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Abstract
In this work, Discrete Elements Method simulations are carried out to investigate the effective stiffness of an assembly of 
frictional, elastic spheres under anisotropic loading. Strain probes, following both forward and backward paths, are performed 
at several anisotropic levels and the corresponding stress is measured. For very small strain perturbations, we retrieve the 
linear elastic regime where the same response is measured when incremental loading and unloading are applied. Differently, 
for a greater magnitude of the incremental strain a different stress is measured, depending on the direction of the perturbation. 
In the case of unloading probes, the behavior stays elastic until non-linearity is reached.Under forward perturbations, the 
aggregate shows an intermediate inelastic stiffness, in which the main contribution comes from the normal contact forces. 
That is, when forward incremental probes are applied the behavior of anisotropic aggregates is an incremental frictionless 
behavior. In this regime we show that contacts roll or slide so the incremental tangential contact forces are zero.

Keywords  Granular materials · Micromechanics · Discrete Element Method · Effective moduli

1  Introduction

Granular media are complex systems widely present in civil 
engineering in the form of soils or granulates, in industry 
including chemical synthesis, food production, thermal insu-
lation, additive manufacturing and other application consist-
ing of granular beds. Understanding the mechanical response 
of granular materials is important to elucidate fundamental 
aspects of the behavior of these particulate systems [1, 2]. 
To this end, numerical simulations, laboratory experiments 
and theoretical models have been employed. In particu-
lar, an interesting activity regards the theoretical analysis, 

developed in order to establish predictive models that should 
reproduce what seen in numerical simulations and/or labora-
tory experiments. There are models based upon a phenom-
enological approach and other based on micro-mechanics. 
The latter are more favorable when compared with Discrete 
Element Method (DEM) simulations [3] because it is pos-
sible to test not only the macroscopic response of the aggre-
gate but also local features that characterize particle interac-
tions. In this paper, we focus on a numerical analysis for a 
granular aggregate, referring to theoretical models already 
available in literature. In fact, it is not our goal to develop a 
new theory but to provide new insights of the elasto-plas-
tic regime. We are interested to the incremental response 
of dense, sheared granular samples and how the response 
qualitatively changes as anisotropy develops in the aggre-
gate. This is an important point, for example in the context 
of seismic waves that propagate in granular materials (e.g. 
[4, 5]), geotechnical applications involving regions where 
deformations are small [6], the development of elastic-
plastic constitutive models, where elasticity needs a proper 
description, e.g. [7, 8] or as indicator for localization [9]. 
Several approaches have been used to investigate elastic-
ity numerically, e.g., dynamical unloading probes [10–12], 
response envelope [13–15], stiffness matrix [16, 17], wave 
propagation [4, 18, 19], depending on the specific focus and 
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final goal. In particular, procedures (and often conclusions) 
diverge if the interest is on ”pure” elasticity at very small 
strains or an elasto-plastic framework.

Here we study elasticity in granular materials over a 
wide range of strain magnitudes, for different directions 
and degrees of anisotropy. We highlight that the mechani-
cal response of anisotropic granular aggregates is different if 
forward or backward incremental strain are applied. Beside 
the well-known linear elastic regime in which the same 
stress is measured when both forward and backward incre-
mental strains are applied, we recognize a second regime, 
associated with greater perturbations, that proceed the 
non-linear behavior, i.e. the stiffness depends on the strain 
amplitude. We identify in this regime an inelastic stiffness in 
which the response becomes incrementally frictionless and 
the major symmetry of the macroscopic stiffness is lost (e.g. 
[20, 21]). Key parameters are the magnitude and direction 
of the probes applied to stressed, anisotropic states, com-
pared with the strain under which the aggregate is initially 
loaded. In such framework, Froiio and Roux [17], Calvetti 
et al. [15], Kuhn et al. [22] use response envelopes obtained 
via DEM multidirectional loading probes to investigate the 
validity of common assumptions of elasto-plastic models for 
granular materials subjected to anisotropic loading paths. 
We, instead, operate with limited loading conditions because 
we have a different goal. Specifically, we focus on probes 
parallel and orthogonal to the initial monotonic loading in 
order to unravel the role of contacts elasticity, sliding and 
rolling in the transition of the elastic, inelastic, and plastic 
regime where the loss of symmetry emerges.

2 � Numerical simulations

The DEM methods (e.g. [3, 23]) are a powerful tool to study 
granular materials in combination with theoretical models 
(e.g. [24–26]) to predict the material response under differ-
ent loading conditions (e.g. [10–12, 27–29])

The code is based upon the knowledge of particles posi-
tion and interaction forces. If the contact forces, acting on a 
particle, are known the problem is reduced to the integration 
of Newton’s equations of motion for the translational and 
rotational degrees of freedom of that particle. The system 
considered here is a random assembly of identical, frictional, 
elastic spheres that interact through contacts in which grav-
ity is neglected. A micro-mechanical analysis shows inter-
esting features associated with the possibility that particles 
slide or roll.

2.1 � Contact mechanics

For a given pair of particles, the interaction is represented 
by a non-central contact force

where d̂i is the unit contact vector that joins the centers 
of contacting particles and t̂i is the tangential unit contact 
vector in the plane perpendicular to d̂i . The normal force 
FN follows the non-linear Hertz law. FT is the tangential 
contact force that incorporates a bilinear relationship, i.e., 
an elastic resistance followed by Coulomb sliding [30]. 
When FT ≥ �FN , the tangential force in the slip direction 
is FT = �FN [31].

The average stress �ij of the aggregate, according to 
Cauchy [32], is given by

(1)Fi = FNd̂i + FT t̂i,

(2)�ij =
1

V

Nc

∑

c=1

Fidj

Fig. 1   Normalized deviatoric stress versus normalized deviatoric 
strain (solid line) and its components qN∕p0 (dashed line) and qT∕p0 
(dotted line). Markers indicate the states where probes are applied
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Fig. 2   Coordination number versus normalized deviatoric strain. 
Markers indicate the states where probes are applied
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in which the sum is extended to all Nc contacts in the repre-
sentative volume V. As in [33] and [28], the stress may be 
partitioned into its normal and tangential components

and

in order to capture the relative contribution of the two parts.

2.2 � Preparation protocol

We employ material properties typical of glass spheres, 
shear modulus G = 29GPa and Poisson’s ratio, � = 0.2 . We 
use an aggregate of N = 10, 000 spheres, each with radius 
R = 0.1mm, randomly generated in a periodic cubic cell. Our 
calculations begin with a numerical protocol designed to 
mimic the experimental procedures used to prepare densely 
packed granular materials. Particles are then isotropically 
compressed without friction, � = 0 , until a solid volume 
fraction slightly lower than random close-packing � ≤ �RCP 
has been reached ( �RCP ≃ 0.64 for monodisperse aggregates 
[34]). Then, the particles are allowed to relax and reach pres-
sure and coordination number equal to zero [11].

(3)𝜎N
ij
=

1

V

Nc

∑

c=1

FNd̂c
i
dc
j

(4)�T
ij
=

1

V

Nc

∑

c=1

FTtc
i
dc
j

Furthermore, an isotropic compression is applied with 
friction coefficient � = 0 to reach the target value of mean 
stress p0 = 200kPa, followed by a new relaxation stage 
under which the final friction coefficient is set to be � = 0.5 . 
In this reference isotropic configuration, the solid volume 
fraction reaches � = 0.64 and the coordination number 
(the average number of contacts per particle) k0 = 5.95 , 
while the volumetric strain associated with the pressure p0 
is �0 = 1 × 10−3 . This measure of the strain is based upon 
a theoretical prediction proposed by Jenkins et al. [35] in 
which, in a succession of isotropic states, pressure and vol-
ume strain are related by:

whose incremental formulation is

Given the pressure p0 and the bulk modulus of the aggregate, 
i.e. �p0∕��0 , Eq. 6 permits to determine �0.

2.3 � Axial‑symmetric compression

After the isotropic compression, an axial-symmetric defor-
mation is applied along the direction �1 . We take the friction 
coefficient � = 0.5 , although glass beads are characterized 
by a smaller value, � = 0.3 , because we obtain a smoother 

(5)�
3∕2

0
=

√

3�9(1 − �)

k0�2G
p0.

(6)
3p0

2�0

=
�p0

��0

.

Fig. 3   Effective moduli A31 and 
A11 for different regimes of per-
turbation in two stressed states: 
isotropic and anisotropic state 
( �∕�0 = 0.24 ). In the insets the 
behaviour in the intermediate 
regime for all isotropic/aniso-
tropic states, as indicated in 
Fig. 1 are shown
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response with a an almost identical behavior. The test is car-
ried out at constant mean stress, p0 = 200 kPa, by means of 
a servo-mechanism [28]. To ensure quasi-static conditions, 
the compression is performed with a sequence of small strain 
steps, ��11 ≃ −10−5 (compression < 0 in our convention), 
and relaxation steps in which particles are allowed to dis-
sipate kinetic energy and to reach intermediate equilibrium 
states. At each time step, along the compression path, we 
measure the deviatoric stress

and the normal and tangential parts qN and qT derived by 
means of Eqs. 3 and 4 , respectively [33]. In this work, we 
limit our analysis to a relative small range of deformation, 
𝛾∕𝛥0 < 0.4 , in which � = (�22 + �33)∕4 − �11∕2 deviatoric 
strain applied. However, in this regime, contacts already 
experience elastic deformation, sliding and deletion [26]. In 

(7)q =
1

2

(

�22 + �33

2
− �11

)

(a)

(b)

Fig. 4   Effective moduli A11 and A31 versus strain amplitude
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Fig. 1 we plot the normalized deviatoric stress q∕p0 against 
the normalized deviatoric strain �∕�0 . In the same figure, the 
partition of the deviatoric stress into the normal and tangen-
tial contributions qN∕p0 and qT∕p0 is shown as well. After an 
initial similar response for qN∕p0 and qT∕p0, it is clear that 
the deviatoric stress is almost identifiable with its normal 
component, qN∕p0 . In this rather narrow regime of deforma-
tion the change in the coordination number (see Fig. 2), is 
negligible as well as in the fabric and volume.

From the contact point of view, a clear picture emerges 
when the aggregate is axially deformed. The initial state is 
isotropic in terms of contact vector orientations and contact 
loading. When the aggregate is sheared, within the range 
of deformation of our interest, the contact network is still 
approximately isotropic, while contact loadings show an 
alignment with the applied deformation along �1 . Anisot-
ropy in loading occurs and �1 becomes a preferential direc-
tion for the contact forces. Moreover, as seen in Fig. 1, the 
tangential component of the stress, qT∕p0, reaches a plateau, 
e.g. [28, 33], which implies that, after about �∕�0 ≃ 0.2 , the 
increment in tangential forces is zero, as we will show in the 
present contribution.

2.4 � Incremental response

At four stages along the loading path, as indicated in Fig. 1, 
we calculate the incremental response of the aggregate.

In order to measure the components of the stiffness matrix 
Aijkm , an infinitesimal strain ��km is applied to the aggregate 
and the resulting change in stress is measured after sufficient 
relaxation [10]:

3 � Elastic and inelastic macroscopic 
behaviour

3.1 � Axial‑symmetric probes

We first focus on the incremental response with perturba-
tions that maintain the symmetry generated by the axial 
symmetric loading. That is, ��22 = ��33 = 0 , ��11 ≠ 0 , so, 
adopting Voigt’s notation,

and

with A31 = A21 for symmetry. We also distinguish between 
forward loading and unloading. In the former, ��11 is nega-
tive as it is in the axial-symmetric loading ( 𝜀11 < 0 ), while 
in the latter ��11 is positive ( 𝜀11 > 0).

(8)Aijkm = ��ij∕��km.

(9)A11 = ��11∕��11

(10)A31 = ��33∕��11,

Fig. 5   Effective moduli A13 and 
A33 for different regimes of per-
turbation in two stressed states: 
isotropic and anisotropic state 
( �∕�0 = 0.24 ). In the insets the 
behaviour in the intermediate 
regime for all isotropic/aniso-
tropic states, as indicated in 
Fig. 1 are shown
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In Fig. 3 we plot the evolution with the strain of the mod-
uli A31 and A11 , for the isotropic state and the anisotropic 
state associated with �∕�0 = 0.24.

In the first range of perturbation, ��11 ≃ 10−6, there is 
no difference between forward loading and unloading, irre-
spective of the state of the material, isotropic or anisotropic. 
That is, if the aggregate is incrementally strained with an 
extremely small perturbation all contacts behave elastically 
[16]. Instead, for slightly bigger probes, ��11 ≃ 10−5, we see 
a second plateau and a difference in the response between 

forward and unloading probes. While unloading probes seem 
weakly related with anisotropy, in the case of forward load-
ing a pronounced dependency on the stress state appears, 
with A11 ( A31 ) decreasing (increasing) with anisotropy. 
Details of this second regime induced by forward loading 
are shown in the inset.It is noteworthy to mention that, dur-
ing all the applied increments, we do not see any significant 
change in the coordination number as we will show in details 
later in the section Micromechanics.

(a)

(b)

Fig. 6   Effective moduli A13 and A33 versus strain amplitude
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An interesting feature appears in the second regime when 
we plot the moduli A11 and A31 partitioned in a normal and 
tangential part. A(N)

11
 and A(N)

31
 are the moduli inferred from the 

stress containing contributions from the normal component 
of the contact forces while A(T)

11
 and A(T)

31
 are related to the tan-

gential component of the contact forces. In Fig. 4a, b we show 
details of the results: while in the unloading cases both moduli 
A11 and A31 have contributions from a normal and tangential 
part of the stress, the response to an incremental forward load-
ing is mainly characterized by the normal contribution with a 
clear evidence for the anisotropic states in which qT is constant 
(see Fig. 1). That is, the response is incrementally frictionless. 
At �∕�0 ≃ 0.2, where qT∕p0 has reached its plateau, both A(T)

11
 

and A(T)

31
 are almost zero. As the slope in qN∕p0 changes with 

�∕�0 so the moduli A11 and A31 vary. The transition between 
the two plateau, the first at very small deformation identified 
as the elastic regime and the second associated with the plastic 
regime, resembles what predicts by Rudnicki and Rice [9] in 
their yield-vertex constitutive model. That is, the transition 
represents a combination of an elastic response associated with 
contacts that still experience an elastic resistance and a plastic 
response characterized by zero incremental tangential resist-
ance. The second plateau, also emphasized in Fig. 3, indicates 
instead that the response is plastic with no local, incremental 
tangential resistance. Something similar has been also pointed 
out by Tamagnini et al. [37], in a continuum model, through a 
bounding surface to be distinguished from the classical yield 
surface.

3.2 � Probes with no symmetry

We now look at the incremental response of the aggregate 
when forward loading and unloading probes are applied 
along �3 , ��33 ≠ 0 with ��11 = ��22 = 0 . We can determine:

and

Because of the symmetry associated with the axial loading 
along �1, probes along �2 and �3 produces the same response, 
so

and

In Fig. 5 we plot the results for A13 and A33 . Again we note a 
first elastic regime, at ��33 ≃ 10−6, in which there is no dif-
ference between incremental loading and unloading.

We recall that the axial-loading (see Fig. 1) is carried out 
by applying a strain 𝜀11 < 0 , with 𝜀22 = 𝜀33 > 0 to maintain a 

(11)A13 = ��11∕��33

(12)A33 = ��33∕��33.

(13)A13 = A12

(14)A33 = A22.

constant confining pressure; so unloading probe now means 
𝛿𝜀33 < 0 while forward incremental loading means 𝛿𝜀33 > 0 . 
These incremental conditions do not reproduce the symme-
try induced by the uniaxial loading. In the Fig. 4b we note 
again a second plateau associated with the inelastic regime 
for A13 . When we look closely at A33 , we observe a clear 
elastic regime, followed by a rather narrow second plateau. 
In the insets, we show the dependence of the forward loading 
probing on anisotropy.

Furthermore, we look at the normal and tangential con-
tributions of A13 and A33 versus strain. In Fig. 4a, b, we 
observe that the behavior of the partitioned moduli differs 
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Fig. 7   Contact distribution functions for (top) isotropic, k0 = 5.95, 
and (bottom) anisotropic, k = 5.78 , with �∕�0 = 0.24 . For both cases, 
the contact distributions of the initial packing, after incremental for-
ward loading and unloading are reported
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between A11 and A31 . The contribution associated with the 
tangential part of the contact force does not vanish because 
we are not deforming particles along the same path of the 
axial-symmetric loading. That is, some contacts that were 
sliding under the axial loading are now behaving elastically 
because the probe does not maintain the same symmetry.

Finally, Fig. 6b shows that the tangential contribution of 
A33 in the inelastic regime is again negligible, suggesting an 
incrementally frictionless behavior.

In all cases examined, increments larger than 10−4 pro-
duces a non-linear regime, more evident in case of anisot-
ropy, in which the response depends on the amplitude of 
incremental strain ( [19, 36, 37]). Moreover, in the regime 
of deformation where the inelastic stiffness is defined, when 
anisotropy develops, the aggregate exhibits the loss of the 
major symmetry in the macroscopic stiffness, A13 ≠ A31 . 
This is a crucial condition to determine localization in a 
granular material [9, 38, 39].

Our results are in line with previous findings in [15, 17] 
and [22]. Specifically, the authors in [15] have shown that 
only isotropic samples conform to the hypotheses beyond 
elasto-plastic constitutive models, while major deviations 
are observed as soon as anisotropic stress history is consid-
ered. Figs. 3, 4, 5 in the present work (a simpler context in 
which probes are along two directions only) provide a simi-
lar message, with the presence of an intermediate regime 
neither totally elastic or plastic in case of anisotropic sam-
ples. In such inelastic regime, stress and strain increments 
may loose alignement under uniaxial probes along y1 and 
y3 , imposed over the initial triaxial stress state. In [17] DEM 
simulations show the outmost importance of the rotation 
with respect to the axis of pre-loading on the incremental 
response of a granular material, in terms of the definition 
of a flow direction and non-associated character of the flow 

rule, i.e. loss of major symmetry as in our paper. However, 
we found the loss of major symmetry already happens in 
what we call an “inelastic regime”, even before the friction 
is largely mobilized in the plastic regime. Finally, in their 
extensive and accurate work, Kuhn et al. [22] show that five 
over six principles of conventional elasto-plasticity fail when 
tested against preloaded anisotropic granular materials. The 
lost principles include direction and magnitude of the strain 
increments, the yield criterion as well as the separation of 
strain increments into elastic and plastic. Our findings in 
the inelastic regime conform to the analysis in [22], while it 
still supports the idea of a fully elastic regime for very small 
strain increments. All these works suggest the need of more 
complex constitutive models for a comprehensive descrip-
tion of granular materials (e.g. multi-mechanism plasticity 
or tangential plasticity).

4 � Micromechanics

4.1 � Micromechanical characterization of elastic 
and inelastic regimes

In order to characterize the difference between the material 
response during probing in the inelastic regime, we investi-
gate the micro-structure of the aggregate, with special focus 
on the number of contacts, mobilised friction at the contacts.

In Fig. 7 we compare the contact distribution functions of 
the initial relaxed configuration with those after incremental 
inelastic forward loading and unloading, in the isotropic and 
anisotropic ( �∕�0 = 0.24 ) packings. As an example we show 
here the response under axial-symmetric probe, ��11 , as in 
Sect. 3.1. Interestingly, we find that the contact distribu-
tion collapses on the initial configuration, irrespective of the 
probing direction. That is, the contact network is not affected 
by either unloading or forward inelastic probes. This implies 
that the coordination number, i.e. the mean of the functions, 
as well as the fluctuation in the number of contacts coincide 
between the packings. Moreover, when comparing the two 
figures, the influence of anisotropy appears to be negligible.

Furthermore, in Fig. 8, we look at the mobilized fric-
tion during incremental forward loading and unloading. We 
define the relative frequency Rf  as the number of contacts 
with a given ratio between tangential and normal forces, 
FT∕�FN , normalized by the total number of contacts, where 
FT∕�FN = 1 means sliding. The figure highlights that, 
despite the contact network stays unchanged under prob-
ing (see Fig. 7), slippage occurs within the contact area and 
contacts reach the onset of sliding. An higher percentage of 
contacts, about 30% , sit in proximity of sliding, in the case 
of incremental inelastic forward loading.

Fig. 8   Relative frequency of mobilized friction during incremental 
forward loading and unloading, for the configuration at �∕�0 = 0.24
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4.2 � Incremental sliding and rotations

As forward step, we study the kinematics at the microscale, 
in terms of contact sliding and particle rotations. We focus 
on the axial-symmetric probes as in Sect. 3.1, and propose a 
micromechanical interpretation to explain why the tangential 
part of the moduli becomes zero under incremental forward 
loading, see Fig. 4a, b. We show that the tangential contribu-
tion of A11 and A31 disappears because particles slide and/
or roll so the incremental tangential displacement become 

zero. The analysis is motivated by a theoretical framework 
able to describe the elasticity of granular materials based 
upon micromechanics and the role of fluctuations, as given 
in [21].

Let us examine in details the incremental forward loading 
at �∕�0 = 0.24 . Following [21], we can express the incre-
mental relative contact displacement between a typical pair 
A and B as

where �ci and ��i are, respectively, the increment in transla-
tion and the increment in rotation of the particle. The tan-
gential component of the contact force is

in which KT is the tangential contact stiffness

and 𝜌(BA) = 𝛿u
(BA)

i
d̂
(BA)

i
 is the overlap between contacting par-

ticles. With Eq. (15), the incremental tangential component 
of the contact force becomes

in which �s(BA)
i

 is the incremental tangential displacement 
associated with the translation of the centers. Because of 
equilibrium, La Ragione and Jenkins [24] show that fluc-
tuations in spin rather than in translation play a major role. 
Consequently, we express �s(BA)

i
 in terms of the incremental 

(15)�u
(BA)

i
= �c

(B)

i
− �c

(A)

i
−

1

2
�iqk

(

��(A)
q

+ ��(B)
q

)

d
(BA)

k

(16)𝛿FT
i
= K

(BA)

T

(

𝛿u
(BA)

i
− 𝛿u(BA)

q
d̂(BA)
q

d̂
(BA)

i

)

(17)K
(BA)

T
=

2G(2R)1∕2

2 − �
�(BA)1∕2

(18)�FT
i
= K

(BA)

T

[

�s
(BA)

i
−

1

2
�iqk

(

��(A)
q

+ ��(B)
q

)

d
(BA)

k

]

(a)

(b)

Fig. 9   The kinematics of a typical pair in which, given the proper 
sign of the rotations and �s , it is possible to realize a relative, tan-
gential, contact displacement equal to zero: a projection on the plane 
y1 − y3 ; b projection on the plane y1 − y2.

Fig. 10   Average rotations �� = ��3 = −��2 evaluated in each strip 
�� in the first octant, 0 ≤ � ≤ �∕2 , in cases of forward incremental 
loading and unloading
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average strain, ��ij , while the rotations include only fluctua-
tions because the average is zero [40]:

When the incremental tangential displacement associated 
with the translation of the centers is equal to the correspond-
ing contribution associated with particle rotations rolling 
occurs; that is:

Therefore, the condition for zero incremental tangen-
tial force,�FT  , occurs with rolling, Eq. (20), or sliding, 
FT = �FN.

We want to test our findings by comparing the amount of 
rolling and sliding particles during incremental axial-symmet-
ric forward loading and unloading. We recall that y1 is the axis 
of anisotropy with the unit contact vector defined in terms of 
the polar angle, � , and � so d̂ = (cos 𝜃, sin 𝜃 cos𝜙, sin � sin�). 
As said earlier, �� represents a fluctuation being the average 
rotation over all particles zero. We measure these fluctuations 
by making a partition in � for all � . In Fig. 9 we sketch, with 
the proper signs, the interaction of a typical pair.

We take Mp pairs of contacting particles whose contact 
vectors, d̂i , are within a strip of width �� and 0 ≤ � ≤ �∕2 . 
With incremental forward loading 𝛿𝜀11 < 0 or unloading 
𝛿𝜀11 > 0 applied, we measure, for all pairs, the rotations and 
the corresponding average in the strip, ��. That is,

We obtain ��1 approximately zero while ��2 = −��3 . The 
numerical results, with ��11 = ±4 × 10−5 , i.e. in the inelastic 
regime, for both forward loading and unloading are shown 
in Fig. 10. The figure shows clear differences in the micro-
scale kinematic between the two cases. While the average 

(19)𝛿s
(BA)

i
= 𝛿𝜀ijd

(BA)

j
− 𝛿𝜀qld

(BA)
q

d̂
(BA)

l
d̂
(BA)

i
.

(20)�s
(BA)

i
= 1∕2�iqk

(

��(A)
q

+ ��(B)
q

)

d
(BA)

k
.

(21)𝛿𝛺i =
1

2Mp

Mp
∑

d̂(BA)⊂[𝛥𝜃;0≤𝜙≤𝜋∕2]
(𝛿𝜔A

i
+ 𝛿𝜔B

i
).

fluctuation ��2 is comparable for high � , it becomes higher 
for forward loading than unloading when 𝜃 < 50◦.

The results can be extended, by symmetry, to the other 
octants, 𝜙 > 𝜋∕2 . We take the average of the incremental 
tangential displacement in each band, so Eq. (19) can be 
written

for � = 5o, 15o, 25o,… 75o, while for the rotation contribu-
tion, Si = 1∕2�iqk

(

��(A)
q

+ ��(B)
q

)

d
(BA)

k
 , we define the average 

over the strip centered in �

where we have employed the average over �

We could have considered an average that accounts for the 
fraction of contacts in each strip but the results will not dif-
fer significantly.

The difference of the averages in each strip is

The corresponding numerical results, for forward prob-
ing ��11 = 4 × 10−5 , are reported in Table 1. In the strips 
between 0 ≤ � ≤ 30o the difference in the average, aL , is 
approximately zero which implies that in that range contacts 
experience rolling rather than sliding. For 30o ≤ � ≤ 80o par-
ticles mostly slide. In Table 2 we report the same parameters 
as in Table 1 but in case of unloading. Here the parameter aU 
is always different from zero, implying that a contribution 
associated with FT is always present. This is confirmed by 
AT
11

 and AT
31

 different from zero in Fig. 4a, b.
The results in Table 1 are shown in a different fashion in 

Fig. 11, where we plot, the relative frequency Rf  of sliding 
contacts in each strip, i.e., the number of contacts in the 

(22)< 𝛿s1 >𝜃;0≤𝜙≤𝜋∕2= 𝛿𝜀11 cos 𝜃 − 𝛿𝜀11 cos
3 𝜃

(23)< S1 >𝜃;0≤𝜙≤𝜋∕2=
2

𝜋

(

𝛺2 −𝛺3

)

sin 𝜃

(24)2

� ∫
�∕2

0

sin�d� =
2

� ∫
�∕2

0

cos�d� =
2

�
.

(25)a =< 𝛿s1 >𝜃;0≤𝜙≤𝜋∕2 − < S1 >𝜃;0≤𝜙≤𝜋∕2 .

Table 1   Incremental forward loading: in each strip, centered at different angle � , we measure the average tangential displacement < 𝛿s1 >𝜃 (first 
row) and the average rotations so their difference is a

L
 (second row). Both terms, < 𝛿s1 >𝜃 and a

L
 are normalized by 2R

� = 5o � = 15o � = 25o � = 35o � = 45o � = 55o � = 65o � = 75o

< 𝛿s1 >𝜃 ×10
5 −0.03 −0.26 −0.65 −1.08 −1.41 −1.54 −1.39 −0.97

a
L
× 105 −0.01 −0.005 −0.05 −0.27 −0.69 −0.88 −0.93 −0.84

Table 2   Incremental unloading: 
as in Table 1 but with a

U
 instead 

of a
L

� = 5o � = 15o � = 25o � = 35o � = 45o � = 55o � = 65o � = 75o

< 𝛿s1 >𝜃 ×10
5 0.03 0.26 0.65 1.08 1.41 1.54 1.39 0.97

a
U
× 105 0.008 0.12 0.36 0.64 0.87 0.91 0.89 0.69
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sliding condition normalized by the number of contact in 
that strip. For 0 ≤ � ≤ 30o sliding does not occur while for 
� ≥ 30o becomes important. Data in the strip 80o ≤ � ≤ 90o 
have not been included here as the number of contacts is 
negligible.

5 � Conclusions

We have analyzed the behavior of a sheared granular mate-
rial via DEM numerical simulations. Anisotropy is devel-
oped in the sheared granular assembly, in a regime of defor-
mation in which the contact network does not change. In 
particular, we have focused on the incremental response of 
the aggregate when probes, different in both direction and 
amplitude, are applied along the shear path.

The material behaviour depends on the smallness of the 
applied probes in a non-trivial way. If the amplitude of the 
probe is extremely small then Aijkm is essentially an elastic 
tensor, irrespective of forward or unloading conditions. If 
the probes are bigger, then a difference between unload-
ing and forward probes occurs. Consequently the response 
of the aggregate, when incrementally forward strains are 
applied, transits from “perfectly” elastic to non-linear strain 
regime, through an intermediate inelastic state in which the 
macroscopic stiffness components, independent of strain 
amplitudes, are different from the elastic moduli obtained 
via unloading probing. Through a micro-mechanics analysis 
we show that the overall incremental response of the aniso-
tropic aggregate, under particular incremental perturbations, 
is independent of the tangential forces between particles and 
mechanisms like rolling or slide occur.
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Fig. 11   Relative frequency Rf  associated with the normalized sliding 
contacts in each strip in case of incremental forward loading
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