissue with a shell structure can be
deigned to mimic the biological function of a living organism.

https://cardsslab.org/
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Figure 7.2: Medusoid engineered to mimic the jellyfish-like stroke kinetics. The
medusoid is built from chemically dissociated rat tissue and silicone polymer

layered in a thin structure. Figure adapted from [125].

In this scenario, a computational method for the activation of thin tissues could be a valuable tool
for a preliminary design space exploration, or a support to dissect complex biologic events into
simple mechanistic functionalities to be mimicked by engineered solutions. Numerical tools can
provide guidance for experiments as well as shed the light on such strongly coupled problems
[136].
The present chapter is devoted to the introduction of the electrophysiological model adopted in
our computational framework.

7.3 Electrophysiological activation of syncytial muscles

From the continuum mechanics perspective, muscles can be classified as active materials, since
the tissue strain is not uniquely determined by external forces. A muscle is a soft tissue which
fulfills different purposes such as producing a movement and displacing substances in the or-
ganism [137]. There exist three types of muscular tissue – skeletal, cardiac and smooth – which
differ in location, microscopical anatomy and regulatory mechanism (see Fig. 7.3). Skeletal mus-
cles provide voluntay displacement of bones through contraction, and they are attached to bones
through tendons. The tissue of skeletal muscles is defined striated, since it consists of multiple
fascicles of cylindrical unbranched fibers made of elongated cells. As a consequence, skeletal
muscles have a clear directionality. Cardiac muscles are involuntary, striated muscles that consti-
tute the main tissue of the walls of the heart. Unlike skeletal muscles they are made of branched
fibers joined by trasversal bands, called intercalated disks, which are responsible for a strongly
anisotropic nature at a macroscopic level. Cardiac fibres, formerly believed to be a syncytium
(i.e. a multinucleated cell), are actually made of separate cells, the myocytes [138]. The syncytial
nature of the cardiac tissue allows to model the tissue as an electrically homogeneous medium.
As explained further on, both skeletal and cardiac muscle fibers are composed of myofibrils.
The myofibrils are composed of actin and myosin filaments, repeated in units called sarcomeres,
which are the basic functional units of the muscle fiber. The sarcomeres are responsible for the
striated appearance and form the fundamental contractile unit. Cardiac muscles contract in a
similar manner to skeletal muscles, although with some important differences. The electrical
stimulation triggers the release of Calcium from the cell’s internal Calcium store, the sarcoplas-
mic reticulum. The rise in Calcium causes the cell’s myofilaments to slide past each other in a
process called excitation-contraction coupling.
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Eventually, smooth muscles can be found in hollow viscera, airways, blood vessel walls. They
are made of elongated ellipsoidal fibers with an almost random arrangement, which endow the
tissue with a nearly isotropic behavior at contraction.

(a) skeletal muscle (400x) (b) Cardiac muscle (600x) (c) Smooth muscle (350x)

Figure 7.3: Longitudinal sections of the three different muscle tissue types. Im-
age adapted from [139].

Figure 7.4: Evolution of the transmembrane potential in time after electrical
stimulation. The numbers 0-4 correspond to the five phases of the action potential

described in the present section. Figure taken from [140]

The myocytes in the cardiac tissue (cardiomyocytes) are enclosed in a lipid membrane (sar-
colemma) that separate the external and internal region (a sketch of the cardiomyocyte compo-
nents is provided in Fig. 7.5). The inner region contains sub-cellular organelles, sarcomeres and
the sarcoplasmic reticulum immersed in the sarcoplasm. The outer region and the sarcoplasm
contain a variety of ions; the flow of these ions through the sarcolemma happens via some chan-
nels (see Fig. 7.6), called ionic channels, where only the transit of specific particles is permitted.
The change in concentration of the charged particles is the key for the electrophysiologic excita-
tion of the cell. An insight of the cardyomyocites histology can be found in [141]. Due to their
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Figure 7.5: Schematic of the structure of a cardiomyocyte (right). Mi-
croscopy picture of a cardiomyocyte (left). Figure taken from http://www.

cardio-research.com/cardiomyocytes

branched nature and interconnections, cardiomyocytes are electrically connected and the stim-
ulus to contract can be transmitted to adjacent cells. The aforementioned intercalated discs are
connective structures which include complex conductive proteins (desmosomes) and channels
which allow the intra-cellular ion transit (gap junctions). The different densities of gap junctions
in the longitudinal and transversal directions make the propagation of the electric stimulation
anisotropic. The peculiar strong electrical interconnection of cardiac cells does not allow the
regulation of the amount of activated cells, which makes the cardiac muscle activation not ad-
justable.
The Action Potential (AP), or transmembrane potential, denotes the variation of the difference
between internal and external electric potential occurring during the electrical stimulation of the
myocytes. The action potential can be subdivided in five phases [140], schematically reported
in Fig. 7.4. The first stage consist of a transit of Na+ ions through the appropriate sarcolemma
channels, that makes the transmembrane potential raise from the resting (negative) value to the
maximum value (positive). The Na+ species transit takes a few nano-seconds, therefore it repre-
sents a nearly-discontinuous change in the action potential dynamics. Right after the depolariza-
tion, the transmembrane potential goes through a rapid decrease due to an outward flow of K+

and Cl− ions, occurring after the inactivation of the Na+ channels. Phase 2 is characterized by an
inward current linked to the transit of Ca+

2 , and an outward current caused by the transit of K+.
This balance keeps the potential almost constant in stage 2. Subsequently, the repolarization of
the cell (phase 3) take place as a consequence of the closing of the Ca+

2 channels. At this stage,
the residual flow ok K+ causes an outward current that makes the potential return to its resting
value. The myocyte remains in the resting phase until the next electric stimulation. Although the
shape of the action potential does not vary significantly, the duration and the amplitude of the
action potential can change even within different regions of the same tissue. Among the several
species regulating the transmembrane potential, the most important is the calcium ion Ca+

2 . The
change in intracellular Ca+

2 concentration regulates the contraction of the cardiomyocytes and
influences the pacemaking [141]. As a matter of fact, all biophysically detailed models propose
ion-flux mechanisms based on the Calcium dynamics.
In the present work a continuum model for the propagation of the action potential over a surface
is employed, and a phenomenological description is accepted for the ionic currents. The process
behind the generation of the action potential has been described for the cardiac tissue, but it does
not represent a strict limitation to the applicability of the Mono- and Bidomain models. As long
as a prosthetic device or soft actuators is built with cultured myocardial tissue of animal origin,

http://www.cardio-research.com/cardiomyocytes
http://www.cardio-research.com/cardiomyocytes
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these models are perfectly suitable. In recent works they have been employed in the simulation
of gastric motility [142, 143] and jellyfish locomotion [144, 145].

(a) (b)

Figure 7.6: Lumped model of the cell membrane (a). Schematic representation
of the ionic channels through the lipidic membrane of a myocyte (b) [146]

7.4 Action potential propagation: a reaction-diffusion model

The experimental measurements of Hodgkin and Huxley [147] on the propagation of an elec-
trical signal along a squid giant axon led to a phenomenological model, which describes how
the action potential is propagated in neurons. Their model, beyond the purpose of unveiling the
action potential mechanism of the neurons of a primitive swimmer, set the groundwork for the
investigation of the electrical activity of a wide variety of excitable tissues.
Since the cell membrane separates charges, it can be viewed as a capacitor. Thus, the simplest
model which can be used to describe the membrane electrical activity is those of a perfect con-
denser, composed by a capacity in parallel with a resistance (see Fig. 7.6). By defining the capac-
itive current as Cm dv/dt, and assuming Cm to be constant and homogeneous over the membrane,
the charge balance yields:

Cm
dv
dt

+ ii(v,w) = ia , (7.1)

being ii and ia the ionic current density and the total membrane current density, respectively. v
represents the transmembrane potential and Cm is the membrane capacity per unit area. The evi-
dence that the capacity current and the ionic current are in parallel was provided by Hodgkin and
Huxley, which showed the similarity between the ionic currents measured with dv/dt = 0 and
those calculated from the capacity term with ia = 0 [147]. The number of resistances in parallel
with the capacity depends on the number of ionic species, thus on the chemical complexity of the
model. The circuit equation must be completed with a relation between the ionic current and the
transmembrane potential, which provides a constitutive model of the membrane. The ionic cur-
rent ii must depend on the amount of open channels per unit area, conceptualized by the variable
w. A further generalization of the problem can be obtained by introducing the concentrations of
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the species involved c as further variable:

Cm
dv
dt

+ ii(v,w, c) = ia ,

ii(v,w, c) =

N∑
k=1

Gk(v, c)
M∏
j=1

wp jk
j (v − vk(c)) + in(v,w, c) ,

dw
dt

= F(v,w, c) ,

dc
dt

= G(v,w, c) ,

(7.2)

where the model functions F and G provide the time evolution of the gating variable array w. N
and M represent the number of ionic channels and the number of ionic species described.
This is the generalized version of the Hodgkin-Huxley model, which provides the evolution of
an electric pulse over an infinitely elongated, isolated neuron. In this model the dielectric losses
in the membrane have been neglected; however, the error introduced is not thought to be large
since the time course of the capacitive source is reasonably close to that calculated for a perfect
condenser. From the mathematical perspective this is a system of coupled ordinary differential
equations.

7.5 Homogenized continuum models for the action potential propa-
gation

The Hodgkin-Huxley model was derived from experimental measurements over single cells.
However, reproducing the macroscopic mechanics over a muscular tissue by resolving the neu-
romechanics of every single cell would be a prohibitive task. Instead, the macroscopic effects
over a muscular tissue are modeled by taking the active domain as a continuum media. Several
models have been presented in literature with respect to the action potential propagation over ac-
tive tissues by bridging the conceptual gap between the neuron representation and the continuum
model with different level of complexity [148]. A continuum approach relies on the hypothesis
that the cells in the tissue are electrically independent one another, then a superposition of the
cellular activity can be accounted to compose the macroscopic effects [148]. However, the cel-
lular elements are interactive, since the intracellular spaces are functionally interconnected via
side-to-side or end-to-end membrane junctions. Thus, in a macroscopic description, the macro-
scopic current density and potential are considered as averaged effect of a small subset of cellular
bunches, then the interconnection effects are intended as secondary effect [149].
In the following paragraph the governing equations of the action potential model are obtained by
applying some phenomenological observations on muscular tissues to general considerations of
electromagnetism [146][149].

7.5.1 The bidomain model

The transmembrane effects are simulated by modelling the active tissue as a homogeneous mem-
brane separating the intracellular and the extracellular region, which should be intended as the
convoluted description for the intracellular and extracellular volumes. In other words, the indi-
vidually coupled cells are replaced in the model with a syncytium. In this averaged sense, the
tissue is intended as a two-phase medium, as if every point in space is composed of a certain
fraction of intracellular space and a fraction of extracellular space, and any discrete quantity is
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intended as averaged over the volume. For instance, the discrete junctional resistances, along
with the myocites conductivity, get combined and smeared over a volume of interest to create
an equivalent conductivity [150]. Hence, the electromechanic response to the changes in ionic
concentration is resolved over two overlapped domain Ωi and Ωe, with Ωi = Ωe, representing the
inner and outer space of the myocites [149]. At each point of the domain, two different values
of local potential are associated, the intracellular potential and the extracellular potential respec-
tively.
We consider a volume Σ in the three-dimensional space R3 where the two surfaces Ωi and Ωe are
enclosed; the subscripts {i, e} denotes the intracellular and extracellular space. In this domain a
conservative electric field can be defined as:

E = −∇u . (7.3)

being u the electric potential field in the domain Σ. Defined the current density J propagating
over the membrane, one can state that:

Ji = −Di∇ui; Je = −De∇ue . (7.4)

where the potential ui, ue are locally defined over the surfaces Ωi and Ωe respectively, Di and De

are the internal and external conductivity tensors (symmetric, elliptic tensors), which account for
the anisotropic propagation of the current over the two surfaces.
In the three-dimensional volume enclosing the membrane the charge conservation for the intra-
cellular end extracellular sub-space lets:

∂

∂t

∫
Σ

qi,edV = −

∫
∂Σ

Ji,e · n dS +

∫
Σ

φi,e dV , (7.5)

where n is the outward directed unit vector normal on the control volume boundary ∂Σ, qi,e rep-
resents the local charge density over the subspace, and φi,e is the amount of charge that transits
from the extracellular space in the intracellular space and vice-versa. In the intracellular conser-
vation equation it appears as a generation term, but it must hold

∫
Σ
φi dV = −

∫
Σ
φe dV . Assumed

the regularity of the argument functions in (7.5), and the topology restrictions on the domain, for
the divergence theorem it holds:∫

V

∂qi,e

∂t
dV =

∫
V

(
−∇ · Ji,e + φi,e

)
dV . (7.6)

Since the choice of the control volume is arbitrary, the former relation must hold locally. Then,
recalling (7.4), the local charge conservation can be expressed in the extra- and intracellular
sub-domains as:

∂qi

∂t
= −∇ · (Di∇ui) + φi ,

∂qe

∂t
= −∇ · (De∇ue) + φe .

(7.7)

The charges transition across the membrane must be related to the ionic membrane currents
through the ionic gates:

φi = −χii, φe = χie , (7.8)

being χ the average surface-to-volume ratio of the tissue and i defined as current per unit area.
The sign of the charges is considered as positive if going from the intracellular to the extracellular
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space. Given the reduced thickness of the myocites membrane, and the high density of ionic
gates, the model can be completed with the assumption of no charge accumulation at local level
[149]. Thus, with a local charge balance across the membrane:

qi + qe = 0 . (7.9)

By applying this relation to (7.7), it holds:

∇ · (Di∇ui) + ∇ · (De∇ue) = 0 , (7.10)

or
∇ · Jtot = 0 . (7.11)

The transmembrane potential v, which represents the final unknown of the homogeneous prob-
lem, can be defined locally as the charge difference across the membrane thickness:

v = ui − ue =
1

2Cm
(qi − qe) . (7.12)

Taking the derivative of Eq. (7.12) and exploiting the charge balance (7.9), it yields:

Cm
∂v
∂t

=
∂qi

∂t
,

−Cm
∂v
∂t

=
∂qe

∂t
.

(7.13)

Once the transmembrane potential is inserted in the charge conservation law (7.7), the bidomain
model can be finally stated by means of two coupled parabolic equations. The model is presented
in closed form introducing two equations for the dynamic evolution of the recovery variable and
for the ions concentration and one model for the ionic current activation:

Cm
∂v
∂t
− ∇ · (Di∇ui) + χiion(v,w, c) = χiai ,

−Cm
∂v
∂t
− ∇ · (De∇ue) − χiion(v,w, c) = −χiae ,

dw
dt

= F(v,w, c) ,

dc
dt

= G(v,w, c) ,

iion = H(v,w, c) .

(7.14)

A schematic of the bidomain model is providded in Fig. 7.7. The standard measurement units
employed for this model are:

Cm

[ F
m3

]
, χ

[
1
m

]
, i

[ A
m2

]
, v [V] , w [−] , Di j

[S
m

]
. (7.15)

The gating variable w is dimensionless because it represents the portion of the membrane area
covered by the open ionic gates. The ODE for w describes the evolution in time of the surface
fraction of open gating channels in the membrane, and the ODE for c describes the evolution of
the concentration of the ionic species. The system (7.14) must be solved in time for the unknown
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array {v, w, c, I, ui,e}.
The bidomain model entails the transmembrane potential propagating over the membrane as a
response to the applied current iai,e = iai,e(t, x), which is included in the problem (7.14) to model the
current stimulus generated by the pacemaker cells enclosed in localized regions of the contractile
tissue. From a modeling perspective the action potential evolves as a sharp wave front diffusing
over the surface according to the conductivity tensors Di, De.
The assumptions under which the bidomain model was formulated are summarized:

• The rate of change of the electric field and magnetic field over the surface is assumed to be
negligible, then any transformation occurring over the tissue is considered quasi-static;

• The model is solved under the assumptions of conservation of the local charge.

• The action potential is assumed to exit the domain with minimal reflections, as if further
tissue with similar properties surrounded the domain. Thus, homogeneous Neumann con-
ditions are assigned at the membrane edges: nT Di∇ui = 0, nT De∇ue = 0. Including the
applied current impulse in the charge conservation, equation (7.10) must be corrected as:

∇ · (Di∇ui) + ∇ · (De∇ue) = iae − iai . (7.16)

Integrating the former equation over the respective domains Ωi, Ωe, and applying the di-
vergence theorem, from the Neumann conditions the following compatibility condition is
given: ∫

Ωi

iai dS =

∫
Ωe

iae dS . (7.17)

• The charges do not accumulate in any point of the sub-domains but a local charge transition
from the intra and extracellular space is governed by the local conservation law (7.9);

The derivation of the bidomain model from the discrete unit cell model (represented in
Fig. 7.6) has been proposed with mathematical formalism by means of a homogenization process
[151][132].
Most of the continuum models are simplified by assuming just one recovery variable and uni-
form ionic concentration over the membrane. Since this model is derived from a microscopic
description, it requires a detailed knowledge of the underlying microscopic mechanism, as the
ionic concentration evolution in time and space. However, the present work is focused on the
issues concerning the relations between the action potential propagation and the elastic response
of the active tissue. Thus, only one ionic specie with uniform concentration is considered, be-
ing regarded as the chemical engine governing the tissue reaction to the current impulse. The
simplified system reads:

Cm
∂v
∂t
− ∇ · (Di∇ui) + χiion(v,w) = χiai ,

−Cm
∂v
∂t
− ∇ · (De∇ue) − χiion(v,w) = −χiae ,

dw
dt

= gr(v,w) ,

iion = h(v,w) .

(7.18)

The original problem unknown array is reduced to {v, w, iion, ui,e}
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ii Cm ii Cm ii Cm

−De∇ue

−Di∇ui

v

extracellular space

intracellular space

Figure 7.7: Circuit diagram of the bidomain model. The intracellular and ex-
tracellular spaces are represented by the external part of the circuit. Each block
in the transmembrane space represents the model-dependent nonlinear current-

voltage relation.

7.5.2 The monodomain model

A further simplification of the problem can be introduced by assuming that a intra- and extra-
cellular media have the same conductivity anisotropy ratio.
At any point in the domain, the total current is Jt = Ji + Je, thus:

Jt = −Di∇ui − De∇ue . (7.19)

By some algebraic passages, one can get:

∇ui = (Di + De)−1 (De∇v − Jt) . (7.20)

After substitution of the latter relation in the first equation of the system (7.24), it yelds:

Cm
∂v
∂t
− ∇ ·

(
Di (Di + De)−1 De∇v

)
− ∇ ·

(
Di (Di + De)−1 Jt

)
+ χiion(v,w) = χiai (7.21)

The term involving the total density current Jt is zero if the matrix Di (Di + De)−1 is proportional
to a constant multiple of the identity matrix, i.e., if the two conductivity tensors are proportional
Di = λDe, with λ constant. Thus, the first PDE of the system (7.24) reduces to:

Cm
∂v
∂t
− ∇ · (D∇v) + χiion(v,w) = χia , (7.22)

where:
D = Di (Di + De)−1 De . (7.23)

Repeating the same procedure with the second parabolic PDE, one obtains two linearly dependent
equations. Thus, the problem is reduced to a monodomain system, where just the transmembrane
potential needs to be defined locally. This represents a system made up by one reaction-diffusion
parabolic equation, one first-order ordinary differential equation for the recovery variable and
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one algebraic equation for the ionic current model:

Cm
∂v
∂t
− ∇ · (D∇v) + χiion(v,w) = χia ,

dw
dt

= gr(v,w) ,

iion = h(v,w) .

(7.24)

Eventually, the problem unknown array is further reduced to the scalar fields {v, w, i}. The mon-
odomain model allows to achieve a satisfactory accuracy, sufficiently close to that of the bidomain
model, especially under physiological conditions [152] even if the assumptions on the diffusiv-
ity tensors is not exactly fulfilled. However, some important physiological phenomena vanishes
when equal anisotropy rates are assumed [146], especially in the simulation of pacing and fib-
rillation mechanisms on cardiac tissue. Furthermore, even with the support of experimental
measurements, it is difficult to specify the conductivity values which can better approximate the
actual potential propagation.
Beyond the mathematical and numerical simplification arising from the domain degeneration, the
monodomain model still presents different numerical challenges. The reactive term represents a
source of nonlinearity in the partial differential equation for the transmembrane potential.
The monodomain model provides a significant simplification in the memory storage and com-
puting time with respect to the bidomain model. In fact, Skouibine et al. [153] reported a
reduction in CPU requirements by two orders of magnitude when dealing with a fully implicit
time-advancement scheme.

7.5.3 Restrictions and limitations of the mono- and bidomain models

The ”syncytial” nature of the tissue is a fundamental requisite for the application of the
mono/bidomain formulation, since they are characterized by an electrically connected fibers.
Recalling the hypostheses presented in the preceding section, the validity of the homogenized
syncytium model is assured deep in the presence of external fields that are nearly uniform and
limited in strength. On the contrary, the derived model is not formally valid under strong or
rapidly changing electrical fields [151].
The electrical components arrangement in the mono- and bidomain models allows a perturbation
to ideally propagate at infinite speed. Actually, in mono- and bidomain simulations the velocity
of the propagating front is connected to the dynamics of the recovery variable, thus the speed
is not infinite. The models differs from the coaxial cable standard model by the absence of the
inductance, which accounts for the relaxation time in the signal propagation. In standard electro-
physiology models the inductances are neglected since their effect is considered negligible. These
models also neglect the fact that neurons, skeletal muscle cells, and cardiomyocytes show typical
resonance effects due to inductances [154]. The common conclusion that inductances are negli-
gible may not be valid in the complex arrangement of cardiac tissue, where the inhomogeneities
together with highly nonlinear reactions can lead to reentrant waves and chaotic behavior. In a
recent work Rossi et al. [155] incorporated the axial inductances in the mono/bidomain model
providing a hyperbolic version of the classical PDEs.
Along these lines, Gizzi et al. [156] extended the standard cable equation by including a non-
linear voltage dependence in the diffusion term. They also include thermo-electric effects in the
reaction terms, finding that a nonlinear diffusion affects the repolarization process and facilitates



7.6. Ionic current modelling 73

the rise of unstable propagation effects at temperatures higher and lower than standard physio-
logical temperatures.

7.6 Ionic current modelling

The evolution of the ionic current in time defines the reaction effect in the reaction-diffusion
equation (7.2). A well-suited model must reproduce the changes in the ionic current induced
by the migration of the ionic species. Generally, the more species are involved in the model,
the more realistic the shape of the action potential. Nevertheless, the ionic current model is
the source of nonlinearity in the mono- and bidomain equations, therefore, more sophisticated
models, provide a significant increase in the computational cost (see section 7.6). Purely by
way of example, the action potential corresponding to four models is illustrated (Fig. 7.8). This
is obtained considering a one-dimensional domain, in which all the charge transported by the
ionic current accumulates locally at the membrane and uniquely determines the transmembrane
potential:

Cm
dv
dt

= −ii + ia . (7.25)

Generally, the ionic current model must be chosen with respect to the specific tissue which one
aims at describing, and to the affordable computational cost. Biophysically detailed models
provide a sophisticated description of the ions dynamics, as well as a significant number of
ionic currents and gating variables, in order to match the action potential shape measured in
experiments. However, complicated models need a larger number of coefficients, that need to be
fitted on experimental data.
In the present work we use the Aliev-Panfilov model [157], whose action potential is shown
in Fig. 7.8 (a), since it is one of the simplest phenomenological models, but it provides sharp
depolarization front the numerical method must to cope with. The model’s equations read:

Cm
dv
dt

= kv(v − a)(1 − v) − vw + ia

dw
dt

=

(
ε0 +

µ1w
µ2 + v

)
(−w − kv(v − b − 1)) ,

(7.26)

where k, µ1, µ2 and ε0 are the model parameters. The Aliev-Panfilov model’s equations are
presented with nondimensional variables. Such state variables can be rescaled by means of the
following affine transformations, which provide the dimensional counterparts {v̄, w̄, īi}:

v̄ = va v + vr ,

w̄ = va v ,

īi = va ia ,

(7.27)

with va = vp − vr. Here, va, vp and vr represent the action potential amplitude, the peak value and
the resting value, respectively.
Each model has its own constants and was tailored for specific applications. Widespread exam-
ples of chemically detailed models are given by the Bueno-Orovio model [158] (Fig. 7.9a), which
was found to be suitable for the cardiac tissues, and by the Winslow model [159] (Fig. 7.9b),
which was created for the dog cardiac cells.
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Figure 7.8: Field variable evolution for two phenomenological membrane mod-
els, in nondimensional units.
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Figure 7.9: Nondimensional transmembrane potential evolution for two biophys-
ically detailed membrane models.

Nowadays, ionic membrane models continue to increase in complexity since Hodgkin-Huxley
models appeared; a modern, chemically detailed membrane model has upwards of a hundred
state variables [160].
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8 The monodomain model over general
surfaces

The monodomain model, in conjunction with a phenomenological ionic current model, is chosen
to solve the propagation of the action potential over a surface. The surface approximation if
often adopted as it brings a significant reduction in the computational cost. However, it has been
mathematically justified through asymptotic analysis [161], and adopted for realistic simulations
of the electrical activity of the atria [162, 163].
Isogeometric Analysis has already been employed for mono- and bidomain models over a general
surface, and several advantages have been recognized in the discretization of the differential
operators. The high continuity of NURBS basis functions provides enhanced accuracy in the
approximation of the steep depolarization front provided by these models [164]. Furthermore,
in previous numerical experiments, IGA was found to capture the velocity of propagation of the
front with a limited number of degrees of freedom and limited numerical dissipation [164, 163].
In the present chapter we present the temporal and spatial discretization of the monodomain
model in a curvilinear coordinate framework.

8.1 Problem discretization in time

The monodomain model is considered as a parabolic partial differential equation coupled with
a set of nonlinear ordinary differential equations. A significant complication for the solution of
the excitation problem comes from the inherent multiscale nature of the reaction-diffusion pro-
cess, both in space and time. The fundamental length scale in the problem is determined by the
width of the wave front, which can be smaller than the geometric length scale by several orders
of magnitude. From the temporal perspective, the time scale given by the diffusion of the wave
front must be compared with the much faster reaction processes. Relevant diffusion effects occur
in the time scale of hundreds of micro-seconds, whereas the gating kinetics of the channels in
the membrane occur in the time scale of microseconds. In order to address these issues, some
researchers have developed several approaches as the adaptive local refinement of the mesh, at
the cost of an increased algorithmic and implementation complexity [165].
A fully implicit solution of the problem is often considered expensive in terms of time and mem-
ory storage, unless parallel computing techniques are utilized [165]. The fully implicit formula-
tion generates large, sparse matrices, with size given by the product of the number of nodes and
the number of dependent variables in the model, which must be inverted efficiently. Furthermore,
the different time-scales involved in the phenomenon make the convergence process cumbersome
if dedicated approaches are not employed. On the other hand, a backward approximation of all
the time derivatives ensures the stability of the scheme and allows to use a time-step size dictated
by the time scales rather than the time-step size prescribed for stability [166]. This must be ac-
counted as a relevant feature in the choice of the time scheme, because the stability requirements
might be severe in presence of a fine spatial resolution (which is often required).
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A widespread approach for the bidomain model consists of the operator splitting (OS) method
[146, 167]. The key benefit in the separation of the reaction and diffusion processes comes
from the segregation of two spatially uncoupled problems, where dedicated time stepping coef-
ficients can be implemented. Another choice is the fully explicit integration. If the reaction term
is resolved explicitly, the source of nonlinearity is segregated from the diffusion operator, and
therefore the nonlinear system (7.18) is reduced to a set of nonlinear ODEs and a linear PDE.
A common choice is the Strang splitting scheme, which is second order accurate in time [124]
[146]. The main drawback of a splitting technique is the loss of accuracy associated with the
non-simultaneous solution of diffusive and reactive terms.
A further alternative is represented by the semi-implicit time stepping, where the diffusion term
is treated implicitly and the reaction term explicitly. In first place, the segregation of the gating
variable equations is provided by the explicit treatment of the reaction term. Likewise OS meth-
ods, a linear system must be resolved due to the diffusion term, thus a comparable computational
effort is required. Moreover, care must be taken in the choice of the time step size due to the
stability constraint. The semi-implicit scheme is often employed when dealing with simplified
membrane models [168].
In the present work a semi-implicit time scheme is implemented, since it is believed to pro-
vide a satisfactory compromise between accuracy and stability [169][170]. The reaction term
is discretized by an explicit second order Adams-Bashforth method and the diffusion term is
discretized by an implicit Crank-Nicholson method. The present scheme is outlined for the re-
solving time step n+1, which refers to the discrete time tn+1 = (k+1)∆t, being k the discrete time
counter, and (∆t)n = tn+1 − tn = ∆t the constant time step size defined over the integration period.
At each discrete time interval the state variables are defined consistently: vn = v(tn), wn = w(tn),
inion = iion(tn). The reaction-diffusion equation in (7.24), is discretized in time as:

Cm
vn+1 − vn

∆t
−

1
2
∇ ·

[
D∇

(
vn+1 + vn

)]
+

3
2
χinion −

1
2
χin−1

ion = χin+1
a , (8.1)

which, rearranged for the time advancement, reads:

Cm

∆t
vn+1 −

1
2
∇ ·

(
D∇vn+1

)
=

Cm

∆t
vn +

1
2
∇ ·

(
D∇vn) +

1
2
χin−1

ion −
3
2
χinion + χin+1

a . (8.2)

After the solution of equation (8.2), the computed value of transmembrane potential vn+1 is used
to solve the gating variable equation at each node of the spatial discretization by means of a
fourth order Runge-Kutta method:

wn+1 = wn + ∆t
(
1
6

k1 +
1
3

k2 +
1
3

k3 +
1
6

k4

)
,

k1 = g
(
tn, wn) ,

k2 = g
(
tn +

1
2

∆t, wn +
1
2

k1

)
, (8.3)

k3 = g
(
tn +

1
2

∆t, wn +
1
2

k2

)
,

k4 = g
(
tn + ∆t, wn + k3

)
,

being g the gating variable function regulating the recovery varible dynamics.
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8.2 Variational formulation and space approximation

A Finite Element approximation in space is preferred since it is a well-suited choice for solving
PDEs on irregular geometries with Neumann boundary conditions. Furthermore, the smooth
representation of the geometry and the high-continuity shape functions provided by the NURBS-
based IGA, allow for an accurate approximation of the sharp action potential front with a reduced
number of degrees of freedom with respect to the standard FEA.
The variational formulation and the discretization by a Galerkin approach are briefly reported
in the present paragraph; for a rigorous mathematical formulation one should read [164]. In
view of writing the variational formulation of the monodomain PDE, the suitable functional
sub-spaces defined over the domain Ω are considered. It is assumed that these spaces fulfill
the necessary topological requirement to guarantee the existence of the week solution to the
monodomain problem with any of the membrane models illustrated in Section 7.6.
Multiplying Eq. (8.2) by the test function ψ and integrating over the whole domain Ω, one obtains:

Cm

∆t

∫
Ω

vn+1 ψ dS −
1
2

∫
Ω

∇ · (D∇vn+1)ψ dS =
Cm

∆t

∫
Ω

vn ψ dS +
1
2

∫
Ω

∇ · (D∇vn)ψ dS +

1
2
χ

∫
Ω

in−1
ion ψ dS −

3
2
χ

∫
Ω

inionψ dS + χ

∫
Ω

in+1
a ψ dS .

(8.4)

By applying the Green’s identity to the diffusion terms, it results:∫
Ω

∇ · (D∇v)ψ dS = −

∫
Ω

∇ψ · (D∇v) dS +

∫
∂Ω

nT (D∇v)ψ dl︸                ︷︷                ︸
=0

. (8.5)

where the boundary integral vanishes because of the Neumann boundary conditions.
In view of reducing the dimensionality of the trial spaces, according to the IGA approach, the
space spanned by the NURBS basis functions is considered as the finite dimensional space of the
approximate solution of the problem (8.4). Thus, the transmembrane potential can be approxi-
mated as a linear combination of basis functions φ j and discrete nodal values v j,

v ≈ vh =

n∑
j=1

φ jv j , (8.6)

being n the number of basis functions defined at the nodal location. Substituting the approxi-
mate solution in (8.4), and taking advantage of the linearity of the operators, one can exploit the
NURBS basis functions φi as test functions and finally get the IGA approximation of the PDE.
For the i-th test function it reads:
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2
χ

∫
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inionφi dS + χ

∫
Ω
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a φi dS .

(8.7)

In matrix notation a system of linear equations is given in the form:

A vn+1 = bn , (8.8)
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with

A =
Cm

∆t
M +

1
2

K , (8.9)

bn =

(
Cm

∆t
M −

1
2

K
)

vn +
1
2
χ in−1

ion −
3
2
χ inion + χin+1

a . (8.10)

In element notation, the standard matrices in the previous equation are:

[M]i j =

∫
Ω

φiφ j dS , (8.11)

[K]i j =

∫
Ω

∇φi · Di∇φ j dS , (8.12)

[iion]i =

∫
Ω

iionφi dS . (8.13)

It is worth noting that the matrix A must only be assembled once, since its components do not
depend on time. On the other hand, in case of deforming domain, the stiffness matrix must be
recomputed at each time step to account for the changes in the spatial conductivity coefficients.
Hence, the only computationally demanding task in the linear system assembly is in the numeri-
cal integration of the ionic current field inion.
The fundamental steps of the algorithm are resumed for the generic time step n:

1. Integrate the Ionic current at previous time step inion;

2. Assemble the right-hand-side of the linear system (8.8);

3. Solve for vn+1;

4. Solve the gating variable equation (8.3) at the node locations;

5. Update the state variables for the next time step:

vn = vn+1, wn = wn+1, in−1
ion = In

ion; (8.14)

Care must be taken in the spatial discretization of the domain due to the aforementioned mul-
tiscale nature of the problem. Specifically, the spatial accuracy is fundamentally dependent on
the characteristic width of the wave front, and the maximum element size must be small enough
to capture such a scale [171]. Since the shape of the action potential depends on the membrane
model as well as on the membrane characteristics, the appropriate spatial resolution can only be
found by numerical investigation.

8.2.1 Conductivity tensor on surfaces

The only spatial derivative in the present monodomain formulation lies in the diffusion term.
The weak form of the reaction-diffusion equation requires the computation of the gradient of the
shape functions (8.12). In this section we present a description of the diffusion term in local
curvilinear coordinates, with the aim of providing a flexible implementation of the diffusion term
on arbitrary surfaces in the three-dimensional space.
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For each basis function the argument of the diffusion term yields in index notation:

∂φ

∂θα
åα · Dγβ

(
åγ ⊗ åβ

)
·
∂φ

∂θβ
åβ =

∂φ

∂θα
∂φ

∂θβ
Dαβ , (8.15)

where (∂φ/∂θα) aα is the covariant derivative of a scalar [172]. Assuming that the in-plane con-
ductivity coefficients Dαβ

ca are provided as input on a global Cartesian frame of reference {e1, e2},
the conductivity tensor coefficients on curvilinear bases Dγδ

cu must be computed by a basis trans-
formation in order to account for the in-plane deformations of the domain.

Dαβ
cu

(
åα ⊗ åβ

)
= Dαβ

ca

(
eα ⊗ eβ

)
,

Dγδ
cu = Dαβ

ca
(
åγ · eα

) (
eβ · åδ

)
,

Dγδ
cu = Dαβ

ca
(
åγ · eα

) (
eβ · åδ

)
.

(8.16)

One should notice that we defined two base vectors for the conductivity of a surface in the
three-dimensional space, thus we inherently assume that the local out-of-plane distortions in the
surface do not affect the conduction properties. This can be considered a congruent assumption
by the moment that the complex fiber network which characterizes the tissue conductivity is
homogenized in space and approximated by a surface.

8.2.2 Considerations on the scheme stability

The explicit treatment of the reaction term imposes a restriction on the time-step size for stability
reasons. The numerical analysis in [170] proved that the stability limit of semi-implicit methods
applied to the monodomain model coincide with the stability limit applied solely to the ionic
models. Thus, the stiffness of the most complex ionic current models affects the stability of the
scheme. In this scenario, the stability of the scheme is estimated by the local CFL condition:

CFL = CV
∆t
h
≤ CFLlim , (8.17)

where CV represents the local velocity of the propagating front, and h is the local element size.
However, this very general expression of the stability threshold is unpractical because the com-
putation of the local wave front in a sufficiently general framework is a demanding task, and it is
a current avenue of research both in computational and experimental practice.
The stability limit can be estimated prior to the execution by exploiting the expression obtained
in [173] for the forward-Euler method:

CFL =
2(σa + σb)

Cm

∆t
h2 . (8.18)

This can provide a rough estimate of the stability limit, which in the case of semi-implicit meth-
ods can be highly conservative. However, as proved by different authors [170][169], the stability
of semi-implicit methods does not really depend only on the spatial grid size, unlike fully explicit
approaches.
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8.3 Ionic current interpolation

The ionic current physically describes the current flux induced by the ion migration across the
gates in the membrane. The ionic current is determined by the transmembrane potential across
the membrane as well as by the gating variable evolution, which is governed by a ODE, and
coupled back to the PDE through the reaction term (7.18). The determination of the ionic current
and the gating variable plays a crucial role in the accurate resolution of the mono- and bidomain
models.
Within the time scheme presented in section 8.1, the ionic current array has to be computed
explicitly, therefore it is included in the right-hand-side of Eq. (8.8). In any traditional imple-
mentation the ionic current must be integrated over the elements, and therefore the local value of
ionic current is required at the quadrature points of each element.

ii =

n∑
j=1

∫
Ωe

[ii(v,w)] jφkdΩ . (8.19)

A variety of strategies has been presented in the literature for the computation of the latter integral
in a Finite Element framework. The transmembrane potential is defined at the nodes, whereas
the discrete values of ionic current and gating variable can be defined either at the nodes or at
the quadrature points. In the latter approximation, the membrane model needs to be evaluated at
each quadrature points of the FE mesh. Even in the simple case of single ion specie model, this
requires the solution of a nonlinear ODE and the explicit evaluation of the ionic current at far
more points than the number of nodes. This often results in a prohibitively expensive approach,
especially for biophysically detailed models. A widespread alternative consists of computing the
ionic currents and the gating variables at the nodes, and interpolating the solution at the quadra-
ture points. This method allows to solve the nonlinear ODEs for the gating variables only at the
nodes, but is found to be less accurate than the former [148]. Both approaches are addressed
within the present IGA implementation.
The interpolation at the interior of the element, is thus needed for the ionic current integration,
and can be performed via “Ionic Current Interpolation” (ICI) or “State Variable Interpolation”
(SVI). In the ICI approach, the ionic current is interpolated from its nodal values on the quadra-
ture point, using the same basis functions as for the transmembrane potential:

(
iICI
ion

)
k

=

ne∑
j=1

ii(w j, v j) φ j . (8.20)

at the kth quadrature point. In the latter approach (SVI), the state variables (w, v) are prior inter-
polated at the element interior to evaluate the ionic current:

(
iS VI
ion

)
k

= ii

 ne∑
j=1

w j φ j,

ne∑
j=1

v j φ j

 . (8.21)

The SVI technique is the most accurate on a peer degrees of freedom basis, but it is associated
with a high computational cost (especially with detailed membrane models), whereas the ICI is
relatively less expensive but less accurate according to literature [174, 171]. The SVI needs larger
memory storage than the ICI. However, considering that iion is usually a sharp function in space,
its enhanced accuracy has proven to be fundamental in the solution of the problem [174]. On
the other hand, the less accurate ICI has been successfully coupled with computationally cheap
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techniques as matrix lumping [171] for the assembly of the right-hand-side of Eq. (8.8) [174].
The choices of the time-advancement scheme and the numerical approach for the ionic current
are strongly related in terms of numerical efficiency and method accuracy. In the present im-
plementation, a state variable interpolation is employed in conjunction with a semi-implicit time
scheme, because a phenomenological membrane model is adopted.

8.4 Verification and numerical experiments

The present section is devoted to the verification of the proposed monodomain implementation
against well-established numerical tests.

8.4.1 Planar wave propagation over a rectangular slab

The planar propagation over a flat rectangular slab is simulated to verify the implementation of
the proposed algorithm in terms of accuracy of the approximated conduction velocity and method
convergence rate. In this context we compare the method convergence rate with both the ionic
current interpolation strategies presented in section 8.3. We consider a computational domain
of size 2 × 0.2 cm2. The tissue is assumed to have uniform capacity Cm = 1.0 mF/cm3, uni-
form surface-to-volume ratio χ = 1.0 cm−1, isotropic conductivity DIS O = 10−4 S/cm, and the
ionic current is modeled by a normalized Aliev-Panfilov model, whose parameters are: k = 8.0,
a = 0.15, ε0 = 2.0 × 10−3, µ1 = 0.2, and µ2 = 0.3. Null initial values for dimensionless trans-
membrane potential v and recovery variables w are assumed. The stimulus for the depolarization
is applied at the discrete level by forcing the transmembrane potential v associated to the outer-
most left control points to v = 1.0 from the initial instant up to t = 0.5 ms, allowing the potential
fronts to travel towards the right side of the slab. Such numerical stimulus mimic the applied
current in Eq. (7.24). The same test-case was proposed by [164] with a different time-stepping
scheme. The field variables v, and w are dimensionless; the dimensional counterpart of v can be
recovered as v = Vmin + (Vmax − Vmin)v, with Vmin = −80.0 mV and Vmax = 20.0 mV . In first in-
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Figure 8.1: (a) Contours of the nondimensional transmembrane potential v (top
panel) and the recovery variable w (bottom panel) at time t = 90 [ms], by using
a mesh size h = 0.005 cm and quadratic basis functions. (b) Time evolution of
the dimensionless action potential v superposed with the profile in [164] with red

dots.

stance the evolution in time of the transmembrane potential was compared (Fig. 8.2 - right) with
the profile shown in [164]. The level of agreement between the numerical solutions suggests that
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Figure 8.2: Convergence plot of the conduction velocity CV under h-refinement
at different basis functions orders; ionic current integration by SVI approach (a),

and ICI approach (b).

Case ∆t [ms] h [cm]

1 0.006 0.04
2 0.003 0.02
3 0.0015 0.01
4 0.00075 0.005
5 0.000375 0.0025

Table 8.1: Summary of the computational setting for the refinement study per-
formed on the planar propagation case.

our implementation is able to reproduce the shape of the action potential and it provides results
consistent with those from other state-of-art solvers.
We exploit the planar propagation test to investigate the convergence of the conduction velocity
under discretization refinement. Since a semi-implicit scheme is employed, we perform a refine-
ment study at constant CFL –CFL = 0.02– by halving both the size of the mesh element and the
size of the time step. To this extent we use the definition of CFL (8.18):

CFL =
2 DIS O

Cm

∆t
h

. (8.22)

The cases investigated are resumed in Table 8.1. The mean front velocity CV is computed at
discrete level by the difference in the position of the point at v = 0.5 (which is interpolated con-
sistently with the order of accuracy of the scheme) between two time instants. The value obtained
for the front velocity CV = 0.01390 cm/ms matches the value CV∗ = 0.01386 cm/ms reported
by Patelli et al. [164]. We observe that, with a SVI approach, the front velocity simulated with
the coarse meshes is overestimated, whereas with a ICI approach the front velocity is underesti-
mated. A similar trend has been highlighted by Patelli [164] under h-refinement only. By SVI,
the value of the front velocity decreases monotonically with the refinement for all the basis func-
tions employed. On the other hand, under ICI a slightly higher convergence rate is observed for
the present test, although the SVI approach was expected to provide a better theoretical accuracy.
The rate of convergence of the test variables is higher for high order basis functions p = 2, p = 3,
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but the most significant error reduction was found in the passage from p = 1 to p = 2. Thus, the
p-refinement can be retained a valuable strategy to improve the approximation of the propagation
speed with a limited number of degrees-of-freedom.
The suitability of IGA, and the more general paradigm of Galerkin approximating spaces with
high smoothness, to advection-diffusion problems with strong gradients has been proved exten-
sively in literature [175]. The propagation of the depolarization front in the monodomain model
provides an example of time-dependent problem with very sharp gradients which can be better
approximated by high order basis functions. With the aim of investigating this feature in the
present context, the profiles of the action potential are plotted for various levels of refinement in
Fig. 8.3 and Fig. 8.4. We notice that, on the coarsest cases, i.e. case 1 and 2, the SVI technique
provides amplified spurious oscillations when increasing the order of the basis functions, com-
pared to the ICI approach. At the control points the oscillations of the transmembrane potential
are avoided thanks to the variation diminishing property [3] of NURBS-based IGA. We assert
that this property is eluded in the SVI case on the coarsest meshes, because of the ionic current
interpolation technique. As described in section 8.3, in the SVI approach the action potential v
is interpolated at the element interior to evaluate the ionic current. At the quadrature points, the
solution v does not benefit of the variation diminishing property, thus, the reaction term suffers
from the oscillations which characterizes high degree polynomials in presence of discontinuities.
A similar behavior was observed in [174] when comparing different ionic current interpolation
techniques in a classic finite element framework. It is worth noting that in our simulations the
ICI approach provides a stable results even in the case with the coarsest mesh and cubic basis
function.

8.4.2 Spiral wave reentry

As a second example we consider the approximation of spiral waves with the Aliev-Panfilov
model. Spiral wave reentry, and more generally wave meandering, is often implicated as one
of the underlying causes responsible for ventricular tachycardia [176], cardiac arrhythmia, and
other pathological states of the heart which lead to an irregular contraction of the cardiac muscles
[177]. The disturbances responsible for meandering were found to be generated through an inter-
action between an unstable action potential trailing edge near the core and perturbations existing
in the region immediately behind this edge [178].
The objective of this study is the replication of a self-sustained spiral wave able to maintain its
coherence. We consider for the Aliev–Panfilov model the same membrane constants already used
in the previous example. A domain of extension 1× 1 cm2 is considered. The simulation is run at
constant time-step size ∆t = 0.005 ms on a domain discretized by 160 × 160 quadratic elements.
The triggering stimulus is provided in the wake of a linearly propagating pulse such that the re-
fractory region effectively generates a spiral wave, as in [164]. The linearly propagating front
was generated as in the previous example whereas the second stimulus was obtained by applying
a current i = 2.0 mA/cm2 on the region defined by the NURBS coordinates [0.49, 0.51]× [0, 0.5]
between t = 64.0 ms ant t = 64.5 ms.
In Fig. 8.5 we report the contours of the field variables v and w at the instants of triggering and
propagation of the spiral wave, yielding qualitatively comparable results with what observed in
literature [164].
In addition, we observed the trajectory of the spiral wave tip, tracked as the coordinates of the
point laying on the the isoline of v = 0.5 with maximum absolute curvature value. The smooth-
ness of the trajectory plotted in Fig. 8.6 is comparable with what observed by Patelli [164] on
a mesh with equal base function order but larger element size. The spiral wave test provides
a confirmation of the effectiveness of the domain boundary treatment, since the curved front is
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Figure 8.3: Action potential distribution on control points at t = 70 ms for each
case in Table 8.1, where ionic currents are integrated by the SVI approach.

observed to exit the domain with minimal distortion. In second instance the test proved that
the numerical method can handle complex stable pattern with a limited number of degrees of
freedom.

8.4.3 Verification of the diffusion term implementation

The diffusion term of the monodomain model is discretized by an Isogeometric procedure with a
local curvilinear description of the diffusion operator. The advantages of this approach are illus-
trated and discussed in the present section.
The implementation of the diffusion term is verified by comparing the solution on a distorted
mesh with that from a standard NURBS-based implementation where the bi-dimensional gradi-
ent operator is locally applied to the basis function and the classical strain matrices are assembled
by analogy with the linear elasticity problem on a two-dimensional domain. It is worth noting
that this comparison is performed on planar geometries because in the present method the con-
duction tensor is not affected by local out-of-plane distortions.
In first instance the planar propagation over a rectangular slab is repeated over a mesh with di-
mensions 2/5π × 1/5π cm where sinusoidal distortions are introduced on the vertical element
edges (Fig. 8.7). The same computational and physical parameters of the first example are cho-
sen. On such a mesh, where the first base vector a1 can be chosen as parallel to the first Cartesian
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Figure 8.4: Action potential distribution on control points at t = 70 ms for each
case in Table 8.1., where ionic currents are integrated by the ICI approach.

base vector e1, the loops required to perform the base transformations in (8.16) can be suppressed
by means of the following considerations, with reduced computational expense. Exploiting the
relations between covariant and contravariant vectors, the base vectors of the Cartesian bases can
be expressed as:

e1 =
a1
√

a11
, e2 =

a2
√

a22
, (8.23)

where:
ai j = ai · a j, ai j = ai · a j . (8.24)

Then, substituting these definitions in Eq. (8.16), the contravariant coefficients of the conductivity
tensor in curvilinear coordinates can be obtained:

D11
cu = D11

ca
1

a11
+ 2 D12

ca
a12√
a11a22

+ D22
ca

(
a12

)2

a22 ,

D12
cu = D21

cu = D12
ca

√
a22

a11
+ D22

caa12 ,

D22
cu = D22

caa22 ,

(8.25)
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Figure 8.5: Contours of the field variables v (left) and w (right) for the spiral
wave test, at the time instants t = 65.0 ms (top) and t = 150.0 ms (bottom).
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Figure 8.6: Trajectory of the spiral waves’ tips over the last three rotation of the
spiral. The corresponding mesh has 160 × 160 quadratic IGA elements.

under the hypothesis of symmetric conductivity tensor.
The contours in Fig. (8.7) exhibit the expected shape of the depolarization-repolarization wave
despite the high degree of misalignment of the mesh with the propagating front. IGA has been
proved to have enhanced performance on highly distorted meshes with respect to classic Finite
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Figure 8.7: Computational grid for the test of planar propagation on an highly
distorted mesh (a); one knot line every two is plotted for sake of clarity. Corre-

sponding transmembrane potential contours (b) at t = 50.0 ms.

Elements Analysis [3]. A quantitative comparison between the two implementations is provided
in Fig. 8.9, where the Root Mean Square (RMS) of the difference in the maximum action potential
value (8.26) and on its position on control points (8.27) are plotted against time. Numerically
identical values prove the effectiveness of the implementation on curvilinear coordinates.

ṽ =
vcurv − vplate

vplate
, (8.26)

x̃ =
xcp

curv − xcp
plate

xcp
plate

. (8.27)

A further test is proposed to verify the implementation of Eq. (8.16) when no base vectors
alignment is present. To this extent we study the propagation of the action potential over a mesh
with rotational distortions (Fig. 8.8). The simulation is initialized to null filed variables and a
peacemaking stimulus of 2.0 mA/cm2 is generated within a circular area of radius R = 0.02 cm
for t = 0.5 ms. In this case an anisotropic conduction tensor is imposed with D11

ca = D22
ca =

10−5 S/cm, D12
ca = D21

ca = 5 × 10−5 S/cm. The comparison between the curvilinear and the 2D
implementation provided a numerically coincident solution.
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Figure 8.8: Computational grid for the test of propagation on a mesh with ro-
tational distortions (a); one knot line every two is plotted for sake of clarity.

Corresponding transmembrane potential contours (b) at t = 33.5 ms.
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Figure 8.9: Statistical error indicators (defined in Eq. (8.26) and Eq. (8.27)) for
the action potential propagation over rectangular domain.
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9 Elecromechanical activation of a thin
tissue by the active strain approach

A change in the configuration of a muscular tissue arising from an electrophysiologic stimulus
requires the knowledge of the mechanical effect deriving from the sarcomere contraction. A
common practice in computational electrophysiology, is the approximation of the elastic response
of the tissue with a continuum model, based on the concept of active strain or active stress.
In the present chapter the active strain approach is introduced, and it is embedded in the weak
formulation for KL shells presented in chapter 3. To the knowledge of the author this represents
the first implementation of the active strain approach in a shell framework. Furthermore, all
quantities needed for the solution of the mechanical problem are formulated in local curvilinear
coordinates, and only later the shell hypotheses are enforced. Thus, the framework presented in
this chapter is very general as it provides the expressions needed for a Lagrangian-active strain
approach, applicable to three-dimensional solids.

9.1 The active strain approach

The effect of the microscopic mechanisms driving the tissue activation is embedded into the
continuum approach by means of the well-established active strain approach [23], [179]. This
approach entails the multiplicative decomposition of the deformation gradient tensor into an
elastic (passive) part Fe and an active part Fa in the following form:

F = FeFa . (9.1)

The factorization of F took place in different nonlinear continuum mechanics scenarios [180],
such as thermoelasticity [181], elastoplasticity [182] and biomechanical growth modeling [183],
providing an effective mathematical tool for representing the change of configuration of a system
undergoing multi-physics processes.
The active deformation Fa represents an effect of the microscopic cellular interactions driving
the tissue contraction, thus it depends on the field variables of the electrophysiological model.
A graphical representation of the multiplicative decomposition is provided in Fig. 9.1. In the
present work the instantanueous active gradient is prescribed by a phenomenological law which
dictates the activation parameters embedded in Fa. The explicit expression of Fa is presented in
section 9.7.
It should be pointed out that, unlike some of the aforementioned applications of the multiplica-
tive decomposition, Fe and Fa are not actually given by the gradient of a vector map. From
the kinematic perspective, the active deformation leads to an intermediate non-compatible con-
figuration, which must be intended as a stress-free configuration given by a micro-structural
rearrangement. The compatibility and equilibrium requirement are matched subsequently by
the passive response, which relaxes the body from the intermediate to the final configuration.
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Hence, Eq. (9.1) describes a theoretical decoupling that associates the microscale dynamics to the
macroscale continuum mechanics indeed [23]. The thermodynamic potential associated with the

Figure 9.1: Schematic representation of the multiplicative decomposition of the
deformation gradient F into active Fa, and elastic Fe part, associated with the

reference Ω0, intermediate Ωe, and current Ω configuration.

electromechanical process is defined by the material Helmholtz free energy density Ψ. Without
claim of generality, Ψ is assumed to describe an isothermal process following the dependencies:

Ψ = Ψ (F,Fe, v) , (9.2)

being v the transmembrane potential. According to the theoretical framework presented in [184],
beside the factorization of the deformation gradient tensor, we suppose an additive split of the
Helmholtz free energy by assuming a separation of its arguments. Conveniently, Ψe can be
considered as a function of the elastic material behavior:

Ψ (F,Fe, v) = Ψe (Fe) + Ψa (F, v) . (9.3)

According to these assumptions, the first term corresponds to the strain energy density of the
system, which depends only on the elastic part of the deformation gradient. Such a condition
has been widely employed in recent works to derive a formulation for nonlinear elastic response
[185, 23]. The energy split has proven to be computationally attractive since it allows the choice
of any strain energy function, and furthermore enables the use of separate simplified formulations
for the active contraction and passive response subproblems.
In this work the active strain approach is embedded in a total Lagrangian formulation, which
represents the classical framework for finite elasticity solvers. Thus, the equations of motion are
integrated in the material configuration, and the elastic strain energy is thought as a function of
the elastic right Cauchy-Green Deformation tensor,

Ψe = Ψe (Ce) , (9.4)

which is defined following the deformation gradient split:

C = FT
a CeFa . (9.5)

It is worth noting that the elastic quantities (denoted by the subscript e), as well as the elastic and
active deformation gradient tensors, are all defined with respect to the reference configuration.
The aforementioned intermediate configuration does not represent the result of a geometric map,
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therefore any kinematic quantity is defined in the reference frame.
We consider the passive material response to be isotropic and hyperelastic. The generalization
to the anisotropic case is a straightforward extension and has been already presented in literature
[186]. For sake of generality we assume a weakly compressible material law. In this scenario, we
address the quantification of the determinant of the two parts of the tensor deformation gradient
separately. In curvilinear coordinates:

Je =
det(Fe,i j)

det(G̊i j)
, Je =

det(Fa,i j)

det(G̊i j)
, with . (9.6)

However, they must fulfill the relation:

J = JeJa . (9.7)

The active deformation gradient tensor is defined with respect to the curvilinear bases as:

Fa = Fi j
a g̊i ⊗ g̊ j , (9.8)

F−1
a = F̄ai j g̊i ⊗ g̊ j , (9.9)

F−T
a = F̄a ji g̊i ⊗ g̊ j , (9.10)

9.2 Active Strain and Active Stress approaches

The most consolidated approach for translating an electrophysiological activation state into a tis-
sue deformation is based on the concept of active stress. Differently from the aforementioned
active strain approach, it entails the definition of an instantaneous muscular tension which must
propagate following a suitable evolution model [187]. In a recent contribution [188], the Active
Strain and the Active Stress approaches have been compared on simple tests producing identical
results on uniaxial deformation and different results in a shear test, unless specific conditions
are enforced on the strain energy density. We implemented the active strain approach due to its
robustness and thermodynamic consistency [184].
From a mathematical perspective, both approaches must satisfy the frame indifference and ellip-
ticity of the total stress [189]. Form a biological perspective instead, an activation model must
satisfy the constitutive behavior observed experimentally on the macroscopic level. The active
strain approach is mathematically more robust, since the properties advocated ahead depend on
the strain energy function adopted, and no active stress function needs to be tuned. Conversely,
the active strain approach provides less chances to fit the physiological behavior with the exper-
imental measurements once the inert properties of the material are prescribed [189]. Recently,
active strain and active stress have been conciliated from a thermodynamic perspective through
the an additive decomposition of the Helmholtz strain energy density [184].

9.3 The active strain approach in a Lagrangian formulation

Most of the implementations of the active strain approach presented in literature [24, 23, 186]
provide the first variation of the elastic strain energy as a function of the first Piola-Kirchhoff

stress tensor P. Recalling the notation used in chapter 3, it reads:

DδuΠi(u) =

∫
Ω0

P : ∇φ dV , (9.11)
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for all test functions φ. This integral can be obtained directly from integration of the equilibrium
equation. The formulation arising from (9.11) is preferred by many authors because the tensor P
provides an explicit and simple relation with the deformation gradient tensor, on which the mul-
tiplicative decomposition is performed P = ∂Ψ/∂F. Thus, the underlying active strain approach
can be explicitly treated without further derivations if the strain energy density is presented as a
function of the deformation gradient. However, the most widespread approach pursued for finite
elasticity FEA is the total Lagrangian formulation, whose elastic energy variation is expressed
by means of the second Piola-Kirchhoff stress tensor S:

DδuΠi(u) =

∫
Ω0

S : DδuE dV . (9.12)

In order to provide an active strain approach based on the expression (9.12) for finite elasticity we
present a detailed derivation of the necessary mathematical relations. The formulas are provided
in the most general frame of reference, and they are not restricted by any kinematic assumption.
In this connection we present a very general active strain framework to be embedded into a
standard finite elasticity formulation based on the definition (9.12), without resorting to dedicated
formulations.

9.4 Constitutive equations for the passive material response

In the following, the active strain approach is embedded in the NURBS-based IGA framework
described in Chapter 3. The formulation requires the integration of the second Piola-Kirchhoff

stress tensor S, which is energetically conjugate to the Green-Lagrange strain tensor E through
the tangent material tensor C. In local curvilinear coordinates these can be written as:

S = S i jg̊i ⊗ g̊ j , (9.13)

C = Ci jklg̊i ⊗ g̊ j ⊗ g̊k ⊗ g̊l . (9.14)

Having provided the strain energy as a function of the right Cauchy-Green tensor, we report the
following definitions:

S = 2
∂Ψ

∂C
, (9.15)

C = 4
∂2Ψ

∂C∂C
. (9.16)

The right Cauchy-Green deformation tensor is defined in the shell continuum as it must be inte-
grated over the thickness to provide the stress resultant (see section 3.4):

C = FT F = Gi j g̊i ⊗ g̊ j . (9.17)

According to Eq. (9.17), which is valid for a general 3D continuum, the covariant coefficients
of the deformation tensor are identical to the metric coefficients of the deformed configuration,
i.e., Ci j = Gi j. In the shell model, this relation does not hold for the transverse normal direction,
i.e., C33 , g33, since g33 ≡ 1 due to the definition in Eq. (3.7), whereas C33 describes the actual
thickness deformation, which cannot be neglected in hyperelastic material models. Accordingly,



9.4. Constitutive equations for the passive material response 93

we represent the deformation tensor coefficients by:

Ci j =

 G11 G12 0
G21 G22 0

0 0 C33

 . (9.18)

As shown in Section 3.2, C33 can be computed from the in-plane components Gαβ using the plane
stress condition. The coefficient matrix of the inverse of the deformation tensor, C−1 = C̄i j g̊i⊗g̊ j,
is obtained as:

C̄i j =

 G11 G12 0
G21 G22 0

0 0 C−1
33

 . (9.19)

9.4.1 Second Piola-Kirchhoff stress tensor

The main algebraic rules for tensor operations employed in the present section are summarized
in Appendix B. By exploiting the chain rule in the definition (9.15) and the relation between the
deformation tensor and its elastic counterpart, one can write:

S = 2
∂Ψ

∂Ce
:
∂Ce

∂C

= Se :
∂

∂C
(
F−T

a C F−1
a

)
, (9.20)

where Se is the elastic part of the tensor S. Following the dependencies assumed in section 9.6,
the active part of the deformation gradient Fa does not depend on F itself, thus it does not depend
on C as well.

S = Se :
(
F−T

a
∂C
∂C

F−1
a

)
= Se :

(
F−T

a Is F−1
a

)
, (9.21)

where Is is the super-symmetric fourth-order identity tensor, arising from the derivative of a
second-order symmetric tensor with respect to itself. According to [190], it is defined as:

Is =
1
2

(
G̊ik G̊ jl + G̊il G̊ jk

) (
g̊i ⊗ g̊ j ⊗ g̊k ⊗ g̊l

)
. (9.22)

By switching to the index notation, the second term of the expression (9.21) is computed as:

F−T
a IsF−1

a =
(
F̄aab g̊a ⊗ g̊b

) (
θi jkl g̊i ⊗ g̊ j ⊗ g̊k ⊗ g̊l

) (
F̄acd g̊c ⊗ g̊d

)
, (9.23)

with θi jkl = 1
2

(
G̊ik G̊ jl + G̊il G̊ jk

)
. It yields:

F−T
a IsF−1

a = θi jkl F̄aba δ
b
i F̄acd δ

c
l

(
g̊a ⊗ g̊ j ⊗ g̊k ⊗ g̊d

)
= θi jkl F̄aia F̄ald

(
g̊a ⊗ g̊ j ⊗ g̊k ⊗ g̊d

)
=

1
2

F̄aia F̄ald G̊ik G̊ jl
(
g̊a ⊗ g̊ j ⊗ g̊k ⊗ g̊d

)
+

1
2

F̄aia F̄ald G̊il G̊ jk
(
g̊a ⊗ g̊ j ⊗ g̊k ⊗ g̊d

)
=

1
2

F̄aia F̄ald

(
g̊a ⊗ g̊l ⊗ g̊i ⊗ g̊d

)
+

1
2

F̄aia F̄ald G̊il
(
g̊a ⊗ g̊ j ⊗ g̊ j ⊗ g̊d

)
. (9.24)
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Then:

Se :
(
F−T

a IsF−1
a

)
=

(
S e f

e g̊e ⊗ g̊ f
)

:
[
1
2

F̄aia F̄ald

(
g̊a ⊗ g̊l ⊗ g̊i ⊗ g̊d

)]
+

(
S e f

e g̊e ⊗ g̊ f
)

:
[
1
2

F̄aia F̄ald G̊il
(
g̊a ⊗ g̊ j ⊗ g̊ j ⊗ g̊d

)]
=

1
2

S e f
e F̄aia F̄ald δ

a
e δ

l
f

(
g̊i ⊗ g̊d

)
+

1
2

S e f
e F̄aia F̄ald δ

a
e G̊il G̊ f j

(
g̊i ⊗ g̊d

)
=

1
2

S al
e F̄aia F̄ald

(
g̊i ⊗ g̊d

)
+

1
2

S a f
e F̄aia F̄ald G̊il G̊ f j

(
g̊i ⊗ g̊d

)
. (9.25)

By matching the bases of each term of Eq. (9.25):

S pq g̊p ⊗ g̊q =
1
2

S al
e F̄aia F̄ald G̊ip G̊dq

(
g̊p ⊗ g̊q

)
+

1
2

S a f
e F̄aia F̄ald G̊il G̊ f j G̊ jp G̊dq

(
g̊p ⊗ g̊q

)
=

1
2

S al
e F̄aia F̄ald G̊ip G̊dq

(
g̊p ⊗ g̊q

)
+

1
2

S a f
e F̄aia F̄ald G̊il δ

p
f G̊dq

(
g̊p ⊗ g̊q

)
=

1
2

F̄aia F̄ald Gdq
(
S al

e G̊ip + S ap
e G̊il

) (
g̊p ⊗ g̊q

)
, (9.26)

the final coefficient equation holds:

S pq =
1
2

F̄aia F̄ald G̊dq
(
S al

e G̊ip + S ap
e G̊il

)
, (9.27)

which requires the loop on four nested indices {i, a, l, d}.

9.4.2 Tangent material tensor

In a similar fashion to the derivation of the second Piola-Kirchhoff stress tensor we write:

C = 4
∂

∂C

(
∂Ψ

∂C

)
= 4

∂

∂Ce

(
∂Ψ

∂C

)
:
∂Ce

∂C
. (9.28)

Now the first term of the previous equation will be computed separately by exploiting the defini-
tion of tensor function derivative. We note that the expression (9.26) corresponds to the argument
of the derivative divided by 2:

∂

∂Ce

(
∂Ψ

∂C

)
=

∂

∂
(
Ce,gh g̊g ⊗ g̊h

) [
1
4

F̄aia F̄ald G̊dq
(
2

∂Ψ

∂Ce,al
G̊ip + 2

∂Ψ

∂Ce,ap
G̊il

) (
g̊p ⊗ g̊q

)]

=
1
2

F̄aia F̄ald G̊dq
(

∂2Ψ

∂Ce,gh∂Ce,al
G̊ip +

∂2Ψ

∂Ce,gh∂Ce,ap
G̊il

) (
g̊p ⊗ g̊q ⊗ g̊g ⊗ g̊h

)
=

1
8

F̄aia F̄ald G̊dq
(
Cghal

e G̊ip + Cghap
e G̊il

) (
g̊p ⊗ g̊q ⊗ g̊g ⊗ g̊h

)
, (9.29)

Provided that the second term of Eq. (9.28) correspond to Eq.(9.24), the final expression of the
tangent material tensor can be obtained by the following double contraction:

C = 4
[
1
8

F̄aia F̄ald G̊dq
(
Cghal

e G̊ip + Cghap
e G̊il

) (
g̊p ⊗ g̊q ⊗ g̊g ⊗ g̊h

)]
:
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[
1
2

F̄auw F̄ayx
(
g̊w ⊗ g̊y ⊗ g̊u ⊗ g̊x) +

1
2

F̄auw F̄ayx G̊uy (
g̊w ⊗ g̊v ⊗ g̊v ⊗ g̊x)] . (9.30)

The distributive property of the double contraction between fourth-order tensors [191] can be
applied:

C =
1
4

F̄aia F̄ald F̄auw F̄ayx G̊dq δw
g δ

y
h

(
Cghal

e G̊ip + Cghap
e G̊il

) (
g̊p ⊗ g̊q ⊗ g̊u ⊗ g̊x

)
+

1
4

F̄aia F̄ald F̄auw F̄ayx G̊dq G̊uy G̊hv δ
w
g

(
Cghal

e G̊ip + Cghap
e G̊il

) (
g̊p ⊗ g̊q ⊗ g̊v ⊗ g̊x

)
=

1
4

F̄aia F̄ald F̄auw F̄ayx G̊dq
(
Cwyal

e G̊ip + Cwyap
e G̊il

) (
g̊p ⊗ g̊q ⊗ g̊u ⊗ g̊x

)
+

1
4

F̄aia F̄ald F̄auw F̄ayx G̊dq G̊uy G̊hv
(
Cwhal

e G̊ip + Cwhap
e G̊il

) (
g̊p ⊗ g̊q ⊗ g̊v ⊗ g̊x

)
. (9.31)

On uniform bases it yields:

Cpqrs (g̊p ⊗ g̊q ⊗ g̊r ⊗ g̊s) =

=
1
4

F̄aia F̄ald F̄auw F̄ayx G̊dq G̊ur G̊xs
(
Cwyal

e G̊ip + Cwyap
e G̊il

) (
g̊p ⊗ g̊q ⊗ g̊r ⊗ g̊s

)
+

1
4

F̄aia F̄ald F̄auw F̄ayx G̊dq G̊uy G̊hv G̊vrG̊xs
(
Cwhal

e G̊ip + Cwhap
e G̊il

) (
g̊p ⊗ g̊q ⊗ g̊r ⊗ g̊s

)
=

1
4

F̄aia F̄ald F̄auw F̄ayx G̊dq G̊xs
[
G̊ur

(
Cwyal

e G̊ip + Cwyap
e G̊il

)
+

G̊uy
(
Cwral

e G̊ip + Cwrap
e G̊il

)] (
g̊p ⊗ g̊q ⊗ g̊r ⊗ g̊s

)
. (9.32)

The final coefficient equation holds:

Cpqrs =
1
4

F̄aia F̄ald F̄auw F̄ayx G̊dq G̊xs
[
G̊ur

(
Cwyal

e G̊ip + Cwyap
e G̊il

)
+

G̊uy
(
Cwral

e G̊ip + Cwrap
e G̊il

)]
, (9.33)

which requires the loop on eight nested indices {i, a, l, d, u,w, x, y}. It should be stressed that
elastic quantities S i j

e and Ci jkl
e do not have a kinematic meaning, but they are defined by analogy

with their total counterpart.
Eqns. (9.26) and (9.33) provide the expressions of the stress and material tensor for an active
tissue with a prescribed active deformation gradient. These expressions refer to any three-
dimensional domain, and can be reduced to the particular case of a Cartesian frame. Thus,
they are suitable to be implemented in the most widespread finite elasticity formulations, if
accompanied with a consistent strain energy function. Eventually, one should notice that the
Green-Lagrange strain tensor does not need any decomposition since it is intended as a virtual
strain.

9.5 Enforcement of the plane stress condition

The plane stress condition S 33 = 0 is satisfied by iteratively solving for C33, using the Newton
linearization of the plane stress condition presented in [28, 192]:

S 33 +
∂S 33

∂C33
∆C33 = S 33 +

1
2
C3333∆C33 = 0 . (9.34)
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From Eq. (9.34) we obtain the incremental update:

∆C33 = −2
S 33

C3333 , (9.35)

C33 = C33 + ∆C33 , (9.36)

where I indicates the iteration step. With the updated C, we compute the updates of S(C) and
C(C). As an example, let us consider the following compressible Neo-Hookean strain energy
function, which was already used in well-established active-strain formulations [24] and consists
of an additive split into isochoric and volumetric parts:

Ψ(Ce) =
1
2
µ (tr(Ce) − 2 ln(Je) − 3) +

1
2

K (Je − 1)2 . (9.37)

with µ, K as the shear and bulk moduli. Regarding the cardiac tissue activation, similar com-
pressible Neo-Hookean functions have already been used in computational models [24], and
further studies suggest that a compressible model is able to adequately reproduce the experimen-
tal data [193]. The 3D stress and material tensors are obtained, according to Eqs. (9.28) and
(9.33), where the elastic counterpart are:

S i j
e = 2

∂Ψe

∂Ce i j
= µ

(
G̊i j − C̄i j

e

)
+ KC̄i j

e

(
J2

e − Je
)

, (9.38)

Ci jkl
e =4

∂2Ψe

∂Ce i j∂Ce kl
= µ

(
C̄ik

e C̄ jl
e + C̄il

e C̄ jk
e

)
+

2K
[
C̄i j

e

(
J2

e −
1
2

Je

)
C̄ik

e C̄kl
e −

1
2

(
J2

e − Je
) (

C̄ik
e C̄ jl

e + C̄il
e C̄ jk

e

)]
.

(9.39)

As initial condition we use C0
i j = Gi j, where the in-plane components remain invariant throughout

the iteration, Cαβ ≡ Gαβ, and only CI
33 is updated. With C(I+1)

33 obtained according to Eqs. (9.35)–
(9.36), the elastic part of the deformation tensor Ce is updated by formula (9.5), then the new
values of S i j

(I+1) and Ci jkl
(I+1) are computed. This procedure is repeated until the plane stress condi-

tion is satisfied within a defined tolerance. Finally, the statically condensed material tensor C̃ is
computed according to Eq. (3.31), and only the in-plane components S αβ and Cαβγδ are used for
the shell model. In this scenario, arbitrary 3D material models can be used.
The iterative procedure to enforce the plane stress condition is carried out on the total defor-
mation tensor C, whereas the tensor derivatives of the strain energy function are computed with
respect to its elastic counterpart. The steps of such an iterative procedure are summarized in table
9.1.

9.6 Active material response

The dynamics behind the active deformation occurring at the cell level, involves much smaller
temporal and spatial scales with respect to the macroscopic modeling framework. Our numeri-
cal procedure ignores the complex intracellular dynamics and the stochastic mechanisms which
regulate the ionic concentration changes responsible for the active deformation, in order to get a
model with reasonable computational complexity. Thus, the active deformation does not result
from balance equations, but it is directly dictated by means of a phenomenological activation
model. The energy spent in the active contraction (9.3) is not neglected, however the coupling
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(1) update the coefficient (C33)I

(2) extract the coefficients of the elastic part
(
Ce,i j

)I+1
by:

(Ce,i j)I+1 = Fa,il Fa, jk
(
C̄mn

)I
G̊lm G̊nk

(3) compute
(
S i j

e

)I+1
and

(
Ci jkl

e

)I+1
via definition (9.38), (9.39)

(4) get (S pq)I+1 and (S pqrs)I+1 from the coefficient equations (9.27) and (9.33)

(5) (∆C33)I+1 = −2
(
S 33

)I+1
/
(
C3333

)I+1

(6) (C33)I+1 = (C33)I + ∆(C33)I+1

(7) check convergence:
∣∣∣(∆C33)I+1

∣∣∣ < ε
Table 9.1: Algorithm for the enforcement of plane stress condition within the
active-strain framework; the letter I indicates the iteration step, ε is the pre-
defined convergence tolerance. The procedure needs to be repeated at each

quadrature points in the thickness direction.

between passive and active configurations is enforced by a purely kinematic transformation.
In the material law presented in section 9.5, the anisotropy that characterizes the tissues of inter-
est has not been addressed. In this work, we follow the simplified approach of [24] accounting
for the anisotropic behavior of the fibers only by assigning direction-specific active deformations
in the active part of the decomposition. Hence, the passive elastic response is assumed to be
isotropic.
For sake of simplicity we assume that the tissue is dominated by two fiber layers with orientation
corresponding to the NURBS directions θ1 and θ2. In a similar fashion to [142], the active part
of the deformation gradient takes the following form:

Fa = I − γ
[
a1

(
g̊1 ⊗ g̊1

)
+ a2

(
g̊2 ⊗ g̊2

)]
+ γn

(
g̊3 ⊗ g̊3

)
, (9.40)

where γ is a smooth activation function depending on the excitation state and a1 and a2 are
material parameters controlling the intensity of the active contraction/dilatation in the two fiber
directions.
Bringing the terms of Eq. (9.40) on the same basis, consistently with the definition in Eq. (9.8),
the coefficient equation for Fa yields:

Fi j
a = Gi j − γ

(
a1G̊1iG̊1 j + a2G̊2iG̊2 j

)
+ γnG̊3iG̊3 j . (9.41)

We assume that the active deformation is also volume preserving, thus:

Ja =
det

(
Fi j

a

)
det

(
Gi j) = 1 . (9.42)

This relation can be used to compute the activation parameter in the thickness direction:

γn =
1
Jp

a

(
G̊11G̊22 −

(
G̊12

)2
)
− 1 , (9.43)

being Jp
a the in-plane determinant of the active deformation tensor:

Jp
a =

[
G̊11 − γ

(
a1

(
G̊11

)2
+ a2

(
G̊12

)2
)] [

G̊22 − γ
(
a1

(
G̊12

)2
+ a2

(
G̊22

)2
)]
−
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[
G̊12 − γ

(
a1G̊11G̊12 + a2g21G̊22

)]2
(9.44)

9.7 Tissue activation function and electro-mechanical coupling

The generation of active force within a generic smooth muscle cell is assumed to depend strongly
on the intracellular Ca2+ concentration. The Ca2+ concentration itself is regulated by a complex
spatio-temporal dynamics involving both the activation of voltage-dependent calcium channel
and intracellular stochastic mechanisms. In order to maintain the generality of the present model,
we neglect the intracellular multiscale calcium-dynamics and use a direct relation between the
transmembrane voltage and the active strain activation parameter γ, presented in [142]:

γ(v) =
(
1 − exp (−β1 (v − vt))

) (
1 − exp (−β2 (v − vt))

)
H (v − vt) . (9.45)

Here, v denotes the local transmembrane potential value. vt is the normalized opening voltage
of the voltage-dependent Ca2+ channels (VDCC), β1 is a parameter resembling the homogenized
Ca2+ dynamics, and β2 describes the opening dynamics of the VDCC. H(x) denotes the Heavi-
side step function. According to Eq. (9.45), the activation function must lay within the interval
γ ∈ [0, 1], where a positive γ produces a fiber shortening.
From the computational perspective the calculation of the activation function is performed at
the quadrature points of the structural domain. This requires the interpolation of the transmem-
brane potential, known at the control points of the electrophysiological mesh. This can be easily
implemented by means of the isoparametric paradigm naturally embedded in the finite element
formulation.

9.8 Mechano-electric feedback modeling

The mechano-electric feedback is neglected from the constitutive perspective, as mentioned in
section 9.6, but a purely geometric feedback is inherently achieved in the present formulation. A
widespread modeling approach, relying on simple phenomenological considerations, consists of
the inclusion of a Stress-Assisted-Diffusion (SAD) effect and a Stretch-Activating-Current (SAC)
contribution [124, 194]. The first collects the homogenized effects of the deformation field on the
diffusion processes altering the spatio-temporal patterns of the membrane voltage. The second
relates the deformed mechanical state to the excitability of the medium via additional reaction
functions (ionic-like currents) [194]. In the present work the deformation is thought to affect
the diffusion process via the inherent geometric coupling between the computational domains.
This SAD effect is the only feedback effect considered since it was proved to qualitatively match
the patterns observed in experimental works, with higher fidelity then SAC [195]. By assuming
a quasi-static deformation for the continuum body, its macroscopic response can be thought as
independent from the diffusion process. On the contrary, the diffusion process will strongly
depend on the mechanical state of the tissue.
In a curvilinear framework the geometric feedback describing the stress assisted diffusion is
naturally included since the conductivity tensor is computed with respect to the local metric
vectors, and no further operations are needed.
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9.9 Unplugged active strain solver: numerical experiments

This section is devoted to the numerical investigation of the passive material response. We present
several numerical tests involving different geometric configurations as well as different distribu-
tions of the activation function. In the following cases, the activation is dictated by a prescribed
function γ = γ(θ1, θ2, h) defined over the shell quadrature points. We emphasize that, in the
present section, the activation function field does not represent a physiologically realistic condi-
tion, but it is thought as a mere loading condition for numerical investigation purposes.

9.9.1 Flat plate with combined loads

As a first example, we simulate a plate undergoing membrane deformation only in a two-
dimensional configuration. A flat plate of dimensions 1.2 × 0.9 × 0.01 m is considered. The
plate is constrained as illustrated in Fig. 9.2, and it is subject to a traction force in conjunc-
tion with a uniform activation function. Equal material activation parameters are considered
a1 = a2 = 1.0. The material is assumed to have a Neo-Hookean strain energy function (9.37)
with µ = 1.5 × 106 N/m2, K = 7.445 × 107 N/m2. The applied line load has uniform value
fe = 9000 N/m, whereas the activation function provides a uniformly distributed gradient with
γ = 0.2. The line load applied at the right edge induces an element elongation in the x direction,
which must be compensated by a shortening in the other directions due to volume conservation.
However, this coexists with a uniformly distributed active gradient which forces the body to an
in-plane contraction of the elements. As a consequence of such conflicting loads, the plate un-

(a) (b)

Figure 9.2: (a) Schematic of the boundary conditions and external forces over
the flat plate; red markers denotes the quadrature points location, where the ac-
tivation function γ is defined. (b) Reference and final configuration of the flat

plate test.

dergoes a limited elongation in the x-direction, but a significant shortening in the y-direction
(Fig. 9.2). The corresponding principal stretch values (defined in Eq. (9.46)) at the plate mid-
point are λ1 = 1.039, λ2 = 0.6868, λ3 = 1.379.

λ1 =

√
A11/Å11, λ2 =

√
A22/Å22, λ3 =

√
C33 . (9.46)

The correctness of the tensor calculations for the multiplicative split in (9.1) is verified by mon-
itoring the convergence rate of the Newton-Raphson procedure (Fig. 9.3) for the geometrically
nonlinear treatment described in section 3.4. The convergence parameter Ri is computed as the
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ratio of the residual array norm and the sum of external and first-iteration internal forces. The
expected quadratic convergence is correctly obtained, suggesting that the active-strain implemen-
tation does not affect the linearization of the internal work. It is worth noting that the reference
configuration has non-unitary base vectors, although the local bases maintain the orthogonality
in the deformed configuration. Hence, the computation of internal forces and the corresponding
derivatives does include non-unitary metric tensor coefficients.

Ri =
‖Ri‖∥∥∥∥f(1)

i

∥∥∥∥ + ‖fe‖
. (9.47)

-10 -8 -6 -4 -2 0 2
-20

-15

-10

-5

0

5

residual

slope=1

slope=2

Figure 9.3: Convergence of the Newton-Raphson iterations for the flat plate case;
Ri indicates the residual of the i-th iteration.

9.9.2 Hinged arc

As a second example we present a hinged arc subject to an active deformation gradient which
induces a fiber lengthening. A 40◦ circular arc with radius R = 1 m and thickness t = 0.01 m
is hinged at the shortest edges and free at the others. Such a constraint condition ensures that a
membrane stretch acting in the azimuthal direction generates out-of-plane deformations. In par-
ticular, a uniform activation function γ = −0.3 is applied, and the material activation parameters
a1 = 1.0 and a2 = 0.0 are assumed. The input parameters for the passive material response are
taken from the previous numerical example, as well as the strain energy function definition.
The values of the material activation parameters entail an active gradient acting only the az-
imuthal NURBS direction only. This setting allows to perform an accuracy analysis by h-
refinement along just one direction, for sake of simplicity. The analysis is performed for quadratic
and cubic shape functions since they are the values used for the other cases presented in the
manuscript. In the other direction one linear elements is employed.
To this extent the relative error on the generic quantity η is evaluated by:

ε(η) =
|η − ηe|

ηe , (9.48)

with respect to an extrapolated reference solution ηe, which is obtained following the procedure
proposed by [108]. We evaluated the convergence rate by means of a local and a global
indicator, i. e. the vertical displacement of the point P, u(P), and the discrete strain energy Es.
As displayed by Fig. 9.5, the solution converges to the reference value with the expected rate
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Figure 9.4: Reference (gray) and final (green with translucency) configuration
for the hinged arc case. The point P, used for the accuracy analysis is located at

the parametric coordinates {0.5, 0.5}.
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Figure 9.5: Convergence plot of the displacement of point P under an active
deformation gradient (a). Convergence plot of the discrete strain energy Es (b).

for both quantities. The vertical displacement of the point P obtained with the finest mesh is
u(P) = 0.1874 m.

9.9.3 Clamped shell

The definition of active deformation gradient presented in Eq. (9.40) entails that out-of-plane
deformations can arise only as a consequence of the applied boundary conditions, unless the ac-
tivation function is assumed to vary through the thickness. In this scenario, the third test-case is
built by applying a thickness-variable activation function to a clamped shell. We considered a
cylindrical sector spanning 30◦ of radius R = 1 m, length L = 2 m and thickness t = 0.0075 m,
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with one of the curved edges being clamped. The material law described in section 9.5 is em-
ployed with µ = 1.6 × 106 N/m2 and ν = 0.49. Here the domain is discretized by 8 × 15 cubic
elements. A non-uniform activation function is chosen to force the free edge to bend against its
initial curvature.

γ(θ1, θ2, θ3) = 0.08 θ3 θ2
(
−
∣∣∣θ1

∣∣∣) . (9.49)

As a consequence of such a deformation, a variation in the local curvature is expected in the
other NURBS direction. This example provides a fully three-dimensional variation in the con-
figuration, and it represents a challenging task for the nonlinear solver since severe changes in
curvature are localized in tiny regions. In Fig. 9.6, the distribution of the local change in curva-
ture ∆K is plotted over the surface, suggesting that a fiber contraction in the azimuthal direction
induces a significant change in the curvature (Eq. (9.50)) along the axial direction.

∆K =
det(Bαβ)
det(Aαβ)

−
det(B̊αβ)

det(Åαβ)
. (9.50)

We can conclude that such a complex active gradient provides a realistic deformation pattern and
it confirms the ability of the method to deal with large deformations with a limited number of
degrees of freedom.

(a) (b)

Figure 9.6: (a) Reference (gray) and deformed (green with translucency) con-
figuration for the clamped shell case. (b) Surface distribution of the Gaussian
curvature change ∆K [m−2], defined in Eq. (9.50) over the deformed configura-

tion.

9.10 Coupled electromechanical solver

We present two numerical examples of coupled electromechanical problem resolved in a sequen-
tial way. Several authors proposed a monolithic framework [196, 197, 198] for the implemen-
tation of the coupled problem, however the staggered approach is widely preferred for sake of
simplicity and flexibility of the formulation. The mechanical problem is resolved following the
widespread assumption of quasistatic behavior. The role of inertia in the cardiac electromechan-
ics has been addressed in [199]. The quasistatic hypothesis allows to decouple the time-stepping
procedure of the sub-problems. We solve the elastic problem, which is computationally far more
onerous than the electric one, each n∗ monodomain steps, where n∗ is the number of steps needed
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to achieve a 2% variation in the activated surface area. Several authors exploited also the uncou-
pling of the computational meshes for each sub-problem, however this strategy is avoided to limit
the complexity of the implementation.

9.10.1 Activation of a patch with double curvature

We consider a two-dimensional slab of tissue of dimensions [0, 1]× [0, 0.3] cm2 with constrained
short edges (clamped-pinned) and free long edges. The tissue is assumed to have uniform capac-
ity Cm = 1 mF/cm3 with a surface-to-volume cell ratio of χ = 1 cm−1 and isotropic conductivity
DIS O = 10−4 S/cm. We assume that the conductivity directions are aligned with the Cartesian
base vectors e1 = [1, 0], e2 = [0, 1]. The Aliev-Panfilov current model described in the previous
chapter is employed. Mechanically the tissue is defined by a compressible hyperelastic material
with strain energy function defined as in (9.37), Poisson’s ratio equal to ν = 0.49, bulk modu-
lus µ = 1.4 × 106. The activation function follows the definition in (9.45), with vt = 0.25 mV ,
β1 = 0.5, β2 = 0.5 and material excitation parameters a1 = 0.5, a2 = 0.25.
The domain is discretized by 150 × 40 quadratic IGA elements, and the monodomain simulation
is advanced in time with the time-step size ∆t = 0.01 ms. We set three integration points across
the thickness and an absolute tolerance for the Newton process equal to ε = 10−7. The simula-

Figure 9.7: Transmembrane potential field in the deformed configuration at in-
stant t = 50 ms (top panel). Correspondent percentage variation of the local

Jacobian determinant from unity, as defined in (9.51) (bottom panel).

tion was initiated forcing the transmembrane potential to v = 1.0 at the right edge of the slab for
1 ms to allow the propagation towards the left edge. The expected in-plane stretch of the tissue
was observed (see Fig. 9.7). A strongly localized tissue contraction in the y- and x-direction was
observed in correspondence of the depolarization front, compared with the less steep relaxation
induced at the repolarization region. The distribution of the principal stretches is illustrated at the
instant t = 50 ms over the slab center-line in Fig. 9.8. We notice that the nearly incompressible
material v = 0.49, in conjunction with the algorithmic treatment for the plane stress condition
enforcement (the reader should refer to section 9.5), provide a stable Jacobian determinant distri-
bution and a minimal displacement from unity. In this connection, the percentage displacement
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Figure 9.8: Transmembrane potential over the slab center-line at y = 0.15 cm
in the deformed configuration at instant t = 50 ms (top panel). Correspondent

distribution of principal stretches, as defined in 9.46 (bottom panel)

of the Jacobian determinant, defined for the i-th element as:

J%
i = |1 − Ji| × 100 . (9.51)

is plotted at the time instant t = 50 ms in Fig. 9.7. Eventually, the effect of the geometric
feedback enforced via diffusion effect is quantified by comparing the potential time-traces of a
point in the domain (see Fig. 9.9) for the pure electrophysiologic stimulus propagation and for the
active electromechanical stimulation. The physical point of coordinates [0.5, 0.5] cm experiences
almost an identical evolution of the field variables in both cases, whereas, an anticipation is
noticed if the potential is measured in the displaced position, with respect to the undeformed
case. This confirms the effectiveness of the geometrical feedback proposed within the present
coupled framework.

9.10.2 Contraction of a spherical patch

We finally propose a coupled test where in-plane strains induced by means of the activation func-
tion (9.45) generate complex out-of-plane deformations. A spherical patch of radius r = 4 cm,
angle Θ = 53◦, and thickness h = 0.01cm, with hinged edges, is considered, and a Neo-Hookean
material with bulk modulus µ = 1.4 × 106 and Poisson’s ratio ν = 0.46 is assumed. Such a ge-
ometry is deformed to obtain a Gaussian curvature change in the central region. This is achieved
with the static simulation of the initial geometry under a localized load F = 13 N e3 in the shell
mid-point, which provided the configuration represented in Fig. 9.10. All computations have
been performed with a 160× 160 cubic IGA elements and 3 quadrature points through the thick-
ness.
Starting from the stress-free configuration in Fig. 9.10, a local stimulus of intensity ia =
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Figure 9.9: (a) Time evolution of the transmembrane potential v and recovery
variable w detected at element-wise position in the deformed and undeformed
case. (b) Time evolution of the transmembrane potential v and recovery variable

w detected at the physical point 0.5, 0.15.

Figure 9.10: Reference configuration of the spherical patch test-case, after static
deformation induced by a concentrated load.

5 mA/cm2 is applied for 1 ms to initiate the propagation of a circular action potential. The tissue
electric parameters are: capacity Cm = 1 mF/cm3, surface-to-volume cell ratio of χ = 1 /cm,
isotropic conductivity DIS O = 10−4 S/cm. We assume that the conduction fibers are aligned with
the mesh in the reference configuration. The activation function follows the definition in (9.45),
with vt = 0.25 mV , β1 = 0.5, β2 = 0.5 and material excitation parameters a1 = 0.65, a2 = 0.65.
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A time step size of ∆t = 0.01 ms is employed for the monodomain model. The geometry of the

Figure 9.11: Time evolution of the transmembrane potential and deformed con-
figuration for the spherical patch test, over half of the geometry. The center-line
is highlighted in the reference (green line) and current (red line) configurations.
From left to right, we report the time instants: t = 0.15 ms, t = 7.5 ms, t = 15 ms,

t = 22.5 ms, t = 30 ms, t = 37.5 ms.
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Figure 9.12: Time evolution of the mid-point displacement (left) and discrete
strain energy (right), for the spherical patch test. Red circles denote the time

instants corresponding to the configurations plotted in Fig. 9.11

tissue, as well as the constraint condition is expected to provide a upward and downward verti-
cal displacement of the mid-point when the action potential approaches the regions of the shell
with opposite curvature. We plot six instantaneous configurations (see Fig. 9.11) highlighting
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the position of the center-line to illustrate the expected dynamics. Until the emergence of the
repolarization front, the tissue contraction in the convex central region induces a lifting of the
mid-point. As the electrophysiologic stimulus forms an annulus and approaches the shell outer-
most region, a strong bending deformation generates a lowering of the mid-point. As a matter
of fact the strain energy of the system reaches a maximum when the action potential is in the
maximum curvature region (see Fig. 9.12).
This numerical experiment was conducted with the purpose of testing the numerical method with
an active strain pattern generating large deformations in a high curvature region. In view of the
results, the thickness integration procedure and in general the nonlinear treatment, are considered
robust enough to deal with real-life scenarios.





109

10 Conclusions and outlook

The core of the present work is the development of numerical tools for the investigation of the two
multiphysic problems by means of the Isogeometric concept. The first part is devoted to the mod-
eling of the fluid-structure interaction dynamics of a thin shell immersed in an incompressible
flow. The second part concerns the development of a solver for electromechanical stimulation of
thin muscular tissues. Separated conclusions are drawn for sake of clarity.

10.1 Fluid-structure interaction

A numerical method for the solution of fluid-structure interaction problems concerning thin shells
immersed in incompressible flows is presented. In the context of partitioned solvers, a finite-
difference flow solver is coupled with an Isogeometric Analysis tool for thin shells, with the
aim of providing accurate solutions for moderate Reynolds numbers FSI problems. The cou-
pling between the solvers is enforced by a Direct-Forcing Immersed Boundary approach based
on a Moving-Least-Squares interpolation of the field variable, to reconstruct the solution at the
fluid-solid interface. A relevant advancement in the context of partitioned solvers comes from
the efficient variable exchange which does not require reciprocal constraints on the spatial dis-
cretization.
The effectiveness of the interface reconstruction in the flow field as well as the spatial and tem-
poral accuracy of the FSI procedure have been tested against several three-dimensional cases.
The method was able to accurately capture the dynamics of FSI problems of biological and en-
gineering inspiration, providing satisfactory results under fundamentally different physical and
numerical operating conditions. A clamped flag for energy harvesting was simulated and differ-
ent dynamical regimes have been captured in agreement with the experimental measurements.
Moreover, the solver was tested against a case of flow-induced vibrations on a L-shaped plate
and a buoyant seaweed. The latter required an iterative FSI procedure to get around the coupling
instabilities arising from the explicit load evaluation, typical of sequentially coupled partitioned
solvers. To this extent, the iterative coupling has been enhanced by means of an adaptive under-
relaxation technique, which minimizes the computational expense of the iterative procedure.
Furthermore, segregated refinement studies have been performed on a well-established bench-
mark case, isolating the effect of the fluid grid refinement and of the shell h-refinement. Such
analysis provided a convergence trend consistent with the theoretical accuracy of the numerical
schemes in time and space.
Further developments of the present method would include the implementation of a numeri-
cal treatment for reducing the force spurious oscillations over the surface. Another relevant
advancement would come from the implementation of a dedicated near-wall treatment for the
reconstruction of the boundary layer gradients occurring at high Reynolds numbers.
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10.2 Electromechanical activation of thin muscular tissues

In second instance, we presented a computational framework for simulating the electromechani-
cal activation of thin cardiac tissues. The model proposed aims at reproducing the propagation
of the action potential over a surface with the corresponding tissue contraction effects. In this
connection, two NURBS-based IGA solvers have been coupled with a staggered procedure.
The propagation of the action potential is described by a monodomain model, consisting of a
reaction-diffusion equation and a set of nonlinear ODEs. The underlying assumptions of the
monodomain model and the surface approximation are discussed in detail. The monodomain
model is discretized in time by a semi-implicit scheme and in space by an IGA approach,
whereas a simple phenomenological model is implemented to provide a description of the ionic
current fluxes. The effectiveness of the implementation is verified comparing the shape of the
action potential and the conduction velocity on a linear propagation test with those observed in
literature. Furthermore, on the same test, two different ionic current interpolation techniques
have been compared and assessed in terms of accuracy and numerical stability. Regarding the
diffusion operator, a curvilinear coordinates description is employed, with the aim of achieving
a straightforward implementation for arbitrarily surfaces in the three-dimensional space.
For mechanically active tissues the loading condition is provided by means of the well-
established active strain approach. The active strain, enforced with a multiplicative decomposi-
tion of the deformation gradient tensor, is introduced theoretically and it is grafted into the weak
Kirchhoff-Love shell formulation. A novel contribution is given by the fact that the active strain
approach is tailored for a standard weak form used in finite elasticity, where the internal virtual
work is defined by the second Piola-Kirchhoff stress tensor and the energetically conjugate
Green-Lagrange strain tensor δW = S : δE. The useful tensor expressions are presented in a
curvilinear framework for three-dimensional hyperelastic materials for the generality purpose.
In this scenario, the passive elastic response of the unplugged active strain solver is investigated
by numerical experiments and convergence analyses. Eventually, we tested the coupled elec-
tromechanical method with two simple cases providing in-plane and out-of-plane deformations.
The present implementation can be further developed to include a decoupling of the spatial
discretization of the two sub-problems by means of a nested meshes approach. From the model
perspective the orthotropic material treatment can be easily addressed employing a suitable
strain energy function. In addition a more realistic mechano-electric feedback can be included
at the constitutive level, in place of the simple geometric feedback.

A straightforward outlook of this thesis would include the staggered coupling of the fluid-
structure interaction and electromechanical solvers to address full-scale multiphysic investiga-
tions of immersed active swimmers.
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A Construction of the MLS transfer
function

The procedure for the calculation of the Moving-Least-Square transfer operator is described in
the present section. The Eulerian velocity q̂l

i at the Lagrangian marker location X can be approx-
imated in its support domain by:

q̂l
i(X) = pT (X) a(X) =

m∑
j=1

pl
j(X) a j(X) . (A.1)

pT (X) is the basis functions vector of length m and a(X) is vector of coefficients to be determined.
Following Vanella [73] and de Tullio [16], a linear basis array pT (X) = (1, x, y, z) is considered a
cost-effective choice. Moreover, linear basis functions do represent the variation of the field vari-
ables up to the accuracy of the spatial discretization scheme implemented here. The coefficients
a j(X) are obtained by minimizing a weighted, discrete L2 norm as follows:

J =

ne∑
k=1

W
(
X − xk

) [
pT ( xk) a( xk) − q̂k

i

]2
, (A.2)

where ne is the number of cells within the interpolation stencil, and q̂k
i is the Eulerian velocity

at the node location xk. In the present application, the domain of influence, also called support
domain, is limited to 27 cells, namely, the nearest neighbors of the cell containing the selected
Lagrangian marker. W

(
X − xk

)
is a predefined shape function. Minimizing J with respect to

a(X) leads to:
A(X) a(X) = B(X) q̂i , (A.3)

being q̂i = [q̂1
i q̂2

i ... q̂
e
i ]T an array containing the i-th velocity components collected in the support

domain. Arrays A(X) and B(X) can be used to build the transfer operator Φ(X):

A( x) =

ne∑
k=1

W
(
X − xk

)
p( xk)pT ( xk) ,

A( x) =
[
W

(
X − x1

)
p( x1), W

(
X − x2

)
p( x2), ..., W

(
X − xne

)
p( xne)

]T
.

(A.4)

Combining Eq. (A.4) and Eq. (A.1) one can get the final expression for the transfer operator:

ΦT = pT (X) A−1(X) B(X) =

ne∑
k=1

Φl
k(X) q̂k

i . (A.5)
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In summary, the calculation of the MLS transfer operator requires the inversion of the square
matrix A(X) at each Lagrangian marker. The size of the matrix A(X) depends on the size of the
basis vector p(X): in the present application a 4 × 4 matrix is inverted by a Gaussian elimination
algorithm.
The weight functions W

(
X − xk

)
play an important role in the performance of the method. They

are positive, C1 continuous, with unique solution for a(X) guaranteed in X. They must me shaped
to decrease in magnitude as the distance from X to xk increases [200]. In the present work cubic
splines are employed:

W
(
X − xk

)
=


2/3 − 4r2

k + 4r3
k for rk ≤ 0.5

4/3 − 4rk + 4r2
k − 4/3r3

k for 0.5 < rk ≤ 1.0
0 for rk > 1.0

, (A.6)

where rk is given by:

rk =

∣∣∣X − xk
∣∣∣

ri
, (A.7)

with ri the size of the support domain in the i-th direction. These cubic splines are monotonically
decreasing and are sufficiently smooth in the support domain [80]. The resulting transfer func-
tions reproduce exactly the linear polynomial contained in their basis and fulfill the properties of
compatibility and partition of unity [201].
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B Tensor algebra for the Active Strain
approach

The base vectors follow the definition of reciprocal bases called covariant and contravariant
and are denoted by subscript and superscript respectively. From the first fundamental form of
surfaces:

gi · g j = gi j , (B.1)

gi · g j = gi j , (B.2)

where gi j = g ji, and gi j = g ji for the symmetry of the metric tensor. Covariant and contravariant
base vectors are related by the condition:

gi · g j = δ
j
i , gi · g j = δi

j , (B.3)

being δ the Kroneker delta. It follows that:

Ai jδ
j
k = Aik, Ai jδk

j = Aik . (B.4)

The change of basis between reciprocal vectors can be performed by:

gi = gi jg j , (B.5)

gi = gi jg j . (B.6)

The transpose and the inverse of a second order tensor A = Ai j gi ⊗ g j = Ai j gi ⊗ g j can be
computed as:

AT = Ai j g j ⊗ gi = Ai j g j ⊗ gi , (B.7)

AT = A ji gi ⊗ g j = A ji gi ⊗ g j , (B.8)

A−1 = Āi j gi ⊗ g j = Āi j gi ⊗ g j , (B.9)

where
[
Āi j

]
=

[
Ai j

]−1
and

[
Āi j

]
=

[
Ai j

]−1
.

The simple contraction between second order tensors is defined, following [202](1.57) and
[172](1.2.7), as:

AB =
(
Ai j gi ⊗ g j

) (
Bkl gk ⊗ gl

)
= Ai j Bkl

(
g j · gk

) (
gi ⊗ gl

)
= Ai j Bkl δ

k
j

(
gi ⊗ gl

)
= Aik Bkl

(
gi ⊗ gl

)
. (B.10)
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According to this definition, the simple contraction between a fourth-order tensor and a second-
order tensor reads:

AB =
(
Ai jkl gi ⊗ g j ⊗ gk ⊗ gl

) (
Amn gm ⊗ gn)

= Ai jkl Bmn
(
gl · gm) (

gi ⊗ g j ⊗ gk ⊗ gn
)

= Ai jkl Bmn δ
m
l

(
gi ⊗ g j ⊗ gk ⊗ gn

)
= Ai jkm Bmn

(
gi ⊗ gl ⊗ gk ⊗ gn) . (B.11)

A double contraction of a fourth order tensor with a second order tensor (left mapping) is defined,
according to [202](1.151), by:

A : B =
(
Ai jkl gi ⊗ g j ⊗ gk ⊗ gl

) (
Bmn gm ⊗ gn)

= Ai jkl Bmn
(
gk · gm) (

gl · gn) (gi ⊗ g j
)

= Ai jkl Bmn δ
m
k δ

n
l

(
gi ⊗ g j

)
= Ai jmn Bmn

(
gi ⊗ g j

)
, (B.12)

whereas the double contraction between fourth-order tensors:

A : B =
(
Ai jab gi ⊗ g j ⊗ ga ⊗ gb

) (
Bcdkl gc ⊗ gd ⊗ gk ⊗ gl

)
= Ai jab Bcdkl

(
ga · gc) (gb · gd

) (
gi ⊗ g j ⊗ gk ⊗ gl

)
= Ai jab Bcdkl δ

c
a δ

d
b

(
gi ⊗ g j ⊗ gk ⊗ gl

)
= Ai jcd Bcdkl

(
gi ⊗ g j ⊗ gk ⊗ gl

)
. (B.13)

The derivative of a tensor function with respect to a second order tensor [172](1.7.6) is computed
via:

∂A
∂B

=
∂
(
Ai j gi ⊗ g j

)
∂
(
Bkl gk ⊗ gl)

=
∂Ai j

∂Bkl

(
gi ⊗ g j ⊗ gk ⊗ gl

)
= C··kl

i j

(
gi ⊗ g j ⊗ gk ⊗ gl

)
. (B.14)

The fourth-order identity tensor is defined here as the derivative of a tensor function with re-
spect to itself. Consistently with the previous definition, and accordingly to [203] and Wikipedia
(https://en.wikipedia.org/wiki/Tensor_derivative_(continuum_mechanics), it is
defined by:

I =
∂A
∂A

=
∂
(
Ai j gi ⊗ g j

)
∂
(
Akl gk ⊗ gl)

=
∂Ai j

∂Akl

(
gi ⊗ g j ⊗ gk ⊗ gl

)
= gik g jl

(
gi ⊗ g j ⊗ gk ⊗ gl

)
, (B.15)

https://en.wikipedia.org/wiki/Tensor_derivative_(continuum_mechanics
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if the tensor A is not symmetric. If A is symmetric instead:

Is =
∂A
∂A

=
1
2

(
gik g jl + gil g jk

) (
gi ⊗ g j ⊗ gk ⊗ gl

)
. (B.16)
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[31] J Kiendl, Y Bazilevs, M-C Hsu, R Wüchner, and K-U Bletzinger. “The bending strip
method for isogeometric analysis of Kirchhoff–Love shell structures comprised of mul-
tiple patches”. In: Computer Methods in Applied Mechanics and Engineering 199.37-40
(2010), pp. 2403–2416.

[32] Martin Ruess, Dominik Schillinger, Ali I Oezcan, and Ernst Rank. “Weak coupling for
isogeometric analysis of non-matching and trimmed multi-patch geometries”. In: Com-
puter Methods in Applied Mechanics and Engineering 269 (2014), pp. 46–71.

[33] Laurens Coox, Francesco Greco, Onur Atak, Dirk Vandepitte, and Wim Desmet. “A ro-
bust patch coupling method for NURBS-based isogeometric analysis of non-conforming
multipatch surfaces”. In: Computer Methods in Applied Mechanics and Engineering 316
(2017), pp. 235–260.

[34] Yuri Bazilevs, Victor M Calo, John A Cottrell, John A Evans, Thomas Jr R Hughes,
S Lipton, Michael A Scott, and Thomas W Sederberg. “Isogeometric analysis using T-
splines”. In: Computer Methods in Applied Mechanics and Engineering 199.5-8 (2010),
pp. 229–263.

[35] E. Stein, R. de Borst, and T. J. R. Hughes. Encyclopedia of computational mechanics.
Volume 2: Solids and Structures. Springer, 2004.

[36] Yavuz Basar and Wilfried B Krätzig. “Theory of shell structures”. In: Fortschritts-
Berichte VDI, series 18 (2000).



120 Bibliography

[37] Ralph Echter. “Isogeometric analysis of shells”. In: (2013).

[38] Dieter Jaeger and Ranu Jung. Encyclopedia of computational neuroscience. Springer
Publishing Company, Incorporated, 2015.

[39] Thomas JR Hughes, Alessandro Reali, and Giancarlo Sangalli. “Efficient quadrature for
NURBS-based isogeometric analysis”. In: Computer methods in applied mechanics and
engineering 199.5-8 (2010), pp. 301–313.

[40] Jintai Chung and GM Hulbert. “A time integration algorithm for structural dynamics
with improved numerical dissipation: the generalized-α method”. In: Journal of applied
mechanics 60.2 (1993), pp. 371–375.

[41] Yuri Bazilevs, Kenji Takizawa, and Tayfun E Tezduyar. Computational fluid-structure
interaction: methods and applications. John Wiley & Sons, 2013.

[42] David Kamensky, Ming-Chen Hsu, Dominik Schillinger, John A Evans, Ankush Ag-
garwal, Yuri Bazilevs, Michael S Sacks, and Thomas JR Hughes. “An immersogeo-
metric variational framework for fluid–structure interaction: Application to bioprosthetic
heart valves”. In: Computer methods in applied mechanics and engineering 284 (2015),
pp. 1005–1053.

[43] Woojin Kim, Injae Lee, and Haecheon Choi. “A weak-coupling immersed boundary
method for fluid–structure interaction with low density ratio of solid to fluid”. In: Journal
of Computational Physics 359 (2018), pp. 296–311.

[44] Klaus-Jürgen Bathe. Finite element procedures. Klaus-Jurgen Bathe, 2006.

[45] Rajat Mittal and Gianluca Iaccarino. “Immersed boundary methods”. In: Annu. Rev. Fluid
Mech. 37 (2005), pp. 239–261.

[46] J.E. Welch, F.H. Harlow, J.P. Shannon, and B.J. Daly. The MAC method: a computing
technique for solving viscous, incompressible, transient fluid-flow problems involving free
surfaces. Tech. rep. Los Alamos Scientific Lab., Univ. of California, Nov. 1965.

[47] Yuanxun Bao, Aleksandar Donev, Boyce E Griffith, David M McQueen, and Charles S
Peskin. “An Immersed Boundary method with divergence-free velocity interpolation and
force spreading”. In: Journal of computational physics 347 (2017), pp. 183–206.

[48] Man Mohan Rai and Parviz Moin. “Direct simulations of turbulent flow using finite-
difference schemes”. In: Journal of computational physics 96.1 (1991), pp. 15–53.

[49] Alexandre Joel Chorin. “On the convergence of discrete approximations to the Navier-
Stokes equations”. In: Mathematics of computation 23.106 (1969), pp. 341–353.

[50] Parviz Moin and John Kim. “Numerical investigation of turbulent channel flow”. In:
Journal of fluid mechanics 118 (1982), pp. 341–377.

[51] Jungwoo Kim, Dongjoo Kim, and Haecheon Choi. “An Immersed-Boundary Finite-
Volume Method for Simulations of Flow in Complex Geometries”. In: Journal of Com-
putational Physics 171.1 (2001), pp. 132–150. doi: 10.1006/jcph.2001.6778.

https://doi.org/10.1006/jcph.2001.6778


Bibliography 121

[52] Robert D Guy and David A Hartenstine. “On the accuracy of direct forcing immersed
boundary methods with projection methods”. In: Journal of Computational Physics 229.7
(2010), pp. 2479–2496.

[53] Jim Douglas and James E Gunn. “A general formulation of alternating direction meth-
ods”. In: Numerische Mathematik 6.1 (1964), pp. 428–453.

[54] Eli Turkel. “Preconditioning techniques in computational fluid dynamics”. In: Annual
Review of Fluid Mechanics 31.1 (1999), pp. 385–416.

[55] Alfio Quarteroni, Riccardo Sacco, and Fausto Saleri. “Foundations of Matrix Analysis”.
In: Numerical Mathematics. Springer, 2007, pp. 1–32.

[56] Richard M Beam and Robert F Warming. “An implicit finite-difference algorithm for
hyperbolic systems in conservation-law form”. In: Journal of computational physics 22.1
(1976), pp. 87–110.

[57] Dale B Haidvogel and Thomas Zang. “The accurate solution of Poisson’s equation by ex-
pansion in Chebyshev polynomials”. In: Journal of Computational Physics 30.2 (1979),
pp. 167–180.

[58] Billy L Buzbee, Gene H Golub, and Clair W Nielson. “On direct methods for solving
Poisson equation”. In: SIAM Journal on Numerical analysis 7.4 (1970), pp. 627–656.

[59] Fady M. Najjar and S. P. Vanka. “Simulations of the unsteady separated flow past a nor-
mal flat plate”. In: International Journal for Numerical Methods in Fluids 21.7 (1995),
pp. 525–547. issn: 10970363. doi: 10.1002/fld.1650210702.

[60] R. Verzicco and P. Orlandi. “A finite-difference scheme for three-dimensional incom-
pressible flows in cylindrical coordinates”. In: Journal of Computational Physics (1996).
issn: 00219991. doi: 10.1006/jcph.1996.0033.

[61] I Orlanski. “A simple boundary condition for unbounded hyperbolic flows”. In: Journal
of computational physics 21.3 (1976), pp. 251–269.

[62] R Kahawita and P Wang. “Numerical simulation of the wake flow behind trapezoidal
bluff bodies”. In: Computers & fluids 31.1 (2002), pp. 99–112.

[63] M Kiya and M Matsumura. “Incoherent turbulence structure in the near wake of a normal
plate”. In: Journal of Fluid Mechanics 190 (1988), pp. 343–356.

[64] Woojin Kim and Haecheon Choi. “Immersed boundary methods for fluid-structure inter-
action: A review”. In: International Journal of Heat and Fluid Flow 75 (2019), pp. 301–
309.

[65] Andrew A Johnson and Tayfun E Tezduyar. “Parallel computation of incompressible
flows with complex geometries”. In: International Journal for Numerical Methods in
Fluids 24.12 (1997), pp. 1321–1340.

https://doi.org/10.1002/fld.1650210702
https://doi.org/10.1006/jcph.1996.0033


122 Bibliography

[66] Tayfun E Tezduyar and Sunil Sathe. “Modelling of fluid–structure interactions with the
space–time finite elements: solution techniques”. In: International Journal for Numerical
Methods in Fluids 54.6-8 (2007), pp. 855–900.

[67] Charles S Peskin. “Flow patterns around heart valves: a numerical method”. In: Journal
of computational physics 10.2 (1972), pp. 252–271.

[68] Yoichiro Mori and Charles S Peskin. “Implicit second-order immersed boundary meth-
ods with boundary mass”. In: Computer methods in applied mechanics and engineering
197.25-28 (2008), pp. 2049–2067.

[69] Yongsam Kim and Charles S Peskin. “Penalty immersed boundary method for an elastic
boundary with mass”. In: Physics of Fluids 19.5 (2007), p. 053103.

[70] Haoxiang Luo, Rajat Mittal, Xudong Zheng, Steven A Bielamowicz, Raymond J Walsh,
and James K Hahn. “An immersed-boundary method for flow–structure interaction in
biological systems with application to phonation”. In: Journal of computational physics
227.22 (2008), pp. 9303–9332.

[71] Xiaolei Yang, Xing Zhang, Zhilin Li, and Guo-Wei He. “A smoothing technique for dis-
crete delta functions with application to immersed boundary method in moving boundary
simulations”. In: Journal of Computational Physics 228.20 (2009), pp. 7821–7836.

[72] Markus Uhlmann. “An immersed boundary method with direct forcing for the simulation
of particulate flows”. In: Journal of Computational Physics 209.2 (2005), pp. 448–476.

[73] Marcos Vanella and Elias Balaras. “A moving-least-squares reconstruction for
embedded-boundary formulations”. In: Journal of Computational Physics 228.18 (2009),
pp. 6617–6628.

[74] Wim-Paul Breugem. “A second-order accurate immersed boundary method for fully re-
solved simulations of particle-laden flows”. In: Journal of Computational Physics 231.13
(2012), pp. 4469–4498.
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[96] Ulrich Küttler and Wolfgang A Wall. “Fixed-point fluid–structure interaction solvers with
dynamic relaxation”. In: Computational mechanics 43.1 (2008), pp. 61–72.

[97] Ivo Babuska and J Tinsley Oden. “Verification and validation in computational engi-
neering and science: basic concepts”. In: Computer methods in applied mechanics and
engineering 193.36 (2004), pp. 4057–4066.

[98] Sadatoshi Taneda. “Experimental investigation of the wake behind a sphere at low
Reynolds numbers”. In: Journal of the Physical Society of Japan 11.10 (1956), pp. 1104–
1108.

[99] TA Johnson and VC Patel. “Flow past a sphere up to a Reynolds number of 300”. In:
Journal of Fluid Mechanics 378 (1999), pp. 19–70.

[100] Bengt Fornberg. “Steady viscous flow past a sphere at high Reynolds numbers”. In: Jour-
nal of Fluid Mechanics 190 (1988), pp. 471–489.

[101] Pedro Costa, Bendiks Jan Boersma, Jerry Westerweel, and Wim-Paul Breugem. “Colli-
sion model for fully resolved simulations of flows laden with finite-size particles”. In:
Physical Review E 92.5 (2015), p. 053012.

[102] P Gondret, M Lance, and L Petit. “Bouncing motion of spherical particles in fluids”. In:
Physics of fluids 14.2 (2002), pp. 643–652.

[103] I Eames and SB Dalziel. “Dust resuspension by the flow around an impacting sphere”.
In: J Fluid Mech 403 (2000), pp. 305–328.

[104] Luca Heltai, Josef Kiendl, Antonio DeSimone, and Alessandro Reali. “A natural frame-
work for isogeometric fluid–structure interaction based on BEM–shell coupling”. In:
Computer methods in applied mechanics and engineering 316 (2017), pp. 522–546.



Bibliography 125

[105] Wei-Xi Huang and Hyung Jin Sung. “Three-dimensional simulation of a flapping flag in
a uniform flow”. In: Journal of Fluid Mechanics 653 (2010), pp. 301–336.

[106] Injae Lee and Haecheon Choi. “A discrete-forcing immersed boundary method for the
fluid–structure interaction of an elastic slender body”. In: Journal of Computational
Physics 280 (2015), pp. 529–546.

[107] Fang-Bao Tian, Hu Dai, Haoxiang Luo, James F Doyle, and Bernard Rousseau. “Fluid–
structure interaction involving large deformations: 3D simulations and applications to
biological systems”. In: Journal of computational physics 258 (2014), pp. 451–469.

[108] Patrick J Roache. “Perspective: a method for uniform reporting of grid refinement stud-
ies”. In: (1994).

[109] Charles S Peskin and Beth Feller Printz. “Improved volume conservation in the compu-
tation of flows with immersed elastic boundaries”. In: Journal of computational physics
105.1 (1993), pp. 33–46.

[110] Ricardo Cortez and Michael Minion. “The blob projection method for immersed bound-
ary problems”. In: Journal of Computational Physics 161.2 (2000), pp. 428–453.

[111] Boyce E Griffith. “On the volume conservation of the immersed boundary method”. In:
Communications in Computational Physics 12.2 (2012), pp. 401–432.
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