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3 LIMSI,CNRS, Université de Paris-Saclay, France

E-mail: giovanni.decillis@poliba.it

Abstract. The wake produced by a single three-bladed wind turbine is investigated using the proper

orthogonal decomposition (POD) of numerical data obtained by a large eddy simulation. The rotor blades

are modeled using the actuator line method, whereas tower and nacelle are simulated through an immersed

boundary method. The POD is performed in a three-dimensional subdomain enclosing the wake after

conducting a convergence test, which demonstrates that the first ten modes are well converged. Most

energetic POD modes identify and isolate different flow features characterising the wake dynamics, such as

the tip-vortices spirals, the von Kármán vortices shed by the tower, the Kelvin-Helmholtz instability linked

to the wake shear layer. Very low frequency modes are also found, which could be related to the wake

meandering phenomenon. Moreover, the wake recovery process is studied by computing the contribution of

each POD mode to the mean-kinetic-energy entrainment. This analysis indicates that tip vortices negatively

affect the wake recovery, since they provide a negative entrainment. On the contrary, flow structures related

to the tower wake are found to be beneficial to wake recovery, demonstrating the importance of including

tower and nacelle in numerical simulations.

1. Introduction

Harnessing wind energy and converting it in electric energy require the design and installation of large

wind farms, constituted by hundreds of turbines. When grouped together, a great part of the wind turbines

operates in the wake of upwind turbines, so that the velocity deficit and the turbulence level of the

incoming flow induce additional power losses and fatigue blade loading [1–3]. Thus, understanding the

dynamics of wind turbine wakes is crucial for the design and efficiency improvement of wind turbines

and farms. This task is challenging, considering that the main features of atmospheric turbulence may

spread over a wide range of spatial and time scales [4]. Thus, a possible approach is to simplify the

problem by focusing on the study of the dynamics of a single wake.

Typically, the part of the wake close to the turbine (near wake) is characterized by vortex structures shed

from the tip and the root of the rotor blade (namely, the tip- and root-vortices) which become unstable

and break down forming small-scale turbulent structures. At the center of the near wake, a hub vortex is

formed, elongated in the streamwise direction [5, 6]. The far wake, instead, is characterized by turbulent

structures derived from the break-down of coherent vortices and by the entrainment of the outer flow,

up to wake recovery [7, 8]. How these coherent structures in the near and far wake contribute to wake

recovery, is however still an open problem.

The present work provides an analysis of the dynamics and recovery of the wake of a wind turbine using

the proper orthogonal decomposition (POD) technique [9,10] applied to numerical data obtained by large
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eddy simulation (LES). Such a technique has been recently introduced in the study of wind turbines and

wind farms. VerHulst and Meneveau [11] applied this technique to the study of a wind farm. They found

four different families of POD modes, and determined the number of POD modes necessary to capture

most of the turbulent kinetic energy of the flow. Sarmast et al. Ivanell et al. [12] and then Sarmast et

al. [13] discussed the stability of the tip vortices, by analysing the mechanisms leading to vortex pairing

using large eddy simulations. Bastine et al. [14, 15] performed a two-dimensional POD analysis using

LES data of the wake of a wind turbine, considering an incoming turbulent athmospheric boundary layer.

Hamilton et al. [16] investigated wake interaction and recovery dynamics using POD applied to velocity

measurements. Sorensen et al. [17] applied POD on the LES results for a single-turbine wake. Debnath

et al. [18] studied the dynamics of wind turbine wakes and instabilities of helicoidal tip vortices using

three-dimensional POD.

Most of these works neglect the contribution of tower and nacelle to the flow dynamics, in order

to simplify the problem. However, we are going to show that the influence of tower and nacelle is

fundamental for the dynamics of the wake and for correctly estimating its recovery. The present work

provides a POD analysis of a wind turbine wake, based on a full three-dimensional set of data obtained

by an LES. A complete turbine geometry is considered, including the tower and the nacelle. We focus

on the analysis of the coherent structures in the wake, in order to study the basic mechanisms of wake

recovery.

2. Methodology

2.1. Large Eddy Simulation (LES)

In the present work an LES is performed in order to investigate the dynamics of the wake developing

behind a wind turbine. LES is based on the solution of the filtered Navier-Stokes equations, by which

only the large-scale structures of the flow are computed, down to a certain cut-off length scale. Small-

scale structures are filtered out and their effect on the resolved scales is modeled [19]. The governing

equations for the filtered non-dimensional velocity, u, and pressure, p, derived from the Navier-Stokes

equations for incompressible flows read as follow:

∂ui
∂t

+
∂uiuj
∂xj

= − ∂p

∂xi
+

1

Re

∂2ui
∂xj∂xj

− ∂τij
∂xj

+ fi, (1)

∂ui
∂xi

= 0, (2)

where i, j ∈ {1, 2, 3} indicate the components in the Cartesian reference frame corresponding to the

streamwise, x, wall-normal, y, and spanwise, z, directions, respectively. The Reynolds number is de-

fined as Re = U∞D/ν, where U∞ is the inlet velocity, D is the rotor diameter and ν is the kinematic

viscosity of the fluid, which have been used as reference variables (namely, x = X/D, y = Y/D, z = Z/D
and ui = Ui/U∞). The subgrid-scale stress tensor, τij , can be decomposed into an isotropic part and

an anisotropic part, τ rij . The isotropic part is included in the modified filtered pressure p∗ = p + 1

3
τii,

whereas the anisotropic part needs to be modeled. The Smagorinsky model is employed in the present

work, with the Smagorinsky constant CS set to 0.09.

The last term in equation (1), fi, is the force per unit volume which models the aerodynamic forces ex-

erted by the turbine blades on the fluid via the actuator line method, as will be explained in sub-section

2.2. The governing equations are solved using a second-order-accurate centered finite difference scheme

on a staggered Cartesian grid and an hybrid low-storage third-order-accurate Runge-Kutta scheme for

time integration [20].

2.2. Actuator line and immersed boundary methods

Rotor blades are simulated employing the actuator line method (ALM) proposed by Sørensen & Shen

[21]. This method relies on the estimate of the forces exerted by the blades on the fluid on the basis of
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tabulated data providing the two-dimensional performance of blade’s airfoils at each radius, namely the

lift, CL, and drag, CD, coefficients. Each blade is treated as a rotating rigid line, which is divided into

discrete segments. Given the chord, c, and twist-angle, φ, distributions along the blade radius, as well as

the fluid density ρ, the lift and drag forces per unit length for each segment are estimated as follows:

FL =
1

2
ρu2relCL(α)cF, (3)

FD =
1

2
ρu2relCD(α)cF, (4)

where urel is the relative inflow velocity and α is the angle of attack. The coefficient F is a modified

Prandtl correction factor [22], which accounts for performance degradation due to tip and root vortices.

The calculated aerodynamic forces, FL and FD, are spread on areas perpendicular to each actuator line

with a Gaussian distribution kernel.

The tower and nacelle are described using the immersed boundary method [23, 24], which avoids the

use of a body-fitted grid, reducing the computational cost of the simulations. In particular, a discrete

forcing approach, in which the forcing is introduced in the discretised equations, similar to the approach

proposed by Orlandi & Leonardi [24], has been used.

2.3. POD

The Proper Orthogonal Decomposition (POD) is a statistical approach providing the optimal orthogonal

basis, in terms of kinetic energy, for the flow dynamics. The POD modes are ranked according to their

energy and the most energetic ones are mostly related to large organised structures. Therefore, the POD

represents a useful tool for the analysis of experimental as well as numerical (DNS, LES) data, providing

the most energetic coherent structures characterising the flow.

The POD is based on the eigendecomposition of the two-point spatial correlation tensor C, where the

eigenvectors represent the POD modes, whereas the associated eigenvalues represent their energy. A

good approximation of the tensor C, based on data, requires a large number M of snapshots of the flow

field, which can be organised into a single matrix Q ∈ R
N×M , each column being a single instantaneous

velocity field, represented by N scalars.

Q =
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. (5)

Assuming that all snapshots are equally spaced in time, the two-point correlation tensor can be

approximated by the matrix C ∈ R
N×N given by the product of the snapshot matrix Q by its transpose,

divided by the total number of snapshots.

C =
1

M
QQT (6)

The POD can then be easily performed by computing the singular value decomposition of the snapshot

matrix Q, divided by the square root of the number of snapshots M ,

Q√
M

= ΦΣΨT , (7)

where the columns φk of the matrix Φ correspond to the right eigenvectors of C, namely to the POD

modes, and the eigenvalues Λ of C are equal to the singular values squared, namely Λ = Σ2. The time

series considered can then be expanded as:

qi =
M∑

k=1

ak(ti)φk (8)
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Figure 1: Computational box employed in the simulations.

where the time coefficients of each POD mode, ak, are given by the rows of the matrix
√
MΣΨT . In

addition, it can be shown that the time coefficients ak are uncorrelated at zero time-lag:

ajak = λjδjk (9)

3. Simulation setup

The case under investigation is that of a three bladed wind turbine of diameter D, invested by a uniform

axial velocity U∞, rotating at a constant tip-speed ratio λ = 3 at the Reynolds number Re = 6.3× 105.

The rotor axis is located at yh = 0.914D above the ground. The tower and the nacelle are modeled

as cylinders with diameter dt = 0.1D, the second having an axial length of 0.3D. The computational

domain has dimensions 12.5D×5D×3D in the streamwise (x), vertical (y) and transverse (z) directions,

respectively. The turbine is located at 4D from the inlet, where a uniform velocity U∞ is imposed, and

it is centered in the transverse direction. A radiative boundary condition is employed at the outlet with

uniform convection velocity C = 0.9 [25]. No-slip and free-slip conditions are imposed at the bottom-

and the top-wall, respectively, whereas the lateral boundaries are periodic. The computational grid used

consists of 2048 × 512 × 512 grid-points in x,y and z directions, respectively. The grid is uniform

along the streamwise and spanwise directions, whereas it is stretched in the vertical direction, with finer

(uniform) spacing in the lower part of the domain, where the turbine’s wake will develop.

4. POD convergence

The convergence of the computed POD modes has been assessed considering several dataset composed

of an increasing number of snapshots. The eigenvalues spectra obtained for each dataset are compared.

Moreover, the spectral contents of the time coffiecients, ak(t), obtained from each dataset are

analysed and compared in order to check if the computed dynamics is independent of the number of

snapshots. Seven dataset made by M = {1500; 1650; 1800; 1950; 2100; 2250; 2361} snapshots, have

been considered. Figure 2 shows that a good convergence is reached up the 19th mode. Welch’s spectra

relative to the first six POD pairs (k = 2i, i = 1, 6) are shown in figure 3. It can be observed that the first

five pairs of modes already converged for M = 1500, showing small variation of their spectral content

for larger numbers of snapshots; whereas the sixth pair (12th mode) begins to converge at M = 1800.
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Figure 2: Eigenvalues associated to the most energetic POD modes using different dataset with increasing

number of snapshots M (see legend).
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Figure 3: Welch’s spectra relative to the first six POD pairs of modes (k = 2i, i = 1, 6) with increasing

number of snapshots M (see legend).
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Figure 4: Streamwise velocity of the 0thmode multiplied by a0 at y = 0.
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Figure 5: Streamwise velocity of the 0thmode multiplied by a0 at x = 5.

5. Results

The POD analysis provided in this section is carried out on a dataset composed of M = 2361 snapshots

of the velocity field, stored every 10◦ rotation, in a sub-domain enclosing the wake with dimensions

[0 7.5] × [−0, 7 0.63] × [0.8 2.2], where the velocities have been downsampled with a 1:5 ratio with

respect to the computational grid.

5.1. POD modes Analysis

The 0th POD mode represents the time-averaged flow, shown in horizontal and vertical planes in figures

4 and 5, respectively. In both planes the asymmetry of the wake is evident; in particular, a faster recovery

of the wake is observed on the left side of the wake as can be seen in the left part of the z -y plane in figure

5, corresponding to the top side of the x -z plane in figure 4. The first 12 POD modes, which represent

approximately the 25% of the turbulent kinetic energy, are provided in figure 6 in x -z planes, at different

y-locations, depending on the mode dynamics. It can be observed, by looking at the modes’ structure,

that the first 10 POD modes are paired. Different physical mechanisms are isolated by means of the POD

analysis: the first pair (figure 6(a, b)) represents the tip/root-vortex helical system; the second pair (figure

6(c, d)) is related to the von Karman street shed by the tower; the third pair (figure 6(e, f)) represents

a harmonic of the tip- and root-vortices; the fourth pair (figure 6(g, h)) is still connected to the tower’s

vortices, but it also shows lower-frequency oscillations far from the rotor, which can be originated from

a non-linear interaction between von Karman vortices and tip-vortices spirals; the fifth pair (figure 6(i,

j)) appears to be a Kelvin-Helmholtz-like instability, since it is located right at wake mean-flow shear

layer, following the same tilted direction; the last two modes (figure 6(k, l)) are not paired and show

quite lower frequencies with respect to the other modes. These two modes could be associated to the

wake meandering phenomenon.
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Figure 6: Streamwise velocity contours of the first twelve POD modes.

5.2. Kinetic energy entrainment

It is well established that high turbulence levels in the wake region promote the recovery of the wake, as

a result of turbulent flux of mean kinetic energy (M.K.E.). In the present work we aim at evaluating the

effect of each POD mode, associated to a specific physical mechanism, on the recovery of the wake. At

this purpose, the following equation, governing the M.K.E. transport, is considered:

0 =− ūj
∂

∂xj

(
1

2
ūiūi

)

− ∂

∂xi
(ūip

∗) + ūif̄i +
1

Re
∇2

(
1

2
ūiūi

)

− 1

Re

∂ūi
∂xj

∂ūi
∂xj

+

− ∂

∂xj

(

ūiu′iu
′

j

)

− ∂

∂xj

(

ūiτ rij

)

︸ ︷︷ ︸

Turbulent M.K.E. flux

+u′iu
′

j

∂ūi
∂xj

+ τ rij
∂ūi
∂xj

. (10)

As already mentioned, several authors [11, 26] showed that the M.K.E. recovery in the wake is mostly

due to the turbulent M.K.E. flux, highlighted in the equation (10). Since the term related to the subgrid-

scale stresses is negligible with respect to the Reynolds stresses in the wake region, only the latter are



The Science of Making Torque from Wind (TORQUE 2020)

Journal of Physics: Conference Series 1618 (2020) 062016

IOP Publishing

doi:10.1088/1742-6596/1618/6/062016

8

considered. Taking advantage of the Stokes theorem, it is possible to compute the turbulent M.K.E. net

flux per unit area, through a cylindrical surface S of radius R = 0.5 enclosing the wake, according to the

equation

FT =
1

S

∫

S

−ūiu′iu
′

jdSj . (11)

The vector representing the infinitesimal surface element dS is normal to the streamwise direction,

therefore it can be expressed in Cartesian coordinates as:

dS = (0, dc2, dc3) dx, (12)

where dc2 and dc3 are the components in the wall-normal and spanwise directions, respectively, of the

vector dc normal to the infinitesimal arc of the cylinder circumference C. Given the POD properties

described in section 2.3, the Reynolds stress tensor can be decomposed as:

u′iu
′

j ≈
M∑

k=1

(akφ
k
i )

M∑

l=1

(alφ
l
j) =

M∑

k=1

M∑

l=1

akalφ
k
iφ

l
j =

M∑

k=1

λkφ
k
iφ

k
j . (13)

Using this decomposition, one can compute the contribution of each POD mode to the turbulent M.K.E.

flux as:

Fk
T =

1

S

∫

S

−ūiλkφ
k
iφ

k
j dSj . (14)

The histogram in figure 7 shows the flux Fk
T for the first 12 POD modes. It is interesting to notice

that the POD modes related to the tip vortices, namely modes 1, 2, 5 and 6, provide a negative flux of

mean kinetic energy, having therefore an adverse effect on wake recovery. However, this is reasonable

because the tip vortices induce a negative streamwise velocity within the wake, playing a crucial role on

the generation of the wake itself [27]. An idea of the velocity induced by the tip vortices can be gained

by looking at the vector field in figure 8, which is obtained using to the following equation:

uTV =
2∑

k=0

ak(t1)φk − U∞. (15)

The figure clearly show that the rotation of the tip vortices maintains the velocity deficit within the wake.

The other modes, some of them related to the tower’s vortex shedding, are instead beneficial to wake

recovery, providing positive M.K.E. fluxes. These results highlight the crucial importance on the wake

dynamics of the tower and nacelle, which generate low-frequency oscillations that play an fundamental

role in the wake recovery process.

6. Conclusions

The present work provides a numerical analysis of the dynamics of the wake developing behind a three

bladed wind turbine, for laminar inflow conditions, using the proper orthogonal decomposition (POD)

of the unsteady flow field. The flow was simulated employing an LES approach, in which the rotor

blades were modeled using the actuator line method, whereas tower and nacelle were modeled using

an immersed boundary method. The POD was performed on velocity data sampled in a subdomain

containing the wake. The convergence of the POD was assessed by considering different dataset

composed of an increasing number of snapshots. A good convergence was reached for the first twelve

modes which are those considered for the analysis. The most energetic POD modes are associated with

the tip and root vortices shed by the blades, then two pair of modes connected with the von Kármán

vortices shed by the tower and a pair harmonic of the tip vortices follow. Moreover, a Kelvin-Helmoltz-

like instability was also isolated by another pair of modes. Most importantly, the last two modes show
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Figure 7: Turbulent mean kinetic energy fluxes per unit area Fk
T , for the first 12 POD modes, through a

cylindrical surface of radius R = 0.5 centered on the rotor axis.
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Figure 8: The shaded contours provide an x -z slice at y = 0 of the streamwise component of the velocity

obtained as the sum of the 0th mode and the first 2 modes, representing the tip vortices, each of them

multiplied by the correspondent time coefficient ak(t1). The vector field is obtained by subtracting the

uniform incoming flow U∞ to the velocity field shown as shaded contours.

very large oscillations that could be related to the wake-meandering phenomenon. Finally, POD was

employed to study the recovery of the wake: the contribution of each POD mode to the turbulent mean

kinetic energy (M.K.E.) flux through a cylindrical surface around the wake was computed. Positive

values of M.K.E. flux were found for the POD modes linked to the tower’s vortex shedding, to the

Kelvin-Helmholtz instability and to the wake meandering, which have, therefore, a beneficial effect on

the wake recovery. On the contrary, the POD modes related to the tip vortices show negative M.K.E.

fluxes, therefore they sustain the wake and slow down its recovery. The obtained results demonstrate that

oscillations produced by the turbine tower affect positively the wake recovery. For this reason, neglecting

the presence of tower and nacelle in the simulation of clustered turbines can lead to an underprediction

of the energy production.
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