
mathematics

Article

On the Matrix Mittag–Leffler Function:
Theoretical Properties and Numerical Computation

Marina Popolizio 1,2

1 Department of Electrical and Information Engineering, Polytechnic University of Bari, Via E. Orabona n.4,
70125 Bari, Italy; marina.popolizio@poliba.it

2 INdAM Research Group GNCS, Istituto Nazionale di Alta Matematica “Francesco Severi”,
Piazzale Aldo Moro 5, 00185 Rome, Italy

Received: 14 October 2019; Accepted: 18 November 2019; Published: 21 November 2019
����������
�������

Abstract: Many situations, as for example within the context of Fractional Calculus theory,
require computing the Mittag–Leffler (ML) function with matrix arguments. In this paper, we collect
theoretical properties of the matrix ML function. Moreover, we describe the available numerical
methods aimed at this purpose by stressing advantages and weaknesses.

Keywords: Mittag–Leffler function; matrix function; Schur decomposition; Laplace transform;
fractional calculus

1. Introduction

The Mittag–Leffler (ML) function has earned the title of “Queen function of fractional
calculus” [1–3] for the fundamental role it plays within this subject. Indeed, the solution of many
integral or differential equations of noninteger order can be expressed in terms of this function.

For this reason, the accurate evaluation of the ML function has deserved great attention,
not least because of the serious difficulties this computation raises. We cite, among the most fruitful
contributions, the papers [4–8].

We have recently observed an increasing interest in computing the ML function for matrix
arguments (e.g., see [9–15]): this need occurs, for example, when dealing with multiterm Fractional
Differential Equations (FDEs), or with systems of FDEs, or to decide the observability and controllability
of fractional linear systems.

In this paper, we want to collect the main results concerning the matrix ML function: we will start
from the theoretical properties to move to the practical aspects related to its numerical approximation.
Our inspiring work is the milestone paper by Moler and van Loan [16], dating back to 1978, dealing
with the several ways to compute the matrix exponential. The authors offered indeed a review of the
available methods which were declaimed, already in the paper’s title, as “dubious” in the sense that
none of them can be considered the top-ranked. Due to the great interest of the topic, twenty-five years
later, the same authors published a revised version of this paper [17] to discuss important contributions
given in the meantime. In this paper, we would like to use the same simple approach to highlight the
difficulties related to the numerical approximation of the matrix ML function.

It is worth stressing that the exponential function is a special ML function; however, it has very
nice properties that are not valid for any other instance of ML functions. The semi-group property is
one of these and the impossibility to apply it enables, for example, the use of local approximations
(which, in the case of the exponential, can be generalized to any argument by exploiting the cited
property). Moreover, several methods for the matrix exponential computation were deduced from
the fact that this function can be regarded as the solution of simple ordinary differential equations.

Mathematics 2019, 7, 1140; doi:10.3390/math7121140 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0003-0474-2573
http://dx.doi.org/10.3390/math7121140
http://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/7/12/1140?type=check_update&version=2

Mathematics 2019, 7, 1140 2 of 12

An analog of this strategy for the ML function presents more difficulties since it can be regarded as a
solution of the more involved FDEs.

It becomes clear then that the difficult goal of settling the best numerical method for the
exponential function becomes even more tough when treating the matrix ML function. However, in
this case, we can affirm that a top-ranked method exists; it was recently proposed [18] and is based on
the combination of the Schur–Parlett method [19] and the Optimal Parabolic Contour (OPC) method
[4] for the scalar ML function and its derivative. Roughly speaking, this method starts from a Schur
decomposition, with reordering and blocking, of the matrix argument and then applies the Parlett’s
recurrence to compute the function in the triangular factor. Since this step involves the computation of
the ML scalar function and its derivatives, the OPC method [4] is, with some suitable modification,
fruitfully applied, as we will accurately describe in the following.

The paper is organized as follows: in Section 2, we recall the definition of the ML function and
some basic facts about it. In Section 3, we collect the main theoretical properties of the ML function
when evaluated in matrix arguments. We then move to the description of the numerical methods for
the matrix ML function in Section 4 and to the computation of its action on given vectors in Section 5.
Finally, some concluding remarks are collected in Section 6.

2. The Matrix ML Function

The ML function is defined for complex parameters α and β, with <(α) > 0, by means of the series

Eα,β(z) =
∞

∑
j=0

zj

Γ(αj + β)
, z ∈ C, (1)

with the Euler’s gamma function Γ(z) =
∫ ∞

0 tz−1e−tdt.
It was introduced for β = 1 by the Swedish mathematician Magnus Gustaf Mittag–Leffler at the

beginning of the twentieth century [20,21] and then generalized to any complex β by Wiman [22].
Throughout the paper, we will consider real parameters α and β since they are the most common.

The exponential is trivially a ML function for α = β = 1.
Even the numerical computation of the scalar ML function is not a trivial task, and several studies

have been devoted to it [4–6,23]. They all agree that the best approach to numerically evaluate Eα,β(z)
is based on a series representation for small values of |z|, asymptotic expansions for large arguments,
and special integral representations for intermediate values of z. Finally, Garrappa [4] proposed an
effective code, based on some ideas previously developed in [5], which allows for reaching any desired
accuracy on the whole complex plane. It is implemented in Matlab (2019, MathWorks Inc., Natick, MA,
USA) and we will use this routine for the numerical tests in the following .

The simplest way to compute the matrix ML function is for diagonal arguments. Indeed,
if A is a diagonal matrix with eigenvalues λ1, . . . , λn, then Eα,β(A) is also a diagonal matrix,
namely Eα,β(A) = diag(Eα,β(λ1), . . . , Eα,β(λn)), and only the ML function for scalar arguments comes
into play.

There are many equivalent ways to extend the definition of the ML function to matrix arguments,
as for more general functions [24]. Here, we recall some of them:

Definition 1. Let A ∈ Cn×n, α and β complex values with <(α) > 0. Then, the following equivalent
definitions hold for the matrix ML function:

• Taylor series

Eα,β(A) =
∞

∑
j=0

Aj

Γ(αj + β)
. (2)

Mathematics 2019, 7, 1140 3 of 12

• Jordan canonical form
Let λ1, . . . , λp be the distinct eigenvalues of A; then, A can be expressed in the Jordan canonical form

A = ZJZ−1 = Zdiag(J1, . . . , Jp)Z−1

with

Jk =

λk 1 0

λk
. . .
. . . 1

0 λk

 ∈ Cmk×mk (3)

and
m1 + . . . + mp = n.

Then,
Eα,β(A) = ZEα,β(J)Z−1 = Zdiag(Eα,β(J1), . . . , Eα,β(Jp))Z−1

with

Eα,β(Jk) =

Eα,β(λk) E′α,β(λk) . . .

E
(mk−1)
α,β (λk)

(mk−1)!

Eα,β(λk)
. . .

...
. . . E′α,β(λk)

0 Eα,β(λk)

 .

• Cauchy integral

Eα,β(A) :=
1

2πi

∮
Γ

Eα,β(z)(zI − A)−1dz, (4)

where Γ is a simple closed rectifiable curve that strictly encloses the spectrum of A.
• Hermite interpolation

If A has the eigenvalues λ1, λ2, . . . , λp with multiplicities m1, m2, . . . , mp, then

Eα,β(A) := r(A),

where r is the unique Hermite interpolating polynomial of degree less than ∑
p
i=1 mi that satisfies the

interpolation conditions

r(j)(λi) = Eα,β(λi), j = 0, . . . , mi − 1, i = 1, . . . , p.

3. Theoretical Properties of the Matrix ML Function

We collect here the main theoretical properties of the matrix ML function [24–26]: the first 11 hold
for general matrix functions while the remaining are specific for the ML function.

Proposition 1. Let A, B ∈ Cn×n, α, β ∈ R with α > 0. Let I and 0 denote the identity and the zero matrix,
respectively, of dimension n. Then,

1. AEα,β(A) = Eα,β(A)A;
2. Eα,β(AT) = (Eα,β(A))T ;
3. Eα,β(XAX−1) = XEα,β(A)X−1 for any nonsingular matrix X ∈ Cn×n;
4. the eigenvalues of Eα,β(A) are Eα,β(λi) where λi are the eigenvalues of A;
5. if B commutes with A, then B commutes with Eα,β(A);

Mathematics 2019, 7, 1140 4 of 12

6. if A = (Aij) is block triangular, then F = Eα,β(A) is block triangular with the same block structure of A
and Fii = Eα,β(Aii);

7. if A = diag(A11, . . . , Amm) is block diagonal, then

Eα,β(A) = diag(Eα,β(A11), . . . , Eα,β(Amm));

8. Eα,β(A⊗ I) = Eα,β(A)⊗ I, where ⊗ is the Kronecker product;
9. Eα,β(I ⊗ A) = I ⊗ Eα,β(A);
10. there is a polynomial p(t) of degree at most n− 1 such that Eα,β(A) = p(A);
11. Eα,β(AB)A = AEα,β(BA);
12. Eα,β(0) = 1

Γ(β)
I;

13. mEmα,β(Am) =
m−1

∑
k=0

Eα,β(e2πki/m A) for any natural number m ≥ 1;

14. mArEmα,β+rα(Am) =
m−1

∑
k=0

e2πki(m−r)/mEα,β(e2πki/m A) for any natural numbers m and r with m ≥ 1 and

m > r;

15. AmEα,β+mα(A) = Eα,β(A)−
m−1

∑
k=0

Ak

Γ(αk + β)
for β ≥ 0.

If A has no eigenvalues on the negative real axis, then

16. Eα,β(A) = 1
m

m−1

∑
k=0

Eα/m,β(e2πki/m A1/m);

17. E2α,β(A) = 1
2 [Eα,β(A1/2) + Eα,β(−A1/2)].

4. Numerical Evaluation of the Matrix ML Function

We give now an overview of different methods for the numerical evaluation of the matrix ML
function, with emphasis on the strengths and weaknesses of each of them.

4.1. Series Expansion

As for the exponential, the Taylor series expansion (2) may be regarded as the most direct way to
compute the matrix ML function. Indeed, in this definition, only matrix products appear thus to make
the approach ideally very simple to implement. In practice, once a fixed number K of terms is chosen,
one can use the approximation

Eα,β(A) ≈
K

∑
j=0

Aj

Γ(αj + β)
. (5)

However, by following exactly the example presented in [16] for the exponential, we show the
weakness of this approach. Indeed, we consider the matrix argument

A =

[
−49 24
−64 31

]
, (6)

whose eigenvectors and eigenvalues are explicitly known,

V =

[
1 3
2 4

]
, D =

[
−1 0
0 −17

]
.

Then, the exact solution can be directly computed as VEα,β(D)V−1 and Eα,β(D) is the diagonal
matrix of diagonal entries Eα,β(−1) and Eα,β(−17). In Figure 1, we relate the relative error, in norm,

Mathematics 2019, 7, 1140 5 of 12

between the exact solution and the approximation (5) as K varies, for three different values of α and
β = 1.

Figure 1 clearly shows that the numerical approximation (5) can give unreliable results. In this
specific example, the impressive growth of the error is due to numerical cancellation; indeed, the
summation terms in Equation (5) get larger as j enlarges and they change sign by passing from the jth
power to the next one. This means that we sum up terms with very large modulus and opposite sign,
and this is an undisputed source of catastrophic errors.

0 5 10 15 20 25 30 35

K

10
0

10
10

10
20

10
30

10
40

E
rr

o
r

=0.2

=0.5

=0.9

Figure 1. Relative error Vs number of terms K in the series (5) for three values of α, β = 1 and the
matrix A as in Equation (6).

4.2. Polynomial Methods

Methods based on the minimal polynomial or the eigenpolynomial of a matrix have been proposed
to numerically evaluate the matrix ML function. This kind of approach is in general poor and we show
the weak points (which are exactly the same we encounter in applying it for the matrix exponential [16]).

The first thing to stress is that they require the eigenvalues’ knowledge. This is usually not a
priori available and numerical methods for their computation are usually very expensive. Thus, their
application is limited to the case in which eigenvalues are at one’s disposal.

Although in general the minimal polynomial and the eigenpolynomial are very difficult to
compute, the latter is simpler to calculate and we focus on this approach.

Let c(z) denote the characteristic polynomial of A with

c(z) = det(zI − A) = zn −
n−1

∑
k=0

ckzk.

Then, by means of the Cayley–Hamilton theorem, it is easy to prove that any power of A can
be expressed as a linear combination of I, A, . . . , An−1. Thus, also Eα,β(tA) is a polynomial in A with
analytic coefficients in t; indeed, formula (2) for the matrix ML function reads

Eα,β(tA) =
∞

∑
j=0

tj Aj

Γ(αj + β)
=

∞

∑
j=0

tj

Γ(αj + β)

(
n−1

∑
k=0

pjk Ak

)

=
n−1

∑
k=0

(
∞

∑
j=0

pjk
tj

Γ(αj + β)

)
Ak =

n−1

∑
k=0

p̃k(t)Ak.

Mathematics 2019, 7, 1140 6 of 12

The expression of coefficients pjk is simply obtained once the coefficients cj are known. However,
the weak point is related to their numerical computation since it is very prone to round off
error (as shown in [16] already for the 1-by-1 case). For this reason, methods of this kind are
strongly discouraged.

4.3. The Schur–Parlett Method Combined with the OPC Method

The third property of Proposition 1 suggests looking for a suitable similarity transformation
which moves the attention to the matrix function evaluated in a different argument, hopefully simpler
to deal with. In particular, among the best conditioned similarity transformations, one can resort to the
Schur one. Indeed, it factors a matrix A as

A = QTQ∗

with T upper triangular and Q unitary. Then,

Eα,β(A) = QEα,β(T)Q∗. (7)

The Schur decomposition is among the best factorization one can consider since its computation is
perfectly stable, unlike other decompositions, as the Jordan one that we will describe in the following.
For this reason, it is commonly employed for computing matrix functions [27,28]. The actual evaluation
of Equation (7) requires the computation of the ML function for a triangular matrix factor. This topic
has been properly addressed for general functions by Parlett in 1976 [29], resulting in a cheap method.
Unfortunately, Parlett’s recurrence can give inaccurate results when T has close eigenvalues. In 2003,
Higham and Davies [19] proposed an improved version of this method: once the Schur decomposition
is computed, the matrix T is reordered and blocked according to its eigenvalues resulting in a matrix,
say T̃. Specifically, each diagonal block of T̃ has “close” eigenvalues and distinct diagonal blocks have
“sufficiently distinct” eigenvalues. In this way, Parlett’s recurrence works well even in the presence of
closed eigenvalues of T. Just a final reordering is required at the end of the process to recover Eα,β(T)
from Eα,β(T̃).

The evaluation of Eα,β(T̃) starts from the evaluation of the ML function of its diagonal blocks,
which are still triangular matrices whose eigenvalues are “close”. Let Tii be one of these diagonal
blocks and σ denotes the mean of these eigenvalues. Then, Tii = σI + M and

Eα,β(T) =
∞

∑
k=0

E(k)
α,β(σ)

k!
Mk, (8)

with E(k)
α,β denoting the k-th order derivative of Eα,β. The powers of M are expected to decay quickly

since the eigenvalues of Tii are close. This means that only a few terms of (8), usually less than the
dimension of the block Tii, suffice to get a good accuracy.

Evidently, the computation of (8) involves the computation of the derivatives of the scalar ML
function, up to an order depending on the eigenvalues’ properties. This issue has been completely
addressed in [18], and we refer to it for the details.

In particular, the analysis of the derivatives of the ML function has been facilitated by resorting to
the three parameters’ ML function (also known as the Prabhakar function)

Eγ
α,β(z) =

1
Γ(γ)

∞

∑
k=0

Γ(γ + k)zk

k!Γ(αk + β)
, α, β, γ ∈ C, <(α) > 0,

since
E(m)

α,β (t) = m!Em+1
α,β+αm(t). (9)

Mathematics 2019, 7, 1140 7 of 12

The Prabhakar function is an important function occurring in the description of many physical
models [30–35].

In practice, as for the scalar ML function, one could compute the Prabhakar function, or
equivalently the ML derivatives, by the Taylor series for small arguments, the asymptotic expansion
for large arguments and an integral representation in the remaining cases. In [18], however, to obtain
the same accuracy for all arguments, the inverse Laplace transform has been used in all cases to obtain
the simple expression

Eγ
α,β(z) =

1
2πi

∫
C

es sαγ−β(
sα − z

)γ ds,

with C any suitable contour in the complex plane encompassing at the left the singularities of the
integrand. This last issue is quite delicate: indeed, from a theoretical point of view, the contours chosen
to define the inverse Laplace transform are all equivalent while they can lead to extremely different
results when the numerical evaluation of these integrals comes into play. Then, an accurate analysis
is needed to choose the “optimal” contour which guarantees the desired accuracy, minimizes the
computational complexity, and results in a simple implementation. The method proposed in [18],
grounded on well established analysis [4,5,15], actually fulfills these requirements since the obtained
accuracy is in any case close to the machine precision and the computational complexity is very
reasonable. The Matlab code ml_matrix.m implements this method and will be used in the following
for numerical tests.

4.4. Jordan Canonical Form

The expression of the matrix ML function in terms of its Jordan canonical form, as stated in
Equation (3), could be a direct way to numerically evaluate it. However, the true obstacle in using it
is the high sensitivity of the Jordan canonical form to numerical errors (in general, “there exists no
numerically stable way to compute Jordan canonical forms” [36]).

To give an example, we consider the Matlab code by Matychyn [37], which implements this
approach. We restrict the attention to the exponential case (that is, α = β = 1) to have as reference
solution the result of the well-established expm code by Matlab.

We consider the Chebyshev spectral differentiation matrix of dimension 10. Oddly, even for this
“simple” function, the relative error is quite high, namely proportional to 10−3.

The error source is almost certainly the well-known ill-conditioning of the eigenvector matrix.
Indeed, the code ml_matrix gives a relative error proportional to 10−7 since it does not involve the
Jordan canonical form.

Now, we consider as example the test matrix in [36]

A =

[
ε 0
1 0

]
as matrix argument; as before, we just consider the simplest case α = β = 1 as a significant example.

For small values of ε, say ε < 10−16, the code [37] stops running, since, when computing the
Jordan canonical form, Matlab recognizes that the matrix is singular. On the other hand, the code
ml_matrix works very well even for tiny values, say ε equal to the Matlab machine precision.

Analogously, let

A =

0 1

.
. . . 1

ε 0

be a n× n matrix. For n = 16 and ε = 10−16, the code [37] just reaches an accuracy proportional to
10−2, while the code ml_matrix reaches 10−17.

Mathematics 2019, 7, 1140 8 of 12

From these examples, we can appreciate the high accuracy reached by the code ml_matrix
described in Section 4.3. Moreover, its computational cost is lower than the code based on the Jordan
canonical form and, far more important, it does not suffer from the eigenvalues’ conditioning.

4.5. Rational Approximations

Among the nineteen methods to approximate the matrix exponential, Moler and van Loan [16]
consider the “exact” evaluation of a rational approximation of the exponential function evaluated
in the desired matrix argument. This is indeed a very common approach when dealing with more
general functions having good rational approximations (see, e.g., [38–40]).

Indeed, let pµ and qν be polynomials of degree µ and ν, respectively, such that, for scalar
arguments z,

Eα,β(z) ≈
pµ(z)
qν(z)

.

To evaluate the approximation above in the matrix case, we use a partial fraction expansion of the
right-hand side above, leading to

Eα,β(z) ≈ p̃`(z) +
ν

∑
i=1

ωi
1

z− σi
, (10)

in this way, the computation of p̃`(A) is trivial while the sum requires the computation of ν matrix
inversions, namely (A− σi I)−1, for i = 1, . . . , ν.

Once the rational approximation is fixed, the sum (10) can be computed by actually inverting the
matrices (A− σi I)−1 if A is a small well-conditioned matrix or, if it is large, incomplete factorizations
of A can be cheaply applied [40].

For the ML function, the problem is the detection of a suitable rational approximation to use.
The Padé and the Chebyshev rational approximation are commonly preferred for the exponential; this
choice is mainly due to their good approximation properties, to the fact that they are explicitly known,
and the error analysis is well established.

A key feature of the Padé approximation is that it can be used if ‖A‖ is not too large. This does not
represent a restriction for the exponential function since it is endowed with the fundamental property

exp(A) = (exp(A/m))m,

it allows for computing the exponential of an arbitrarily small argument A/m to then extend it to the
original argument A. In general, m is chosen as a power of two in order to require only the repeated
squaring of the matrix argument.

The property above is only valid for the exponential function, meaning that, for the ML function,
there is no direct way to extend the local approximation to the global case.

Some years ago, a global Padé approximation to the ML function was proposed [8] working on
the whole real semiaxis (−∞, 0]. In the matrix case, this restricts the applicability to matrix arguments
with real positive eigenvalues. Moreover, the computation of the coefficients is arduous; for this reason,
small degrees are considered in [8], which lead to quite important errors.

We now describe the Carathéodory–Fejér approximation of the ML function as an effective tool
when a rational approximation is needed.

Carathéodory–Fejér Approximation of the ML Function

As concerns the ML function, Trefethen was the first to address the problem of finding rational
approximations when α = 1 and β ∈ N [41]. Later on, the most general case has been deeply
analyzed [11] grounding on the Carathéodory–Fejér (CF) theory; this theory is important since it
allows for constructing a near best rational approximation of the ML function. In practice, once we

Mathematics 2019, 7, 1140 9 of 12

fix a given degree ν, the residues ω0, . . . , ων and the poles σ1, . . . , σν are found that define the CF
approximation of degree ν of the ML function. Thus,

Eα,β(A) ≈ ω0 I +
ν

∑
j=1

ωj(A− σj I)−1. (11)

When dealing with real arguments, the sum can be arranged as to almost halve the number of
terms to compute. Moreover, since a small degree ν usually suffices to give a good approximation, only
a few matrix inverses are actually required. Obviously, this approach is meaningful only for matrix
arguments whose inversion can be computed in a stable and reliable way.

5. Numerical Computation of Eα,β(A)b for a Given Vector b

In many situations, the interest is in the computation of Eα,β(A)b for a given vector b. Any method
described so far can be applied to compute Eα,β(A) and then multiply it by the vector b. However,
when the dimension of the matrix argument A is very large, ad hoc strategies have to be preferred.

The rational approximation (11) is, for example, a good solution; indeed, it reads

Eα,β(A)b ≈ ω0b +
ν

∑
j=1

ωj(A− σj I)−1b

and, rather than matrix inversions, the right-hand side requires only solving linear systems.
This approach is effective even for small matrix arguments A, in which case direct methods can
be applied for the linear systems involved. When the matrix argument is very large, several
alternatives are at one’s disposal: iterative methods can be, for example, applied (see [11]) and,
when preconditioning is needed, the same preconditioner can be computed just once and then applied
to all shifted systems. Incomplete factorizations of A can be used for example as preconditioners for
the systems involved (we refer to [40] for a deep description of the approach).

Krylov subspace methods are an effective tool for the numerical approximation of vectors like
Eα,β(A)b; their first application was related to the exponential and then they have been successfully
employed for general functions [38,42,43]. In particular, for the ML function, we refer to [11,12].
The idea is to approximate Eα,β(A)b in Krylov subspaces defined as

Km(A, b) ≡ span{b, Ab, . . . , Am−1b}, m ∈ N.

The matrix A is projected in these spaces as Hm = VT
m AVm, where Vm ∈ Cn×m is an orthonormal

basis of Km(A, b) built by applying the Gram–Schmidt procedure with b/‖b‖ as starting vector
and Hm ∈ Cm×m is an unreduced Hessenberg matrix whose entries are the coefficients of the
orthonormalization process.

Then,
Eα,β(A)b ≈ ‖b‖VmEα,β(Hm)e1, (12)

where e1 denotes the first column of the identity matrix of dimension m×m.
The potency of these techniques is that usually a small dimension m is enough to get a sufficiently

accurate approximation; thus, some classical method usually works to compute Eα,β(Hm).
The convergence of Krylov subspace methods can be quite slow when the spectrum of A is

large; this phenomenon was primarily studied for the exponential [44] and successively for the ML
function [12]. In these cases, the Rational Arnoldi method can be successfully used, with superb results
already for the “one-pole case” [12,45–47]. The idea of this method, known as Shift and Invert in the
context of eigenvalue problems, is to fix a parameter γ and to approximate Eα,β(A)b in the Krylov
subspaces generated by Z = (I + γA)−1, rather than A and b.

The computational complexity is larger than for standard Krylov subspace methods since the
construction of the Krylov subspaces requires computing vectors of the form (I + γA)−1y, that is,

Mathematics 2019, 7, 1140 10 of 12

solving several linear systems with the same shifted coefficient matrix. However, for suitable shift
parameters, the convergence becomes much faster, to thus compensate the additional cost.

We refer to [12] for a comprehensive description of this method applied to the computation of
the matrix ML function, together with the numerical tests to show the effectiveness of the approach.
Moreover, for completeness, we want to stress that the actual computation of the matrix ML function
in [12] was accomplished by combining the Schur–Parlett recurrence and the Matlab code mlf.m by
Podlubny and Kacenak [48]. However, this approach cannot handle the derivatives of the ML scalar
function; therefore, to treat more general situations, as, for example, matrix arguments with repeated
eigenvalues, the approach described in Section 4.3 has to be considered within the implementation.

6. Conclusions

This paper offers an overview of the matrix ML function: the most important theoretical
properties are collected to serve as a review and to help in the treatment of this function. Moreover,
the existing methods for its numerical computation are presented, by following the plot used
by Moler and Van Loan [16] to describe the methods for the numerical computation of the matrix
exponential.

From this analysis, we may conclude that the approach based on the combination of the
Schur–Parlett method and the OPC method is the most efficient: it is indeed cheap, accurate, and easy
to implement.

Funding: This research was funded by the INdAM-GNCS 2019 project “Metodi numerici efficienti per problemi
di evoluzione basati su operatori differenziali ed integrali”.

Conflicts of Interest: The author declares no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

CF Carathéodory–Fejér
FDE Fractional Differential Equation
ML Mittag–Leffler
OPC Optimal Parabolic Contour

References

1. Gorenflo, R.; Kilbas, A.A.; Mainardi, F.; Rogosin, S. Mittag–Leffler Functions. Theory and Applications; Springer
Monographs in Mathematics; Springer: Berlin, Germany, 2014; pp. xii, 420p.

2. Gorenflo, R.; Mainardi, F. Fractional calculus: Integral and differential equations of fractional order. In
Fractals and Fractional Calculus in Continuum Mechanics (Udine, 1996); Springer: Vienna, Austria, 1997; Volume
378, pp. 223–276.

3. Mainardi, F.; Mura, A.; Pagnini, G. The M-Wright function in time-fractional diffusion processes: A tutorial
survey. Int. J. Differ. Equ. 2010, 2010, 104505. [CrossRef]

4. Garrappa, R. Numerical evaluation of two and three parameter Mittag-Leffler functions. SIAM J. Numer.
Anal. 2015, 53, 1350–1369. [CrossRef]

5. Garrappa, R.; Popolizio, M. Evaluation of generalized Mittag–Leffler functions on the real line. Adv. Comput.
Math. 2013, 39, 205–225. [CrossRef]

6. Gorenflo, R.; Loutchko, J.; Luchko, Y. Computation of the Mittag-Leffler function Eα,β(z) and its derivative.
Fract. Calc. Appl. Anal. 2002, 5, 491–518.

7. Valério, D.; Tenreiro Machado, J. On the numerical computation of the Mittag–Leffler function.
Commun. Nonlinear Sci. Numer. Simul. 2014, 19, 3419–3424. [CrossRef]

8. Zeng, C.; Chen, Y. Global Padé approximations of the generalized Mittag–Leffler function and its inverse.
Fract. Calc. Appl. Anal. 2015, 18, 1492–1506. [CrossRef]

9. Garrappa, R.; Moret, I.; Popolizio, M. Solving the time-fractional Schrödinger equation by Krylov projection
methods. J. Comput. Phys. 2015, 293, 115–134. [CrossRef]

http://dx.doi.org/10.1155/2010/104505
http://dx.doi.org/10.1137/140971191
http://dx.doi.org/10.1007/s10444-012-9274-z
http://dx.doi.org/10.1016/j.cnsns.2014.03.014
http://dx.doi.org/10.1515/fca-2015-0086
http://dx.doi.org/10.1016/j.jcp.2014.09.023

Mathematics 2019, 7, 1140 11 of 12

10. Garrappa, R.; Moret, I.; Popolizio, M. On the time-fractional Schrödinger equation: Theoretical analysis and
numerical solution by matrix Mittag-Leffler functions. Comput. Math. Appl. 2017, 74, 977–992. [CrossRef]

11. Garrappa, R.; Popolizio, M. On the use of matrix functions for fractional partial differential equations.
Math. Comput. Simul. 2011, 81, 1045–1056. [CrossRef]

12. Moret, I.; Novati, P. On the Convergence of Krylov Subspace Methods for Matrix Mittag–Leffler Functions.
SIAM J. Numer. Anal. 2011, 49, 2144–2164. [CrossRef]

13. Popolizio, M. Numerical solution of multiterm fractional differential equations using the matrix
Mittag–Leffler functions. Mathematics 2018, 1, 7. [CrossRef]

14. Rodrigo, M.R. On fractional matrix exponentials and their explicit calculation. J. Differ. Equ. 2016,
261, 4223–4243. [CrossRef]

15. Weideman, J.A.C.; Trefethen, L.N. Parabolic and hyperbolic contours for computing the Bromwich integral.
Math. Comp. 2007, 76, 1341–1356. [CrossRef]

16. Moler, C.; Van Loan, C. Nineteen dubious ways to compute the exponential of a matrix. SIAM Rev. 1978,
20, 801–836. [CrossRef]

17. Moler, C.; Van Loan, C. Nineteen dubious ways to compute the exponential of a matrix, twenty-five years
later. SIAM Rev. 2003, 45, 3–49. [CrossRef]

18. Garrappa, R.; Popolizio, M. Computing the matrix Mittag–Leffler function with applications to fractional
calculus. J. Sci. Comput. 2018, 77, 129–153. [CrossRef]

19. Davies, P.I.; Higham, N.J. A Schur-Parlett algorithm for computing matrix functions. SIAM J. Matrix Anal.
Appl. 2003, 25, 464–485. [CrossRef]

20. Mittag-Leffler, M.G. Sopra la funzione Eα(x). Rend. Accad. Lincei 1904, 13, 3–5.
21. Mittag-Leffler, M.G. Sur la représentation analytique d’une branche uniforme d’une fonction

monogène-cinquième note. Acta Math. 1905, 29, 101–181. [CrossRef]
22. Wiman, A. Ueber den Fundamentalsatz in der Teorie der Funktionen Eα(x). Acta Math. 1905, 29, 191–201.

[CrossRef]
23. Garrappa, R. Numerical Solution of Fractional Differential Equations: A Survey and a Software Tutorial.

Mathematics 2018, 6, 16. [CrossRef]
24. Higham, N.J. Functions of Matrices; Society for Industrial and Applied Mathematics (SIAM): Philadelphia,

PA, USA, 2008; pp. xx, 425p.
25. Horn, R.; Johnson, C. Topics in Matrix Analysis; Cambridge University Press: Cambridge, UK, 1994.
26. Sadeghi, A.; Cardoso, J.R. Some notes on properties of the matrix Mittag–Leffler function. Appl. Math.

Comput. 2018, 338, 733–738. [CrossRef]
27. Del Buono, N.; Lopez, L.; Politi, T. Computation of functions of Hamiltonian and skew-symmetric matrices.

Math. Comp. Simul. 2008, 79, 1284–1297. [CrossRef]
28. Politi, T.; Popolizio, M. On stochasticity preserving methods for the computation of the matrix pth root.

Math. Comput. Simul. 2015, 110, 53–68. [CrossRef]
29. Parlett, B.N. A Recurrence Among the Elements of Functions of Triangular Matrices. Linear Algebra Appl.

1976, 14, 117–121. [CrossRef]
30. Mainardi, F.; Garrappa, R. On complete monotonicity of the Prabhakar function and non-Debye relaxation

in dielectrics. J. Comput. Phys. 2015, 293, 70–80. [CrossRef]
31. Garrappa, R. Grünwald–Letnikov operators for fractional relaxation in Havriliak–Negami models. Commun.

Nonlinear Sci. Numer. Simul. 2016, 38, 178–191. [CrossRef]
32. Garrappa, R.; Mainardi, F.; Maione G. Models of dielectric relaxation based on completely monotone

functions. Fract. Calc. Appl. Anal. 2016, 19, 1105–1160. [CrossRef]
33. Garra, R.; Garrappa, R. The Prabhakar or three parameter Mittag-Leffler function: Theory and application.

Commun. Nonlinear Sci. Numer. Simul. 2018, 56, 314–329. [CrossRef]
34. Giusti, A.; Colombaro, I. Prabhakar-like fractional viscoelasticity. Commun. Nonlinear Sci. Numer. Simul.

2018, 56, 138–143. [CrossRef]
35. Colombaro, I.; Garra, R.; Garrappa, R.; Giusti, A.; Mainardi, F.; Polito, F.; Popolizio, M. A practical guide to

Prabhakar fractional calculus. 2019, preprint.
36. Horn, R.; Johnson, C. Matrix Analysis; Cambridge University Press: Cambridge, UK, 1990.
37. Matychyn, I. Matrix Mittag–Leffler function. In MATLAB Central, File Exchange, File ID: 62790; MathWorks,

Inc.: Natick, MA, USA, 2017.

http://dx.doi.org/10.1016/j.camwa.2016.11.028
http://dx.doi.org/10.1016/j.matcom.2010.10.009
http://dx.doi.org/10.1137/080738374
http://dx.doi.org/10.3390/math6010007
http://dx.doi.org/10.1016/j.jde.2016.06.023
http://dx.doi.org/10.1090/S0025-5718-07-01945-X
http://dx.doi.org/10.1137/1020098
http://dx.doi.org/10.1137/S00361445024180
http://dx.doi.org/10.1007/s10915-018-0699-5
http://dx.doi.org/10.1137/S0895479802410815
http://dx.doi.org/10.1007/BF02403200
http://dx.doi.org/10.1007/BF02403202
http://dx.doi.org/10.3390/math6020016
http://dx.doi.org/10.1016/j.amc.2018.06.037
http://dx.doi.org/10.1016/j.matcom.2008.03.011
http://dx.doi.org/10.1016/j.matcom.2014.01.002
http://dx.doi.org/10.1016/0024-3795(76)90018-5
http://dx.doi.org/10.1016/j.jcp.2014.08.006
http://dx.doi.org/10.1016/j.cnsns.2016.02.015
http://dx.doi.org/10.1515/fca-2016-0060
http://dx.doi.org/10.1016/j.cnsns.2017.08.018
http://dx.doi.org/10.1016/j.cnsns.2017.08.002

Mathematics 2019, 7, 1140 12 of 12

38. Lopez, L.; Simoncini, V. Analysis of projection methods for rational function approximation to the matrix
exponential. SIAM J. Numer. Anal. 2006, 44, 613–635. [CrossRef]

39. Trefethen, L.N.; Weideman, J.A.C.; Schmelzer, T. Talbot quadratures and rational approximations. BIT 2006,
46, 653–670. [CrossRef]

40. Bertaccini, D.; Popolizio, M.; Durastante, F. Efficient approximation of functions of some large matrices by
partial fraction expansions. Int. J. Comput. Math. 2019, 96, 1799–1817. [CrossRef]

41. Schmelzer, T.; Trefethen, L.N. Evaluating matrix functions for exponential integrators via Carathéodory-Fejér
approximation and contour integrals. Electron. Trans. Numer. Anal. 2007, 29, 1–18.

42. Saad, Y. Analysis of some Krylov subspace approximations to the matrix exponential operator. SIAM J.
Numer. Anal. 1992, 29, 209–228. [CrossRef]

43. Frommer, A.; Simoncini, V. Matrix Functions. In Mathematics in Industry; Springer: Berlin, Germany, 2008;
Volume 13, pp. 275–303.

44. Hochbruck, M.; Lubich, C. On Krylov subspace approximations to the matrix exponential operator. SIAM J.
Numer. Anal. 1997, 34, 1911–1925. [CrossRef]

45. Moret, I.; Novati, P. RD-Rational Approximations of the Matrix Exponential. BIT Numer. Math. 2004,
44, 595–615. [CrossRef]

46. van den Eshof, J.; Hochbruck, M. Preconditioning Lanczos approximations to the matrix exponential. SIAM
J. Sci. Comput. 2006, 27, 1438–1457. [CrossRef]

47. Popolizio, M.; Simoncini, V. Acceleration techniques for approximating the matrix exponential. SIAM J.
Matrix Anal. Appl. 2008, 30, 657–683. [CrossRef]

48. Podlubny, I.; Kacenak, M. The Matlab mlf code. In MATLAB Central File Exchange, 2001–2009. File ID:
8738.2001; MathWorks, Inc.: Natick, MA, USA, 2017.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1137/05062590
http://dx.doi.org/10.1007/s10543-006-0077-9
http://dx.doi.org/10.1080/00207160.2018.1533123
http://dx.doi.org/10.1137/0729014
http://dx.doi.org/10.1137/S0036142995280572
http://dx.doi.org/10.1023/B:BITN.0000046805.27551.3b
http://dx.doi.org/10.1137/040605461
http://dx.doi.org/10.1137/060672856
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	The Matrix ML Function
	Theoretical Properties of the Matrix ML Function
	Numerical Evaluation of the Matrix ML Function
	Series Expansion
	Polynomial Methods
	The Schur–Parlett Method Combined with the OPC Method
	Jordan Canonical Form
	Rational Approximations

	Numerical Computation of E,(A)b for a Given Vector b
	Conclusions
	References

