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Abstract: Xylella fastidiosa (Xf) is a well-known bacterial plant pathogen mainly transmitted by 
vector insects and is associated with serious diseases affecting a wide variety of plants, both wild 
and cultivated; it is known that over 350 plant species are prone to Xf attack. In olive trees, it causes 
olive quick decline syndrome (OQDS), which is currently a serious threat to the survival of 
hundreds of thousands of olive trees in the south of Italy and in other countries in the European 
Union. Controls and countermeasures are in place to limit the further spreading of the bacterium, 
but it is a tough war to fight mainly due to the invasiveness of the actions that can be taken against 
it. The most effective weapons against the spread of Xf infection in olive trees are the detection of 
its presence as early as possible and attacks to the development of its vector insects. In this paper, 
image processing of high-resolution visible and multispectral images acquired by a purposely 
equipped multirotor unmanned aerial vehicle (UAV) is proposed for fast detection of Xf symptoms 
in olive trees. Acquired images were processed using a new segmentation algorithm to recognize 
trees which were subsequently classified using linear discriminant analysis. Preliminary 
experimental results obtained by flying over olive groves in selected sites in the south of Italy are 
presented, demonstrating a mean Sørensen–Dice similarity coefficient of about 70% for 
segmentation, and 98% sensitivity and 93% precision for the classification of affected trees. The high 
similarity coefficient indicated that the segmentation algorithm was successful at isolating the 
regions of interest containing trees, while the high sensitivity and precision showed that OQDS can 
be detected with a low relative number of both false positives and false negatives. 

Keywords: xylella fastidiosa; multi-spectral imaging; UAV; unmanned aerial vehicle; image 
processing; machine learning; precision agriculture 

1. Introduction 

With a mean production of 450–550 × 106  kg/year of olive oil, olive tree cultivation is 
undoubtedly one of the main sources of agricultural revenue for Italy. In particular, the Apulia region 
in the south, with over 360 kha (kilohectares) covered with 21 different olive cultivars with a 
prevalence of Ogliarola and Coratina cultivars, is the region with the highest percentage of production 
(>35% of the total yearly Italian production) [1]. In the past decade, this production has been greatly 
impacted by many threats, primarily Xylella fastidiosa (Xf), a pathogen that has been known around 
the world for decades, but which since 2013 has put the survival of Apulian olive cultivation at great 
risk. It is a bacterium that can attack olive trees, vines, oleander, and some species of citrus fruits, 
causing them to rapidly dry out. This phenomenon, when observed on the olive trees, is known as 
olive quick decline syndrome (OQDS) [2–11]. 

Xf is endemic to the American continent and, until recently, it did not exist in Europe [12]; 
indeed, its arrival in Europe was tracked back to the import of some infected ornamental plants from 
Costa Rica (Central America) to Gallipoli (province of Lecce in southern Italy) in 2013 [13]. From 
there, the bacterium spread to the northwest provinces of Brindisi and Taranto, and some infected 
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trees have also been recently reported in the province of Bari (northeast). A large number of 
publications about the impact of Xf in Puglia are available; a small selection is included in the 
references [14–31]. 

The main problems concerning the detection of this disease in olive trees are the possible lack of 
symptoms over an incubation period ranging from 6 to 18 months from infection and the nonuniform 
distribution of the bacterium on the infected plants, making it somewhat difficult to identify until it 
is too late.  

Characterization of infection spread may potentially be achieved as was done previously for citrus 
using geostatistical analysis and kriging estimation, which might also be combined with Kalman filter 
prediction; however, the availability of data from extended monitoring is fundamental [32,33]. 

To date, the most accurate method to detect the presence of the Xf bacterium is by means of 
laboratory genetic analyses using the PCR technique (polymerase chain reaction [34,35]), a 
sophisticated and complex technique used to reproduce small segments of DNA many times in order 
to be able to process them in successive tests. The PCR technique is more sensitive than serological 
analyses of the ELISA type (enzyme-linked immunosorbent assay [36,37]), which are sensitive to 
antibodies or antigens of a given pathogen. Due to their inherent lower sensitivity, ELISA-type tests 
can produce a greater number of false negatives. However, both these techniques require medium to 
long waiting times (some days) to produce results and are applicable only in a laboratory using high-
cost analytical instruments, so they are not applicable in real time in the field. Indeed, they require 
intensive in situ inspection though interesting methods useful to estimate water content and thermal 
characterization have been proposed [38–41]. Recently introduced alternative techniques involve 
proximity or remote sensing, i.e., the use of electromagnetic radiation and its interaction with objects 
and living beings. The advancement of satellite and aerial detection techniques, telecommunications 
systems and optical sensors has led to the application of these analysis techniques to images acquired 
by satellites (remote sensing by satellite), small manned planes or helicopters, or aerial platforms with 
a remote pilot (unmanned aerial vehicles; UAVs), commonly called “drones” in a wide range of fields 
[41–45]. UAV platforms can be further distinguished as fixed-wing types, which allow monitoring of 
large areas from medium–high altitudes, and rotary-wing types, which allow observation of less 
extensive areas from medium–low altitudes. In recent years, the application of UAVs in precision 
agriculture as well as in many other fields is becoming more and more common, requiring test 
systems able to guarantee and certify both electrical and mechanical performance aspects of their 
propulsion subsystems [46–48]. 

Typically, the radiation reflected by vegetation is concentrated in the visible (VIS), near-infrared 
(NIR), and medium infrared (SWIR; short-wave infrared) spectral regions, while the emitted 
radiation is concentrated in the thermal infrared (TIR) spectral region. 

Spectral analysis finds frequent and extensive use in many areas of the physical sciences; this 
technique is one of the statistical methods used to characterize and analyze sequenced data in one-, 
two-, and three-dimensional space. In this area, many studies have been devoted to reducing bias 
and variance of the estimates [49,50]. 

The spectral signature of vegetation, which is the relative intensity of the re-radiated radiation 
as a function of the wavelength of the incident light, contains a range of information. Indeed, the 
shape of this curve 
• depends on the photosynthetic activity in the VIS region; 
• depends on the structure of plants’ leaves and foliage (size, number of leaf layers, etc.) in the NIR 

region; 
• is strongly influenced by the water content in the SWIR region. 

The use of terrestrial or aerial drones, both manned and unmanned, equipped with multi- or 
hyperspectral image cameras to study the health status of plantations of various kinds is not a novelty 
in precision agriculture or for forestry monitoring [51–55]. There are also pioneering applications of 
drones for the detection of Xf-infected plants [56–59]. 

Xf represents such a serious threat to the future survival of the olive orchards in Italy that the 
Italian Ministry of Economic Development (MiSE) recently committed €3.5 million to funding 
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another important research project named REDoX (Remote Early Detection of Xylella), which is 
focused on the detection and monitoring of Xf using multispectral, hyperspectral, and thermal 
imagery obtained by aircrafts, UAVs, and satellites. The REDoX project is being coordinated by the 
Apulian Aerospace Technological District (DTA) [60]. 

In this paper, it is shown that multispectral imagery shot using a midsized rotary-wing UAV can 
be successfully used to evaluate the health of olive trees in nearly real time with respect to olive quick 
decline syndrome due to Xf. For this purpose, a tree segmentation algorithm was developed and 
linear discriminant analysis (LDA) was applied to multispectral stacks. In Section 2, after a brief 
introduction to remote sensing in agriculture, the equipment used in this research and standard 
vegetation indexes are described. The proposed algorithm is also presented: image preprocessing is 
described Section 2.1; 3D reconstruction of the scene is described in Section 2.2; tree segmentation is 
detailed in Section 2.3; and health status classification is described in Section 2.4. Experimental results 
and performance evaluation are provided in Section 3, followed by discussion in Section 4 and 
conclusions in Section 5. 

2. Materials and Methods 

For the research work presented in this paper, which started almost two years ago and which 
was funded by the Apulia Region, a medium-sized multirotor UAV (Italdron 4HSE EVO, Figure 1a) 
with a maximum payload of 2.5 kg was used. It was equipped with a purposely developed payload 
comprising a 3D gimbal with a compact five band multispectral camera (MicaSense RedEdge-M [61]), 
a high-resolution thermal camera (FLIR Vue Pro 640 [62,63]), and a high-resolution visible camera 
(Sony α7r) (Figure 1b). 
 

 

 

(a) (b) 

Figure 1. (a) The multirotor UAV (Unmanned Aerial Vehicle) used for this work; (b) its payload. 

This apparatus was used to acquire high-resolution images of olive groves from medium 
altitudes (some tens of meters). Surveys were done using the typical aerial-mapping “serpentine” 
profile (Figure 2) with high across- and along-track superposition percentages in order to collect 
enough data to be able to rebuild the whole high-resolution orchard image used in the processing 
step. Multiple surveys of the same olive grove were acquired from different altitudes to obtain 
different ground sample resolutions (GSD), to provide the opportunity to test the robustness and 
speed of the adopted processing solution. The above-ground levels (AGL) of the different surveys 
were calculated using a purposely developed spreadsheet, taking into account all inherent 
parameters: camera sensor resolution and focal length, desired ground sample resolution, camera 
shutter speed, UAV translation speed, etc. 
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Figure 2. Typical UAV trajectory for an aerial survey (red dots identify shot positions). 

Figure 3 shows a screenshot of the mission plan for the aerial survey on the Squinzano–Cerrate 
olive orchard. 

  
Figure 3. Example of one aerial survey plan for an olive orchard (Squinzano-Cerrate, 40°27'35.79"N, 
18° 7'2.69"E). 

The UAV used to acquire the aerial images was also equipped with an extra payload: a 
Raspberry Pi v4B + SBC (single-board computer) equipped with a 3G-4G/LTE Base Shield v2 by 
Sixfab GmbH plus an EC25 MiniPCI 4G/LTE Module by Quectel [64–66]. This was a nonstandard 
payload, the practical realization of which is shown in Figure 4, and it was purposely programmed 
and a customized 3D case was designed and printed to integrate it with the whole system. Thanks to 
this subsystem, the acquired images were transferred to a remote server where the developed 
software ran and where a GIS (geographic information system) platform completed the tagging and 
georeferencing of acquired images. Where the cellular network coverage on the field was good, the 
upload process was executed during the UAV’s flight; elsewhere, it was executed offline when the 
UAV landed. In fact, during field tests the cellular network’s availability and bandwidth represented 
a clear bottleneck for the real-time image upload process. However in the near future, when the 
coverage of new and higher-bandwidth cellular networks is sufficient, this problem should be 
resolved or at least mitigated. 
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Figure 4. The Raspberry Pi SBC with the MiniPCI 4G/LTE Module used onboard the UAV to upload 
acquired images to the remote server. 

The image-processing software developed for this work was written in Python 3.7 extended with 
many additional modules. It processed multispectral images related to a single overflight, performing 
the essential alignment operation of images returned by the five different sensors of the multispectral 
camera and those taken by thermal and visible camera, and returning multispectral and calibrated 
reflectometric stacks. Spectral characteristics of the MicaSense RedEdge-M sensors are given in Table 1. 

Table 1. Spectral characteristics of the MicaSense RedEdge-M multispectral camera sensors (FWHM 
= full width at half maximum). 

Sensor 
Central Wavelength 

(nm) 
Filter Bandwidth (FWHM) 

(nm) 
Blue 475 20 

Green 560 20 
Red 668 10 

Near-IR 840 40 
Red-Edge 717 10 

 
Starting from these intermediate multispectral stacks, the software returned the following 

images in TIFF format: 
• RGB images (red–green–blue), i.e., common visible images. 
• CIR images (color and infrared = Red + Green + NIR) were obtained by substituting the NIR 

(near-infrared) images into the blue channel on the common RGB images. NIR wavelengths are 
effective in penetrating atmospheric mist and in determining the health of vegetation. The 
pigment in the leaves of plants, chlorophyll, strongly absorbs visible light, but the cellular 
structure of healthy leaves, on the other hand, strongly reflects NIR radiation. Therefore, the 
stronger the NIR radiation detected by the camera, the healthier the plant is. 

• NDVI images. In normalized-difference vegetation index images, each pixel was calculated from 
the pixels of the same position in the NIR and RED images through the well-known relationship 

 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  
𝑁𝑁𝑁𝑁𝑁𝑁 −  𝑁𝑁𝑅𝑅𝑁𝑁
𝑁𝑁𝑁𝑁𝑁𝑁 +  𝑁𝑁𝑅𝑅𝑁𝑁

 (1) 

 
The NDVI value is highly informative about the local health status of plants and soil, since it 

allows immediate recognition of areas of the canopy or of the underground soil that have 
development or irrigation problems. The interpretation of NDVI values is relatively simple; in fact, 
its value varies between 0 and 1, and each value corresponds to a different agronomic situation, 
regardless of the crop [67,68]. 
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The NDVI value can be influenced by a variety of factors including soil brightness, air humidity, 
and plant foliage structure. Therefore, two NDVI maps taken on different days in the same field can 
look completely different due to different weather and/or light conditions. This can make the 
comparison of such NDVI images difficult, so it is essential to calibrate the remote-sensed images 
using a radiometric calibration panel on the ground before the acquisition process, or by other means. 
In our case, the multispectral Micasense RedEdge-M camera was equipped with its optional DLS 
(downwelling light sensor) module, a five band light sensor which is mounted on the top of the UAV 
pointing toward the sky and connected directly to the camera. The DLS module continuously 
measured the ambient light during the flight for each of the five bands of the camera and recorded 
this information in the metadata of the captured images. 

The experimental data illustrated in Section 3 of this paper were acquired on 19 April 2019 at 
two sites located in Apulia, southern Italy, with a clear sky. 

- San Vito dei Normanni (BR), 40°38'1.12"N, 17°42'49.10"E, time 12:45 UTC, with healthy olive trees 
with a planting layout of about 10 m × 12 m and an age of about 80 years. Sun elevation and 
azimuth were 51° and 229°, respectively. 

- Squinzano (LE), 40°27'35.79"N, 18° 7'2.69"E, time 14:30 UTC, with olive trees with symptoms of 
Xf, with a planting layout of about 8 m × 8 m and an age of about 50 years. Sun elevation and 
azimuth were 33° and 255°, respectively. 

Images were taken with the MicaSense RedEdge-M multispectral camera with 1.2 megapixel 
resolution, flying at an AGL (above-ground level) of 70 m; ground sample resolution was 5 cm/pixel, 
and forward/cross-overlaps during image acquisition were 80%. The acquired images were processed 
as described in following subsections and to develop and validate the machine-learning algorithms 
they were organized into a training and a test set, both containing 71 trees. 

For the two critical tasks of the algorithm, namely the automatic tree segmentation and the tree 
classification, performance figures were evaluated. In particular, for tree segmentation, it was 
evaluated whether the binary mask representing trees overlapped well with actual trees. Thus, the 
Sørensen–Dice similarity coefficient (DSC) was calculated for each tree (trees with merging foliage 
were treated as a single tree), and its statistics were reported. This similarity coefficient represents 
the degree of matching between two binary images, where each pixel in common contributes to 
increasing the coefficient towards the limiting value of 1 (perfect match) and each different pixel 
decreases the coefficient towards the limit of 0 (complete absence of matching pixels). The DSC was 
calculated as twice the number of pixels common to the two sets obtained via automatic segmentation 
(proposed algorithm) and manual segmentation (ground truth), respectively, divided by the sum of 
the number of pixels in each set. The ground truth was obtained by manually segmenting RGB and 
CIR images extracted from the multispectral stacks. A few trees that were not olive trees were 
individuated and excluded in the evaluation of segmentation and classification performance. 

The confusion matrix, sensitivity, and precision of the tree classification were calculated. The 
ground truth of health status was assessed by an expert agronomist and was compatible with 
information about the Apulia area provided by the institutional Apulia monitoring system for Xf [69]. 

Further details and results are provided in Section 3. 
Data processing in the proposed system was subdivided into four main tasks, which are listed 

in Figure 5. They are analyzed in the following subsections. The list of main mathematical symbols 
can be found in Table 2. 

 
Figure 5. Main processing tasks of the proposed system. 

Image 
calibration and 

alignment

3D 
reconstruction

Tree 
segmentation

Classification of 
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Table 2. Main mathematical symbols. The parameters of the algorithm are in bold. 

Symbol Description 
𝑁𝑁𝑟𝑟 ,𝑁𝑁𝑐𝑐 Number of pixel rows and pixel columns in each band of the multispectral reflectance stack  
(𝑟𝑟, 𝑐𝑐) Row and column indexes of a pixel in a band, 𝑟𝑟 =  1, … ,𝑁𝑁𝑟𝑟 and 𝑐𝑐 = 1, … ,𝑁𝑁𝑐𝑐. 

𝐵𝐵𝐵𝐵𝐵𝐵𝑅𝑅(𝑟𝑟, 𝑐𝑐),𝐺𝐺𝑁𝑁𝑅𝑅𝑅𝑅𝑁𝑁(𝑟𝑟, 𝑐𝑐), 
 𝑁𝑁𝑅𝑅𝑁𝑁(𝑟𝑟, 𝑐𝑐),𝑁𝑁𝑁𝑁𝑁𝑁(𝑟𝑟, 𝑐𝑐), 

 𝑁𝑁𝑅𝑅𝑁𝑁𝑅𝑅𝑁𝑁𝐺𝐺𝑅𝑅(𝑟𝑟, 𝑐𝑐) 
Reflectances corresponding to pixel index (𝑟𝑟, 𝑐𝑐) of the five bands. 

𝐾𝐾 Number of pixels in a given image that match with other images for 3D reconstruction with 
photogrammetry 

𝒫𝒫 Set of matched pixels 
(𝑢𝑢𝑖𝑖 , 𝑣𝑣𝑖𝑖) Pixel indexes of matched pixels,  (𝑢𝑢𝑖𝑖 , 𝑣𝑣𝑖𝑖) ∈ 𝒫𝒫,   𝑖𝑖 =  1, … ,𝐾𝐾 

(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑧𝑧𝑖𝑖) 3D coordinates corresponding to matched pixels, 𝑖𝑖 =  1, … ,𝐾𝐾 
𝑒𝑒𝑖𝑖′ Standardized difference between 𝑧𝑧𝑖𝑖 and interpolating plane 

𝒕𝒕𝑯𝑯′  =  𝟎𝟎 Standardized elevation threshold 
𝒔𝒔𝓕𝓕  =  𝟓𝟓𝟎𝟎,𝝈𝝈𝓕𝓕  =  𝟎𝟎.𝟓𝟓,  

𝒎𝒎𝓕𝓕  =  𝟓𝟓𝟎𝟎 
Parameters for Felsenszwalb’s oversegmentation, respectively: scale; standard deviation of 

Gaussian kernel for preprocessing of image; minimum component size. 
𝑁𝑁𝐹𝐹 Number of Felsenszwalb’s segments 

ℱ𝑗𝑗 
Set of pixels indexes (𝑟𝑟, 𝑐𝑐)  in the 𝑗𝑗th Felsenszwalb’s segment, 𝑗𝑗 =  1, … ,𝑁𝑁𝐹𝐹. It is used to 

indicate that segment. 
𝑎𝑎𝑗𝑗 Number of pixels in ℱ𝑗𝑗 

𝑆𝑆𝑗𝑗′, 𝑆𝑆𝑗𝑗′′, 𝑆𝑆𝑗𝑗 Results of the first, second, and final segment-classification method, respectively 

𝐶𝐶𝑁𝑁𝑁𝑁 ,𝐶𝐶𝑁𝑁 ,𝐶𝐶𝑈𝑈 Classes defined for the segment-classification methods: 𝐶𝐶𝑁𝑁𝑁𝑁   (“not part of a tree”), 𝐶𝐶𝑁𝑁 (“part of a 
tree”) and𝐶𝐶𝑈𝑈 (“unknown”) 

𝒕𝒕𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂  =  𝟎𝟎.𝟏𝟏 Relative area threshold for the first segment-classification method 
𝒕𝒕𝑵𝑵𝑵𝑵𝑵𝑵  =  𝟎𝟎.𝟏𝟏𝟓𝟓 Mean NIR reflectance threshold for the first segment-classification method 
𝒕𝒕𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵  =  𝟎𝟎.𝟓𝟓 Mean NDVI reflectance threshold for the first segment-classification method 

𝑝𝑝𝑁𝑁,𝑗𝑗 
Probability of a segment ℱ𝑗𝑗 of being in class 𝐶𝐶𝑁𝑁 calculated by the LDA classifier of the second 

segment-classification method 
𝒕𝒕𝑻𝑻  =  𝟎𝟎.𝟑𝟑 Probability threshold of 𝑝𝑝𝑁𝑁,𝑗𝑗 for putting ℱ𝑗𝑗 in class 𝐶𝐶𝑁𝑁   

𝐶𝐶0,𝐶𝐶1 Classes defined for health status classification of trees: 𝐶𝐶0 (“negative”) when they are in good 
health status, and 𝐶𝐶1 (“positive”) for bad health status 

𝑋𝑋0,𝑋𝑋1 Classes defined for pixels of negative and positive trees, respectively 
𝑝𝑝(𝑢𝑢, 𝑣𝑣) Probability that a pixel of coordinates (𝑢𝑢, 𝑣𝑣) belongs to the class 𝑋𝑋1 of pixels of positive trees 
𝒂𝒂𝒂𝒂  =  𝟒𝟒 Radius in pixels of the disk for morphological binary erosion of segmented trees 

𝐵𝐵 Labeled image of connected components of segmented trees 
𝑇𝑇 Set of pixels of a given component in 𝐵𝐵, representing a segmented tree 
𝑀𝑀 Number of pixels in 𝑇𝑇 
𝑃𝑃 Set of probabilities associated with pixels in 𝑇𝑇, relevant to a given tree segment 

�𝑝𝑝(1), …𝑝𝑝(𝑀𝑀)� 
Sequence of probabilities calculated by the LDA classifier for pixels in a given set 𝑇𝑇, sorted 

from higher to lower probability 
𝑵𝑵 = 𝟐𝟐 Number of highest-probability pixels used for tree classification 
𝑣𝑣 Mean probability value over 𝑁𝑁 pixels for a given set 𝑇𝑇 

𝒕𝒕 = 𝟎𝟎.𝟖𝟖 Probability threshold for classifying a segmented tree into 𝐶𝐶1 

2.1. Image Calibration and Alignment 

The five images grabbed from the multispectral sensor were calibrated and aligned as discussed 
below to obtain a proper multispectral reflectance stack, following the procedure recommended by 
the manufacturer [70]. The processing steps are summarized in Figure 6 and described below. 
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Figure 6. Steps of image calibration and alignment. 

a. Input data were constituted by shots, also named “captures”, where each capture contained five 
raw digital images in Tagged Image File Format (TIFF), acquired synchronously by the sensors 
of the five band multispectral camera. One capture was processed at a time.  

b. The spectral radiance in wavelength, units  W⋅m−2⋅sr−1⋅nm−1, was obtained from pixel values in 
each raw image, taking into account calibration and lens vignette effect parameters provided by 
the manufacturer, as well as exposure time, black level, and gain of the imaging sensors at the 
time the images were shot. Spectral radiance images 𝐵𝐵𝑖𝑖, 𝑖𝑖 = 1, … ,5 were obtained, where each 𝐵𝐵𝑖𝑖 
is an array. 

c. Spectral irradiances, 𝑅𝑅1, …𝑅𝑅5, which are the amount of energy per unit area per unit bandwidth 
(W⋅m−2⋅nm−1) incident on the ground, were calculated from data measured by the downwelling 
light sensor (DLS) mounted on the drone. Data were acquired by the DLS at the same time as 
the images were captured by the multispectral camera.  When calculating irradiance, the 
position of the DLS (measured by an onboard sensor) and solar orientation were considered, 
and clear sky conditions were assumed.  

d. Spectral reflectance images 𝑁𝑁𝑖𝑖  were obtained from the ratio of reflected and incident light, 
calculated precisely as  

𝑁𝑁𝑖𝑖  =  𝜋𝜋
𝐵𝐵𝑖𝑖
𝑅𝑅𝑖𝑖

  (2) 

e. Reflectance images were corrected for lens distortion using parameters provided by the 
manufacturer, namely three-element radial distortion and two-element tangential distortion 
correction parameters. After distortion correction, the five images were aligned by correcting the 
different points of view of each sensor. For this purpose, the image in the green band was 
(arbitrarily) selected as a reference, and the other four images were aligned by calculating, for 
each of them, an eight-parameter homography that maximized the enhanced correlation 
coefficient (ECC) [71] with the reference.  The parameters were obtained using the 
findTransformECC function of the OpenCV library [72]. Since estimating the parameters of the 
four homographies was time-consuming, they were calculated for a capture in the middle of the 
flight and their inverse functions were applied to align the other captures; this procedure was 
correct because all of them were taken at the same distance from the ground, and at a distance 
which was greater than the change of depth of the subjects (trees and ground); hence, the images 
could be aligned in the same way. 

f. As a result, a properly aligned stack of spectral reflectances was obtained and saved in a five 
channel TIFF file. Channels in the stack were named 𝐵𝐵𝐵𝐵𝐵𝐵𝑅𝑅,𝐺𝐺𝑁𝑁𝑅𝑅𝑅𝑅𝑁𝑁,𝑁𝑁𝑅𝑅𝑁𝑁, 𝑁𝑁𝑁𝑁𝑁𝑁, 𝑁𝑁𝑅𝑅𝑁𝑁𝑅𝑅𝑁𝑁𝐺𝐺𝑅𝑅. Each 

(a) Image acquisition
• Each capture contains five 

images, one for each band

(b) Conversion from pixel 
value to radiometric 
image
• Spectral radiance is obtained

(c) Calculation of spectral 
irradiance

(d) Calculation of 
calibrated reflectance 
images as 𝜋𝜋 𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑟𝑟𝑟𝑟𝑐𝑐𝑟𝑟

𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑟𝑟𝑟𝑟𝑐𝑐𝑟𝑟

(e) Alignment of the 
images of the capture and 
lens distortion correction

(f) Saving of the resulting 
multispectral stack in 
Tagged Image File Format 
(TIFF)
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channel represented an array of size 𝑁𝑁𝑟𝑟 × 𝑁𝑁𝑐𝑐 , for example 𝑁𝑁𝑁𝑁𝑁𝑁(𝑟𝑟, 𝑐𝑐)  was the near-infrared 
reflectance of the pixel in row index 𝑟𝑟 and column index 𝑐𝑐, where 𝑟𝑟 =  1, … ,𝑁𝑁𝑟𝑟 and 𝑐𝑐 =  1, … ,𝑁𝑁𝑐𝑐.  

2.2. 3D Reconstruction  

Images shot during the flight, which were taken from different perspectives as the drone moved, 
were merged using photogrammetric techniques to create a complete map of the site. The main 
outcome of this processing task, however, was the estimation of elevation of points in the images, 
which permitted improved identification of trees by separating them from the ground and grass. 

It is well known that GPS information is only sufficient for a coarse mosaicing of images. What 
was needed here was, instead, an accurate mosaicing and alignment that could be obtained by 
individuating corresponding points on the partially overlapping margins of the images. For this 
reason, it was important that images were shot with high overlap. Moreover, if georeferencing is 
required with accuracy greater than that of GPS systems, ground trust points can be used; however, 
this was not deemed necessary for the purposes of the present study, since only relative height 
measurements were used, as is made clear in Section 2.3a. Indeed, some advanced studies have been 
done to improve the accuracy of UAVs’ positioning with GPS [73]. 

In this work, the VisualFSM application was used, which allowed the 3D reconstruction using 
structure from motion [74]. Hence, as a result of this photogrammetric dataflow, a 3D reconstruction 
of the soil, vegetation, and buildings and an N-View Match (NVM) file were obtained. In particular, 
the latter file contained the 3D coordinates (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑧𝑧𝑖𝑖)  associated with the pixel index (𝑢𝑢𝑖𝑖 , 𝑣𝑣𝑖𝑖)  of 
matched points between the images that were used in the subsequent segmentation technique. The 
set of 𝐾𝐾 matched points for a given image was denoted as 𝒫𝒫 = {(𝑢𝑢1,𝑣𝑣1), … , (𝑢𝑢𝐾𝐾 ,𝑣𝑣𝐾𝐾)}. 

2.3. Tree Segmentation 

Tree segmentation was performed according to the algorithm outlined in Figure 7, which is 
detailed below. Its purpose was to separate trees from soil and apply health status classification to 
trees only. The algorithm was composed of many steps because differentiating trees and their 
irregular contours from soil or even from soil covered with grass proved to be a difficult task.  

 
Figure 7. Steps of the tree segmentation algorithm. 

a) Classification of Sparse 3D Points  
In the first step (a), several points were subdivided into low- and high-elevation to facilitate tree 

segmentation. Let (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑧𝑧𝑖𝑖) be the 3D coordinates of a pixel (𝑢𝑢𝑖𝑖 , 𝑣𝑣𝑖𝑖), in the multispectral stack, where 

(a) Sparse 3D points are classified 
as low- or high- elevation. 

 

(b) Felsenszwalb’s 
oversegmentation of the NIR 

channel  

(c) Felsenszwalb’s segments are 
classified as not part of a tree if 

they have low-elevation points, or 
are large, or have low mean NIR or 

have low mean NDVI. 

(d) Felsenszwalb’s segments are classified 
by LDA with features: mean of NIR, std 

of NIR,  and mean of NDVI. Training 
segments are: 1) those not part of a tree 

because have low-elevation points or are 
large; 2) those having only high-elevation 

points, distant from segment borders. 
 

(e) Trees are the set of segments which 
are not classified as not part of a tree 

according to both classifiers. 
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pixels (𝑢𝑢𝑖𝑖 ,𝑣𝑣𝑖𝑖) belong to the set of the 𝐾𝐾 matched points 𝒫𝒫  defined previously. Three-dimensional 
points are interpolated by a plan �̃�𝑧𝑖𝑖  =  𝛼𝛼𝑥𝑥𝑖𝑖  +  𝛽𝛽𝑦𝑦𝑖𝑖  +  𝛾𝛾 , where 𝛼𝛼,𝛽𝛽 , and 𝛾𝛾  are obtained by the 
ordinary least-squares  method. This plan represents a raw linear approximation of the ground 
surface. Afterwards, the residuals �̃�𝑧𝑖𝑖  −  (𝛼𝛼𝑥𝑥𝑖𝑖  +  𝛽𝛽𝑦𝑦𝑖𝑖  +  𝛾𝛾)  are calculated and standardized by 
subtracting their mean and dividing by their standard deviation to obtain the standardized residuals 
𝑒𝑒𝑖𝑖′. A point (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑧𝑧𝑖𝑖) and its corresponding pixel (𝑢𝑢𝑖𝑖 , 𝑣𝑣𝑖𝑖) are classified as high-elevation if 𝑒𝑒𝑖𝑖′  ≥  𝑡𝑡𝐻𝐻′  , 
where  𝑡𝑡𝐻𝐻′  is a purposely defined standardized elevation threshold. 
b) Felsenszwalb’s Oversegmentation 

In the second step (b), an oversegmentation is performed using Felsenszwalb’s method [75] 
applied to the NIR channel to obtain 𝑁𝑁𝐹𝐹 segments described by the pixel sets ℱ𝑗𝑗, 𝑗𝑗 = 1, … ,𝑁𝑁𝐹𝐹 . The 
scikit-image Python image-processing library is used for that purpose [76]. Parameters of the 
oversegmentation are scale  𝑠𝑠ℱ , standard deviation 𝜎𝜎ℱ  of the Gaussian kernel for image 
preprocessing, and minimum component size 𝑚𝑚ℱ enforced in postprocessing. 

The purpose of this step is to obtain areas with contours that can follow the irregular borders of 
crowns of trees, for which the difference with soil is shown by the greater NIR reflectance. As a side 
effect, single trees are also oversegmented and split into many segments, which should be 
subsequently identified and merged as described later. 

Afterwards, two different classification methods, in steps (c) and (d), are applied to 
Felsenszwalb’s segments, and their results are combined in step (e). Let 𝑆𝑆𝑗𝑗′ and 𝑆𝑆𝑗𝑗′′ be the classification 
results for the ℱ𝑗𝑗 segment according to the first and second method, respectively, and let 𝑆𝑆𝑗𝑗 be the 
final classification into class 𝐶𝐶𝑁𝑁𝑁𝑁  (“not part of a tree”) or class 𝐶𝐶𝑁𝑁  (“part of a tree”). We used, for 
example, notation 𝑆𝑆𝑗𝑗 = 𝐶𝐶𝑁𝑁𝑁𝑁 to say that segment ℱ𝑗𝑗 has been classified as not part of a tree. 
c) First Classification Method for Felsenszwalb’s Segments  

In the first method, step (c), a segment ℱ𝑗𝑗 is classified into class 𝐶𝐶𝑁𝑁𝑁𝑁 if the segment contains points 
on the ground or nonvegetation, otherwise it is classified into class 𝐶𝐶𝑁𝑁. More precisely, to classify a 
segment ℱ𝑗𝑗 into class 𝑆𝑆𝑗𝑗′ = 𝐶𝐶𝑁𝑁𝑁𝑁, at least one of the following four conditions should be satisfied. 

1) It contains at least one matched pixel below the elevation threshold. This is justified by the fact 
that if a segment contains low-elevation points, it is likely it belongs to the ground rather than 
trees. This condition is expressed as 

∃ 𝑖𝑖 s. t. (𝑢𝑢𝑖𝑖 ,𝑣𝑣𝑖𝑖) ∈ ℱ𝑗𝑗  ∧  𝑒𝑒𝑖𝑖′  < 𝑡𝑡𝐻𝐻′   (3) 

2) Its area, i.e., the number of pixels, 𝑎𝑎𝑗𝑗 : =  #ℱ𝑗𝑗, divided by whole image area 𝑁𝑁𝑢𝑢 × 𝑁𝑁𝑣𝑣 , is larger 
than the relative threshold 𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 . This is justified by the fact that it is unlikely that large segments 
are part of trees. The relevant condition is 

𝑎𝑎𝑗𝑗
𝑁𝑁𝑢𝑢 × 𝑁𝑁𝑣𝑣

 ≥   𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  (4) 

3) Its mean NIR reflectance is below the threshold 𝑡𝑡𝑁𝑁𝑁𝑁𝑁𝑁 . Indeed, a low NIR reflectance can be 
associated with nonvegetation segments. This is expressed as 

1
𝑎𝑎𝑗𝑗

� 𝑁𝑁𝑁𝑁𝑁𝑁(𝑟𝑟, 𝑐𝑐)  ≤  𝑡𝑡𝑁𝑁𝑁𝑁𝑁𝑁
(𝑟𝑟,𝑐𝑐)∈ℱ𝑗𝑗

 (5) 

4) Its mean NDVI is below the threshold  𝑡𝑡𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁. Analogously to NIR, a low NDVI can be associated 
with non-vegetation segments. This is expressed as 

1
𝑎𝑎𝑗𝑗

� 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑟𝑟, 𝑐𝑐)  ≤  𝑡𝑡𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
(𝑟𝑟,𝑐𝑐)∈ℱ𝑗𝑗

 (6) 

where 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑟𝑟, 𝑐𝑐) : =  �𝑁𝑁𝑁𝑁𝑁𝑁(𝑟𝑟, 𝑐𝑐)  −  𝑁𝑁𝑅𝑅𝑁𝑁(𝑟𝑟, 𝑐𝑐)�/�𝑁𝑁𝑁𝑁𝑁𝑁(𝑟𝑟, 𝑐𝑐)  +  𝑁𝑁𝑅𝑅𝑁𝑁(𝑟𝑟, 𝑐𝑐)� .  
If  ℱ𝑗𝑗 is not assigned to class 𝐶𝐶𝑁𝑁𝑁𝑁, it is assigned by exclusion to class 𝐶𝐶𝑁𝑁, that is 
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𝑆𝑆𝑗𝑗′  =  �𝐶𝐶𝑁𝑁𝑁𝑁 , if any of (3), (4), (5), (6) is satisfied
𝐶𝐶𝑁𝑁, otherwise  (7) 

d) Second Classification Method for Felsenszwalb’s Segments  

In the second segment-classification method, step (d), segments of the same image that can be 
classified more easily were used to classify the remaining segments via a machine-learning technique. 
Each segment was first assigned to class 𝐶𝐶𝑁𝑁𝑁𝑁 if it contained low-elevation points or is large; to class 𝐶𝐶𝑁𝑁 
if it contained only high-elevation pixels, distant from the borders of segments; or to class 𝐶𝐶𝑈𝑈 
(“unknown”) otherwise. Afterwards, segments in class 𝐶𝐶𝑈𝑈 were reclassified using linear discriminant 
analysis (LDA) trained with segments already classified as 𝐶𝐶𝑁𝑁𝑁𝑁 and 𝐶𝐶𝑁𝑁 on features that are statistics of 
NIR and NDVI. In detail, the algorithm of the second classification method is as follows. 
1) The training set of segments ℱ𝑗𝑗 assigned to class 𝐶𝐶𝑁𝑁𝑁𝑁, that is 𝑆𝑆𝑗𝑗′′  =  𝐶𝐶𝑁𝑁𝑁𝑁, is built with any segment 

that contains at least one matched pixel below the elevation threshold or that is large—in other 
words, any segment that satisfies the previously defined condition (3) or the condition (4). For 
these segments, the condition to satisfy is 

∃ 𝑖𝑖 s. t. (𝑢𝑢𝑖𝑖 , 𝑣𝑣𝑖𝑖) ∈ ℱ𝑗𝑗 ∧ (𝑒𝑒𝑖𝑖′  <  𝑡𝑡𝐻𝐻′ ) ∨ �
𝑎𝑎𝑗𝑗

𝑁𝑁𝑢𝑢 × 𝑁𝑁𝑣𝑣
 ≥  𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 � (8) 

2) The training set of segments of class 𝐶𝐶𝑁𝑁 , for which 𝑆𝑆𝑗𝑗′′  =  𝐶𝐶𝑁𝑁 , is built with any segment that 
satisfies both of the following conditions: 

a. It has not been already classified into the training set of class 𝐶𝐶𝑁𝑁𝑁𝑁, that is, both conditions 
(3) and (4) are not satisfied. 

b. At least one high-elevation matched point of the segment is not on the border of all 
segments. Here, the border ℬ  of all segments is defined as the set of any pixel not 
completely surrounded (considering four-neighborhood connectivity) by pixels of the same 
segment, further thickened with an additional morphological binary dilation. This 
condition can be expressed as  

∃ 𝑖𝑖 s. t. �(𝑢𝑢𝑖𝑖 ,𝑣𝑣𝑖𝑖) ∈ ℱ𝑗𝑗� ∧ (𝑒𝑒𝑖𝑖′ ≥ 𝑡𝑡𝐻𝐻′ ) ∧ �(𝑢𝑢𝑖𝑖 ,𝑣𝑣𝑖𝑖) ∉ ℬ�  (9) 

3) Three features are calculated on each segment in the training set: arithmetic mean of NIR values 
over the pixels of the segment; standard deviation of NIR; arithmetic mean of NDVI. These 
features are used to train the LDA classifier. 

4) The trained LDA classifier is used to obtain the probability 𝑝𝑝𝑁𝑁,𝑗𝑗  of each segments of class 𝐶𝐶𝑈𝑈 
being in class 𝐶𝐶𝑁𝑁. Reassignment to class 𝐶𝐶𝑁𝑁 is performed if that probability is above the threshold 
𝑡𝑡𝑁𝑁, otherwise the assignment is made to class 𝐶𝐶𝑁𝑁𝑁𝑁. 

𝑆𝑆𝑗𝑗′′ = �
𝐶𝐶𝑁𝑁𝑁𝑁 , otherwise
𝐶𝐶𝑁𝑁 , if 𝑝𝑝𝑁𝑁,𝑗𝑗 > 𝑡𝑡𝑁𝑁

 (10) 

e) Final Classification of Felsenszwalb’s Segments  

Final classification 𝑆𝑆𝑗𝑗 of each segment ℱ𝑗𝑗 was performed in step (e) as follows. A segment was 
put in class 𝐶𝐶𝑁𝑁 (“part of a tree”) only if both classifiers agreed: 

𝑆𝑆𝑗𝑗 = �
𝐶𝐶𝑁𝑁𝑁𝑁 , otherwise

𝐶𝐶𝑁𝑁, if 𝑆𝑆𝑗𝑗′  =  𝐶𝐶𝑁𝑁 ∧ 𝑆𝑆𝑗𝑗′′  =  𝐶𝐶𝑁𝑁
 (11) 

All the pixels that belonged to segments in class 𝐶𝐶𝑁𝑁 constituted the segmentation mask. In fact, 
the mask was subject to morphological binary erosion with a disk of radius 𝑟𝑟𝑟𝑟  to eliminate pixels at 
the border because there the crown density was lower and soil was partially visible. The final 
segmentation image 𝐵𝐵 was obtained by labeling the connected components of the mask, where each 
component represented a tree or multiple trees touching each other. 
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2.4. Classification of Health Status  

The last processing stage was the classification of olive trees in two classes according to their  
health status.  

We investigated the feasibility of an approach in which the analysis was not limited to a few 
vegetation indices, but included all the spectral information across five bands. 

In the proposed method, linear discriminant analysis (LDA) was used, which has already proven 
useful in medical applications for the assessment of diseases and for biological classifications.  

Two classes of trees were defined: the class 𝐶𝐶0 of negative trees, which were in good health, and 
the class 𝐶𝐶1 of positive trees, which were in poor health. Analogously, two classes of pixels were 
defined: class 𝑋𝑋0, which belonged to negative trees, and class 𝑋𝑋1, which belonged to positive trees. 

Briefly, in this paper, the LDA classifier was used to obtain a probability map 𝑝𝑝(𝑟𝑟, 𝑐𝑐) that a pixel 
of the multispectral stack of coordinates (𝑟𝑟, 𝑐𝑐) belonged to class 𝑋𝑋1 of pixels of positive trees. If a tree 
contained a significant number of high-probability pixels, it was classified as positive (class 𝐶𝐶1). 

In further detail, in the training phase, trees were manually segmented and classified as 𝐶𝐶0 and 
𝐶𝐶1, and the two sets of pixels of class 𝑋𝑋0 and 𝑋𝑋1 were used to train the LDA classifier. Each pixel value 
was a quintuple of reflectance values. 

After training the classifier, it was used as follows on a new multispectral stack. In the first step, 
it operated at the pixel level, giving the already mentioned probability 𝑝𝑝(𝑟𝑟, 𝑐𝑐). Indeed, the posterior 
probability 𝑝𝑝(𝑟𝑟, 𝑐𝑐)  of a pixel belonging to a class  𝑋𝑋0  or  𝑋𝑋1  was provided directly by the LDA 
classification technique [77]. Afterwards, each segmented tree was classified in the positive class if 
the average of its 𝑁𝑁 higher-probability pixels was above the threshold 𝑡𝑡. Hence, given a segmented 
tree consisting of the set 𝑇𝑇 =  {(𝑟𝑟1, 𝑐𝑐1), … , (𝑟𝑟𝑀𝑀, 𝑐𝑐𝑀𝑀)}  of 𝑀𝑀  pixels, the set of probabilities 𝑃𝑃 =
{𝑝𝑝(𝑟𝑟1, 𝑐𝑐1), … ,𝑝𝑝(𝑟𝑟𝑀𝑀, 𝑐𝑐𝑀𝑀)} was calculated by using the LDA classifier, and 𝑃𝑃  was then ordered from 
maximum to minimum, giving the sequence  �𝑝𝑝(1), …𝑝𝑝(𝑀𝑀)� . Finally, the mean value over only 𝑁𝑁 pixels 
was calculated [78],  

𝑣𝑣 =
𝑝𝑝(1)  +  … + 𝑝𝑝(𝑁𝑁)

𝑁𝑁
 (12) 

and the tree was classified into class 𝐶𝐶 as follows. 

𝐶𝐶 = �𝐶𝐶0, if 𝑣𝑣 < 𝑡𝑡
𝐶𝐶1, if 𝑣𝑣 ≥ 𝑡𝑡 (13) 

In this paper, the LDA implementation of the scikit-learn v0.20.3 Python package was used [79]. 

3. Results 

In this section, results obtained by the data processing described in Section 2  are illustrated. 
One example capture, before any processing, is shown in Figure 8, where the different points of 

view of, for instance, the red and the blue channels are apparent if one considers the tree indicated 
by the orange box in the upper right corner. All the acquired images were processed as described in 
Section 2.1 to obtain properly aligned multispectral reflectance stacks. Photogrammetric 
reconstruction was then applied to obtain the 3D point cloud shown in Figure 9 for the site in 
Squinzano. That reconstruction allowed us to distinguish between points on the ground and points 
on tree crowns, as shown in Figure 10, relevant to the site in Squinzano. Figure 10 is a single shot 
taken from an altitude of 70 m, has a size of 930 pixels × 1232 pixels or about 1.1 megapixels, and 
corresponds to a ground size of about 47 m × 62 m, with a resolution of 5 cm/pixel. 
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Figure 8. Example images of a multispectral stack. Each image is 960 pixels × 1280 pixels, 
corresponding to a ground size of about 64 m × 48 m. 

 

Figure 9. 3D point cloud for the site in Squinzano. 

 
Figure 10. Points of the 3D cloud subdivided between (blue) ground and (red) tree crowns. 

In the following part of the paper, results of the training phase are reported, followed by those 
relevant to the test phase. The latter were used to validate the proposed approach. 

x y 

z 
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For training, the parameters for tree segmentation and classification, shown in Table 2, were 
found heuristically by considering one multispectral stack from each site, including 71 olive trees 
overall.  

The statistics of the resulting DSC, which expressed the Sørensen–Dice similarity coefficient 
between automatic segmentation and ground truth, are reported in Table 3 and Figure 11. The 
similarity coefficient averaged over all the trees was 0.68 with std 0.16, and its minimum was 0.12. 
All trees were identified. 

Table 3. Statistics of 𝑁𝑁𝑆𝑆𝐶𝐶 for the training set. 

# of Trees 71 
Mean 𝑁𝑁𝑆𝑆𝐶𝐶 0.68 

Std 𝑁𝑁𝑆𝑆𝐶𝐶 0.16 
# of trees with 𝑁𝑁𝑆𝑆𝐶𝐶 <  0.5 10 

# of trees with 𝑁𝑁𝑆𝑆𝐶𝐶 <  0.25 1 
# of trees with 𝑁𝑁𝑆𝑆𝐶𝐶 =  0 0 

Min 𝑁𝑁𝑆𝑆𝐶𝐶 0.12 

 
Figure 11. Boxplot of 𝑁𝑁𝑆𝑆𝐶𝐶 for the training set. The dotted green line represents the mean. 

The LDA classifier of plant health was trained using the previously described set of multispectral 
stacks. Only the pixels belonging to trees, as identified by the ground truth segmentation, were 
considered for training. 

To evaluate the effectiveness of the training, the classifier was applied to the training set. It was 
used to obtain a probability map as described in Section 2.4. In particular, for each true tree area, the 
segmented regions which had at least one pixel in common with that area were selected and the 
probability map was evaluated. If the mean of the 𝑁𝑁 =  2 higher-probability pixels was above the 
threshold 𝑡𝑡 =  0.8, then that region was classified as positive. The resulting confusion matrix of the 
classifier is shown in Table 4, where four false-positive and zero false-negative can be observed. False 
positives were due to the inclusion of bare soil between branches of trees. 

Hence the classifier sensitivity on the training set was 100%, and its precision was 93%.  

Table 4. Confusion matrix for the training set. 

Ground Truth 
Predicted 
Negative 

Predicted 
Positive 

Negative 15 4 
Positive 0 52 

After training, segmentation and classification performance were evaluated on test images taken 
on each site, including 71 olive trees overall. The automatic segmentation and classification were 
applied to each image to classify each tree.  
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The statistics of the Sørensen–Dice similarity coefficient are reported in Table 5 and in the 
boxplot of Figure 12. Its mean value was 0.66 with std 0.21. Performance decreased slightly with 
respect to the training set. However, it should be noted that all trees were successfully identified, at 
least on a portion of them, with a minimum DSC of 0.02. 

Table 5. Statistics of 𝑁𝑁𝑆𝑆𝐶𝐶 for the test set 

# of Trees 71 
Mean 𝑁𝑁𝑆𝑆𝐶𝐶 0.66 

Std 𝑁𝑁𝑆𝑆𝐶𝐶 0.21 
# of trees with 𝑁𝑁𝑆𝑆𝐶𝐶 <  0.5 16 

# of trees with 𝑁𝑁𝑆𝑆𝐶𝐶 <  0.25 4 
# of trees with 𝑁𝑁𝑆𝑆𝐶𝐶 =  0 0 

Min 𝑁𝑁𝑆𝑆𝐶𝐶 0.02 

 
Figure 12. Boxplot of 𝑁𝑁𝑆𝑆𝐶𝐶 for the test set. The dotted green line represents the mean. The dotted green 
line represents the mean. 

Table 6 shows the confusion matrix for the test set. The observed classification accuracy was 
good, in agreement with previous results for the training set or even better, with 98% sensitivity and 
100% precision. 

Table 6. Confusion matrix for the test set. 

 

 
Ground Truth                 

 

Predicted 
Negative 

Predicted 
Positive 

Negative 18 0 
Positive 1 52 

Processing one image took 6.2 s for segmentation and 0.2 s for classification on a laptop with an 
Intel i7-8850H processor and 16 GB of RAM. 

Figure 13 and Figure 14 show the results for the test set, where segmented trees are surrounded 
with different colors, green for healthy ones or red for infected ones, depending on their health status 
as inferred by the algorithm. The images shown in Figure 13 were acquired at the San Vito dei 
Normanni olive grove, where olive trees were not affected by Xf. Figure 13d and Figure 14d show 
the probability map obtained by the classifier, represented as a blue to yellow color map, and the 
segmentation contour. The RGB, CIR, and NDVI images are also shown as an aid for understanding 
olive condition. Images of Figure 14 were acquired in Squinzano, where the olive trees were affected 
by Xf and clearly showed OQDS symptoms. These images are discussed in the following. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 13. (a) Segmented RGB image; (b) segmented CIR image; (c) NDVI image; (d) probability map. 
A few trees that were not olive trees were excluded from processing. 

 

(a) 
 

(b) 
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(c) 
 

(d) 

Figure 14. (a) Segmented RGB image; (b) segmented CIR image; (c) NDVI image; (d) probability map. 
The blue arrow in the upper left corner of (a) indicates a classification error. 

4. Discussion 

The results shown in the previous section indicate that high classifier sensitivity and precision 
were achieved in both training and test sets.  

It is worth noting that the test images were acquired in suboptimal conditions, with evident 
shadows cast on the ground and self-shadowing; however, both the segmentation and classification 
algorithms succeeded. This is very important, because due to logistic constraints, it is not always 
possible to survey a field under optimal irradiation, i.e., when the sun is directly overhead. 
Parameters such as gain and exposure time were optimized automatically by the multispectral 
camera according to shooting conditions and were saved in image metadata. According to 
manufacturer’s data, automatic gain control keeps the exposure below 2 ms. No attempt was made 
to correct specular reflection from vegetation, since it was considered negligible in the case of trees 
observed at that distance.  

Altitude and resolution were such that individual leaves were not discernible; however, that 
level of detail was not deemed necessary and the analysis was performed on the spectral content of 
the crown as a whole. Moreover, lowering the altitude would have increased the time necessary for 
the survey, reaching the autonomy limit of the drone, while air moved by propellers during close-up 
shots would have shaken branches. Leaves’ and branches’ fluttering due to wind was low (7–9 mph 
wind from NNW) during the survey; however, it should be noted that flutter, if significant, may 
reduce the accuracy and reliability of photogrammetry. 

Further details on the achieved result are discussed with the help of Figure 13 and Figure 14. 
For the test set, only one misclassification error (false positive) was observed. It should be noted 

that the false negative was due to a very small branch, indicated by a blue arrow in the upper left 
corner of Figure 14a; given the small number of pixels, 24, it was not possible to detect that the tree 
was affected by Xf. 

The figures illustrate the usefulness of considering all the spectral information, as was done by 
using the LDA classifier. Since the IR channel is represented with a false red color in CIR images, 
areas of a tree marked in green had smaller IR reflectivity, which is indicative of desiccation. This 
distinction becomes clearer if one compares Figure 13b (trees unaffected by Xf) and Figure 14b (trees 
affected by Xf), where desiccated parts are shown in green. However it is well known that IR 
reflectivity alone is not sufficient to evaluate the state of health of vegetation, and indices such as 
NDVI, which combines NIR and RED into a single value, have been widely adopted for this purpose 
[68]. Unfortunately, while NDVI is effective in differentiating healthy trees from bare soil, it provides 
no hints for distinguishing affected trees from healthy grass, as can be seen in Figure 13c. This 
motivated the usage of a suitable machine-learning algorithm based on at least the two-dimensional 
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space constituted by NIR and RED values. It turned out that the usage of all the five bands was 
feasible and the proposed classification approach, based on the probability maps shown in Figure 
13d and Figure 14d clearly separated affected tress from healthy trees, and from grass and bare soil. 

It should be mentioned that recent studies on Xf have been conducted using hyperspectral 
sensors. The advantage of using hyperspectral indices is that precise diagnoses can be performed, 
distinguishing further between positive asymptomatic and symptomatic trees. This was used in 
Reference [67], where the phaeophytinization index (NPQI) calculated using narrow blue 415 and \5 
nm spectral reflectance bands proved effective. In the same study, it was shown that NDVI did not 
differ significantly between asymptomatic and symptomatic trees. In our work, too, indices such as 
NDVI were discarded for the purpose of classification; however, we found that using multispectral 
imagery, which can be obtained with less demanding hardware than hyperspectral images, and 
directly processing the five broad bands with LDA was sufficient to discriminate between negative 
and symptomatic trees.  

The same observation made for Figure 14c, that NDVI does not differentiate trees from grass, 
also motivated the approach used for tree segmentation. Indeed, the algorithm proposed in this paper 
takes into account several parameters, not only spectral ones but also points’ elevation, to accomplish 
the segmentation task in a robust way. However, it should be stressed that the elevation of points 
was obtained using photogrammetry on images shot with the multispectral sensor. In contrast, 
sensors such as LiDAR (light detection and ranging) can be used to ensure higher reconstruction 
accuracy and high point density, with good performance in the precise determination of canopy 
geometry, as was analyzed in Reference [79]. In our work, the precise analysis of canopy geometry 
was unnecessary and the obtained sparse 3D reconstruction, even if more prone to errors than 
LiDAR, nonetheless permitted identification of all trees thanks to our purposely developed 
segmentation algorithm. 

As previously stated, a few non-olive trees were discarded from processing in Figure 13. That 
exclusion was performed manually. Automatic methods for tree species recognition have been 
proposed in the literature; LiDAR data together with geometric models were used to distinguish 
among five species in forest plots in Finland with a classification accuracy above 93% [80]. However, 
such a technique was not applied in our work in order to relax hardware requirements. In Reference 
[81], it was shown that shape, texture, and color analysis of airborne winter imagery taken with a 
pocket camera could discriminate between three boreal forest species with 82% accuracy. Even if tree 
segmentation was facilitated by snow on the ground in that study, it is foreseen that this class of 
techniques may be exploited to complement the method proposed in this paper, which does not 
suffer from background discrimination, in order to automatically select olive trees. 

5. Conclusions 

In this paper, a technique is presented to monitor the spread of olive quick decline syndrome 
(OQDS) in olive trees using remote sensing with a multispectral camera mounted on a multirotor 
UAV. The entire data flow is described, including preprocessing to obtain calibrated reflectance 
images, 3D reconstruction of a sparse cloud of points with stereophotogrammetry, segmentation of 
trees, and classification of their health status.  

Segmentation was complicated by the presence of grass on the soil; hence, a hybrid approach 
was used based on the combination of multispectral information and spatial data, producing a mean 
Sørensen–Dice similarity coefficient of about 70% with respect to the ground truth. That value was 
worsened with respect to the intermediate segmentation result because it took into account the final 
morphological erosion of segmented trees aimed at reducing the superposition of terminal parts of 
branches with soil; that erosion was introduced because including soil areas may reduce classification 
accuracy. It can therefore be assumed that there is a trade-off between segmentation and classification 
accuracy. It should be appreciated that in one step of the segmentation algorithm, an LDA classifier 
was trained using decisions made on easy cases and applied to dubious ones. This technique has the 
advantage of being potentially self-adapting to different kinds of trees and soil. In this work, the LDA 
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classifier was trained on each multispectral stack separately, but training on a whole set of 
homogenous stacks would increase further its reliability. 

Detection of disease was based, again, on an LDA classifier trained on segmented trees from five 
band multispectral stacks. Hence, in this approach, all the available spectral information was used 
without resorting to simplified vegetation indexes. Overall, classification performance was very high, 
with 98% sensitivity and 100% precision in a test set of 71 trees, 75% of which presented OQDS. 

Moreover, the proposed method is computationally feasible. Indeed, processing times for both 
segmentation and classification were fast enough, amounting to about 6 s. This implies that this 
system is adequate for faster and less expensive monitoring of olive orchards than sampling in the 
field by agronomists and laboratory analysis.  

As an alternative approach to segmentation, the authors are experimenting with the use of 
convolutional neural networks and have obtained promising results that will be illustrated in a future 
publication based on a larger dataset.  
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