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Abstract: In this paper, a Multi Relaxation Time Lattice Boltzmann scheme is used to describe the
evolution of a non-Newtonian fluid. Such method is coupled with an Immersed-Boundary technique
for the transport of arbitrarily shaped objects navigating the flow. The no-slip boundary conditions on
immersed bodies are imposed through a convenient forcing term accounting for the hydrodynamic
force generated by the presence of immersed geometries added to momentum equation. Moreover,
such forcing term accounts also for the force induced by the shear-dependent viscosity model
characterizing the non-Newtonian behavior of the considered fluid. Firstly, the present model is
validated against well-known benchmarks, namely the parabolic velocity profile obtained for the
flow within two infinite laminae for five values of the viscosity model exponent, n = 0.25, 0.50, 0.75,
1.0, and 1.5. Then, the flow within a squared lid-driven cavity for Re = 1000 and 5000 (being Re the
Reynolds number) is computed as a function of n for a shear-thinning (n < 1) fluid. Indeed, the local
decrements in the viscosity field achieved in high-shear zones implies the increment in the local
Reynolds number, thus moving the position of near-walls minima towards lateral walls. Moreover,
the revolution under shear of neutrally buoyant plain elliptical capsules with different Aspect Ratio
(AR = 2 and 3) is analyzed for shear-thinning (n < 1), Newtonian (n = 1), and shear-thickening
(n > 1) surrounding fluids. Interestingly, the power law by Huang et al. describing the revolution
period of such capsules as a function of the Reynolds number and the existence of a critical value, Rec,
after which the tumbling is inhibited in confirmed also for non-Newtonian fluids. Analogously,
the equilibrium lateral position yeq of such neutrally buoyant capsules when transported in a
plane-Couette flow is studied detailing the variation of yeq as a function of the Reynolds number as
well as of the exponent n.

Keywords: immersed boundary method (IBM); dynamic forcing IBM; multi relaxation time (MRT);
moving least squares; non-Newtonian rheology; particle margination

1. Introduction

Nowadays, biological systems are triggering the interest of more and more scientists, highlighting
the need of affordable analytical and numerical tools for describing processes in a wide range of
spatial and temporal scales, within a number of competing biophysical effects. Without the conceit
of being exhaustive, one can think at: the modeling of protein folding/unfolding when interacting
with biological substrates [1–4]; the analysis of patterns induced by tissue growth [5] and detection of
disease by tomography images [6,7]; nano-particles as promising mean in early-detection, treatment,
and follow-up of cancer [8,9].

Specifically, nanomedicines have been widely accepted in the last few years as efficient carriers
of therapeutics for patient- and disease-specific treatments [8,9]. For the specific release of drugs,
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two steps are required: nano-constructs accumulation into capillary peripheries of diseased tissue
(margination) and firm adhesion to tissutal walls [10–12]. Indeed, particles’ non-Newtonian rheology
plays a fundamental role in understanding specific mechanisms for predicting particle margination
and thus for the rational design of nanopharmaceuticals [13–16]. Efficient computational techniques
for biologically inspired problems are quickly gaining interest in the scientific community.
Reliable numerical simulations of biological systems give fundamental insights for unraveling the
physics behind such complex scenarios and, in turn, with dramatic reduction of the economic burden
needed for experiments. In this context, due to the large number of parameters involved in the transport
of platelets-like objects, computational methods are becoming of ever increasing interest [17,18].

In this work, a dynamic-Immersed–Boundary (IB) method is combined with a Multi-Relaxation–
time Lattice Boltzmann (MRT-LB) scheme for describing the evolution of capsules transported in
incompressible flows [19]. This method was extensively studied and validated by Coclite and
collaborators [20–25]. Here, the authors propose an extension of such scheme to non-Newtonian
fluids. Specifically, the forced Navier–Stokes equation is modeled through a two-dimensional MRT
scheme with nine reticular velocities (D2Q9) in which the Guo forcing procedure is adopted [26].
Such forcing term accounts for spreading onto the lattice the total force exerted by the fluid: the body
force due to the presence of an immersed body and the force induced by the adopted shear-dependent
viscosity model. On one hand, no-slip boundary conditions on an immersed structures are imposed
by a body-force accounting for the hydrodynamics force generated by the presence of the immersed
body [19]. Immersed structures are transported as a collection of massive Lagrangian points connected
by linear elements and their motion is obtained by solving the Euler–Newton equations for the center
of mass and the revolution angle [27]. On the other hand, non-Newtonian effects on the fluid evolution
are appointed through the shear-stress dependent force resulting from the local variation in the
apparent viscosity regulated by the Carreau–Yasuda model for non-Newtonian fluids [28]. Commonly,
non-Newtonian effects are accounted in such frameworks by considering the correlation between
the relaxation time and the kinematic viscosity; thus, for each time step, the apparent viscosity field
is computed and locally the relaxation time is obtained [29–33]. However, it is easy to recognize
that such procedure may fall out of the stability range of relaxation times for the specific Lattice
Boltzmann technique implemented during computations [34–38]. On the contrary, by using a forcing
term to incorporate all of the non-Newtonian effects without any local variation of the relaxation
time, the stability of the numerical scheme is granted [28]. Specifically, the proposed MRT-IB scheme
presents two key features: on one side, as is widely known, MRT frameworks allow for accurately
reconstructing incompressible flows characterized by a larger interval of Reynolds numbers with
respect to Single Relaxation Time (SRT) formulation by overcoming SRT stability constraints without
losing the ability of computing complex flows in the limit of small-but-non-null Reynolds numbers;
on the other side, by accounting for the non-Newtonian effects through the shear-stress dependent
force term without considering any variation of the relaxation time, the present formulation overcomes
the second source of possible stability issues of the more classical SRT framework.

Firstly, the proposed model is validated by comparing the computed velocity profiles for a
non-Newtonian fluid within two laminae driven by a constant pressure gradient with analytical
predictions. Specifically, the plane-Pouseuille flow at Reynolds number (Re) 200 for a Carreau–Yasuda
fluid with n = 0.25, 0.5, 0.75, 1.0, and 1.5 is computed. Moreover, this test is repeated on five
different Eulerian meshes, and the second order accuracy of the present formulation is demonstrated.
Then, the flow within a lid-driven cavity for Re = 1000 and 5000 when considering a shear-thinning fluid
is analyzed. Interestingly, the minimum of the velocity profile taken at x/L = 0.5 in the near south-wall
region displaces toward the wall for n < 1. The adopted model for the shear-dependent viscosity
predicts the local decreasing of the kinematic viscosity as increases the local shear-rate (vice versa for
n > 1). For lower values of n in the near-wall region, strong shear-strain is registered and thus the
reduction of the local viscosity with, indeed, a local gain in the Reynolds number. This mechanism
enhances the recirculation in the near-wall region and consequently the displacement of the velocity
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profile minimum. The dynamic behavior of elliptical particles immersed in a linear laminar flow
is also studied for a shear-thinning (n < 1), Newtonian (n = 1), and shear-thickening (n > 1) fluids.
Specifically, on one side, the tumbling motion of a neutrally buoyant capsule under shear is computed
by considering two laminae countermoving with opposite velocity and the resulting revolution of a
particle placed in the center of the domain is observed. This motion is analyzed by measuring the
revolution period T as a function of the Reynolds number and in term of particle shape (elliptical
particles with aspect ratio equal to 2 and 3) for n = 0.5, 1.0, and 1.5. The existence of a critical value for
the Reynolds number Rec is demonstrated for all of the investigated values of n. As per the lid-driven
cavity test case, smaller (larger) values of the exponent n prescribe smaller (larger) Rec for both particles,
AR = 2 and 3. Analogously, this effect is due to the local variations in the apparent viscosity field
induced by the local shear. On the other side, the scenario is slightly complicated by considering one
of the two countermoving laminae (the bottom wall) with null velocity, in order to observe particles
transport along with their rotation. As is well known, particles freely moving in a Couette flow would
achieve an equilibrium lateral position, yeq, depending on their shape and on the Reynolds number
of the flow. In this work, we focus on the effect of the exponent n when considering an elliptical
particle with AR = 2 in a Couette flow at Re ∈ [50− 200]. It is found that n dramatically influences the
margination abilities of such particle for Re > 100 and that this effect is stronger for higher Re as well as
for lower n.

This systematic analysis of the rheology of inertial particle immersed in non-Newtonian linear
laminar flows provide valuable insights for the rational design on micro- and nano-particles for the
specific delivery of pharmaceuticals. Specifically, the exponent n of the shear-dependent viscosity
model plays a major role in particles’ margination abilities by moving upward or downward the critical
Reynolds number inhibiting their tumbling motion as a function of n. The existence of such critical
Reynolds number inhibiting the tumbling as well as the measure of the equilibrium lateral positions
as a function of the Reynolds number were already pointed out for Newtonian fluids numerically
and experimentally into several papers [39–41]. However, a thorough analysis of such phenomenon
including non-Newtonian effects was missing. In a future paper, we plan to study in detail the system
dynamics, when the elastic deformation of such capsules is allowed. To this scope, the capsules will be
modeled as an elastic ring with extensional and bending stiffness that surrounds an incompressible
fluid (see [42]).

2. Computational Method

2.1. Lattice Boltzmann Method

The forced Boltzmann equation is solved adopting the Multiple Relaxation Time (MRT) framework
on a two-dimensional manifold [43]. Specifically, the evolution of the fluid is defined in terms of the set
of nine discrete distribution functions obeying the Boltzmann equation and defined onto the velocity
space, [ fi], (i = 0, . . . , 8):

fi(~x +~ei∆t, t + ∆t)− fi(~x, t) = −M−1
i,j

(
Sij[mi(~x, t)−meq

i (~x, t)]
)
+
(

1− Sij
∆t
2

)
mF

j (~x, t) , (1)

in which ~x and t are the spatial and time coordinates, respectively; ∆t is the time step; and [~ei],
(i = 0, ..., 8) is the set of N discrete velocities depicting the local discretization of the velocity space.
On the two-dimensional square lattice with nine reticular velocities (D2Q9) [44], the set of discrete
velocities is given by
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~ei =


(0, 0) if i = 0 ,(

cos
(

(i−1)π
2

)
, sin

(
(i−1)π

2

))
if i = 1− 4 ,

√
2
(

cos
(

(2i−9)π
4

)
, sin

(
(2i−9)π

4

))
if i = 5− 8 .

(2)

Mi,j (M−1
i,j ) is a matrix transforming the distribution functions fi into the moment vector mi = Mji f j

( fi = M−1
i,j mj):

M =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 1 1 1 1 1
−4 −1 −1 −1 −1 2 2 2 2
4 −2 −2 −2 −2 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 −2 0 2 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
0 0 −2 0 2 1 1 −1 −1
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (3)

Si,i is the relaxation times matrix. It is diagonal into the moment space, Si,i = diag(s0, s1, s2, s3, s4, s5,
s6, s7, s8), with si the i-th relaxation time. s0, s3, and s5 are set equal to 1 in order to ensure
the perfect conservation of the corresponding macroscopical quantities, namely ρ, ρux, and ρuy.
Then, s1 = s2 = 1.4 and s6 = 1.2 while s7 = s8 = sν [43]. The kinematic viscosity of the
flow is strictly related to sν as ν = c2

s (
1
sν
− ∆t

2 ), being cs =
1√
3

the reticular speed of sound. The first two
statistical moments of the distribution functions define the fluid density ρ = ∑i fi, and the momentum
ρu = ∑i fiei +

∆t
2 ftot while the pressure is obtained with the ideal equation of state p = c2

s ∑i fi.
The local equilibrium moments of the distribution functions [meq

i ](i = 0, ..., 8) read:

meq
i =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ρ

ρ(−2 + 3(u2
x + u2

y))

ρ(1− 3(u2
x + u2

y))

ρux

−ρux

ρuy

−ρuy

ρ(u2
x − u2

y)

ρuxuy

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (4)

On the other hand, being ftot, the total force acting on the fluid, the Guo forcing term [26,45]
[mF

i ](i = 0, ..., 8) is given by:

mF
i =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0
1
c4

s
(ftot · u)

− 1
c4

s
(ftot · u)
f tot
x
− f tot

x
f tot
y
− f tot

y
2( f tot

x ux − f tot
y uy)

ftot · u

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (5)

In the proposed scheme, the total force acting on the fluid is composed of a body force, fib [19,20]
accounting for the presence of immersed bodies and a shear-dependent force, fnw, accounting for
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the non-Newtonian effects on the apparent viscosity of the fluid [28]. Finally, Dirichlet boundary
conditions are imposed on external boundaries and treated with the known–velocity bounce back
procedure by Zou and He [46].

2.2. Shear Induced Apparent Viscosity Treatment

Carreau–Yasuda Model. In non-Newtonian fluids, the viscosity nonlinearly varies with the
shear-rate. Specifically, this nonlinear relationship correlates the local kinematic viscosity with the
shear strain tensor. In this paper, the Carreau–Yasuda model for the kinematic viscosity is adopted:

ν(γ̇)− ν∞

ν0 − ν∞
= [1 + (λγ̇)a)]

n−1
a . (6)

Specifically, this model correlates the local kinematic viscosity ν (measured in m2/s) with the local
shear-rate γ̇ (measured in 1/s) through five constitutive parameters, four of which are material specific;
ν0 and ν∞ corresponding to the null- and infinite-shear values of the kinematic viscosity; a and n
being two positive constants shaping the functional behavior of ν(γ̇); and the characteristic time
scale λ that depends on the flow. a determines the position of the inflection point of the curve ν(γ̇)

and how fast ν decreases (if n < 1) or increases (if n > 1) with γ̇. However, by varying a, only in
the low rates region γ̇ ∈ [0, 30] is registered variation in the distribution of ν/ν0 as documented in
Figure 1a. For this reason, in this paper, a is chosen to be equal to 2 as per the original Carreau model
being ν/ν0 almost unaffected by this parameter for higher values of γ̇. On the other side, n returns
whether the fluid exhibits a shear-thinning or shear-thickening behavior, while for n = 1 the perfectly
Newtonian behavior is recovered (see Figure 1b). Moreover, ν∞ plays the role of limiter constant
corresponding to the asymptotic value reached for γ̇ → ∞ (see Figure 1c). As mentioned, λ is the
characteristic time scale of the considered flow and is computed here through the Reynolds number,

Re (=
ure f lre f

νre f
). The reference viscosity νre f is chosen to be equal to ν0, while, depending on the flow

analyzed, the reference velocity ure f and length lre f are set. Note that λ−1 corresponds to the critical
shear-rate at which shear-thinning or shear-thickening effects reveal. Specifically, low values of λ

return a perfectly Newtonian behavior for the apparent viscosity while higher values give sudden
variations of ν/ν0 as depicted in Figure 1d.

Lattice–Boltzmann method for shear-rate-dependent viscosity. To avoid any stability issues
when locally varying the relaxation times as a consequence of the variation of the local viscosity as
a function of γ̇, the approach by Wang et al. [28] is adopted here. Instead of computing the local
shear-dependent viscosity and transfer the relative variation to the corresponding relaxation times
(s7 = s8 = sν), in this approach, an equivalent forcing term is considered into the momentum
equation by computing a shear-stress dependent force transferred to the distribution functions by
the forcing term defined in Equation (5). The component α of the shear-dependent force for the
Carreau–Yasuda model reads:

f nw
α = 2(ν0 − ν∞){[1 + (λ

√
2D||)

2]
n−1

2 − 1}∂αSαβ , (7)

where Sαβ is the rate-of-strain tensor:

Sαβ =
1
2

(
∂αuβ + ∂βuα

)
, (8)

through which D|| is computed being D|| = ∑αβ SαβSαβ and γ̇ =
√

2D||. The derivative of the

rate-to-strain tensor is computed as follows [28]:

∂αSαβ =
c4

s
∆x ∑

i
ei,αSαβ(x + ei∆x) . (9)
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Figure 1. Apparent viscosity as a function of the shear rate for different model parameters.
(a) Distribution of the viscosity for a = 1, 2, 3, 4, 5; n = 0.25; ν∞/ν0 = 0; and λ = 0.1. (b) Distribution
of the viscosity for a = 2; n = 0.25, 0.50, 0.75, 1.0, 1.25, 1.5, 1.75, and 2.0; ν∞/ν0 = 0; and λ = 0.1.
(c) Distribution of the viscosity for a = 2; n = 0.25; ν∞/ν0 = 0, 0.1, 0.2, 0.3, 0.4, and 0.5; and λ = 0.1.
(d) Distribution of the viscosity for a = 2; n = 0.25; ν∞/ν0 = 0; and λ = 10−6, 10−3, 10−2, 10−1, and 1.0.

2.3. Immersed Boundary Treatment and Fluid–Structure Interaction

In this paper, a particle-based model is employed by coupling the Immersed-Boundary (IB)
technique with an MRT-Lattice Boltzmann (MRT-LB) solver. The immersed body is a worm-like chain
of nv vertices linked with nl linear elements, whose centroids are usually called Lagrangian markers.
The IB procedure, extensively proposed and validated by Coclite and colleagues [19,20], is adopted here
and a moving-least squares reconstruction is employed to exchange all MRT-LB distribution functions
between the Eulerian lattice and the Lagrangian chain. Finally, the body force term in Equation (5), fib,
is evaluated through the formulation by Favier et al. [47]. Moreover, particles dynamics are determined
by the dynamics IB technique described in [19], using the solution of the Newton equation accounting
for external stresses, with such particles being rigid structures. Then, no-slip boundary conditions are
imposed using a weak coupling approach [20]. The external stresses exerted by the l-th linear element,
namely pressure and viscous stresses, read:

Fp
l (t) = (−plnl)ll , (10)

Fτ
l (t) = (τ̄l · nl)ll , (11)

where τ̄l and pl are the viscous stress tensor and the pressure evaluated in the centroid of the element,
respectively; nl is the outward normal unit vector while ll is its length. Pressure and velocity derivatives
in Equations (10) and (11) are computed using a probe in the normal positive direction of each element,
with the probe length being 1.2∆x [27]. Then, rigid motion is readily obtained by integrating all
hydrodynamics stress contributions over the particles boundary and updating both linear and angular

velocity in time as: u̇(t) = Ftot(t)
m and ω̇(t) = Mtot(t)

I , respectively, with m the immersed body mass,
Ftot and Mtot the total force and moment acting on the particle, and I the body moment of inertia.
Then, u(t) and ω(t) are derived through a second-order accurate finite difference scheme:

u(t) =
2
3

(
2u(t− ∆t)− 1

2
u(t− 2∆t) + u̇(t)∆t

)
+ O(∆t2) , (12)
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ω(t) =
2
3

(
2ω(t− ∆t)− 1

2
ω(t− 2∆t) + ω̇(t)∆t

)
+ O(∆t2) . (13)

It should be noted that the present formulation is unconditionally stable for a small deformation
of the capsule membrane and for small velocity variations applied, as previously demonstrated by
Coclite et al. [19,20].

3. Results and Discussion

3.1. Flow within Two Laminae

To validate the numerical scheme proposed in Section 2, the flow within two laminae is considered.
Specifically, a rectangular domain by the height H = 200 ∆x and length L = 6 H is adopted with periodic
boundary conditions along the x-axis (Figure 2a). A plane Hagen–Poiseuille non-Newtonian flow

is established by imposing a linear pressure drop ∆p (= 8u2
max
H

ρre f x
Re ) along the channel as a function

of the Reynolds number Re = umax H
ν0

= 200, with n being the exponent of the viscosity model
(see Equation (6)); ν0, umax and ρre f the null shear kinematic viscosity, the velocity peak value, and the
reference density, respectively. As previously discussed in Section 2.2, in the present paper, we adopt
a = 2 and ν∞ = 0. The proposed numerical scheme perfectly recovers the analytical predictions for the
parabolic velocity profile for a non-Newtonian two-dimensional Poiseuille flow driven by a constant
pressure gradient ∆p,

u(y) =
( n

n + 1

)( ∆p
ρre f ν0

)[
H/2

n+1
n − (H/2− y)

n+1
n

]
. (14)

The obtained parabolic profile for n = 0.25, 0.5, 0.75, 1, and 1.5 is compared with analytical
predictions, as reported in Figure 2b, returning a relative error of 1.968× 10−4 with respect to the
analytical solution. This test was repeated for n = 0.75 within five different Eulerian grid sizes
(H = 50, 100, 150, 200, and 250 ∆x) to prove the second-order accuracy of the present formulation.
The L2-norm of the relative error with respect to the reference solution (obtained with H = 250 ∆x),
ε = || ux−ux,H=250∆x

ux,H=250∆x
||2 is documented in Figure 2c. As reported, ε is well confined within 1% for

H > 50∆x.

Figure 2. Carreau–Yasuda flow within two parallel laminae at Re = 200. (a) Schematic of the physical
problem. (b) distribution of the normal velocity component for different values of n taken at x = 0.5 L;
dots represent numerical predictions while lines are for the analytical solutions; (c) mesh refinement
study on ux(y) profiles obtained with n = 0.75.
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3.2. Non-Newtonian Fluid in a Lid-Driven Cavity

To further validate the computational method for non-Newtonian fluids evolution, the flow in
a lid-driven cavity is computed. Specifically, a box with side L = 500 ∆x is considered. The wall at
y = ymax moves with velocity uw = (umax, 0) with umax being the velocity peak value regulated by the
Reynolds number Re = 1000 and 5000 (= umax L

ν0
); ν0 is the fluid null shear kinematic viscosity. The fluid

inside the cavity is assumed and a shear-thinning fluid with a = 2, nu∞ = 0, and n ≤ 1. The resulting
velocity distributions taken at x = 0.5 L and y = 0.5 L are reported in Figure 3a,b, for Re = 1000 and 5000,
respectively. Indeed, n = 1 returns a perfectly Newtonian fluid and resembles the reference solution
by Napolitano and Pascazio [48].

Figure 3. Carreau–Yasuda fluid in a square lid-driven cavity. Distribution of the x (left plot) and
y (right plot) components of the velocity field taken at x = 0.5 L (left plot) and y = 0.5 L (right
plot) for n = 0.2, 0.4, 0.6, 0.8, and 1.0 at Re = 1000 (a) and Re = 5000 (b). Close-ups emphasize the
near-wall velocity profiles implying the central vortex displacements obtained lowering n. Dots
represent numerical predictions obtained by Napolitano and Pascazio [48] while lines are for present
model solutions.

As demonstrated in Figure 1, by varying the exponent of the Carreau–Yasuda model for the
apparent viscosity into the shear thinning region, namely n ∈ (0, 1], an increase in the local Reynolds
number is registered due to the local decrease of the kinematic viscosity. This local variation in
the Reynolds number gives, in turn, a sensible variations in the velocity distributions taken at the
two sections x = 0.5 L and y = 0.5 L. Specifically, for Re = 1000 and n = 1 in the proximity of the
south-wall, a local minimum is found at y/L = 0.172 while, for Re = 5000, the minimum is at y/L = 0.075
(see Figure 3a,b left plots). Interestingly, for both Reynolds numbers, by varying n, the position of such
minima move closer to the south wall. The position of this minima is reported as a function of n for
Re = 1000 and Re = 5000 in Table 1.
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Table 1. Position of the minimum located into the near south-wall region for the velocity profiles taken
the section x = 0.5 L as a function of n. Re = 1000 (a) and 5000 (b).

(a) Re = 1000

n South-Wall Min. [y/L]

1.0 0.172
0.8 0.150
0.6 0.138
0.4 0.122
0.2 0.114

(b) Re = 5000

n South-Wall Min. [y/L]

1.0 0.075
0.8 0.074
0.6 0.073
0.4 0.072
0.2 0.072

3.3. Capsules Rotating under Shear

The tumbling motion of a neutrally buoyant capsule in a shear flow is considered now.
An elliptical particle with major axis d = 50 ∆x and aspect ratio equal to 2 is placed in the center of a
square domain with the side L = 10 d (see Figure 4a). Such particle is composed of 300 linear elements
to have the ratio between the Lagrangian mesh and the Eulerian grid discretization correspond to
0.3 [20]. Top and bottom walls countermove with velocity umax while periodic boundary conditions

are imposed along x. The Reynolds number of the flow is defined as Re = 4γd2

ν0
, with γ = umax

1/2L
being the shear rate and ν0 the null-shear kinematic viscosity [39]. The fluid into the square cavity
is considered as shear-thinning (n = 0.5), Newtonian (n = 1) and as shear-thickening (n = 1.5) and
the revolution period as a function of the Reynolds number is investigated. As already pointed out
in several papers [40,49,50], a particle freely moving in a shear-flow would tumble with a period
that depends on the Reynolds number of the established flow. Firstly, the revolution of the elliptical
particle is studied for Re = 100 and 500 as a function of n (= 0.5, 1.0, and 1.5). As depicted in Figure 4b,
the particle immersed in a shear flow at Re = 100 revolt with three different periods when varying n,
specifically, T = 5.5753, 4.0046, and 3.5972 for n = 0.5, 1.0, and 1.5, respectively. The revolution period
increases when decreasing n as well as the peak angular velocity being ωd/umax = 0.1607, 0.1476,
and 0.1370 for n = 0.5, 1.0, and 1.5, respectively. In the same fashion, for Re = 500, the particle is able to
maintain its tumbling motion only for n = 1 and 1.5, while for n = 0.5 the motion is inhibited and the
particle settle with an angle with the horizon θc = 0.1898 π (see Figure 4c).

The contour plot of the computed apparent viscosity is detailed in Figure 5a (left) for n = 0.5
and clearly demonstrate that in the higher shear zones (i.e., the near-particle region) the apparent
viscosity of the flow dramatically drops below 1 locally increasing the Reynolds number. On the
other hand, for n = 1.5, the same region is interested in a dramatic increase of the apparent viscosity,
thus reducing the local Reynolds number (see Figure 5a (right)). Indeed, for n = 1, no variation of ν/ν0

is observed with the fluid being reduced to a Newtonian fluid (see Figure 5a (center)). Interestingly,
the contour plots of uy/umax present non-null velocity field of the fluid enclosed by the particle for
n = 1 and 1.5, while, for n = 0.5, the internal fluid is the rest with the particle being blocked by the
flow (see Figure 5b). Note that the outer velocity field for n = 0.5 is completely symmetrical with
respect to the major axis of the capsule giving zero angular velocity on its boundary. Qualitatively,
by seeing at the out-of-plane vorticity ωzd/umax, documented in Figure 5c, the size and the intensity
of the positive-vorticity zones are balanced by the size and the intensity of the negative-vorticity zones
only for n = 0.5, while this equilibrium is unbalanced for n = 1 and 1.5. Thus, the particle is forced to
tumble for n = 1 and 1.5 accordingly to ωzd/umax trying to nullify the angular slip velocity [20].
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Figure 4. Rigid elliptical particles rotating under shear in a Carreau–Yasuda fluid. (a) schematic of
the physical problem with characteristics dimensions and length. (b,c) distribution of the angular
velocity for an elliptical particle with aspect ratio 2 for n = 0.5, 1, and 1.5 obtained for Re = 100 (b) and
500 (c).

Figure 5. Contour plot of conserved thermodynamical quantities at Re = 500. Contour plot of the
apparent viscosity (a), the y-component of the velocity (b) and out-of-plane vorticity (c) obtained for
n = 0.5, 1, and 1.5 at Re = 500.
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This tumbling motion presents a critical value for the Reynolds number (Rec) after which
the particle stops in a fixed angular position. Specifically, the tumbling period T as a function of
the Reynolds number follows a scaling law that reads: T = c(Rec − Re)−1/2 with c a positive
constant [39,40]. Indeed, the values of Rec and c depend on the particle shape and density, on the
surrounding fluid characteristics and on the blockage ratio. Here, we investigate the role of n for
neutrally buoyant elliptical particles with aspect ratio (AR) 2 and 3. The revolution period of both
particles (AR = 2 and 3) is measured as a function of the Reynolds number and the existence of Rec

is confirmed for n = 0.5, 1.0 and 1.5 (see Figure 6). The values of c and Rec are tabulated for both
particle in Table 2. Indeed, for lower values of n, lower critical Reynolds numbers are registered for
both particles even if the more elongated particle (AR = 3) presents lower Rec with respect to the ellipse
with AR = 2 regardless from n.

Figure 6. Revolution period of elliptical particles in a Carreau–Yasuda fluid. Revolution period as a
function of the Reynolds number for elliptical particles with aspect ratio 2 (a) and 3 (b) rotating in a a
Carreau–Yasuda fluid with n = 0.5, 1.0, and 1.5. Dots are for present model solutions while solid lines
represent analytical predictions.

Table 2. Parameter of the fitting scaling law for the revolution period as a function of n for rigid
elliptical particles with aspect ratio 2 (a) and 3 (b).

(a) AR = 2

n c Rec

0.5 80 300
1.0 180 2005
1.5 250 4750

(b) AR = 3

n c Rec

0.5 58 97
1.0 150 765
1.5 250 3500
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3.4. Transport of Rigid Capsules in a Shear-Thinning Couette Flow

The lateral displacement of a particle released in a non-Newtonian Couette flow established
in a rectangular duct is considered now. The computational domain corresponds to a rectangular
duct with the top wall moving with velocity umax regulated by the Reynolds number Re = umaxd

ν0
,

with d = 50 ∆x being the particle characteristic length and ν0 the null-shear value of the kinematic
viscosity. The particle is chosen as an elliptical capsule with aspect ratio 2 and is placed, initially at the
rest, at y = 0.25 H with H = 4 d and d the major axis of the ellipse. Periodic boundary conditions are
imposed at the sections x = 0 and x = L = 10 H (see Figure 7a). In this context, particles’ lateral drifting
(margination) depends on the exerted lift composed by: (i) the inertial lift due to shear slip; (ii) the lift due
to rotational slip; and (iii) lubrication effect due to the presence of the bottom wall [20]. The cooperation
between these three components shows that particles would be dislodged by their releasing position
and move laterally to find an equilibrium position as a function of the Reynolds number. The aim of
the present study is to understand the influence of n in the equilibrium position of such particles when
considering a shear-thinning fluid within the two laminae. First, the particle journey is detailed for
moderate Reynolds numbers (Figure 7b). Specifically, for all values of n, the particle reaches exactly
the channel midway for Re = 25, while, for Re = 50 and 75, the equilibrium positions slightly differ,
although they are all around ≈0.48 H. During this journey, the particles rotate with an angular velocity
that essentially depends on Re. The distributions of ωH/umax for Re = 25, 50, and 75 are depicted in
Figure 7c, only n = 1 having all of the distributions almost overlapped. For moderate-to-high Reynolds
numbers, the overall picture changes and the particles settle to significantly different equilibrium
lateral positions as a function of Re and n. The trajectory of such particles for Re = 100, 150, and 200
as a function of n is reported in Figure 7d. The tumbling motion of the particle may stop during
their journey and the lift component due to the rotational slip becoming null. This implies that the
particle would settle to a specific equilibrium position that is determined only by the lubrication and
shear slip effects. In Figure 7e, this effect is demonstrated for n = 0.2. For Re = 100, the particle
starts to tumble and moves from the releasing position 0.25 H to 0.37 H traveling from 0.9 x/H to
≈10 x/H. Then, it stays parallel to the south wall while navigating the duct from 10 x/H to 14.54 x/H
and a second rotation happens pushing the particle to 0.390 y/H. As soon as the particle reaches
the equilibrium position yeq = 0.409 y/H, the tumbling motion is inhibited (see the red solid line in
Figure 7d,e). The equilibrium position of such particle as a function of Re for all the investigated values
of n is reported in Figure 7f, demonstrating how for a shear-thinning fluid the critical Reynolds number
that inhibits the tumbling motion of immersed bodies is as small as the shear-thinning effect is strong
(as n is smaller than 1). Note that, for the presented computations, the tumbling motion was inhibited
only for n = 2 at Re = 100, 150, and 200 and for n = 0.4 for Re = 200. All of the other parameters’
combinations present both the lateral dislodging and the tumbling motions so that, for such particles,
the journey continues with their center of mass at the equilibrium quote while revolting around their
own axis.
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Figure 7. Particles margination in a non-Newtonian Couette flow. (a) schematic of the physical
problem with reference lengths; (b) trajectory of a particle navigating a linear laminar flow for Re = 25,
50, and 75 as a function of n; (c) distribution of the angular velocity over the horizontal coordinate for
Re = 25, 50, and 75 and n = 1; (d) trajectory of a particle navigating a linear laminar flow for Re = 100,
150, and 200 as a function of n; (e) distribution of the angular velocity over the horizontal coordinate
for Re = 100, 150, and 200 and n = 0.2; (f) equilibrium lateral positions as a function of the Reynolds
number for n = 0.2, 0.4, 0.6, 0.8, and 1.

4. Conclusions

The rheology of neutrally buoyant capsules immersed in Carreau–Yasuda fluids is considered and
critically analyzed in this paper. The incompressible forced Navier–Stokes equation is modeled through
a multi relaxation time lattice Boltzmann scheme in which a forcing term is demanded to spread to
the distribution functions: (i) the body force due to the presence of an immersed body; and (ii) the
force induced by the shear-dependent viscosity model characterizing the non-Newtonian behavior
of the considered fluid. Such forcing term is included as an additional factor into the momentum
equation and is appointed to spread the total force exerted by the fluid into the Eulerian grid nodes.
In this work, such force is composed by two parts: on one side, the no-slip boundary conditions on an
immersed structure are imposed by a body-force accounting for the hydrodynamics force generated by
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the presence of the immersed body; on the other side, the shear-stress dependent force due to the local
variation in the apparent viscosity regulated by the Carreau–Yasuda model for non-Newtonian fluids.

The proposed model was validated against two well-known benchmark tests: firstly by measuring
the velocity profile obtained when considering the flow within two laminae at Reynolds number equal
to 200 as a function of the exponent of the Carreau–Yasuda model (n = 0.25, 0.50, 0.75, 1.0, and 1.5);
then, the flow in a lid-driven cavity for two different Reynolds numbers (Re = 1000 and 5000) for
a shear-thinning fluid characterized by five different values of n. In the latter case, the velocity
profile taken at x/L = 0.5 presents a minimum located near the southern wall, such minimum moves
approaching the wall as n decreases, thus mimicking the effect of an increase in the Reynolds number
of the flow.

The rheology of elliptical particles with Aspect Ratio (AR) equal to 2 and 3 is analyzed by
considering two diverse scenarios. On one hand, in order to isolate the tumbling motion and inhibit the
translation over the computational domain, the revolution under shear of such capsules is considered
by posing a single capsule in the middle of a square domain with countermoving top and bottom
walls. The tumbling motion is observed and the revolution period T is measured as a function of Re for
shear-thinning (n < 1), Newtonian (n = 1), and shear-thickening (n > 1) surrounding fluids. The critical
Reynolds number after whom the rotational motion stops is determined for all cases. Interestingly,
smaller (larger) values of the exponent n prescribe smaller (larger) Rec for both particles, AR = 2 and
3. This effect is due to the local variations in the apparent viscosity field induced by the local shear.
Analogously, the equilibrium lateral position yeq of such neutrally buoyant capsules when transported
in a plane-Couette flow is studied detailing the variation of yeq as a function of the Reynolds number for
shear-thinning fluids. Specifically, it is found that the exponent n dramatically increase the margination
abilities of such particles. In fact, for moderate Reynolds numbers (Re ≈ 100–200), the equilibrium
lateral position corresponds to about particle characteristic dimension yeq ≈ 0.3 H.

Collectively, these data represent specific insights for the scientific community investing efforts
to the rational design of micro- and nano-particles as drug carriers. Specifically, the rheology of
micro-capsules immersed in non-Newtonian fluids and the analysis of their marginating dynamics
would help the community to precisely tailor particle shape in order to specifically determine their
journey into human micro–circulation.

Author Contributions: Data curation, A.C., G.M.C., and D.D.T.; Funding acquisition, D.D.T.; Project administration,
D.D.T.; Investigation, A.C., G.M.C., and D.D.T.; Methodology, A.C. (numerics) and G.M.C. and D.D.T. (analytics);
Writing—review and editing, A.C., G.M.C., and D.D.T. All authors have read and agreed to the published version
of the manuscript.

Funding: This investigation has been partially supported by the Research Project of National Relevance
“Multiscale Innovative Materials and Structures” granted by the Italian Ministry of Education, University and
Research (MIUR Prin 2017, project code 2017J4EAYB, and the Italian Ministry of Education, University and
Research under the Program Department of Excellence Legge 232/2016 (Grant No. CUP-D94I18000260001).

Acknowledgments: The authors are deeply grateful to Giuseppe Pascazio for providing CPU hours; G.M.C. is
a member of Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of Istituto
Nazionale di Alta Matematica (INdAM); D.D.T. is a member of Gruppo Nazionale per la Fisica Matematica (GNFM) of
Istituto Nazionale di Alta Matematica (INdAM).

Conflicts of Interest: The authors declare no conflict of interests.

References

1. DeTommasi, D.; Millardi, N.; Puglisi, G.; Saccomandi, G. An energetic model for macromolecules unfolding
in stretching experiments. J. R. Soc. Interface 2013, 10, 20130651. [CrossRef]

2. Florio, G.; Puglisi, G. Unveiling the influence of device stiffness in single macromolecule unfolding. Sci. Rep.
2019, 9, 4997. [CrossRef] [PubMed]

3. Coclite, G.M.; Florio, G.; Ligabò, M.; Maddalena, F. Nonlinear waves in adhesive strings. SIAM J. Appl. Math.
2017, 77, 347–360. [CrossRef]

http://dx.doi.org/10.1098/rsif.2013.0651
http://dx.doi.org/10.1038/s41598-019-41330-x
http://www.ncbi.nlm.nih.gov/pubmed/30899032
http://dx.doi.org/10.1137/16M1069109


Nanomaterials 2020, 10, 2190 15 of 16

4. Coclite, G.M.; Florio, G.; Ligabò, M.; Maddalena, F. Adhesion and debonding in a model of elastic string.
Comput. Math. Appl. 2019, 78, 1897–1909. [CrossRef]

5. Liu, Y.; Zhang, Z.; Devillanova, G.; Cai, Z. Surface instabilities in graded tubular tissues induced by
volumetric growth. Int. J. Non-Linear Mech. 2020, 127, 103612. [CrossRef]

6. Arai, H.; Kobayashi, K.; Ikeda, K.; Nagao, Y.; Ogihara, R.; Kosaka, K. A computed tomography study of
Alzheimer’s disease. J. Neurol. 1983, 229, 69–77. [CrossRef]

7. Scheltens, P. Imaging in Alzheimer’s disease. Dialogues Clin. Neurosci. 2009, 11, 191. [PubMed]
8. Peer, D.; Karp, J.; Hong, S.; Farokhzad, O.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for

cancer therapy. Nat. Nanotechnol. 2007, 2, 751–760. [CrossRef]
9. Antoniades, C.; Psarros, C.; Tousoulis, D.; Bakogiannis, C.; Shirodaria, C.; Stefanadis, C. Nanoparticles:

A promising therapeutic approach in atherosclerosis. Curr. Drug Deliv. 2010, 7, 303–311. [CrossRef]
[PubMed]

10. Podduturi, V.P.; Magaña, I.B.; O’Neal, D.P.; Derosa, P.A. Simulation of transport and extravasation of
nanoparticles in tumors which exhibit enhanced permeability and retention effect. Comput. Methods
Programs Biomed. 2013, 112, 58–68. [CrossRef] [PubMed]

11. Moghimi, S.; Simberg, D. Nanoparticle transport pathways into tumors. J. Nanopart. Res. 2018, 20, 169.
[CrossRef] [PubMed]

12. Vu, M.N.; Rajasekhar, P.; Poole, D.P.; Khor, S.Y.; Truong, N.P.; Nowell, C.J.; Quinn, J.F.; Whittaker, M.;
Veldhuis, N.A.; Davis, T.P. Rapid assessment of nanoparticle extravasation in a microfluidic tumor model.
ACS Appl. Nano Mater. 2019, 2, 1844–1856. [CrossRef]

13. Leal, L.G. The motion of small particles in non-Newtonian fluids. J. Non-Newton. Fluid Mech. 1979, 5, 33–78.
[CrossRef]

14. Avazmohammadi, R.; Castañeda, P.P. The rheology of non-dilute dispersions of highly deformable
viscoelastic particles in Newtonian fluids. J. Fluid Mech. 2015, 763, 386. [CrossRef]

15. Bergenholtz, J.; Brady, J.; Vicic, M. The non-Newtonian rheology of dilute colloidal suspensions. J. Fluid Mech.
2002, 456, 239–275. [CrossRef]

16. Cwalina, C.D.; Harrison, K.J.; Wagner, N.J. Rheology of cubic particles suspended in a Newtonian fluid.
Soft Matter 2016, 12, 4654–4665. [CrossRef]

17. Decuzzi, P.; Godin, B.; Tanaka, T.; Lee, S.Y.; Chiappini, C.; Liu, X.; Ferrari, M. Size and shape effects in the
biodistribution of intravascularly injected particles. J. Control. Release 2010, 141, 320–327. [CrossRef]

18. Decuzzi, P. Facilitating the clinical integration of nanomedicines: The roles of theoretical and computational
scientists. ACS Nano 2016, 10, 8133–8138. [CrossRef]

19. Coclite, A.; Ranaldo, S.; de Tullio, M.; Decuzzi, P.; Pascazio, G. Kinematic and Dynamic Forcing Strategies
for Predicting the Transport of Inertial Capsules Via A Combined Lattice Boltzmann Immersed Boundary
Method. Comput. Fluids 2019, 180, 41–53. [CrossRef]

20. Coclite, A.; de Tullio, M.D.; Pascazio, G.; Decuzzi, P. A combined Lattice Boltzmann and Immersed
boundary approach for predicting the vascular transport of differently shaped particles. Comput. Fluids 2016,
136, 260–271. [CrossRef]

21. Coclite, A.; Mollica, H.; Ranaldo, S.; Pascazio, G.; de Tullio, M.D.; Decuzzi, P. Predicting different adhesive
regimens of circulating particles at blood capillary walls. Microfluid. Nanofluid. 2017, 21, 168. [CrossRef]

22. Coclite, A.; Pascazio, G.; de Tullio, M.; Decuzzi, P. Predicting the vascular adhesion of deformable drug
carriers in narrow capillaries traversed by blood cells. J. Fluids Struct. 2018, 82, 638–650. [CrossRef]

23. Coclite, A.; Gambaruto, A.M. Injection of Deformable Capsules in a Reservoir: A Systematic Analysis. Fluids
2019, 4, 122. [CrossRef]

24. Lenarda, P.; Coclite, A.; Decuzzi, P. Unraveling the Vascular Fate of Deformable Circulating Tumor Cells Via
a Hierarchical Computational Model. Cell. Mol. Bioeng. 2019, 12, 543–558. [CrossRef]

25. Coclite, A. Vascular journey and adhesion mechanics of micro-sized carriers in narrow capillaries.
Microvasc. Res. 2020, 132, 104069. [CrossRef] [PubMed]

26. Guo, Z.; Shu, C. Lattice Boltzmann Method and Its Applications in Engineering; World Scientific: Singapore,
2013; Volume 3.

27. de Tullio, M.D.; Pascazio, G. A moving-least-squares immersed boundary method for simulating the
fluid-structure interaction of elastic bodies with arbitrary thickness. J. Comput. Phys. 2016, 325, 201–221.
[CrossRef]

http://dx.doi.org/10.1016/j.camwa.2019.03.020
http://dx.doi.org/10.1016/j.ijnonlinmec.2020.103612
http://dx.doi.org/10.1007/BF00313444
http://www.ncbi.nlm.nih.gov/pubmed/19585954
http://dx.doi.org/10.1038/nnano.2007.387
http://dx.doi.org/10.2174/156720110793360586
http://www.ncbi.nlm.nih.gov/pubmed/20695841
http://dx.doi.org/10.1016/j.cmpb.2013.06.011
http://www.ncbi.nlm.nih.gov/pubmed/23871689
http://dx.doi.org/10.1007/s11051-018-4273-8
http://www.ncbi.nlm.nih.gov/pubmed/29950922
http://dx.doi.org/10.1021/acsanm.8b02056
http://dx.doi.org/10.1016/0377-0257(79)85004-1
http://dx.doi.org/10.1017/jfm.2014.687
http://dx.doi.org/10.1017/S0022112001007583
http://dx.doi.org/10.1039/C6SM00205F
http://dx.doi.org/10.1016/j.jconrel.2009.10.014
http://dx.doi.org/10.1021/acsnano.6b05536
http://dx.doi.org/10.1016/j.compfluid.2018.12.014
http://dx.doi.org/10.1016/j.compfluid.2016.06.014
http://dx.doi.org/10.1007/s10404-017-2003-7
http://dx.doi.org/10.1016/j.jfluidstructs.2018.08.001
http://dx.doi.org/10.3390/fluids4030122
http://dx.doi.org/10.1007/s12195-019-00587-y
http://dx.doi.org/10.1016/j.mvr.2020.104069
http://www.ncbi.nlm.nih.gov/pubmed/32888941
http://dx.doi.org/10.1016/j.jcp.2016.08.020


Nanomaterials 2020, 10, 2190 16 of 16

28. Wang, C.H.; Ho, J.R. A lattice Boltzmann approach for the non-Newtonian effect in the blood flow.
Comput. Math. Appl. 2011, 62, 75–86. [CrossRef]

29. Ouared, R.; Chopard, B. Lattice Boltzmann simulations of blood flow: Non-Newtonian rheology and clotting
processes. J. Stat. Phys. 2005, 121, 209–221. [CrossRef]

30. Ashrafizaadeh, M.; Bakhshaei, H. A comparison of non-Newtonian models for lattice Boltzmann blood flow
simulations. Comput. Math. Appl. 2009, 58, 1045–1054. [CrossRef]

31. Wang, D.; Bernsdorf, J. Lattice Boltzmann simulation of steady non-Newtonian blood flow in a 3D generic
stenosis case. Comput. Math. Appl. 2009, 58, 1030–1034. [CrossRef]

32. Chai, Z.; Shi, B.; Guo, Z.; Rong, F. Multiple-relaxation-time lattice Boltzmann model for generalized
Newtonian fluid flows. J. Non-Newton. Fluid Mech. 2011, 166, 332–342. [CrossRef]

33. Li, Q.; Hong, N.; Shi, B.; Chai, Z. Simulation of power-law fluid flows in two-dimensional square cavity
using multi-relaxation-time lattice Boltzmann method. Commun. Comput. Phys. 2014, 15, 265–284. [CrossRef]

34. Gabbanelli, S.; Drazer, G.; Koplik, J. Lattice Boltzmann method for non-Newtonian (power-law) fluids.
Phys. Rev. E 2005, 72, 046312. [CrossRef] [PubMed]

35. Yoshino, M.; Hotta, Y.H.; Hirozane, T.; Endo, M. A numerical method for incompressible non-Newtonian
fluid flows based on the lattice Boltzmann method. J. Non-Newton. Fluid Mech. 2007, 147, 69–78. [CrossRef]

36. Boyd, J.; Buick, J.M.; Green, S. Analysis of the Casson and Carreau–Yasuda non-Newtonian blood models in
steady and oscillatory flows using the lattice Boltzmann method. Phys. Fluids 2007, 19, 093103. [CrossRef]

37. Nejat, A.; Abdollahi, V.; Vahidkhah, K. Lattice Boltzmann simulation of non-Newtonian flows past confined
cylinders. J. Non-Newton. Fluid Mech. 2011, 166, 689–697. [CrossRef]

38. Chen, Z.; Shu, C. Simplified lattice Boltzmann method for non-Newtonian power-law fluid flows. Int. J.
Numer. Methods Fluids 2020, 92, 38–54. [CrossRef]

39. Huang, H.; Yang, X.; Krafczyk, M.; Lu, X.Y. Rotation of spheroidal particles in Couette flows. J. Fluid Mech.
2012, 692, 369–394. [CrossRef]

40. Aidun, C.K.; Lu, Y.; Ding, E.J. Direct analysis of particulate suspensions with inertia using the discrete
Boltzmann equation. J. Fluid Mech. 1998, 373, 287–311. [CrossRef]

41. Zhou, G.; Ge, W.; Li, J. Smoothed particles as a non-Newtonian fluid: A case study in Couette flow.
Chem. Eng. Sci. 2010, 65, 2258–2262. [CrossRef]

42. DeTommasi, D.; Devillanova, G.; Maddalena, F.; Napoli, G.; Puglisi, G. Growth of elastic multiblister driven
by geometric contstrain. Proc. R. Soc. A 2020, submitted.

43. Du, R.; Shi, B.; Chen, X. Multi-relaxation-time lattice Boltzmann model for incompressible flow. Phys. Lett.
2006, 359, 564–572. [CrossRef]

44. Qian, Y.H.; D’Humieres, D.; Lallemand, P. Lattice BGK Models for Navier-Stokes Equation.
EPL Europhys. Lett. 1992, 17, 479. [CrossRef]

45. Krüger, T.; Kusumaatmaja, H.; Kuzmin, A.; Shardt, O.; Silva, G.; Viggen, E. The Lattice Boltzmann Method:
Principles and Practice; Springer: Berlin/Heidelberg, Germany, 2017.

46. Zou, Q.; He, X. On pressure and velocity boundary conditions for the lattice Boltzmann BGK model.
Phys. Fluids 1997, 9, 1591–1598. [CrossRef]

47. Favier, J.; Revell, A.; Pinelli, A. A Lattice Boltzmann-Immersed Boundary method to simulate the fluid
interaction with moving and slender flexible objects. J. Comput. Phys. 2014, 261, 145–161. [CrossRef]

48. Napolitano, M.; Pascazio, G. A numerical method for the vorticity-velocity Navier-Stokes equations in two
and three dimensions. Comput. Fluids 1991, 19, 489–495. [CrossRef]

49. Jeffery, G.B. The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. Ser. Contain.
Pap. Math. Phys. Character 1922, 102, 161–179.

50. Zettner, C.; Yoda, M. Moderate-aspect-ratio elliptical cylinders in simple shear with inertia. J. Fluid Mech.
2001, 442, 241–266. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.camwa.2011.04.051
http://dx.doi.org/10.1007/s10955-005-8415-x
http://dx.doi.org/10.1016/j.camwa.2009.02.021
http://dx.doi.org/10.1016/j.camwa.2009.02.020
http://dx.doi.org/10.1016/j.jnnfm.2011.01.002
http://dx.doi.org/10.4208/cicp.160212.210513a
http://dx.doi.org/10.1103/PhysRevE.72.046312
http://www.ncbi.nlm.nih.gov/pubmed/16383538
http://dx.doi.org/10.1016/j.jnnfm.2007.07.007
http://dx.doi.org/10.1063/1.2772250
http://dx.doi.org/10.1016/j.jnnfm.2011.03.006
http://dx.doi.org/10.1002/fld.4771
http://dx.doi.org/10.1017/jfm.2011.519
http://dx.doi.org/10.1017/S0022112098002493
http://dx.doi.org/10.1016/j.ces.2009.12.020
http://dx.doi.org/10.1016/j.physleta.2006.07.074
http://dx.doi.org/10.1209/0295-5075/17/6/001
http://dx.doi.org/10.1063/1.869307
http://dx.doi.org/10.1016/j.jcp.2013.12.052
http://dx.doi.org/10.1016/0045-7930(91)90073-Q
http://dx.doi.org/10.1017/S0022112001005006
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Computational Method
	Lattice Boltzmann Method
	Shear Induced Apparent Viscosity Treatment
	Immersed Boundary Treatment and Fluid–Structure Interaction

	Results and Discussion
	Flow within Two Laminae
	Non-Newtonian Fluid in a Lid-Driven Cavity
	Capsules Rotating under Shear
	Transport of Rigid Capsules in a Shear-Thinning Couette Flow

	Conclusions
	References

