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LLLppp-THEORY OF VENTTSEL BVPS WITH DISCONTINUOUS DATA

DARYA E. APUSHKINSKAYA a , ALEXANDER I. NAZAROV b ,
DIAN K. PALAGACHEV c∗ AND LUBOMIRA G. SOFTOVA d

ABSTRACT. We provide W 2,p-a priori estimates for the strong solutions to Venttsel boun-
dary value problems for linear elliptic operators with discontinuous coefficients.

1. Introduction

The history of the Venttsel boundary value problems starts with the notable article
(Venttsel 1959) where, given a general second-order linear elliptic operator

E u :=
n

∑
i, j=1

ai j(x)DiD ju+
n

∑
i=1

bi(x)Diu+ c(x)u

over a bounded domain Ω ⊂ Rn, A.D. Venttsel found the most general admissible boundary
conditions which restrict E to an infinitesimal generator of a Markov process in Ω. These
conditions are given in terms of the second-order integro-differential operator

V u :=
n

∑
i, j=1

α
i j(x)did ju+

n

∑
i=1

β
i(x)diu+ γ(x)u+β0(x)∂nu+a(x)E u

+
∫︂

∂Ω

k1(x,y)
(︂

u(y)− k2(x,y)
(︂

u(x)+
n

∑
j=1

(y j − x j)d ju(x)
)︂)︂

dy

+
∫︂

Ω

k3(x,y)
(︁
u(y)−u(x)

)︁
dy, x ∈ ∂Ω, y ∈ Ω,

where d = (d1, . . . ,dn) stands for the tangential gradient to ∂Ω with components given by
di = Di −∑

n
j=1 nin jD j, ∂n means the directional derivative along the outward normal n to

∂Ω and the integral kernels ki verify appropriate hypotheses.
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FIGURE 1. The domain Ω

According to the theory of Markov processes, the first two terms above correspond
to diffusion and drift of the process along the boundary, γ(x)u, β0(x)∂nu and a(x)E u are
related to absorption, reflection and viscosity phenomena, respectively, while the non-local
integral terms represent jumps of the process along ∂Ω and inward jumps from ∂Ω into Ω

(cf. Watanabe 1979; Ikeda and Watanabe 1989).

∑
n
i, j=1 α i j(x)did ju+∑

n
i=1 β i(x)diu

diffusion and drift along the boundary
γ(x)u

absorption

β0(x)∂nu
reflection

a(x)E u
viscosity

∫︂
∂Ω

k1(x,y)
(︂

u(y)− k2(x,y)
(︁
u(x)

+∑
n
j=1(y j − x j)d ju(x)

)︁)︂
dy

jumps along ∂Ω

∫︂
Ω

k3(x,y)
(︁
u(y)−u(x)

)︁
dy

inward jumps from ∂Ω into Ω
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The Venttsel boundary conditions include as particular cases the Dirichlet, Neumann,
oblique derivative and Robin boundary conditions, and Venttsel problems arise in various
branches of science, technology and industry (see, e.g., the references in Coclite et al.
2009; Apushkinskaya et al. 2019) for instance in models of fluid diffusion, elasticity,
electromagnetic and phase-transition phenomena, hydraulic fracturing, different climate
models and in various aspects of the financial mathematics.

The systematic study of Venttsel BVPs has been initiated by B. Paneah in the mid
’80-es (see Paneah 2000, and the references therein) who combined the theory of pseudo-
differential operators with Hörmander’s vector field approach to deal with Venttsel problems
for linear elliptic operators with C∞-coefficients. At the same time Taira (2014) studied
mainly operators with constant coefficients, employing semigroup techniques. The Schauder
C2,α -theory of Venttsel BVPs for linear elliptic operators with C0,α -smooth principal co-
efficients has been developed by Luo and Trudinger (1991), while the Venttsel Lp-theory
of operators with merely uniformly continuous principal coefficients has been elaborated
by Apushkinskaya and Nazarov (1995). The study of quasilinear problems with Venttsel
boundary conditions was initiated by Luo (1991) and continued later in a series of publica-
tions by Apushkinskaya and Nazarov. A detailed survey on the results obtained up to 1999
can be found in the paper by Apushkinskaya and Nazarov (2000) (see also Apushkinskaya
and Nazarov 2001, for results regarding the two-phase Venttsel problems). All these results
regard equations and boundary conditions with principal coefficients that depend at least
continuously on the variable x.

Our general aim here is to present a very recent results, concerning the Lp-theory of linear
Venttsel problems for elliptic operators with discontinuous coefficients. These were obtained
by Apushkinskaya et al. (2019) and announced by Apushkinskaya et al. (2020), and regard
a priori estimates in the framework of the Sobolev spaces and strong solvability theory of
linear and quasilinear boundary-value problems with Venttsel boundary conditions. The
discontinuity of the principal coefficients of the elliptic operators considered is measured
in terms of their belonging to the Sarason class VMO of functions with vanishing mean
oscillation, while the lower-order terms are taken in suitable Lebesgue or Orlicz spaces.
Actually, the results presented by Apushkinskaya et al. (2019) concern solutions which
belong to the Sobolev space W 2,p inside the underlying domain Ω, and their trace on the
boundary ∂Ω belongs to W 2,q and satisfies the Venttsel boundary condition. To fix the
ideas and for the sake of simplicity, we restrict ourselves here to a situation when the
lower-order terms are avoided and p = q, referring the interested reader to Apushkinskaya
et al. (2019) for the general case. We provide an a priori estimate in the Sobolev space
W 2,p(Ω) for any strong solution of the discontinuous Venttsel problem considered. The
result is preceded by a brief overview regarding the Dirichlet and the oblique derivative
problems for linear elliptic operators with VMO principal coefficients and their relations to
the Venttsel problems studied.

2. A brief overview on the Dirichlet and oblique derivative problems with disconti-
nuous data

In what follows, we will consider elliptic equations over a bounded domain Ω ⊂ Rn,
n ≥ 2, with C1,1-smooth boundary ∂Ω. We denote by Lp(Ω) and W k,p(Ω), p ∈ [1,∞),
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A1-4 D. E. APUSHKINSKAYA ET AL.

k ∈ N, the standard Lebesgue and Sobolev spaces with their respective norms ∥ · ∥Lp(Ω) and
∥ · ∥W k,p(Ω), while W k,p

0 (Ω) stands for the closure of C∞
0 (Ω) with respect to ∥ · ∥W k,p(Ω).

We will consider differential operators with discontinuous principal coefficients that
belong to the Sarason class of functions with mean oscillation that vanishes over shrinking
balls. The space BMO of functions with bounded mean oscillation has been introduced
by John and Nirenberg (1961). Later, Sarason (1975) attracted the attention to a natural
subspace of BMO consisting of the functions with vanishing mean oscillation (VMO). Let
us recall the definitions of these spaces.

Definition 2.1. A locally integrable function f : Rn → R belongs to BMO if its mean
integral oscillation is bounded,

∥ f∥∗ := sup
B

−
∫︂

B

⃓⃓
f (x)− fB

⃓⃓
dx < ∞.

Here B varies in the class of all balls in Rn and fB and the dashed integral stand for the
integral average |B|−1 ∫︁

B f (x)dx. Modulo constant functions, the quantity ∥ · ∥∗ defines a
norm under which BMO becomes a Banach space.

For a function f ∈ BMO define

ω f (r) = sup
ρ≤r

−
∫︂

Bρ

⃓⃓
f (x)− fBρ

⃓⃓
dx,

where Bρ varies now in the class of all balls of radius ρ. Then f ∈ VMO if

lim
r→0

ω f (r) = 0

and we refer to ω f (r) as VMO-modulus of f .
For a bounded domain Ω ⊂Rn, the localized spaces BMO(Ω) and VMO(Ω) are defined

in the same manner, replacing B and Bρ above by the respective intersections with Ω.
Similarly, if ∂Ω is smooth, BMO(∂Ω) and VMO(∂Ω) are defined in a natural way by
considering surface integral oscillations over B∩∂Ω and Bρ ∩∂Ω with balls centered at
points of ∂Ω.

Refering the reader to Maugeri et al. (2000, Section 2.1) for more details about the spaces
BMO and VMO, we will restrict ourselves here only to mention some properties which will
be used in the sequel. If f ∈ VMO(Ω) is defined on a Lipschitz domain, then it is possible
to extend it to the whole Rn by preserving the corresponding VMO-modulus. The BMO-
functions are not necessarily bounded, but L∞ ⊂ BMO and the inclusion is proper as shows
the function log |x|. The space of the bounded and uniformly continuous functions belongs
to VMO with the modulus of continuity taken as VMO-modulus. However, VMO contains
discontinuous functions as shows the embedding W 1,n ⊂ VMO that is a simple consequence
of the Poincaré inequality. Also this inclusion is proper and this can be seen by considering
the functions fα(x) = | log |x||α with α > 0. In particular, f1 = log |x| ∈ BMO \ VMO,
fα ∈ VMO for each α ∈ (0,1), but fα ∈W 1,n only if α ∈ (0,1−1/n).

An alternative description of VMO has been given by Sarason (1975), who proved that
f ∈VMO if and only if f belongs to the BMO-closure of the space of bounded and uniformly
continuous functions. Moreover, limy→0 ∥ f (·− y)− f (·)∥∗ = 0 which guarantees the good
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behavior of the mollifiers of VMO functions and this is crucial in the study of PDEs with
VMO principal coefficients.

We will consider hereafter linear, second-order differential operator in non-divergence
form

L u := ai j(x)Di ju,

with generally measurable coefficients ai j : Ω → R, where Di j = ∂ 2/∂xi∂x j and the usual
summation convention on the repeated indices is adopted. The operator L will be supposed
to be uniformly elliptic, that is, there exists a constant λ > 0 such that{︄

λ−1|ξ |2 ≤ ai j(x)ξiξ j ≤ λ |ξ |2 for almost all x ∈ Ω and all ξ ∈ Rn,

ai j(x) = a ji(x) for almost all x ∈ Ω.
(1)

Indeed, as it follows from (1), the coefficients ai j are essential bounded, ai j ∈ L∞(Ω), but
this is not enough to develop a relevant regularity theory for the operator L (cf. Maugeri
et al. 2000, Chapter 1). That is why, we impose the additional assumption that ai j’s are
functions of vanishing mean oscillation,

ai j ∈ VMO(Ω). (2)

The Dirichlet problem. Let f ∈ Lp(Ω) with p ∈ (1,∞), and consider the Dirichlet problem
for the operator L {︄

L u := ai j(x)Di ju = f (x) for a.a. x ∈ Ω,

u = 0 on ∂Ω.
(3)

A strong solution to (3) is a twice weakly differentiable function u ∈ W 2,p(Ω) that
satisfies the equation in (3) almost everywhere in Ω and assumes zero boundary values in
the sense of W 1,p

0 (Ω).
Regarding the problem (3), we dispose of the Schauder theory which provides regularity

and solvability results in the framework of the Hölder spaces. Namely, if ∂Ω is C2,α -
smooth and u ∈C2(Ω) is a classical solution of (3) with Hölder continuous coefficients and
right-hand side (ai j, f ∈C0,α(Ω), α ∈ (0,1)) then u ∈C2,α(Ω). Moreover, (3) is uniquely
solvable in C2,α(Ω) for each f ∈C0,α(Ω) (see Gilbarg and Trudinger 2001, Chapters 4, 6).

If ai j are merely continuous, the Schauder theory is no more valid, and relevant regularity
theory has been developed by Calderón and Zygmund in the settings of the Lp-spaces.
The essence of that theory asserts that if ∂Ω ∈C1,1 and u is a strong solution to (3) with
ai j ∈C0(Ω) and f ∈ Lp(Ω), p ∈ (1,∞), then u ∈W 2,p(Ω) (cf. Gilbarg and Trudinger 2001,
Chapter 9).

In a series of seminal papers Chiarenza et al. (1991, 1993) succeeded to extend the
Calderón–Zygmund results to the problem (3) with discontinuous coefficients ai j. Actually,
the discontinuity cannot be arbitrary (cf. Maugeri et al. 2000, Chapter 1) and the one allowed
by Chiarenza et al. (1991, 1993) is measured exactly in terms of VMO. The main result of
Chiarenza et al. (1991, 1993) is the following a priori estimate for the strong solutions to
(3).
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Theorem 2.2. Let ∂Ω ∈ C1,1, p ∈ (1,∞) and assume (1) and (2). Suppose further that
u ∈W 2,p(Ω)∩W 1,p

0 (Ω) is a strong solution of (3) with f ∈ Lp(Ω).
Then there exists a constant C, depending only on n, p, λ , diamΩ, ∂Ω and the VMO-

moduli of the coefficients ai j, such that

∥u∥W 2,p(Ω) ≤C
(︂
∥u∥Lp(Ω)+∥ f∥Lp(Ω)

)︂
. (4)

The proof of Theorem 2.2 relies on explicit local (interior and boundary) representation
formulae for the second-order derivatives Di ju of any strong solution to (3) via Calderón–
Zygmund singular integrals K f and their commutators C [ai j,Di ju] = ai jK Di ju−
K (ai jDi ju). This leads to

∥Di ju∥Lp(Bρ ) ≤C
(︂
∥K f∥Lp(Bρ )+∥C [ai j,Di ju]∥Lp(Bρ )

)︂
,

where Bρ is a ball of radius ρ contained in Ω when dealing with the interior estimate,
and Bρ stands for a half-ball lying in the locally flatten Ω in the case of the boundary
estimate. It follows from the Calderón–Zygmund theory of singular integral operators that
∥K f∥Lp(Bρ ) ≤C∥ f∥Lp(Bρ ), while

∥C [ai j,Di ju]∥Lp(Bρ ) ≤C∥ai j∥∗∥Di ju∥Lp(Bρ ).

At this point the vanishing property of the VMO-modulus of ai j’s plays a crucial role that
permits to make the commutator norm small enough if ρ is small, and thus to get a local
version of (4). The global estimate (4) then follows by a standard procedure consisting in
local flattering of ∂Ω and finite covering of Ω with small enough balls.

Furthermore, combining Theorem 2.2 with fixed-point arguments and the Aleksand-
rov–Bakel’man maximum principle, Chiarenza, Frasca and Longo succeeded to get also
regularization property of the operator L in W 2,p-scales and unique strong solvability of
(3) for each f ∈ Lp(Ω). Namely, the following result holds true.

Theorem 2.3. Assume ∂Ω ∈ C1,1, (1) and (2), and let p,q ∈ (1,∞) with q ≤ p. Suppose
further that u ∈W 2,q(Ω)∩W 1,q

0 (Ω) is such that L u ∈ Lp(Ω) almost everywhere in Ω.

Then u ∈W 2,p(Ω)∩W 1,p
0 (Ω).

Moreover, for each p ∈ (1,∞) and each f ∈ Lp(Ω), the Dirichlet problem (3) admits a
unique solution u ∈W 2,p(Ω)∩W 1,p

0 (Ω), satisfying the bound

∥u∥W 2,p(Ω) ≤C∥ f∥Lp(Ω)

with a constant C independent of u.

The Lp-theory of linear elliptic systems with VMO principal coefficients has been develo-
ped by Chiarenza et al. (1994) (see also Palagachev and Softova 2006, for fine regularity
results).

The results of Theorems 2.2 and 2.3 have been combined by Palagachev (1995) with the
Leray–Schauder fixed point principle in order to prove strong solvability in W 2,n(Ω) of the
quasilinear Dirichlet problem{︄

ai j(x,u)Di ju+b(x,u,Du) = 0 for a.a. x ∈ Ω,

u = ϕ(x) on ∂Ω,
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with Carathéodory nonlinear terms, ϕ ∈W 2,n(Ω) and where the principal coefficients ai j

are VMO-functions with respect to x, while b(x,u,Du) grows at most quadratically with
respect to the gradient.

The corresponding linear theory of parabolic operators with VMO principal coefficients
has been developed by Bramanti and Cerutti (1993), while Softova (2003) provides strong
solvability results of quasilinear Cauchy–Dirichlet problems.

The oblique derivative problem. Recalling that Ω ⊂ Rn is a bounded domain with C1,1-
smooth boundary, we set n(x) for the unit outward normal to ∂Ω at the point x, and let ℓℓℓ(x)
be a unit and Lipschitz continuous vector field defined on ∂Ω which is strictly exterior to
Ω, that is,

β0(x) := n(x) · ℓℓℓ(x) =
n

∑
i=1

ni(x)ℓℓℓi(x)> 0 for all x ∈ ∂Ω. (5)

FIGURE 2. The domain Ω and the vector field ℓℓℓ on ∂Ω

Given f ∈ Lp(Ω) with p ∈ (1,∞) and a function g : ∂Ω →R belonging to the fractional
Sobolev space W 1−1/p,p(∂Ω), we consider now the oblique derivative problem{︄

L u := ai j(x)Di ju = f (x) for almost all x ∈ Ω,

Bu := ∂ℓℓℓu+ γ(x)u = g(x) in the sense of trace on ∂Ω,
(6)

where ∂ℓℓℓ stands for the directional derivative along the field ℓℓℓ.
The Lp-theory of oblique derivative problems (6) for elliptic operators with VMO-

principal coefficients has been developed by Di Fazio and Palagachev (1996a) by proving
the following global a priori estimate for the strong solutions to (3).

Theorem 2.4. Let ∂Ω ∈C1,1, ℓℓℓ, γ ∈C0,1(∂Ω), p ∈ (1,∞) and assume (1), (2) and (5). Let
u∈W 2,p(Ω) be a strong solution of the problem (6) with f ∈ Lp(Ω) and g∈W 1−1/p,p(∂Ω).

Then there exists a constant C, depending only on n, p, λ , diamΩ, ∂Ω, ℓℓℓ, γ and the
VMO-moduli of the coefficients ai j, such that

∥u∥W 2,p(Ω) ≤C
(︂
∥u∥Lp(Ω)+∥ f∥Lp(Ω)+∥g∥W 1−1/p,p(∂Ω)

)︂
. (7)
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The interior local version of (7) follows from Chiarenza et al. (1991), while the local
boundary estimate is derived on the base of an explicit representation formula for the
second-order derivatives Di ju of the strong solution to (6). That formula contains the
same singular integrals of Calderón–Zygmund type and their commutators as in the case
of Dirichlet problem, plus additional, non-singular terms, due to the first-order boundary
condition in (6). A crucial role in getting that representation formula is played by the
strict obliqueness condition (5) that ensures non-degeneracy of the problem considered.
That condition guarantees also the required Lp-estimate of the non-singular terms in the
representation formula. For what concerns the singular ingredient, these are estimated in
the same manner as in the papers by Chiarenza et al. (1991, 1993), leading this way to the
desired bound (7).

Under the additional sign-condition on the coefficient γ,

γ(x)> 0 for all x ∈ ∂Ω, (8)

regularizing property of the couple (L ,B) and Fredholmness of (6) have been also proved
by Di Fazio and Palagachev (1996a) on the base of the Aleksandrov–Bakel’man maximum
principle.

Theorem 2.5. Let ∂Ω ∈C1,1, ℓℓℓ, γ ∈C0,1(∂Ω) and assume (1), (2), (5) and (8).
Let p,q ∈ (1,∞) with q ≤ p, and suppose that u ∈W 2,q(Ω) satisfies L u ∈ Lp(Ω) almost

everywhere in Ω and Bu ∈W 1−1/p,p(∂Ω) in the sense of trace on ∂Ω. Then u ∈W 2,p(Ω).
Moreover, for each p ∈ (1,∞) and all f ∈ Lp(Ω), g ∈W 1−1/p,p(∂Ω) the oblique derivative
problem (6) possesses a unique solution u ∈W 2,p(Ω) that satisfies the bound

∥u∥W 2,p(Ω) ≤C
(︂
∥ f∥Lp(Ω)+∥g∥W 1−1/p,p(∂Ω)

)︂
with a constant C independent of u.

The results of Di Fazio and Palagachev (1996a) have been generalized by Maugeri and
Palagachev (1998) to oblique derivative problem for general elliptic operators ai j(x)Di j +
bi(x)Di+c(x) with ai j ∈VMO and bi,c∈Lr(Ω) with r > n if p≤ n, r = p when p> n, while
oblique derivative problem for quasilinear elliptic equations ai j(x,u)Di ju+b(x,u,Du) = 0
with VMO principal coefficients has been studied by Di Fazio and Palagachev (1996b).
We refer the reader to Softova (2000, 2011, 2013) for what concerns the regularity and
solvability theory of linear and quasilinear parabolic operators with VMO coefficients.

In all these studied, the strict obliqueness (5) is crucial and it ensures ellipticity of
the oblique derivative problem considered. If (5) fails then there exists a non-empty set
S ⊂ ∂Ω where the vector field ℓℓℓ becomes tangent to ∂Ω. What happens now is that (6) is
no more a regular boundary value problem (see Popivanov and Palagachev 1997; Paneah
2000), and its properties depend essentially on the behaviour of the field ℓℓℓ near the set S of
tangency. In particular, new effects appear such as loss of smoothness of the solution, loss
of Fredholmness, etc. Some partial results regarding tangential oblique derivative problems
for elliptic operators with discontinuous coefficients have been obtained by Maugeri et al.
(1998, 2001), and also by Palagachev (2005, 2006, 2008a,b), while the parabolic case has
been considered by Softova (2004).
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3. The Venttsel problem

Recall that ∂Ω ∈ C1,1 and let f : Ω → R and g : ∂Ω → R be two arbitrary functions
belonging respectively to Lp(Ω) and Lp(∂Ω) with p > 1. Consider the Venttsel problem{︄

L u := ai j(x)Di ju = f (x) for almost all x ∈ Ω,

V u := α i j(x)di j +β i(x)di +β0(x)∂nu = g(x) for almost all x ∈ ∂Ω,
(9)

where ∂n stands for the directional derivative along the outward normal n to ∂Ω, di j := did j
and di are the components of the tangential gradient d = (d1, . . . ,dn) to ∂Ω, given by

di = Di −
n

∑
j=1

nin jD j, i = 1, . . . ,n.

The coefficients of the uniformly elliptic operator L are supposed to be VMO(Ω)-functions,
that is, these satisfy (1) and (2), while α i j, β i and β0 are measurable functions defined on
the boundary ∂Ω. We will assume that the Venttsel operator V is uniformly elliptic one
with VMO principal coefficients,⎧⎪⎨⎪⎩

λ−1|ξ ′|2 ≤ α i j(x)ξ ′
i ξ ′

j ≤ λ |ξ ′|2 for a.a. x ∈ ∂Ω, ∀ξ ′ ∈ Rn, ξ ′ ⊥ n(x),
α i j(x) = α ji(x) for a.a. x ∈ Ω,

α i j ∈ VMO(∂Ω).

(10)

For what concerns the lower-order coefficients of the operator V , we set
βββ (x) :=

(︁
β 1(x), . . . ,β n(x)

)︁
and suppose{︄

|βββ | ∈ Lmax{p,n−1}(∂Ω) if p ̸= n−1,

|βββ |
(︁

log(1+ |βββ |)
)︁1−1/(n−1) ∈ Ln−1(∂Ω) if p = n−1,

(11)

together with ⎧⎪⎨⎪⎩
β0 ∈ Lp(∂Ω) if p > n,

β0
(︁

log(1+ |β0|)
)︁1−1/n ∈ Ln(∂Ω) if p = n,

β0 ∈ Lp(n−1)/(p−1)(∂Ω) if p < n.

(12)

The strong solutions of (9) will be taken in the space V 2,p(Ω) consisting of all functions
u ∈W 2,p(Ω) with boundary traces in W 2,p(∂Ω), and the norm in V 2,p(Ω) is naturally given
by

∥u∥V 2,p(Ω) := ∥u∥W 2,p(Ω)+∥u∥W 2,p(∂Ω).

Our main result provides an a priori estimate for any strong solution to the Venttsel
problem (9) in terms of the data of the problem.

Theorem 3.1. Let p > 1 and ∂Ω ∈ C1,1. Assume (1), (2), (10), (11) and (12), and let
u ∈V 2,p(Ω) be a strong solution of the problem (9) with f ∈ Lp(Ω) and g ∈ Lp(∂Ω).

Then there exists a constant C, depending only on n, p, λ , diamΩ, ∂Ω, on the VMO-
moduli of the coefficients ai j and α i j, and on the moduli of continuity of the functions |βββ |
and β0 in the functional spaces corresponding to (11) and (12), such that

∥u∥V 2,p(Ω) ≤C
(︂
∥u∥Lp(Ω)+∥u∥Lp(∂Ω)+∥ f∥Lp(Ω)+∥g∥Lp(∂Ω)

)︂
. (13)
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Remark 3.2. We refer the reader to Apushkinskaya et al. (2019) where a general a priori
estimate is proved for the strong solutions u ∈W 2,p(Ω) to (9) with traces in W 2,q(∂Ω) and
in the case when the operators L and V contain also lower-order terms. Moreover, on the
base of Aleksandrov–Bakel’man type maximum principle strong solvability and regularity
theories are developed, and the results are applied to the quasilinear Venttsel problem.

The main ingredients of the proof of Theorem 3.1 are the localized version of Theo-
rem 2.2 and the following extension result which is a modification of Theorem 6.1 discussed
by Apushkinskaya and Nazarov (1995), that allows to extend Sobolev functions defined on
∂Ω to Sobolev functions in the whole Ω.

Lemma 3.3. Let p > 1 and ∂Ω ∈C1,1.
Then there exists an extension operator

E: W 2,p(∂Ω)→W 2,p(Ω)

such that
∥Eu∥W 2,p(Ω) ≤C∥u∥W 2,p(∂Ω), (14)

with a constant C depending only on n, p and the regularity ∂Ω.

Proof. Since ∂Ω ∈ C1,1, at each x0 ∈ ∂Ω there exists a Cartesian coordinate system
centered at x0 such that ∂Ω is tangent to the hyperplane {xn = 0} at x0, and the part of
∂Ω lying in the neighborhood UR =

{︁
x = (x′,xn) ∈ Rn : |x′| < R, |xn| < R

}︁
can be given

by the equation xn = ω(x′) with ω ∈ C1,1(B′
R) where B′

R is the (n− 1)-dimensional ball{︁
x′ ∈Rn−1 : |x′|< R

}︁
. Moreover, the radius R can be chosen one and the same for all points

x0 ∈ ∂Ω. This way, the change of variables y′ = x′, yn = xn −ω(x′) maps ∂Ω∩UR into the
ball B′

R lying in the hyperplane {yn = 0}. Actually, that change of variables induces the
“shifting” operator u(x)→ u(y) that acts continuously from W 2,p(∂Ω∩UR) into W 2,p(B′

R)

and, without loss of generality, we may suppose that u ∈W 2,p
0 (B′

R).
The next step is to construct an extension operator from a flat boundary surface to a bound-

ary strip acting continuously from W 2,p
0 (B′

R) into the space W 2,p(B′
R × (0,R)). Precisely,

Triebel (1978, formula 2.8.1/18) yields the embedding W 2,p(Rn−1)→ B2−1/p
p,p (Rn−1), while

Triebel (1978, Theorem 2.9.3 (a)) provides the extension B2−1/p
p,p (Rn−1)→W 2,p(Rn) with

the Besov space B2−1/p
p,p (Rn−1). Indeed, the norm of the extension operator is bounded in

terms only of n, p and R, and, multiplying by a suitable cut-off function, we may ensure that
i) the extended function equals 0 for |xn|> R/2;

ii) if the initial function equals 0 for |x′|> R/2, then the extended one is 0 for |x′|>
3R/4.

These arguments permit to construct local extension operators that map W 2,p(∂Ω)-functions
with small enough support into W 2,p(Rn)-functions that vanish when |xn|> R/2 and |x′|>
3R/4. Finally, the desired operator E is built from the local operators via appropriate
partition of unity. □

We start the proof of Theorem 3.1 with considering the simplest case β0 ≡ 0 on ∂Ω.
Then the boundary equation in (9) becomes an autonomous one, that is,

α
i j(x)di ju = g(x)−β

i(x)diu a.e. on ∂Ω.

Atti Accad. Pelorit. Pericol. Cl. Sci. Fis. Mat. Nat., Vol. 98, No. S2, A1 (2020) [16 pages]



LLLppp-THEORY OF VENTTSEL BVPS WITH DISCONTINUOUS DATA A1-11

We invoke now the standard procedure of finite covering of ∂Ω by balls, local flattening of
∂Ω and employing there the a priori estimate from Theorem 2.2. After that, putting these
estimates together with the aid of partition of unity, we get

∥u∥W 2,p(∂Ω) ≤C1

(︂
∥u∥Lp(∂Ω)+∥β

i(x)diu∥Lp(∂Ω)+∥g∥Lp(∂Ω)

)︂
(15)

with C1 depending on n, p, λ , the regularity of ∂Ω and by the VMO-moduli of the co-
efficients α i j. In order to estimate the term ∥β i(x)diu∥Lp(∂Ω), we consider three possible
cases.

Case 1: ppp >>> nnn−−−111. The Sobolev space W 2,p(∂Ω) is compactly embedded into C1(∂Ω)
whence we have the estimate

∥β
idiu∥Lp(∂Ω) ≤ ∥βββ∥Lp(∂Ω)∥du∥L∞(∂Ω)

≤ ε∥βββ∥Lp(∂Ω)∥u∥W 2,p(∂Ω)+C2(ε)∥βββ∥Lp(∂Ω)∥u∥Lp(∂Ω),

for an arbitrary ε > 0 and where C2(ε) depends also on n, p, diamΩ and the regularity of
∂Ω.

Case 2: ppp <<< nnn−−− 111. Now |βββ | ∈ Ln−1(∂Ω) by (11) and we use the well-known idea
(see, for instance, Ladyzhenskaya and Ural’tseva 1968, Chapter III, § 8, Remark 8.2)) to
decompose |βββ | into the sum

|βββ (x)|= ϕ1(x)+ϕ2(x),

where ϕ1 ∈ Ln−1(∂Ω) and ∥ϕ1∥n−1,∂Ω ≤ δ with a small δ > 0 to be chosen later, while
ϕ2 ∈ L∞(∂Ω). It is worth noting that ∥ϕ2∥L∞(∂Ω) is also determined by δ and by the modulus
of continuity of |βββ | in Ln−1(∂Ω). At that point the Hölder inequality gives

∥β
idiu∥Lp(∂Ω) ≤ ∥ϕ1∥Ln−1(∂Ω)∥du∥Lp∗ (∂Ω)+∥ϕ2∥L∞(∂Ω)∥du∥Lp(∂Ω),

where p∗ = p(n− 1)/(n− 1− p). The first term above is estimated with the help of the
Sobolev inequality on ∂Ω, while the upper bound for the second term follows from the
compact embedding of W 2,p(∂Ω) into W 1,p(∂Ω). Therefore,

∥du∥Lp∗ (∂Ω) ≤ C∥u∥W 2,p(∂Ω),

∥du∥Lp(∂Ω) ≤ ε∥u∥W 2,p(∂Ω)+C3(ε)∥u∥Lp(∂Ω)

for each ε > 0, and we choose δ > 0 small enough in order to get

∥β
idiu∥Lp(∂Ω) ≤ ε

(︁
1+∥ϕ2∥L∞(∂Ω)

)︁
∥u∥W 2,p(∂Ω)+C3(ε)∥ϕ2∥L∞(∂Ω)∥u∥Lp(∂Ω), (16)

with C3(ε) depending on the same parameters as C2(ε).

Case 3: ppp === nnn−−− 111. The procedure is similar to that in the previous case, with the
difference that the Yudovich–Pohozhaev embedding theorem into the Orlicz space must be
used now,

W 1,n−1(∂Ω) ↪→ Lψ(∂Ω) with ψ(t) = e|t|
(n−1)/(n−2) −1

(see, e.g., Besov et al. 1978, Sections 10.5-10.6). Thus,

|du|n−1 ∈ LΨ(∂Ω) with Ψ(t)∼ e|t|
1/(n−2)

as |t| → ∞
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and we observe that in the considered case the assumption (11) ensures that |βββ |n−1 belongs
to the Orlicz space LΨ∗

(∂Ω) dual to LΨ(∂Ω) (see Krasnosel’skiı̆ and Rutickiı̆ 1961, Sec-
tion 14). As a result we get again the estimate (16), but now ∥ϕ2∥L∞(∂Ω) is determined by
the modulus of continuity of |βββ | in the Orlicz space related to (11).

Summarizing, choosing suitably ε > 0, we have

∥β
idiu∥Lp(∂Ω) ≤

1
2C1

∥u∥W 2,p(∂Ω)+C4∥u∥Lp(∂Ω) (17)

in the all three cases, where C1 is the constant from (15), while C4 is determined by n,
p, diamΩ, the regularity of ∂Ω and on the moduli of continuity of |βββ | in corresponding
functional spaces defined by conditions (11).

Substituting (17) into (15) yields

∥u∥W 2,p(∂Ω) ≤C
(︂
∥u∥Lp(∂Ω)+∥g∥Lp(∂Ω)

)︂
.

We use now this bound and invoke Lemma 3.3 that ensures existence of a function E
(︁
u|∂Ω

)︁
∈

W 2,p(Ω) such that⃦⃦
E
(︁
u|∂Ω

)︁⃦⃦
W 2,p(Ω)

≤C∥u∥W 2,p(∂Ω) ≤C
(︂
∥u∥Lp(∂Ω)+∥g∥Lp(∂Ω)

)︂
. (18)

The function u−E
(︁
u|∂Ω

)︁
∈W 2,p(Ω)∩W 1,p

0 (Ω) solves the equation

ai j(x)Di j

(︂
u−E

(︁
u|∂Ω

)︁)︂
= f (x)−ai j(x)Di jE

(︁
u|∂Ω

)︁
a.e. in Ω

and, according to Theorem 2.2,⃦⃦
u−E

(︁
u|∂Ω

)︁⃦⃦
W 2,p(Ω)

≤C
(︂
∥u∥Lp(Ω)+∥ f∥Lp(Ω)+

⃦⃦
ai j(x)Di jE

(︁
u|∂Ω

)︁⃦⃦
Lp(Ω)

)︂
which, together with (18) and (15), gives the claim (13) in the case when β0 ≡ 0 on ∂Ω.

In the general case β0 ̸≡ 0, the boundary condition in (9) rewrites into

α
i j(x)di ju = g(x)−β

i(x)diu−β0(x)∂nu a.e. on ∂Ω

and, as before Theorem 2.2 yields

∥u∥W 2,p(∂Ω) ≤C1

(︂
∥u∥Lp(∂Ω)+∥β

i(x)diu∥Lp(∂Ω)+∥β0(x)∂nu∥Lp(∂Ω)+∥g∥Lp(∂Ω)

)︂
with the same constant C1 as in (15). The term ∥β i(x)diu∥Lp(∂Ω) estimates in the same
manner as before, and using (17) we get

∥u∥W 2,p(∂Ω) ≤C′
1

(︂
∥u∥Lp(∂Ω)+∥β0(x)∂nu∥Lp(∂Ω)+∥g∥Lp(∂Ω)

)︂
(19)

Starting from u|∂Ω ∈W 2,p(∂Ω) the operator constructed in Lemma 3.3 defines a function
E
(︁
u|∂Ω

)︁
∈W 2,p(Ω) such that⃦⃦

E
(︁
u|∂Ω

)︁⃦⃦
W 2,p(Ω)

≤ C′∥u∥W 2,p(∂Ω)

≤ C′
(︂
∥u∥Lp(∂Ω)+∥β0(x)∂nu∥Lp(∂Ω)+∥g∥Lp(∂Ω)

)︂
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by means of (19) and (14). Moreover, u−E
(︁
u|∂Ω

)︁
∈W 2,p(Ω)∩W 1,p

0 (Ω) is a strong solution
to the Dirichlet problem{︄

ai j(x)Di j

(︂
u−E

(︁
u|∂Ω

)︁)︂
u = f (x)−ai j(x)Di jE

(︁
u|∂Ω

)︁
a.e. in Ω,

u−E
(︁
u|∂Ω

)︁
= 0 on ∂Ω,

whence Theorem 2.2 yields⃦⃦
u−E

(︁
u|∂Ω

)︁⃦⃦
W 2,p(Ω)

≤C
(︂
∥u∥Lp(Ω)+∥ f∥Lp(Ω)+

⃦⃦
ai j(x)Di jE

(︁
u|∂Ω

)︁⃦⃦
Lp(Ω)

)︂
and therefore

∥u∥W 2,p(Ω) ≤C′
2

(︂
∥u∥Lp(Ω)+∥u∥Lp(∂Ω)+∥ f∥Lp(Ω)+∥g∥Lp(∂Ω) (20)

+∥β0(x)∂nu∥Lp(∂Ω)

)︂
with C′

2 depending on the same quantities as C1 above and also on diamΩ and on the
VMO-moduli of the coefficients ai j.

To get the desired bound (13), it remains to estimate the term ∥β0(x)∂nu∥Lp(∂Ω) and this
is done running the above procedure that led to (17). Precisely, ∂nu is a W 1,p-smooth in
a neighbourhood of ∂Ω and we use the embedding W 1,p(Ω) ↪→ C0(Ω) when p > n, and
the trace embeddings of W 1

p (Ω) into Lp∗(n−1)/n(∂Ω) with p∗ = p(n−1)/(n−1− p) when

p < n and into the Orlicz space Lψ(∂Ω) with ψ(t) = e|t|
n/(n−1) −1 when p = n (see Besov

et al. 1978, Sections 10.5-10.6). Thus, in all the three cases we get

∥β0∂nu∥Lp(∂Ω) ≤
1

2C′
2
∥u∥W 2,p(Ω)+C′

3∥u∥Lp(Ω), (21)

where C′
2 is the constant from (20), while C′

3 depends on n, p, diamΩ, the regularity of ∂Ω

and on the modulus of continuity of |β0| in the corresponding functional spaces appearing
in (12).

The desired estimate (13) follows by employing (21) into (20) and (19) and this completes
the proof of Theorem 3.1.
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