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Abstract: A wide variety of 3D printing technologies have been used for the fabrication of lab-on-a-chip
(LOC) devices in recent years. Despite the large number of studies having examined the use of 3D
printing technologies in microfluidic devices, the effect of the fabrication method on their performance
has received little attention. In this paper, a comparison is shown between unibody-LOC micro-mixers,
a particular type of monolithic design for 3D printed LOCs, fabricated in polyjet, stereolithography
(SLA) and fused deposition modelling (FDM or FFF) platforms, paying particular attention to
the inherent limitations of each fabrication platform and how these affect the performance of the
manufactured devices.

Keywords: micromixing; fused deposition modeling; stereolithography; polyjet

1. Introduction

Lab-on-a-chip (LOC) [1] devices have a wide variety of chemical and biological applications
including biomedical diagnostics, DNA and protein analysis, food safety control, drug development.
LOC devices have several advantages compared with wet chemistry procedures, including compact
size, automatic operation, fast and highly sensitive detection and reduced reagents consumption [2].
Classical LOC systems are typically designed and constructed in laboratories, with processes that
demand specialized operators and costly processes as well as dedicated infrastructure such as clean
rooms. The advent of modern additive manufacturing techniques has allowed for most of the
fabrication skills to be transferred to 3D printers, thereby simplifying the development process and
reducing the required infrastructure to a single platform. The versatility offered by 3D printers not
only shortens the optimization process but numerous modifications to be made at each iteration
cycle, something that would be impossible in a traditional manufacturing process. In addition, 3D
printing offers the ability to create truly three-dimensional architectures that are ideal for microfluidic
purposes [3,4].

In particular, the unibody-LOC concept simplifies fabrication, assembly and connectivity as
the devices are designed as a single monolithic structure with connectors already embedded. A
wide variety of 3D-printing technologies have been used for the fabrication of microfluidic devices.
Among the most practical are fused deposition modelling (FDM or FFF), stereolithography (SLA),
polyjet, two-photon lithography, selective laser sintering, and layered hydrospinning [5]. 3D printed
unibody-LOC was originally developed for SLA printers [6-8] and features open channels, at least
on one side, to enable easy removal of uncured resin with minimal exposure to solvents. This allows
for the fabrication of geometrically consistent channels of arbitrary length. Closing these channels
relies on adhesive tape or thin films to produce an effective seal, which is made possible through
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the good surface finish in SLA printouts. FDM was firstly used in 2001 as a method to fabricate
templates for soft lithography of microfluidic devices [9]. In 2012, FDM was demonstrated for the
direct fabrication of microfluidic chemical reaction-ware [10]. Over 100 articles related to 3D printing
and microfluidic devices discuss the different printing methods and devices that have been made with
each method [5,11-14]. With a wide range of 3D printers, the suitability for microfluiadic devices has
been studied by comparing different SLA printers [15], different polyjet printers [16], and comparisons
between polyjet and FDM approaches [17].

Despite the ubiquity of studies on the use of 3D printing technologies in microfluidic devices,
cross-platform comparisons with regard to microfluidic performance are less common. MacDonald et
al. [18] compared three different printing methods (FDM, polyjet, and SLA) used for the fabrication
of a simple Y-shaped micro-mixer with regard to fabrication method and mixing performance.
Micro-mixers are crucial components in microfluidic devices as they facilitate sample dilution, reagent
homogenization, and chemical or biological reactions [19]. The flow in microfluidic devices is often
laminar (characterized by low Reynolds numbers resulting from small channel sizes), which makes
it difficult to achieve effective mixing. As a result, mixing in microfluidic devices relies on diffusion
between the different flows, which is inherently slower and requires long channels to attain a mixture.
Over the past decades, various systems to enhance mixing efficiency in microfluidic devices have been
introduced, which can generally be divided into two groups: passive and active [2,20,21]. Their main
goal is to transform the laminar into turbulent flow by altering the structure or configuration of fluid
channels (passive) [22] or using external energy sources (active) [23]. Mixing is generally induced by
two phenomena: diffusion [24] and chaotic advection [25].

Due to continual progress in other 3D-printing techniques, fine features that used to be exclusive
to SLA can now be obtained also with FDM and polyjet platforms [26], which bring the benefit of
precisely defined printing materials. In the present paper, unibody-LOC micro-mixers made through
Polyjet, SLA, and FDM platforms are examined and compared in terms of performance and limitations
of the different fabrication platforms. Performance will be assessed in terms of completeness of mixing,
channel length, and related fabrication process.

2. Materials and Methods

2.1. Fabrication of Unibody Micro-Mixers

Classical Y-shaped connected channels were fabricated with a serpentine to allow the observation
of the mixing process using the unibody-LOC architecture (Figure 1). The main elements of such
devices are: (i) inlets: the input connectors. The device was equipped with two inlets to allow two
different flows to join in the serpentine; (ii) main channel: a serpentine-like channel, 600 pm wide and
600 um high, consisting of 18 turns; (iii) outlet: the output connector, of the same size as the inlets.

Three different processes were exploited to fabricate unibody-LOCs: (i) polyjet (Stratasys Objet 30,
Masmec spa, Biomed Division, Bari, Italy); (ii) SLA (Formlabs Form 2, Solfa IT Inc., Altamura, Italy);
(iii) FDM or FFF (Ultimaker 3, Polytechnic University of Bari, Bari, Italy) (see Table 1 for a summary).
In this paper several tests were described, conducted on three identical devices fabricated with polyjet,
SLA and FDM. Details and parameters of process are reported in Table 1.

Printed devices were cleaned and tape (3M Ruban Adhesif Scotch®, St. Paul, MI, USA) was used
to seal the surfaces, thus closing the open sides of the unibody channels.
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Figure 1. (a) Computer-assisted design (CAD) drawing of the designed micro-mixer with dimensions

in mm; (b) 3D model of unibody passive micro-mixer.

Table 1. Process parameters and materials used for the fabrication of the micro-mixers.

. Laser Spot Size or 11s .
Printing Method Layt(e;iilght Nozzle Diameter Flllllggtrzzftchmg Type of Material
or Resolution 8y
. 600 DPI ( xand solid, glossy Vero White Plus UV
Polyjet 0.028 y-axes) 900 DPI 2. . .
. finishing Photopolymeric Resin
(z-axis)
SLA, . Clear Form V2 UV
Stereolithography 0.025 0.14 (mm) solid Photopolymer Resin
FDM' Fused . 0.090 0.40 (mm) raster Fabbrix natural PLA
deposition modelling

2.2. Experimental Setup
Prior to image acquisition, devices were cleaned with water and dried using warm air. Compressed

air jets were used to eliminate any drops of water trapped inside the channel.
Although the surface finish delivered by the 3D printing is sufficient for the solutions, the top and
bottom surfaces were smoothed using abrasive finishing paper to ensure an effective seal (Figure 2).
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Figure 2. Transparent double-sided tape was applied to the top and bottom of the device.

Two different water solutions stained with yellow and blue food colour, at designated flow
rates, were injected using two syringe pumps (Braintree, MA, USA, Mod. BS-300) actuating on 5 mL
disposable syringes. An ad hoc setup was configured to characterize the devices. A bottom plate and
double-sided adhesive tape were used to fix the micro-mixer devices in place. The camera was placed
on the top plate for detection. A white cell phone screen was positioned below the lower plate to

provide homogenous back-illumination (Figure 3).
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Figure 3. Experimental setup and detection system for testing our microfluidic systems.

The unibody design which mechanically fits to the inner diameter of the coupling silicone pipe
ensures a leakage-proof connection between the syringes and mixers. Four different flow rates through
the main channel were tested: 10 uL/min, 50 uL/min, 200 pL/min, and 400 uL/min.

3. Results and Discussion

Figure 4 shows the fabricated micro-mixers with the three different printing methods; as regards
3D dimensional comparisons, please refer to [27]. The limited availability of printable materials and
the high cost of the process are the main drawbacks of the polyjet process. The surface of the SLA
micro-mixer is smoother (Figure 4b) compared to FDM, but the SLA method requires proprietary
resins [28], whereas FDM employs common and well described polymers. The SLA device is more
transparent, which facilitates observation and interpretation of the fluidic phenomena. The main
advantages of FDM are its relatively low cost and the possibility of using different materials. The
FDM LOC was also imaged with back illumination, whereas the polyjet was opaque and was imaged
under ambient light. The 3D models of micro-mixers realized through the three fabrication methods
present only minor differences between the measured and nominal values of the average channel
depth (<20 um). The cross sections in Figure 4 show the fidelity of the 3D printing methods to produce
a square cross section. The polyjet method shows a higher fidelity than the SLA and FDM approaches.
In particular, in FDM, due to the spreading of the polymer as it is extruded, the channel can be, in
some sections, consistently smaller than the CAD model.

All fabricated micro-mixers showed comparable mixing efficiencies. In this analysis mixing
completion and length of the required channel for complete mixing were investigated. For a flow rate
of 10 pL/min in the polyjet mixer, the two flows running through the first section of the LOC form a
clear boundary, which dissipates after few turns in the serpentine, leading to a homogeneous green
colour (Figure 5). Several flow rates were tested to analyse the influence of the flow rate on length of the
required channel and as a result of mixing time (Figure 6). When the flow rate is higher (50 uL/min) the
boundary remains, since the channels length is not enough to allow the diffusion process (Figure 6a).
For a flow rate of 200 uL/min, the flow is still laminar and simply stays a shorter time in the device
to allow diffusional mixing (Figure 6b); however, at 400 pL/min the fluid becomes chromatically
homogeneous at the end of the channel (Figure 6¢c), which indicates the onset of turbulence contribution
(Figure 6c).
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Figure 4. Fabricated micro-mixers by three different methods of printing. (a) micro-mixer with polyjet
in cross-section and top view (b) micro-mixer with SLA in cross-section and top view (c¢) micro-mixer
with FDM in cross-section and top view.

Figure 5. Complete mixing obtained with the polyjet micro-mixer at a flow rate of 10 puL/min.

(b) (c)

Figure 6. Mixing obtained in polyjet micro-mixer with different flow rates. (a) flow rate of 50 uL/min;
(b) flow rate of 200 uL/min; (c) flow rate of 400 uL/min.

Performing the same tests on the SLA and FDM mixers (Figures 7 and 8) yielded complete mixing
for flow rates of 10 pL/min and 400 pL/min, similar to the results for the polyjet mixer. At flow rates of
50 puL/min and 200 pL/min, mixing was incomplete and with a clearly visible boundary between the
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two fluids remaining. However, as the two fluids approach the outlet, this boundary becomes less
distinguishable (Figure 7b,c and Figure 8b,c).

(a)

Figure 7. Mixing obtained in SLA micro-mixer. (a) flow rate of 10 uL/min; (b) flow rate of 50 uL/min;
(c) flow rate of 200 uL/min; (d) flow rate of 400 uL/min.
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Figure 8. Mixing obtained in FDM micro-mixer. (a) flow rate of 10 uL/min; (b) flow rate of 50 pL/min;
(c) flow rate of 200 pL/min; (d) flow rate of 400 puL/min.

These results show that by increasing the flow rate, the required channel length to achieve
complete mixing needs to be increased as well. These results are consistent with theory [18], and in
order to quantify and compare the mixing performance of these devices acquired images in a steady
regime were analysed. Ten regions of interest (ROls) were selected along the serpentine (Figure 9),
and the spatial distribution of the colour intensity was recorded using a bespoke Matlab script. For
each ROI covering the width of the channel (w, Figure 10) the pixels are averaged and the standard
deviation calculated for every position along w. Figure 10 describes the intensity of the blue channel of
the colour image, which illustrates the homogenization of the colour intensity along the serpentine,
when the blue flow diffuses into the yellow flow becoming green.

In order to find the channel length that is necessary to achieve complete mixing, the blue intensity
decay at the channels” wall is monitored along ROIs (as indicated in Figure 10), leading to a measure of
mixing performance. The farther the flow needs to travel to achieve mixing, categorically corresponding
to the minimum of the profile, the less effective the platform. Thus, at 10 pL/min, the analysis show
that FDM is the most effective taking approximately 62% of the distance required for the SLA and
Polyjet mixers (Figure 11). The blue intensity was measured using the Matlab environment, dividing
each ROI (Figure 10) into 8 rectangular equal regions along the width of the channel. For each ROI
the first region on the left has been considered and the blue intensity has been measured. The results
are shown in Figure 11. In this case the blue intensity can be used as an indicator of mixing for each
single section.

Achieving complete mixing over a short period of time is one of main challenges of micro-mixers
in microfluidic devices. Increasing the flow rates resulted in longer channel lengths to achieve complete
mixing. For very high flow rates of 400 uL/min (Re = 14.81) complete mixing occurred in all three
mixers, putting in evidence that a higher mixing efficiency is reached even though the flow is laminar
in theory. The Y-shape serpentine microchannel used in this study has smaller dimensions compared
to simple Y-shaped microchannels [18] and provides the possibility of testing these high flow rates
and channel lengths, which is a main advantage of 3D printed fluidics compared with classical soft
lithography devices relying of planar photolithographic templates.
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Figure 10. Diagram of the mixing trend in the microchannel using a blue colour scale. X-axis and Y-axis
are considered in width and length of channel respectively.
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Figure 11. Required channel length for complete mixing (at a flow rate of 10 uL/min) for the different
3D printing methods.

Table 2 presents a comparison of the three types of micro-mixers. It is interesting to compare
the results included in the present paper to the results shown in [18]. The channel size is 0.5 in [18]
mm and 0.6 in the present paper. The flow rates tested in [18] are 25, 50 and 100 pL/min while in the
present paper 10, 50, 200 and 400 puL/min are tested. Almost in both, the experimental setups FDM
requires the shortest channel length, maybe due to roughness of the FDM channel, and so making an
apparent limitation to the 3D printing technology becoming beneficial. The presence of macroscopic
roughness, due to the physic of the process itself, on the FDM channel surface can act as ridges and
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cause stretching and folding of the flow as described in [29]. Ridges can cause chaotic advection which
leads to increased mixing, thus reducing the required channel length to achieve complete mixing [25].
However, some important differences must be highlighted: (1) in the experiments reported in the
present paper, for higher flow rates the best performance is obtained by SLA, with the same result as
the low flow rate, while FDM and polyjet had a decrease of the performance; (2) for intermediate flow
rates of 50 and 100 puL/min no complete mixing occurred at all. This last phenomenon is not described
in [18] and can be explained with a diffusion time, for complete mixing in laminar flow, higher than
the time between inlet and outlet. According to diffusion and laminar flow theories complete mixing
should occur at a length respectively 5 times and 20 times higher than in the 10 pL/min case, then
agreeing with the lack of mixing. At 400 pL/min a new phenomenon rather than diffusion occurs, but it
cannot be turbulent flow due to the low Reynolds number, equal to 14.81, shown in Table 2. Probably,
this is due to chaotic advection but further studies must be carried on to understand this behaviour.

Table 2. Required length for each Y-shape serpentine micro-mixer fabricated by three methods where a
relative intensity was reached, which can be considered complete mixing.

Flow Rate =10 Flow Rate = 50 Flow Rate = 200 Flow Rate = 400

(uL/min) (uL/min) (uL/min) (uL/min)
Methods Re =0.37 Re =1.85 Re=74 Re =14.81
Length ! (mm or Length (mm or Length (mm or Length (mm or
Stage) Stage) Stage) Stage)
Polyjet 150.6 (ROI 8) - - 197.6 (ROI 10)
SLA 150.6 (ROI 8) - - 150.6 (ROI 8)
FDM 80.6 (ROI 5) - - 197.6 (ROI 10)

! Obtained values in mm calculated for different regions of interest (ROIS).

4. Conclusions

This research leads us to conclude that SLA, FDM and polyjet processes are suitable for microfluidic
mixing devices. The complete mixing is achieved for all of them in two distinct situations: for Re
equal to 0.37 and equal to 15, which should still represent a laminar flow. As a consequence, diffusive
mixing cannot justify the experimental behaviour. In fact, while diffusion is clearly the most important
mixing phenomenon up to Re equal to 7.4, between 7.4 and 14.8 the behaviour changes, probably due
to the chaotic advection phenomenon. In this context, FDM and polyjet behaved better at low flow
rate than higher ones, while SLA had the same behaviour for lower and higher flowrates. Further
studies on the relationship between surface micro and macro geometry, flow speed and completeness
of mixing must be conducted through new tests with different flow rates and new channel micro and
macro geometries.
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