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1 Introduction

Several years ago, in [8] oneof the authors hasproved some compactness results for bounded sets of a Sobolev
space with respect to the Lebesgue norm corresponding to the critical embedding. These results are due to
the nonoptimality of such embedding in the wider category of Lorentz spaces. In particular, [8, Theorem 2]
gives for bounded sequences inH1,p(ℝN) an analogous result to a theorem ofM. Struwe [11, Proposition 2.1],
established for Palais–Smale sequences of suitable functionals, which has been reproduced in the years in
many different versions for various classes of functionals which do not satisfy the Palais–Smale condition.
Many of these proofs do not use the fact that most of the thesis is known for general bounded sequences,
even if [8, Theorem 2] has been followed from several other results of the same type (see [4, 5, 13]). Such
statements are nowadays known as profile decomposition theorems. In particular, some of the subsequent
versions of this kind of result, such as [4, Theorem 1.1], show that some sequences can be approximated by
means of finite sums of singularities, while [8, Theorem 2] uses a sum which is potentially infinite and we
have sometimes realized that these different versions generate some confusion even among the experts of
the field and partially justify the limited use of such general results for particular Palais–Smale sequences.
Indeed, the choice of the scalings in the statements of [8, Theorem 2] and [4, Theorem 1.1] is not exactly
the same. Recently, we have read in a referee report a purported counterexample to [8, Theorem 2], which
actually is a counterexample to the necessity of an assumption required in one of the results in this paper
and which is a particular case of a more general example discussed in Corollary 5.5. The difference between
the two statements has been underlined also in [12], in which the finite sum version (in another setting)
has been defined “more convenient” while it is clearly a weaker result which could have been stated under
weaker assumptions (compare the statements of Corollaries 6.3 and 6.4). The landscape has now even more
variants since recently in [9] and [10], to get analogous results in suitable Banach spaces, a new technique
has been introduced which makes use of polar convergence (or ∆-convergence, see [6] and [2]) instead of
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weak convergence. Following the approach introduced in this paper, even an extension to metric spaces has
been recently proposed in [3].

The aim of this paper is to put some order among the different variants and to clarify their connections
by showing the following facts:
∙ [8, Theorem 2] is an immediate consequence of [8, Theorem 1] at the light of some results concerning Lp

spaces which can be seen as a multiscale version of the Banach–Alaoglu theorem (see Corollary 5.3).
∙ Results of the type of [8, Theorem 2] are contained in Theorem 6.2 below which makes use of suitable

families of scalings,whose existencewill be shown in Section5, anddonot hold formore general families
of scalings, see Corollary 5.5 below. In this way we shall also supply some details missed and left to the
reader in [8].

∙ Results of the type of [4, Theorem 1.1], on the contrary, do hold for the more general families of scalings
excluded by Corollary 5.5, see Corollary 6.4 below.
The results will be presented in the simplest possible case (Sobolev spaces of integer order) even if a big

part of the existing literature deals with more general spaces (for instance [8, Theorem 2] deals with Lorentz
spaces and [4, Theorem 1.1] deals with Sobolev spaces of fractional order) since the main purpose of the
paper is to show the connections between the various types of statements and, in our opinion, this can be
done in the best way by minimizing technicalities.

The paper is organized as follows: In Section 2 we give some basic notions and, among them, that of
profile, scale transitions sequence, multiplicity of a profile and the basic energy bound (see Lemma 2.12). In
Section 3 we prove a multiscale weak compactness result (see Theorem 3.1), which generalizes the Banach–
Alaoglu theorem, showing that any bounded sequence admits a subsequence which is, roughly speaking,
weakly converging in all possible scales. In Section 4 we approach the “inverse problem” (actually solved in
Section 5) by looking for bounded sequences which admit a given complete profile systemwith a related sys-
tem of scale transitions sequences. In Section 5we show that a fundamental assumption used in the previous
section can be forced starting from an arbitrary family of scale transitions sequences. Finally, in Section 6 we
show how the results obtained for the Lp spaces apply to Sobolev space H1,p allowing to deduce [8, Theo-
rem 2] as a direct consequence of [8, Theorem 1] which, in turn, is an easy corollary of Sobolev embedding
in Lorentz spaces. In Section 7 we briefly discuss the case of polar profile decomposition.

2 Profiles

In this paper we shall make use of the notion of scaling as introduced in [8]. Given 1 ≤ p ≤ +∞, x0 ∈ ℝN and
λ > 0, we shall denote by ρ an Lp-invariant scaling which maps every function u ∈ Lp(ℝN) into the function
defined by setting

ρ(u)(x) = λ
N
p u(x0 + λ(x − x0)) for all x ∈ ℝN .

We shall refer to x0 and λ respectively as to the center and themodulus of the scaling ρ, while we shall denote
by G the group generated by the scalings. Note that G includes scalings and translations but for simplicity
we shall keep to call all the elements of G scalings. Finally, we shall denote by G the space of sequences
ρ = (ρn)n∈ℕ ⊂ G. Note that for any scaling ρ, which is not the identity function id, ρ(u) = u if and only if
u = 0. When we shall work with both Lp(ℝN) and (its dual) Lp� (ℝN)we shall denote by ρ� the scaling ρ−⊤, i.e.
the Lp� -invariant scaling which has the same center x0 and modulus λ of ρ, defined by

ρ�(u)(x) = λ
N
p� u(x0 + λ(x − x0)) for all x ∈ ℝN .

If ρ ∈ G, u ∈ Lp(ℝN) and v ∈ Lp� (ℝN) then the following “duality” relation holds:

∫

ℝN

ρ−1(u)(x)v(x) dx = ∫

ℝN

u(x)ρ�(v)(x) dx. (2.1)
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Remark 2.1. Given any sequence of scalings ρ = (ρn)n∈ℕ ∈ G, one of the following alternatives holds true:
∙ (ρn)n∈ℕ is diverging, i.e. ρn ⇀ 0 in Lp(ℝN) weakly pointwise,
∙ there exists a scaling ρ such that, modulo subsequences, limn→+∞ ρn = ρ in Lp(ℝN) strongly pointwise.

Definition 2.2 (Scale Equivalence). Let ρ = (ρn)n∈ℕ, σ = (σn)n∈ℕ ∈ G be two sequences of scalings. We shall
say that ρ and σ are scale equivalent if the sequence (σ−1n ∘ ρn)n∈ℕ converges strongly pointwise to the identity
function id.

Note that the already defined relation is an equivalence relation on the set G of the sequences of scalings and
we denote by [ρ]S the scale equivalence class containing ρ.

Definition 2.3 (Profiles and s.t.s.). Let (un)n∈ℕ ⊂ Lp(ℝN) be a given bounded sequence, we shall say that
φ ∈ Lp(ℝN) \ {0} is a profile of the sequence (un)n∈ℕ if there exists ρ = (ρn)n∈ℕ ∈ G such that

ρ−1n (un) ⇀ φ. (2.2)

In such a case we shall call ρ = (ρn)n∈ℕ a scale transitions sequence (s.t.s. for short) of the profile φ.

Remark 2.4. Note that if φ is a profile of the sequence (un)n∈ℕ and ρ = (ρn)n∈ℕ is an s.t.s. of φ, then any
σ ∈ [ρ]S is still an s.t.s. ofφ, while for all g ∈ G, g(φ) is still a profile of the sequence (un)n∈ℕ and (ρn ∘ g−1)n∈ℕ
is an s.t.s. of theprofile g(φ). Thereforewe shall say that twoprofilesφ andψ of a sequence (un)n∈ℕ aredistinct
if ψ ̸= g(φ) for all g ∈ G while they are copies if there exists a g ∈ G such that ψ = g(φ). So any profile can be
thought as a whole orbit of copies (g(φ))g∈G. Finally, by taking into account Remark 2.1, we deduce that if
(ρn)n∈ℕ and (σn)n∈ℕ are s.t.s. related to distinct profiles they must be mutually diverging or quasi orthogonal
(i.e. (σ−1n ∘ ρn)n∈ℕ is diverging).

Definition 2.5 (Multiplicity). Letφ be aprofile of a bounded sequence (un)n∈ℕ.We shall define themultiplicity
of theprofileφ as the supremumm(φ)of the cardinality of the sets ofmutually diverging s.t.s. ofφ. Ifm(φ) = 1
we shall say that φ is a simple profile while, if m(φ) ≥ 2, we shall say that φ is amultiple profile.

We shall prove in the sequel, see Lemma2.12below, that in Lp spaces themultiplicity of a profile of a bounded
sequence is always finite.

Remark 2.6. Every subsequence maintains any profile φ of the whole sequence, at least with the same mul-
tiplicity m(φ). Indeed, if φ is a profile of a sequence (un)n∈ℕ and ρ = (ρn)n∈ℕ is a related s.t.s., then for
any extraction law (kn)n∈ℕ ⊂ ℕ, φ is a profile of the subsequence (ukn )n∈ℕ and (ρkn )n∈ℕ is a related s.t.s.
(i.e. ρ−1kn (ukn ) ⇀ φ).

Definition 2.7 (Profile System). Let (un)n∈ℕ ⊂ Lp(ℝN) be a bounded sequence. A family (φi)i∈I of profiles of
the sequence (un)n∈ℕ is said to be a profile system (in Lp(ℝN)) of the sequence (un)n∈ℕ if, for any profile φ,
all elements φi which are copies of φ are equal and their number is (finite and) less or equal to m(φ).

Taking into account Remark 2.6, we deduce that any profile system is also a profile system of every sub-
sequence.

Definition 2.8 (s.t.s. Systems). Combining Remark 2.4 with Definition 2.5, we deduce that if (φi)i∈I is a pro-
file system of the sequence (un)n∈ℕ, then there exists a family (ρi)i∈I such that
(1) for all i ∈ I, ρi = (ρin)n∈ℕ is an s.t.s. of the profile φi,
(2) for all i, j ∈ I, i ̸= j, ρi and ρj are mutually diverging.
In such a case we shall call the family (ρi)i∈I an s.t.s. system related to the profile system (φi)i∈I .

Remark 2.9. By Remark 2.4, if for all i ∈ I, σi ∈ [ρi]S, then also the family (σi)i∈I is an s.t.s. system of the
profile system (φi)i∈I .

The mutual divergence of the elements of an s.t.s. system allows to easily prove that, in the limit, ρin(φi) and
ρjn(φj) behave as two functions with disjoint supports. In particular, the following remark holds.
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Remark 2.10. If (φi)i∈I is a finite profile system of (un)n∈ℕ and (ρi)i∈I is a related s.t.s. system, then

∀ε > 0 ∃ν ∈ ℕ such that ∀n ≥ ν :
!!!!!!
""""""∑
i∈I
ρin(φi)

""""""
p

p
−∑
i∈I

‖φi‖
p
p
!!!!!! < ε. (2.3)

In order to quantify how rich a profile system is, we define the function sp on the set of the profile systems of
a given sequence (un)n∈ℕ, by setting for any profile system (φi)i∈I ,

sp((φi)i∈I) = ∑
i∈I

‖φi‖
p
p . (2.4)

The function sp is increasingwith respect to the richness of profile systems and allows us to evaluate also
the profile richness of a sequence by setting

Sp((un)n∈ℕ) = sup{sp((φi)i∈I) | (φi)i∈I is a profile system of (un)n∈ℕ}. (2.5)

Remark 2.11. In other terms, Sp((un)n∈ℕ) can be defined as the value of the sum in (2.4) extended to all
possible profiles counted as many times as their multiplicity.

The following lemma gives a bound on Sp and in particular allows to deduce that profiles of a bounded
sequence in Lp(ℝN) have a finite multiplicity.

Lemma 2.12. Let (un)n∈ℕ ⊂ Lp(ℝN) be given. Then

Sp((un)n∈ℕ) ≤ lim inf
n→+∞

‖un‖
p
p . (2.6)

Proof. It is not restrictive to prove that sp((φi)i∈I) ≤ lim infn→+∞ ‖un‖
p
p for all finite profile system. Let (φi)i∈I

be a finite profile system of the sequence (un)n∈ℕ and let (ρi)i∈I be a related s.t.s. system (see Definition 2.7).
Set for all i ∈ I,

ψi = |φi|p−2φi ∈ Lp
�
(ℝN)

so that
⟨φi , ψi⟩ := ∫

ℝN

φi(x)ψi(x) dx = ‖φi‖
p
p = ‖ψi‖

p�
p� . (2.7)

Then, by using (2.3), we get

∀ε > 0 ∃ν ∈ ℕ such that ∀n ≥ ν :
!!!!!!
""""""∑
i∈I

(ρin)�(ψi)
""""""
p�

p�
−∑
i∈I

‖ψi‖
p�
p�
!!!!!! < ε. (2.8)

So, by Hölder inequality, (2.2), (2.1) and the last equality in (2.7), we get that

∑
i∈I

‖φi‖
p
p = ∑

i∈I
∫

ℝN

φi(x)ψi(x) dx = ∑
i∈I

∫

ℝN

(ρin)−1(un)(x)ψi(x) dx

= ∑
i∈I

∫

ℝN

un(x)(ρin)�(ψi)(x) dx = ∫

ℝN

un(x)∑
i∈I

(ρin)�(ψi)(x) dx

≤ ‖un‖p‖∑
i∈I

(ρin)�(ψi)‖p� ≤ ‖un‖p(∑
i∈I

‖ψi‖
p�
p�)

1
p� = ‖un‖p(∑

i∈I
‖φi‖

p
p)

1
p� , (2.9)

modulo an infinitesimal term in n.

The following definition matches Remark 2.6.

Definition 2.13 (Complete Profile System, Profile Converging Sequence). We say that a (possibly empty) pro-
file system (φi)i∈I of a bounded sequence (un)n∈ℕ is complete if no subsequence (ukn )n∈ℕ has a richer profile
system. If a sequence admits a complete profile system we shall say that it is profile converging.

In other terms a given bounded sequence (un)n∈ℕ is profile converging if (un)n∈ℕ does not admit any subse-
quence with a bigger number of profiles, or with profiles with a higher multiplicity.

Remark 2.14. Note that if (‖un‖p)n∈ℕ converges and equality holds in (2.6), then the sequence (un)n∈ℕ is
profile converging.
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We recall the following definition given in [10, Section 1] or in [9, p. 4].

Definition 2.15 (G-Convergence). If (un)n∈ℕ is a sequence in Lp(ℝN), we shall say that (un)n∈ℕ G-converges
to 0, and we shall write un

G
⇀ 0 if for any sequence of scalings (ρn)n∈ℕ ⊂ G we have ρn(un) ⇀ 0.

Note that if (un − vn)n∈ℕ G-converges to 0, then (un)n∈ℕ and (vn)n∈ℕ admit the same profiles with the same
related s.t.s. The same thing happens with the (complete) profile systems. Conversely, the following result
holds.

Proposition 2.16. If two sequences (un)n∈ℕ and (vn)n∈ℕ havea commoncomplete profile systemanda common
related s.t.s. system, then un − vn

G
⇀ 0.

Proof. Let ρ = (ρn)n∈ℕ ∈ G be given, note that it is sufficient to prove that (ρ−1n (un − vn))n∈ℕ has a subse-
quence that weakly converges to 0. Modulo subsequences, we have to face two possible cases:
(1) ρ is almost orthogonal to all ρi,
(2) there exist ı ∈ I and (a unique) g ∈ G such that ρ is scale equivalent to (g ∘ ρın)n∈ℕ.
If case (1) applies, since (un)n∈ℕ and (vn)n∈ℕ do not admit any subsequence which is better profiled, we have
ρ−1n (un), ρ−1n (vn) ⇀ 0. Assume now case (2). By Remark 2.4, ρ is, for both sequences, an s.t.s. of the profile
g(φı), i.e. ρ−1n (un), ρ−1n (vn) ⇀ g(φı).

3 Multiscale Weak Compactness

The aim of this section is to prove the following result.

Theorem 3.1 (Multiscale Weak Compactness). Any bounded sequence in Lp(ℝN) admits a profile converging
subsequence.

The proof is rather easy and technically, it can be reached by taking at each step a richer profile system
obtained by an argument similar to that used in the proof of [8, Theorem 2], or by a maximality argument.
Since we shall choose here the maximality argument, we need to introduce an ordering.

Definition 3.2. Let E denote the space of bounded sequences in Lp(ℝN). Given (un)n∈ℕ and (vn)n∈ℕ ∈ E, we
say that (vn)n∈ℕ is better profiled than (un)n∈ℕ, and we shall write (un)n∈ℕ ⪯ (vn)n∈ℕ, if (vn)n∈ℕ = (un)n∈ℕ or
if (vn)n∈ℕ is a subsequence of (un)n∈ℕ with the possible exception of finitelymany terms (i.e. there exist ν ∈ ℕ
and an extraction law (kn)n∈ℕ ⊂ ℕ such that, for all n ≥ ν, vn = ukn ) and Sp((un)n∈ℕ) < Sp((vn)n∈ℕ).

Remark 3.3. The binary relation ⪯ is an ordering and a sequence (un)n∈ℕ ⊂ Lp(ℝN) is profile converging if
and only if it is maximal with respect to ⪯.

Proof of Theorem 3.1. By Remark 3.3, we shall prove the existence of a maximal element, by using [7, The-
orem A.1], thanks to the increasing (with respect to ⪯) real-valued function Sp defined by (2.5). To this aim
we just need to prove that the ordered set (E, ⪯) is countably inductive (in the sense of [7, Appendix A]). So
we fix an increasing sequence with respect to ⪯. Note that, if it is constant for large n, then it clearly has an
upper bound. Otherwise, after removing a finite number of terms from each element, we have a sequence of
sequences which are all extracted from the previous one. Then we take the diagonal selection and use the
monotonicity of Sp in order to conclude that it is an upper bound of the whole sequence.

4 Profile Reconstruction

In this section we deal with the following question which can be seen as an “inverse problem” which will
be solved at the end of Section 5 below: Given a family of nonnull functions (φi)i∈I and a family (ρi)i∈I of
mutually diverging scalings, we look for a bounded sequence (vn)n∈ℕ ⊂ Lp(ℝN) of which (φi)i∈I is a complete
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profile system and (ρi)i∈I is a related s.t.s. system. According to Definition 2.7, we shall assume that the ele-
ments of the family (φi)i∈I which are copies of a given function φ are equal and that the value of the function
sp defined in (2.4) is finite. Finally, we shall make use of the following assumption.

Definition 4.1 (Routed Sequences of Scalings). Let (φi)i∈I be a given family of functions and let (ρi)i∈I be a
family of mutually diverging sequences of scalings. We shall say that the family (ρi)i∈I is routed (in Lp(ℝN)
with respect to (φi)i∈I) if the sum∑i∈I ρin(φi) is unconditionally convergent (in Lp) with respect to i, uniformly
with respect to n.

Remark 4.2. When the family (ρi)i∈I is routed with respect to (φi)i∈I , for any ε > 0 there exists F ⊂ I, F finite,
such that """""" ∑

i∈I\F
ρin(φi)

""""""p
< ε, for all n ∈ ℕ, (4.1)

and so, roughly speaking, we will be able to treat the sum ‖∑i∈I ρin(φi)‖p as if the set of indexes I were finite
(and use, for instance, (2.3)).

Definition 4.3 (Profile Reconstruction). Let (φi)i∈I be a family of functions such that∑i∈I ‖φi‖
p
p < +∞ and let

(ρi)i∈I be a routed family of sequences of scalings. The sequence (vn)n∈ℕ, defined by setting for all n ∈ ℕ,

vn = ∑
i∈I
ρin(φi), (4.2)

will be called profile reconstruction determined by (φi)i∈I and (ρi)i∈I .

Taking into account (4.1) and (2.3), we get

lim
n→+∞

‖vn‖
p
p = ∑

i∈I
‖φi‖

p
p . (4.3)

Lemma 4.4. For all i ∈ I, we have (ρin)−1(vn) ⇀ φi, i.e. φi is a profile of (vn)n∈ℕ and ρi = (ρin)n∈ℕ is a related
s.t.s. sequence.

Proof. The assertion easily follows from (4.1) and the divergence of ((ρin)−1 ∘ ρ
j
n)n∈ℕ for i ̸= j.

Corollary 4.5. (φi)i∈I is a complete profile system of (vn)n∈ℕ and (ρi)i∈I is a related s.t.s. system.

Proof. The completeness of (φi)i∈I follows from (4.3) and Remark 2.14.

If we assume that the family (φi)i∈I has been already found as a profile system of a given sequence (un)n∈ℕ,
then (2.6) can be restated as

lim
n→+∞

‖vn‖p ≤ lim inf
n→+∞

‖un‖p . (4.4)

The following lemma gives a multiscale version of the Kadec–Klee property of Lp spaces.

Lemma 4.6. The reminder (un − vn)n∈ℕ is infinitesimal in Lp(ℝN) if and only if

lim sup
n→+∞

‖un‖p ≤ lim
n→+∞

‖vn‖p . (4.5)

Proof. The first implication is trivial. To prove the converse implication we shall assume (4.5), so we can set

s := lim
n→+∞

‖un‖p = lim
n→+∞

‖vn‖p .

For any fixed ε > 0 there exists a finite F ⊂ I such that

∑
i∈F

‖φi‖
p
p > ∑

i∈I
‖φi‖

p
p − ε.

Making use of the same notation introduced in the proof of Lemma 2.12, we set

vn,ε = ∑
i∈F

(ρin)�(ψi),
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and remark that, modulo an infinitesimal term in n, by (2.8) and (2.7),

‖vn,ε‖
p�
p� = ∑

i∈F
‖φi‖

p
p > (s − ε)p .

Since (φi)i∈I is also a profile system of (vn)n∈ℕ, we deduce from the first two lines of (2.9) that

⟨vn,ε , un⟩ ≥ ∑
i∈F

‖φi‖
p
p and ⟨vn,ε , vn⟩ ≥ ∑

i∈F
‖φi‖

p
p ,

and then, by Hölder Inequality,

∑
i∈F

‖φi‖
p
p ≤ ⟨vn,ε ,

un + vn
2 ⟩ ≤ (∑

i∈F
‖φi‖

p
p)

1
p� ‖
un + vn

2 ‖p ,

so
1
2 ‖un + vn‖p ≥ (∑

i∈F
‖φi‖

p
p)

1
p = s − ε.

Then, by using the uniform convexity of Lp(ℝN) (and in particular the Clarkson inequalities) we deduce
‖un − vn‖

p
p → 0 and so the thesis follows.

Corollary 4.7. A (bounded) sequence (vn)n∈ℕ which admits (φi)i∈I as a (complete) profile system, (ρi)i∈I as a
related s.t.s. system and satisfies (4.3) is uniquely determined modulo an infinitesimal term in Lp.

Remark 4.8. If the sequence (un)n∈ℕ is bounded in a suitable Sobolev space, we can easily prove, by an
iterated application of the Brezis–Lieb lemma (see [1]), that

‖un‖
p
p = ‖vn‖

p
p + ‖un − vn‖

p
p + o(1),

getting in particular (4.4) and Lemma 4.6.

We shall be concerned with the case of a bounded sequence in a Sobolev space in Section 6 below, but we
shall need to apply the results in this section also to the sequence (∇un)n∈ℕ and therefore even in that section
we shall need the results established in the above setting. We can collect Lemma 2.12, Proposition 2.16 and
Lemma 4.6 in the following statement.

Theorem 4.9. Let (un)n∈ℕ ⊂ Lp(ℝN) be a bounded sequence. Let (φi)i∈I be a complete profile system in Lp(ℝN)
and let (ρi)i∈I = ((ρin)n∈ℕ)i∈I be a related routed s.t.s. system. Then

∑
i∈I

‖φi‖
p
p ≤ lim inf

n→+∞
‖un‖

p
p (4.6)

and
un −∑

i∈I
ρin(φi) G-converges to 0. (4.7)

Moreover,

un −∑
i∈I
ρin(φi) → 0 in Lp if and only if lim

n→+∞
‖un‖p exists and equality holds in (4.6). (4.8)

5 Routing an s.t.s. System

In this section we shall prove, in particular, that any profile system admits a routed s.t.s. system.

Lemma 5.1. Let (φi)i∈I be as in Section 4. Then there exists a family of scalings ρ = (ρi)i∈I ∈ G such that for all
F ⊂ I, F finite, !!!!!!

""""""∑
j∈F
ρj(φj)

""""""
p

p
− ∑
j∈F

‖φj‖
p
p
!!!!!! ≤ 2−min(F) − 2−max(F) < 2−min(F). (5.1)
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Proof. Weshall construct the sequence of scalings (ρi)i∈I recursively by arguingon thefirst inequality of (5.1).
In particular, we shall prove that if, for i ∈ ℕ, ρ1, . . . , ρi have been already defined and if (5.1) holds true for
any set F ⊂ {1, . . . , i}, by choosing ρi+1 so that for all H ⊂ {1, . . . , i},

!!!!!!
"""""" ∑
j∈H∪{i+1}

ρj(φj)
""""""
p

p
−
""""""∑
j∈H

ρj(φj)
""""""
p

p
− ‖φi+1‖

p
p
!!!!!! < 2−i−1, (5.2)

then (5.1) holds true for all F ⊂ {1, . . . , i + 1}. (There is no problem in choosing ρi+1 as in (5.2), it is
indeed enough to select a term of sufficiently large index from any diverging sequence of scalings.) Let
F ⊂ {1, . . . , i + 1}. If max(F) ≤ i, then the assertion follows by induction assumptions. Therefore, we assume
max(F) = i + 1, then by using (5.2) with H = F \ {i + 1} and by using induction assumptions, we get

!!!!!!
""""""∑
j∈F
ρj(φj)

""""""
p

p
− ∑
j∈F

‖φj‖
p
p
!!!!!! ≤ 2−i−1 +

!!!!!!
"""""" ∑
j∈F\{i+1}

ρj(φj)
""""""
p

p
− ∑
j∈F\{i+1}

‖φj‖
p
p
!!!!!!

≤ 2−i−1 + 2−min(F\{i+1}) − 2−max(F\{i+1}).

Of course every s.t.s. system related to a finite profile system is routed (actually any s.t.s. related to a pro-
file system (φi)i∈I such that the sum of ‖φi‖p is finite is routed). So, if (φi)i∈I is a profile system and if
(ρi)i∈I = ((ρin)n∈ℕ)i∈I is a related s.t.s. system, we can focus the case I = ℕ. Since the s.t.s. are mutually
diverging, by taking into account (2.3), we deduce that for any i ∈ I there exists ν ∈ ℕ such that for all n ≥ ν,
and for all F ⊂ {1, 2, . . . , i}, we have

!!!!!!
""""""∑
j∈F
ρjn(φj)

""""""
p

p
− ∑
j∈F

‖φj‖
p
p
!!!!!! < 2−i . (5.3)

Then, set for any i ∈ I,

n(i) = max(i, min{ν | (5.3) holds for all n ≥ ν and for all F ⊂ {1, . . . , i}}),

so that (5.3) holds if n(i) ≤ n for every upper bound i of F. Since the sequence (n(i))i∈I is a diverging non-
decreasing sequence of natural numbers, we can consider the “left inverse” sequence (i(n))n∈ℕ of (n(i))i∈I ,
where for any n ∈ ℕ,

i(n) = max{j ∈ I | n(j) ≤ n} ≤ n, (5.4)

so that n ≥ n(i) if and only if i ≤ i(n) and (5.3) holds with i = i(n) when i(n) is an upper bound of F.

Proposition 5.2. Let (φi)i∈I be as in Section 4 and let (ρi)i∈I = ((ρin)n∈ℕ)i∈I be a family of mutually diverging
sequences of scalings. Then there exists a family (σi)i∈I = ((σin)n∈ℕ)i∈I which is routed with respect to (φi)i∈I
and such that for all i ∈ I, σin = ρin, with the exception of a finite number of indexes n (and therefore such that
σi ∈ [ρi]S for all i ∈ I).

Proof. For any fixed i ∈ I and n ∈ ℕ set

σin =
{
{
{

ρin if n ≥ n(i), (i.e. if i ≤ i(n)),
ρi if n < n(i), (i.e. if i(n) < i),

(5.5)

where (ρi)i∈I is the sequence provided by Lemma 5.1. Note that the last part of the assertion then follows by
construction since, for any i ∈ I, n(i) ∈ ℕ.

In order to prove that (σi)i∈I is routed, in correspondence to ε > 0 we fix iε ∈ I large enough to have,
+∞
∑

i=iε+1
‖φi‖

p
p + 2−iε < (

ε
2 )

p . (5.6)

Let F ⊂ I be such that min(F) > iε, then we shall deduce the first part of the assertion by proving that, for all
n ∈ ℕ, ‖∑i∈F σin(φi)‖p < ε. Given n ∈ ℕ, we set

F1 = {j ∈ F | j ≤ i(n)} and F2 = F \ F1.
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By (5.5), we have """"""∑
j∈F
σjn(φj)

""""""p
≤
"""""" ∑
j∈F1

ρjn(φj)
""""""p

+
"""""" ∑
j∈F2

ρj(φj)
""""""p
. (5.7)

Since (5.3) holds for F = F1 (with i = i(n)), and since by definition i(n) is an upper bound of F1 and i(n) > iε
if F1 ̸= 0, we immediately see from (5.6) that the first term on the right-hand side of (5.7) is bounded by ε

2 .
The same conclusion holds for the second one by (5.1).

Applying Proposition 5.2, one gets the following results. The first one is an easy corollary of Theorem 3.1 and
Theorem 4.9.

Corollary 5.3. Let (un)n∈ℕ ⊂ Lp(ℝN) be a bounded sequence. Replacing (un)n∈ℕ by a suitable subsequence, we
can find a complete profile system (φi)i∈I in Lp(ℝN) and a related routed s.t.s. system (ρi)i∈I = ((ρin)n∈ℕ)i∈I such
that (4.6), (4.7) and (4.8) hold.

Proposition 5.4. Given any (φi)i∈I as in Section 4, for any family (ρi)i∈I of mutually diverging sequences of
scalings, there exists a “profile reconstruction” (vn)n∈ℕ which satisfies the assumptions of Corollary 4.7.

Proof. It is enough to replace (ρi)i∈I by the s.t.s. system (σi)i∈I provided by Proposition 5.2 and apply Corol-
lary 4.5 and Remark 2.9.

As already pointed out in Corollary 4.7, this profile reconstruction is uniquely determined modulo an
infinitesimal term and therefore it does not need to be defined exclusively by (4.2) (with ρin replaced by
σin of course). For instance, finite sums with diverging number of terms work in the same way. We shall
discuss these variants in details in the case of Sobolev spaces (see Corollaries 6.3 and 6.4 below).

Corollary 5.5. The results in Section 4 are in general false (the sequence (vn)n∈ℕ does not exist) if the assump-
tion that (ρi)i∈I is routed is removed.

Proof. Let (ai)i∈ℕ be any sequence of positive real numbers such that ∑i∈ℕ ai = +∞ and ∑i∈ℕ a
p
i < +∞. Let

φ ∈ Lp(ℝN), φ ̸= 0. Let φi = aiφ and let (ρi)i∈ℕ be any sequence of mutually diverging sequences of scalings.
(Note that, since ∑i∈I ‖φi‖

p
p = (∑i∈I a

p
i )‖φ‖

p
p < +∞, by Corollary 4.7, (φi)i∈I is a complete profile system of

a suitable bounded sequence (un)n∈ℕ and (ρi)i∈I is a corresponding s.t.s. system.) We can easily get (ρi)i∈I
“derouted” by applying the same procedure of Proposition 5.2, defining σi as in (5.5) but taking ρi equal to
the identity function instead of the value given by Lemma 5.1. Then, (σi)i∈I is another s.t.s. system of (φi)i∈I ,
but

vn = ∑
i∈I
σin(φi) =

i(n)
∑
i=0
ρin(φi) + (

+∞
∑

i=i(n)+1
ai)φ

does not exist.

6 Profile Decomposition Theorems in Sobolev Spaces H1,p

In this section we shall apply the results obtained so far in Lp spaces to the Sobolev space H1,p(ℝN) (with
1 < p < N), equipped with the homogeneous norm

‖u‖1,p = ‖∇u‖p ,

with respect towhichH1,p(ℝN) is embedded into Lp∗ (ℝN), at the light of [8, Theorem1]. Such “cocompactness
result”, thanks to the Sobolev embedding in Lorentz spaces, admits a simple proof which is carried out on
the Marcinkiewicz space of index p∗. This is not just a technical device because this result is false in the case
of the optimal embedding in the category of Lorentz spaces, as analogously happens with Rellich theorem
in the category of Lebesque spaces, see [8]. The result can be reformulated as follows with the terminology
introduced in this paper.
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Proposition 6.1. Let (wn)n∈ℕ be a bounded sequence in H1,p(ℝN) then (wn)n∈ℕ is infinitesimal in Lp
∗
(ℝN) if

and only if (wn)n∈ℕ G-converges to zero.

Taking into account that the gradient operator∇ is linear andweakly continuous,we deduce that a functionφ
is a profile in Lp∗ (ℝN) of a sequence (un)n∈ℕ ⊂ H1,p(ℝN) if and only if ∇φ is a profile of (∇un)n∈ℕ in Lp(ℝN).
Moreover, for any u ∈ H1,p, ρ̃(∇u) = ∇(ρ(u)) where ρ is any Lp∗ -invariant scaling and ρ̃ is the corresponding
Lp-invariant scaling having the same center and modulus of ρ. In the remaining part of this section we shall
denote byG and respectively G̃ the group of Lp∗ and Lp-invariant scalings. From the above equalitywe deduce
that ρ = (ρn)n∈ℕ ⊂ G is an s.t.s. of φ in Lp∗ , if and only if ρ̃ = (ρ̃n)n∈ℕ ⊂ G̃ is an s.t.s. of ∇φ in Lp. Therefore, if
(φi)i∈I is a (complete) profile system of (un)n∈ℕ in Lp

∗
(ℝN) and (ρi)i∈I is a related s.t.s. system, then (∇φi)i∈I

is a (complete) profile system of (∇un)n∈ℕ in Lp(ℝN) and (ρ̃i)i∈I is a related s.t.s. system.
We shall say that a family of s.t.s. (ρi)i∈I is routed in H1,p(ℝN) if the family (ρ̃i)i∈I is routed in Lp(ℝN).

Then, by Sobolev embedding, (ρi)i∈I is also routed in Lp∗ (ℝN). So, if (φi)i∈I is a complete profile system
in Lp∗ (ℝN) of (un)n∈ℕ ⊂ H1,p(ℝN) and if (ρi)i∈I = ((ρin)n∈ℕ)i∈I is a related s.t.s. system which is routed (in
H1,p(ℝN)), then, set vn as in (4.2), we have that (∇vn)n∈ℕ is the profile reconstruction of (∇un)n∈ℕ in Lp(ℝN).
So from Theorem 4.9 we get the following statement, which implies [8, Theorem 2] thanks to the results in
Section 5 (in the second part of (6.2) below we prefer the sentence “G-converges to 0” instead of the more
appropriate “G̃-converges to 0”).

Theorem 6.2. Let (un)n∈ℕ ⊂ H1,p(ℝN) be a bounded sequence. Let (φi)i∈I be a complete profile system in
Lp∗ (ℝN) and let (ρi)i∈I = ((ρin)n∈ℕ)i∈I be a related routed s.t.s. system. Then

∑
i∈I

‖φi‖
p
1,p ≤ lim

n→+∞
‖un‖

p
1,p , (6.1)

and
un −∑

i∈I
ρin(φi) → 0 in Lp∗ and ∇un −∑

i∈I
∇(ρin(φi)) G-converges to 0 in Lp . (6.2)

Moreover,
un −∑

i∈I
ρin(φi) → 0 in H1,p(ℝN)

if and only if equality holds in (6.1).

Proof. As remarked above we can apply Theorem 4.9 in Lp∗ (ℝN) to the sequences (un)n∈ℕ, (φi)i∈I , (ρi)i∈I
and in Lp(ℝN) to the sequences (∇un)n∈ℕ, (∇φi)i∈I , (ρ̃i)i∈I . The first convergence in (6.2) is strong by Propo-
sition 6.1.

Taking I = ℕ, we can also replace the infinite sumwith a finite sum as stated in the following corollary which
easily follows from the previous theorem thanks to the uniformity of the summability in the definition of vn.

Corollary 6.3. Under the assumptions of Theorem 6.2, for any sequence (ℓn)n∈ℕ ⊂ ℕ such that ℓn → +∞,
by (6.2), we have

un −
ℓn
∑
i=0
ρin(φi) → 0 in Lp∗ (ℝN). (6.3)

Corollary 5.5 clearly shows that the above statements are false if the assumption that (ρi)i∈I is routed is
removed. In the case of a (nonrouted) s.t.s. system all we can say is a result of the type of [4, Theorem 1.1].

Corollary 6.4. Let (un)n∈ℕ ⊂ H1,p(ℝN) be a bounded sequence. Let (φi)i∈I be a complete profile system in
Lp∗ (ℝN) and let (ρi)i∈I = ((ρin)n∈ℕ)i∈I be a related (eventually nonrouted) s.t.s. system. Then there exists a
diverging sequence (ℓn)n∈ℕ such that (6.3) holds true (see also [4, Remark 1.2]).

Proof. It is sufficient to take, for any n ∈ ℕ, ℓn < i(n), where i(n) is as in (5.4), and apply Corollary 6.3 to the
routed s.t.s. (σi)i∈I given by (5.5).
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7 Polar Profile Decomposition

In the recent work [9], see also [10], the profile decomposition theoremhas been stated in the general context
of Banach spaces and has been obtained by using the notion of polar convergence (actually ∆-convergence
in the last version of the paper; see [2, 6]) instead of weak convergence. In such a case we shall speak of the
polar profile decomposition theorem.

Applying the results obtained so far in Lp spaces, we get that starting from a bounded sequence
(un)n∈ℕ ⊂ H1,p(ℝN) it is possible to find a complete polar profile system (φi)i∈I of (un)n∈ℕ in Lp∗ and
another polar profile system (ψj)j∈J of (∇un)n∈ℕ in Lp. However, we need to put an important warning: in gen-
eral, we cannot say that ψj = ∇φi since the gradient operator is not continuous with respect to polar conver-
gence. Since every bounded sequence in Sobolev spaces admits a subsequence which is converging a.e. and,
since for bounded a.e. converging sequences in Lp polar limit and weak limit agree (see [2, Remark 5.6]), we
deduce that (φi)i∈I is a complete profile system also in the sense given in Section 2 and so we can apply all
results proved in Section 6. In particular, (∇φi)i∈I is a complete system of (∇un)n∈ℕ which G-converges to 0.
The circumstance that ∇φi can be distinct from any ψj is an immediate consequence of [2, Theorem 5.5]
which allows to construct bounded sequences in Lp whose polar and weak limit do not coincide. However,
this situation changes if one substitutes the Lp-norm of the gradient with an equivalent norm. Indeed, the
polar convergence, differently from the weak one, is not invariant under the change of equivalent norms. In
the case of Sobolev spaces we can pass to an equivalent norm, based on the Littlewood–Paley decomposition
which induces a polar convergence equal to the weak one (in other terms it is a “van Dust norm”, see [14]).
In such a case we can go back to the previous framework, which therefore enters in the more general theory
developed in [9] and [10], to whichwe refer formore details. The change of normmakes the previouswarning
disappear.

Acknowledgment: The authors are grateful to K. Tintarev for several discussions on the subject.
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