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1. Introduction 

Arches are inherently efficient structures; they are capable to transfer loads from the superstructure to the 
foundations [1] with low structural weight. If properly shaped, they become the optimal solution to cross large spans 
and transfer high loads. Structural efficiency depends on the predominance of axial internal forces with low 
eccentricity [2-4]: in this circumstance smaller cross sections can be used with respect to beams. Contrarily, large 
eccentricities of axial internal forces or large shear stresses lead to uneconomical design, sub-exploitation of building 
materials and unnecessary self-weight [5,6]. Further design economy can be achieved via a more demanding overall 
shape optimization, aimed at satisfying specific objectives and constraints. In many cases structural volume is 
minimized. 

From the data of 55 arch bridges built during the twentieth century reported in [7], several empirical lessons may 
be learnt. The first one is that (longer span) concrete arches require, per unit length, higher material quantities as 
compared to (shorter span) post tensioned concrete girder bridges. This is an expected result, at least since arches are 
curved, whereas beams are not and, moreover, post tensioned concrete girders are not usable on large spans. The 
second lesson is that, for long span arch bridges, arch self-weight is about half of the total vertical load. Both lessons 
motivate the search for optimal (less material consuming) solutions. 

Traditionally, it is since the 17th century that firstly Galileo and next Hooke approached the hanged chain 
problem, but more accurate solutions, published on Acta Eruditorum, are due to Bernoulli, Leibniz and Huygens. 
Since then, the catenary curve has been addressed as optimal solution for compressive arch ribs under directly 
applied loads, or for suspended cables in tension. Catenary arches show properties of pure compression, without 
bending moment or shear stress. A chain suspended between two points will form this curve, which is routinely used 
for arches, and sometimes for shells (although this is not fully correct due to bidimensional stiffness). It is worth to 
remember that Hooke, as reported by Heyman, was the first experimentalist; he introduced the concept of inverted 
catenary as optimal arch form. Significant support was also given by Gaudí, Otto and Isler during the 19th and 20th 
century. These traditional studies focused on the hanged chain problem mainly regarded masonry arches in which 
opening of joints between vassoirs and sliding at interfaces must be avoided.  

Another more recent approach is focused on the search of the optimal shape of arches modeled as elastic 
structures. In this context, a very interesting study on moment-less arches was proposed by Lewis [13]. In his 
mathematical model, a prediction on a simply supported arch rib shape is presented. Both arch self-weight and a 
uniformly distributed load are included in the analysis in order to show which geometry, among parabolic or 
catenary arch, is the most suitable one. Results show that catenary arch shape produces lower stresses. 

Another very recent analytical study about arch configuration is due to Osserman [14]; he clarifies in a precise 
and mathematical fashion the motivations of the Gatway Arch shape in St. Louis. 

A challenging view on these results can be also found in Tyas et al. [15] where it is proved, by numerical 
evidences, that a parabolic funicular is not necessarily the optimal structural form to carry a uniform load between 
fixed supports; so an explicit analytical expression for geometry and stress is proposed in order to design suitable 
truss systems emerging from the supports and thus obtain a global optimization. 

A fresh look upon optimization approach is also presented in the study by Vanderplaats and Han [16], where an 
optimization technique based on an iterative force approximation method is combined with a finite-element 
technique to obtain a minimum arch volume, by assuming variable cross-section. Further studies have been 
performed, for both buildings and bridges in [8-11] and [17, 18]. 

This study is focused on the optimal design of an elastic plane circular arch having fixed span L, uniform cross 
section and subjected to a uniform vertical load and to its self-weight. We assumed that the only non-null 
deformation is the bending curvature. Although the obtained results are not framed in a general context, they allow 
us to highlight the main variables governing the problem and are useful for predesign purposes. 

2. Problem statement 

 In Fig.1a the static scheme of the right half of a circular arch of radius R is represented, in which ϑ is 
the colatitude of a generic section and β the colatitude of the end section.  
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Intermediate condition between hinged and clamped supports are considered, i.e. bending springs of stiffness K 
are applied at end sections (Fig. 1a). 

 

 
                    Fig.1: a) Static scheme. b) Primary structure in force method. 

 
The arch has a uniform cross section area A, is made up of a homogeneous material with specific gravity weight γ 
and is subjected to its self-weight and to a uniformly distributed vertical load for unit horizontal length q. So the 
tangent load p and normal load pn for unit length of arch are given by 

 𝑝𝑝τ =  𝑞𝑞𝑐𝑐𝑜𝑜𝑠𝑠𝜗𝜗 + 𝛾𝛾𝐴𝐴 sin𝜗𝜗
      𝑝𝑝𝑛𝑛 = − 𝑞𝑞𝑐𝑐𝑜𝑜𝑠𝑠𝜗𝜗 + 𝛾𝛾𝐴𝐴 cos𝜗𝜗 

,    (1) 

where the unit vectors n and  are shown in Fig. 1a and qcos is the applied vertical load for unit length of arch. The 
equilibrium equations can be written as 

 
 

 𝑁𝑁′ 𝑠𝑠 + 𝑇𝑇 𝑠𝑠 
𝑅𝑅 = − 𝛾𝛾𝐴𝐴𝑠𝑠𝑖𝑖𝑛𝑛  𝑠𝑠𝑅𝑅 + 1

2 𝑞𝑞 𝑠𝑠𝑖𝑖𝑛𝑛  
2𝑠𝑠
𝑅𝑅   

𝑇𝑇′ 𝑠𝑠 − 𝑁𝑁 𝑠𝑠 
𝑅𝑅 =  𝛾𝛾𝐴𝐴𝑐𝑐𝑜𝑜𝑠𝑠  𝑠𝑠𝑅𝑅 + 𝑞𝑞𝑐𝑐𝑜𝑜𝑠𝑠2  𝑠𝑠𝑅𝑅  
𝑀𝑀′ 𝑠𝑠 + 𝑇𝑇 𝑠𝑠 = 0

  

  ,                                                                                      (2) 

where: s= R; N  is the axial internal force; T is the shear internal force and M is the bending moment. 
Togheter with the above equations, the following boundary conditions must be fulfilled 

 
𝑇𝑇 0 = 0
𝑁𝑁 0 = −𝐻𝐻
𝑀𝑀 𝛽𝛽 = −𝑋𝑋

 

,           (3) 

where X and H are the horizontal thrust and the negative bending moment at the end sections, which will be 
considered redundant forces. The following dimensionless mechanical variables are now introduced: 

𝑛𝑛 = 𝑁𝑁
𝑞𝑞𝐿𝐿 ;   𝑡𝑡 = 𝑇𝑇

𝑞𝑞𝐿𝐿 ;   𝑚𝑚 = 𝑀𝑀
𝑞𝑞𝐿𝐿2 ;  

𝜇𝜇 = 𝛾𝛾𝐴𝐴
𝑞𝑞   ; ℎ = 𝐻𝐻

𝑞𝑞𝐿𝐿 ;   𝑥𝑥 = 𝑋𝑋
𝑞𝑞𝐿𝐿2 

        .                       (4) 
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and the geometric relation  

   𝑅𝑅𝐿𝐿 = 1
2 sin 𝛽𝛽                                                                                                                                                   (5) 

is also considered.  Equations (1-5) allow us to derive the dimensionless internal forces n, t and the dimensionless 
bending moment m as follows: 
𝑛𝑛 𝜗𝜗, 𝛽𝛽, ℎ = 1

2  −2ℎcos 𝜃𝜃 − csc 𝛽𝛽 sin 𝜃𝜃  𝜃𝜃𝜇𝜇 + sin 𝜃𝜃   ;         (6a) 

𝑡𝑡 𝜗𝜗, 𝛽𝛽, ℎ = 1
2  −2ℎsin 𝜃𝜃 + csc 𝛽𝛽 cos 𝜃𝜃  𝜃𝜃𝜇𝜇 + sin 𝜃𝜃   ; 

        (6b) 

𝑚𝑚 𝜗𝜗, 𝛽𝛽, ℎ, 𝑥𝑥 = 1
8 (−8𝑥𝑥 − cot(𝛽𝛽)2 + 2(𝛽𝛽𝜇𝜇 − 2hcos(𝜃𝜃))csc(𝛽𝛽) + 2cot(𝛽𝛽)(2ℎ + 𝜇𝜇csc(𝛽𝛽))
+ csc(𝛽𝛽)2(−2𝜇𝜇cos(𝜃𝜃) + cos(𝜃𝜃)2 − 2𝜃𝜃𝜇𝜇sin[𝜃𝜃])).             (6c)                                                               

Next, to determine the dimensionless redundant forces x and h, the Force Method is applied. As already stated, the 
curvature κ is assumed as the only non-null deformation, expressed by: 

M = EJκ   .    (7) 

The primary structure is shown in Fig. 1b and the compatibility conditions ux(B)=0 and (B)+X/k=0 are imposed, 
where ux(B) and (B) are the horizontal displacement and the rotation at the end section B. 
Then, by means of virtual force theorem, the two compatibility conditions lead to the system of simultaneous 
equations: 

 
  
 

  
 𝐿𝐿

2𝑠𝑠𝑖𝑖𝑛𝑛𝛽𝛽 
𝑚𝑚ℎ 𝑚𝑚
𝐸𝐸𝐽𝐽 𝑑𝑑𝜃𝜃

𝛽𝛽

0

= 𝐿𝐿
2𝑠𝑠𝑖𝑖𝑛𝑛𝛽𝛽 

𝑚𝑚 𝜗𝜗, 𝛽𝛽, 1,0  𝑚𝑚 𝜗𝜗, 𝛽𝛽, ℎ, 𝑥𝑥 
𝐸𝐸𝐽𝐽 𝑑𝑑𝜃𝜃 =

𝛽𝛽

0

0

𝐿𝐿
2𝑠𝑠𝑖𝑖𝑛𝑛𝛽𝛽 

𝑚𝑚𝑥𝑥 𝑚𝑚
𝐸𝐸𝐽𝐽 𝑑𝑑𝜃𝜃 = 𝐿𝐿

2𝑠𝑠𝑖𝑖𝑛𝑛𝛽𝛽 
𝑚𝑚 𝜗𝜗, 𝛽𝛽, 0,1  𝑚𝑚 𝜗𝜗, 𝛽𝛽, ℎ, 𝑥𝑥 

𝐸𝐸𝐽𝐽 𝑑𝑑𝜃𝜃
𝛽𝛽

0

= −𝑥𝑥𝑘𝑘

𝛽𝛽

0

 

               ,                                                     
                         (8) 

where k=KL/EJ is the dimensionless stiffness of the springs; m is given by Eq.(6c); mh is the dimensionless bending 
moment due to a unit thrust and mx= -1. The dimensionless redundant forces x and h are thus determined by solving 
Eqs. (8): 

𝑥𝑥 = −((𝑘𝑘csc 𝛽𝛽 2(27 − 36(1 + 4𝛽𝛽2)𝜇𝜇cos⁡(𝛽𝛽) + 8(−4 + 3𝛽𝛽2)cos⁡(2𝛽𝛽) + 36𝜇𝜇cos(3𝛽𝛽) + 5cos⁡(4𝛽𝛽) 

+ 252𝛽𝛽𝜇𝜇sin⁡(𝛽𝛽) − 96𝛽𝛽3𝜇𝜇sin⁡(𝛽𝛽) − 28𝛽𝛽sin(2𝛽𝛽) + 12𝛽𝛽𝜇𝜇sin(3𝛽𝛽) + 2𝛽𝛽sin(4𝛽𝛽)))/(192(−2𝑘𝑘 +
−2𝑘𝑘𝛽𝛽23 cos 𝛽𝛽 +  2𝑘𝑘cos(2𝛽𝛽) + 3cos⁡(3𝛽𝛽) + 6𝛽𝛽sin⁡(𝛽𝛽) + 𝑘𝑘𝛽𝛽sin⁡(2𝛽𝛽) + 2𝛽𝛽Sin(3𝛽𝛽)))  
   (9a) 

ℎ = (csc⁡(𝛽𝛽)(9 + 48𝑘𝑘𝜇𝜇 − 24𝑘𝑘𝛽𝛽2𝜇𝜇 − 3 𝑘𝑘 + 2 −9 + 4𝛽𝛽2 𝜇𝜇 cos 𝛽𝛽  
+ 4 −4 + 3𝑘𝑘 −4+𝛽𝛽2 𝜇𝜇 cos 2𝛽𝛽 + 3𝑘𝑘cos 3𝛽𝛽 − 54𝜇𝜇 cos 3𝛽𝛽 +

24𝛽𝛽2𝜇𝜇 cos 3𝛽𝛽 + 7 cos 4𝛽𝛽 + 6𝑘𝑘𝛽𝛽 sin 𝛽𝛽 − 36𝛽𝛽𝜇𝜇 sin 𝛽𝛽 − 42𝑘𝑘𝛽𝛽𝜇𝜇 sin 2𝛽𝛽 +
2𝑘𝑘𝛽𝛽 sin 3𝛽𝛽 − 60𝛽𝛽𝜇𝜇 sin 3𝛽𝛽 ) + 6𝛽𝛽Sin(4𝛽𝛽))) /(24(−2𝑘𝑘 + 2𝑘𝑘𝛽𝛽2 − 3 cos 𝛽𝛽 +
2𝑘𝑘cos 2𝛽𝛽 + 3 cos 3𝛽𝛽 + 6𝛽𝛽 sin 𝛽𝛽 ) + 𝑘𝑘𝛽𝛽sin⁡(2𝛽𝛽) + 2𝛽𝛽sin⁡(3𝛽𝛽)))    .  (9b) 
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3.  Optimal solution 

The optimal shape that minimizes the arch volume is herein searched. In each section the stress under axial-bending 
condition must satisfy the constraint: 

max =   𝑀𝑀𝑊𝑊 + 𝑁𝑁
𝐴𝐴 = 𝑞𝑞𝐿𝐿

𝐴𝐴  𝐿𝐿𝐴𝐴
𝑊𝑊   𝑚𝑚 − 𝑛𝑛 ≤ 𝑓𝑓𝑑𝑑  

                                                                                                 (10) 

where W is the section modulus; fd is the design strength of the material and the dimensionless axial force n and the 
dimensionless bending moment m are given by Eqs. (6) and (9). In (10) it has been considered that n is always 
negative. For the structural scheme under examination it is not possible to determine a priori in which section the 
stress max reaches its maximum value. To highlight this circumstance in Fig.2 the dimensionless moment m is 
drawn. We notice that for small values of k (in the range 1-10) the maximum bending moment is attained in 
correspondence of an internal section, while for high values of k (>10) it is attained at end sections (Fig. 2). 

 

 
Fig. 2    Function m versus  for =/4 and = a) k=5; b) k=500.  

 
As a result, the cross section area A must be determined as 

𝐴𝐴 = max
0≤ϑ≤β

𝑞𝑞𝐿𝐿
𝑓𝑓𝑑𝑑

 −𝑛𝑛 +  𝜆𝜆 𝑚𝑚    
                                                                                                       (11)  

where λ is a slenderness parameter, defined as λ =AL/W. For instance, in case of rectangular section, we have λ 
=6L/h, where h is the height of the section. Eq. (11) cannot be directly solved since the dimensionless axial force n 
and the bending moment m depend on the cross-section area A through the parameter  defined in Eq. (4). To 
overcome this drawback, the dimensionless internal forces are written as 

𝑛𝑛 = 𝑛𝑛𝑞𝑞 + 𝜇𝜇𝑛𝑛𝜇𝜇  
𝑚𝑚 = 𝑚𝑚𝑞𝑞 + 𝜇𝜇𝑚𝑚𝜇𝜇     (12) 

and the dimensionless span 𝜂𝜂 = 𝛾𝛾𝐿𝐿/𝑓𝑓𝑑𝑑   is introduced. Since we have 

   𝜇𝜇 = 𝜂𝜂 𝐴𝐴𝑓𝑓𝑑𝑑
𝑞𝑞𝐿𝐿  

        ,   (13) 

Eq. (11) becomes  
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𝐴𝐴 𝛽𝛽, 𝜆𝜆, 𝜂𝜂 = 𝑞𝑞𝐿𝐿
𝑓𝑓𝑑𝑑

max
0≤ϑ≤β

−𝑛𝑛𝑞𝑞 + 𝜆𝜆 𝑚𝑚𝑞𝑞 
1− 𝜂𝜂 −𝑛𝑛𝜇𝜇 + 𝜆𝜆 𝑚𝑚𝜇𝜇   

 
.                            (14) 

In (14) it has been considered that nq and nµ are always negative. Since it is no possible to obtain a closed-form 
solution for Eq. (14), the minimum feasible cross section area A(, , ) must be searched numerically. The above 
introduced dimensionless span  has a clear mechanical interpretation: it is the ratio between the arch span L and the 
height ℎ = 𝑓𝑓𝑑𝑑/𝛾𝛾 of a column made by the same material of the arch, subjected to its self-weight, in which at the 
base section the design stress fd is attained. In view of Eq. (5) the volume V can be finally obtained as 

𝑉𝑉 β,𝜆𝜆, 𝜂𝜂 = 𝐴𝐴 𝛽𝛽, 𝜆𝜆,𝜂𝜂 𝐿𝐿𝛽𝛽
sin𝛽𝛽 = 𝑞𝑞𝐿𝐿2

𝑓𝑓𝑑𝑑
𝛽𝛽

sin𝛽𝛽 max
0≤ϑ≤β

 −𝑛𝑛𝑞𝑞 + 𝜆𝜆 𝑚𝑚𝑞𝑞  
 1− 𝜂𝜂 −𝑛𝑛𝜇𝜇 + 𝜆𝜆 𝑚𝑚𝜇𝜇    

 
                                                 (15) 

The obtained result is shown in Fig.3, in which the dimensionless volume fdV/qL2 is drawn versus the rise to span 
ratio 

𝑓𝑓
𝐿𝐿 = 1− cos𝛽𝛽

2 sin𝛽𝛽  
     (16) 

A fixed value  =600 of the slenderness parameter is firstly considered, whereas the dimensionless span takes the 
values  ={0.1, 0.2, 0.3, 0.4, 0.5} and the dimensionless spring stiffness is set equal to k ={0, 10, 50, 500}. 
 

 
Fig. 3 Function (fdV/qL2) versus f/L for =600 a) k=0; b) k=10; c) k=50; d) k=500.  

 
It emerges that, for all curves, the values of f/L in the range [0.1, 0.15] produce the best values of the dimensionless 
volume fdV/qL2 . It is worth to remark that this range of optimal values of f/L is independent from the applied load q 
and from the span L . The graphs also show that, as expected, the dimensionless span η strongly influences the value 
of the optimal dimensionless volume, so it results a fundamental parameter governing the design. In fact, in view of 
Eq. (15), the dimensionless volume tends to infinity when in a generic section we have 

 −𝑛𝑛𝜇𝜇 + 𝜆𝜆𝑚𝑚𝜇𝜇 → 1
𝜂𝜂 

.                            (17)  
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It could be shown that when Eq. (17) holds, the condition max=fd is immediately attained yet for a null value of q, as 
a effect of the self-weight only. More specifically, we can find a range of feasible values of the rise to span ratio f/L 
for each set of values of   and k. At the boundaries of this range the dimensionless volume tends to infinity, 
regardless the value of the external load q. As it can be inferred from Figs. 3 and 4, the main variable determining 
this range is the dimensionless span  As expected, by increasing the dimensionless span η the range of feasible 
values for the dimensionless rise f/L tends to narrow and the minimal dimensionless volume increases. In Fig, 4 the 
same graphs of Fig. 3 are derived for  =200. As expected, design solutions with low slenderness lead to lower 
values of the minimal dimensionless volume.  

 

 
Fig. 4 Function (fdV/qL2) versus f/L for =200 a) k=0; b) k=10; c) k=50; d) k=500.  

 
With regard to the influence of the dimensionless constraint stiffness k, from Figs. 3 and 4 it emerges that the 

best value of this parameter is about 10, so not corresponding neither to clamped ends or to simply supported ends. 
Finally, the following design procedure can be proposed based on the above graphs. First, the dimensionless span η 
is determined by the material properties , fd and the span L. Next, the optimal values of the rise to span ratio 𝑓𝑓/𝐿𝐿 
and of the dimensionless volume fdV/qL2 are evaluated by the graphs in Fig. 3 and Fig.4, for assigned values of 
 and k. 

The evaluation of the optimal volume V allows us on one side to estimate the cost of the structure and on the 
other to calculate the corresponding optimal cross-section dimensions. For example, in the case of rectangular cross-
section, the height h and the width b could be obtained, after fixing the slenderness parameter , by the following 
relations: 

ℎ = 6𝐿𝐿
𝜆𝜆  

 

𝑏𝑏 = 𝑉𝑉𝜆𝜆 sin𝛽𝛽
6𝐿𝐿2                                                                                                  (18) 

where the colatitude β can be determined by the dimensionless rise 𝑓𝑓  solving the equation 

𝑓𝑓
𝐿𝐿 = 1 − cos 𝛽𝛽

2 sin𝛽𝛽  
                                                                                                (19) 
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which leads to a second-degree equation in the unknown cos. 

4. Conclusions 

In the present study a semi analytical solution for the optimal shape of a plane arch with bending springs at ends has 
been presented. Although the procedure is referred to the particular case of circular arches with uniform cross 
section, it allows to highlight the main variables governing the solution, in particular the dimensionless span and the 
rise to span ratio. Further, we have found that values of the rise to span ratio in the range [0.1, 0.15] in all cases here 
examined lead to a minimal weight, independently from the applied load q, from the span L and from the material 
properties.  
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