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Abstract: In the digital society, individuals are in charge of performing tasks based on the information
gathered by huge amount of data and effectively use them to manifest their cognitive and motor
abilities. In this paper, on the basis of experimental studies available in literature concerning lab
tests on motor or cognitive abilities of differently aged subjects, an information-based theoretical
model is proposed. The model allows to quantify the information content of a motor or a cognitive
task and provides estimates of information processing time of individuals of different age and sex
in accomplishing tasks with prevalent motor or cognitive nature, in spite of the fact that a “pure”
cognitive or a “pure” motor task are rarely observed in practical cases. The model is then applied
to a case study from automotive industry in which workforce aging phenomenon is experienced.
Potential applications of the model go beyond the case study developed. Quantifying the information
content of a general motor-cognitive task paves the way to new understanding and modelling of
movements and performance time of both natural and artificial systems with applications in industrial
robotics (e.g., human-robot cooperation), biomechanics, and neurorehabilitation.
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1. Introduction

The phenomenon of population aging will become a serious issue in the next few years. Statistical
projections state that in the next years the global average age expectation will increase to 76 years in
2050 and 81 years in 2100 [1]. The potential support ratio indicator, which is defined as the ratio of the
number of people of the group 16–64 years over the number of 65 or more years people, is expected to
decline from 4.9 to 1.9 in 2100 in the United States and from 2.9 to 1.4 in 2100 in Germany [2]. In Europe,
the oldest age group (55–64 years) is expected to expand by 16.2% (9.9 million) between 2010 and 2030,
with a decreasing trend of the other age groups [3]. Furthermore, people tend to work until later ages
due to multiple social and economic reasons such as delayed retirement [4–8] as long as their cognitive
and physical health allows it [4]. This issue will bring to many implications in multiple fields and a
better awareness of the workforce aging phenomenon is needed.

In 2050, the presence of older workers in production and operative roles will have an impact on
economic growth and manufacturing efficiency [9,10]. The decreasing of worker’s ability happens in
workers involved both in cognitive and physical tasks [11]. The age range of 45–50 years has often been
used as the base criterion to refer to an “aging worker”. The reduction of cognitive and physical abilities
is a crucial point for workers aged from 45 to 64 [3]. Changes in mental functions affect the human
sensory perception and information processing speed and accuracy. The key enabling technologies
introduced by the new production paradigm of “Industry 4.0” can support aged operators [12,13];
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nevertheless, in the Industry 4.0 environment, the operators are asked to perform complex cognitive
tasks that require high cognitive efforts [14]. Fast information processing [15] in continuous learning
processes is required in spite of a performance decrease of aged workers [16–18]. An increasing gap
between cognitive tasks in production systems and cognitive capacities of aged operators is expected
to become a serious issue as humans have limited information-processing capacity [16–19].

A recent wide literature review on workforce aging in manufacturing systems as well as a research
agenda is proposed in [20]. Here, a comprehensive analysis of modelling of aging workers’ functional
capacities in industrial systems is provided.

Due to limits of human information processing, a general theoretical framework to assess
information content of tasks is required. To this concerns, conceptual models available in the
information and communication theory represent a challenging reference to be followed [21,22].

In this paper, the authors propose an information-based model to estimate performance time
of differently aged and sexed subjects in processing information during the execution of motor or
cognitive tasks. Despite of the fact that a “pure” cognitive or motor task are rarely observed in reality,
in the paper we refer to “motor” task as a task with prevalent motor content and low cognitive content;
similarly, we refer to “cognitive” task as a task with low motor content and prevalent cognitive content.

The paper is organized as follows: In Section 2, the phenomenon of aging and its influence on
the cognitive abilities of individuals are discussed. In Section 3, field tests available in the scientific
literature that allow to evaluate the influence of aging on human motor and cognitive abilities are
considered and information theory models based on Shannon entropy measures are adopted to evaluate
information content of test runs; related cognitive processing rate of individuals subjected to test
runs are evaluated. Regression analyses of tests data allowed the authors to model the effects of the
aging phenomenon on human physical and cognitive abilities. The operator’s cognitive and motor
performance time have been combined in a holistic information-based model detailed in Section 4.
The model is applied to a numerical case from automotive industry (Section 5). Discussion on research
findings can be found in Section 6. Finally, summary and conclusions are in Section 7.

2. Aging and Human Cognitive Abilities in the Workforce

The aging phenomenon causes a change in both physical and cognitive abilities [23].
Focusing on the physical abilities, the link between age and ergonomics of workplaces

(OCRA-OCcupational Repetitive Actions and RULA-Rapid Upper Limb Assessment methods) is a
wide recognized issue which impacts health of workers. The work-related musculoskeletal disorders
(WMSDs) represent the most common occupational diseases (almost 40% of the whole occupational
diseases), and about 30% of jobs in Europe involve incorrect work postures, handling of heavy materials
or repetitive work [3,24]. As a consequence, several studies have been focused on physical abilities
and on their impact on health and well-being of older workers.

In spite of the influence of cognitive abilities on task performance [25,26], as well as in the worker’s
ability to learn and carry out mental processes [27,28], “less research has focused on cognitive functioning”
in work environments [29].

Any cognitive mental activity can be enabled by human memory. However, any person has a
limited memory capacity and limited information-processing resources [19,30]. Human memory is
divided into sensory memory, working memory, and long term memory (Figure 1) [31]. Sensory memory
has infinite capacity and can hold any data for a very short period of 0.25 to 2 s, but most of the
information does not reach the working memory. The working memory has a limited capacity and can
actively process simultaneously a limited amount of information. Long-term memory theoretically has
an infinite capacity to store information and contains cognitive schemes called chunks. The structure
of the human memory is depicted in Figure 1.
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Modelling of cognition in differently aged subjects can be carried out by two approaches: The 
psychometric and the neuropsychologic approaches.  

The former is a classical approach known as dual-component human intelligence framework 
[36] where a distinction between “fluid” and “crystalized” intelligence is made. Fluid intelligence 
refers to the human ability to deal with new situations through the use of working memory and 
abstract reasoning; crystallized intelligence refers to the ability to solve problems by using knowledge 
acquired over the years [37,38]. Crystalized intelligence is quite stable over the years; on the contrary, 
fluid intelligence declines with the age and its decay accelerates after age 50 [39,40]. Cognitive abilities 
are expected to gain small improvements in work performance due to experience [41]. The ability to 
retrieve familiar information from the long-term memory is quite stable with the age due to the 
previous knowledge and the experience accumulated over the years [28,42,43]. 

The latter, the neuropsychology approach represents a more recent theoretical framework for 
modelling cognition in the presence of the aging phenomenon. The approach considers cognition as 
a function of brain-behavioral relationships [44] expressed by brain functions. The executive 
functions, which are part of the brain functions, execute cognitive processes involving the working 
memory and information processing speed; this is the case of planning, monitoring, organization, 
coordination, and implementation of working activities [45]. Albinet et al. [46] state that relations 
between processing speed and executive functions are understudied and poorly understood. 

To summarize, human aging impacts multiple cognitive abilities that refers to mental processes 
including thinking, reasoning, problem solving, learning, remembering, and decision-making [47]. 
The age-related changes have multiple consequences on the performance of older workers in 
environments that require high information processing speed [12,15] to meet an increasing demand 
of cognitive tasks [28,47,48].  

Effects of aging on the cognitive abilities of workers cause adverse impacts on the quality, 
productivity, and performance of people in the digital society and workers operating in I4.0 
production environments. Adverse impacts is a new field of scientific investigations. Research on the 
effects of aging on the cognitive abilities of I4.0 operators or of people in a digital society originate 
theoretical problems of scientific interest as well as a challenge for the society. The problems are quite 
complex. The main dimensions of complexity are: 

• High dynamic and stochastic variability of humans in performing cognitive tasks; 
• large number of physical-physiological-psychological variables affecting human performance; 
• Mutual influence between motor and cognitive tasks; 
• Multidisciplinary competence required to analyze cognition. 

Complexity dimensions of human cognitive capabilities justify the limits of scientific 
investigations which are mainly related to medical purposes instead of engineering applications.  

Several empirical test-based investigations have been designed and carried out to observe 
human motor and cognitive abilities related to aging.  
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Working memory and information processing speed decline with age [32,33]. Phenomena are strictly
related [34]. The effects of aging on working and long-term memory justify why elderly people prefer to
rely more on their memory and on the knowledge acquired over many years instead of learning new
concepts for the execution of a task; such behavior often leads to probable memory errors [35].

Modelling of cognition in differently aged subjects can be carried out by two approaches:
The psychometric and the neuropsychologic approaches.

The former is a classical approach known as dual-component human intelligence framework [36]
where a distinction between “fluid” and “crystalized” intelligence is made. Fluid intelligence refers to the
human ability to deal with new situations through the use of working memory and abstract reasoning;
crystallized intelligence refers to the ability to solve problems by using knowledge acquired over the
years [37,38]. Crystalized intelligence is quite stable over the years; on the contrary, fluid intelligence
declines with the age and its decay accelerates after age 50 [39,40]. Cognitive abilities are expected to
gain small improvements in work performance due to experience [41]. The ability to retrieve familiar
information from the long-term memory is quite stable with the age due to the previous knowledge and
the experience accumulated over the years [28,42,43].

The latter, the neuropsychology approach represents a more recent theoretical framework for
modelling cognition in the presence of the aging phenomenon. The approach considers cognition as a
function of brain-behavioral relationships [44] expressed by brain functions. The executive functions,
which are part of the brain functions, execute cognitive processes involving the working memory and
information processing speed; this is the case of planning, monitoring, organization, coordination,
and implementation of working activities [45]. Albinet et al. [46] state that relations between processing
speed and executive functions are understudied and poorly understood.

To summarize, human aging impacts multiple cognitive abilities that refers to mental processes
including thinking, reasoning, problem solving, learning, remembering, and decision-making [47].
The age-related changes have multiple consequences on the performance of older workers in
environments that require high information processing speed [12,15] to meet an increasing demand of
cognitive tasks [28,47,48].

Effects of aging on the cognitive abilities of workers cause adverse impacts on the quality,
productivity, and performance of people in the digital society and workers operating in I4.0 production
environments. Adverse impacts is a new field of scientific investigations. Research on the effects of
aging on the cognitive abilities of I4.0 operators or of people in a digital society originate theoretical
problems of scientific interest as well as a challenge for the society. The problems are quite complex.
The main dimensions of complexity are:

• High dynamic and stochastic variability of humans in performing cognitive tasks;
• Large number of physical-physiological-psychological variables affecting human performance;
• Mutual influence between motor and cognitive tasks;
• Multidisciplinary competence required to analyze cognition.

Complexity dimensions of human cognitive capabilities justify the limits of scientific investigations
which are mainly related to medical purposes instead of engineering applications.

Several empirical test-based investigations have been designed and carried out to observe human
motor and cognitive abilities related to aging.
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3. A Review of Experimental Tests of Motor-Cognitive Abilities from Information
Theory Perspective

Experimental tests on the effects of aging on human motor or cognitive abilities are available
in literature. In this paper some tests have been selected and related results considered to estimate,
by regression analysis, the performance time in test execution by differently aged subjects.

Standard tests require subjects to perform cognitive or motor tasks, depending on the test purpose.
Tasks have to be performed in a given time under standardized conditions.

During a task run, a subject is asked to process an information volume. In the following section,
the information volume will be evaluated for each test by the Shannon entropy measures [21,22].

In the next sub-sections, tests to investigate cognitive or motor abilities are introduced, and related
information volume evaluated.

3.1. Tests on Cognitive Abilities

Information volume of tests on cognitive abilities is evaluated by the Shannon’s entropy measure
for “n” equiprobable choices a subject is facing with during a test run:

H = log2 n (1)

3.1.1. Digit Symbol Substitution Test (DSST)

DSST consists of digit-symbol pairs followed by a list of digits. Different versions of DSST test can
be found in [49]. The DSST version adopted in this paper is described in [50,51]. Under each digit,
the subject should write down the corresponding symbol as fast as possible in the allowed time of
90 s. The number of correct associations of digit-symbol pairs within the allowed time is the score.
The DSST indirectly measures the working memory because it requires the subject to remember the
corresponding symbols and numbers memorized and to write down the symbol corresponding to
each given number. The Information Processing Rate (IPR) of the subject is the amount of information
processed in the time unit [bit/s]; it can be calculated as follows:

IPRDSST =
2×D× log2(2×D) + n× log2 2

90

[bit
s

]
(2)

where D is the total number of digit-symbol pairs (for each digit there is a corresponding symbol) and n
are the identified pairs in 90 s. The quantity log2(2 × D) is the amount of information to be processed to
recognize one symbol or one digit, 2 ×D×log2(2 ×D) the amount of information needed to recognize all
symbols and digits (2 × D), log2(2) the amount of information to be elaborated to identify a single pair,
and n × log2(2) the overall amount of information elaborated to identify n digit-symbol pairs in 90 s.

3.1.2. Reaction Time (from CANTAB)

The CANTAB (Cambridge Neuropsychological Test Automated Battery) is a set of tests defined for
multiple purposes [52]; the test version adopted in this paper is the reaction time test and can be found
in [53]. The test measures the reaction time (RT) of subjects; RT is defined as the time between a stimulus
and a response. During the test, the subject holds down a button at the bottom of a screen. The screen
shows some circles (one for the simple mode, and five for the five-choice mode) and in one of them a
yellow dot will appear. Once the yellow dot appears, the subject has to release the button as quickly as
possible. Every time the subject releases the button (when she/he sees the yellow dot), the amount of
information processed is 1 bit (log2(2)). The IPR of the subject can be evaluated as follows:

IPRCANTAB =
log2 2

RT

[bit
s

]
. (3)
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RT is the observed time elapsed between the stimulus (the appearance of the yellow dot on the
screen) and the response (the release of the button). This test is not associated with memory, as it does
not require the subject to memorize any figure, symbol, digit, or letter.

3.1.3. Paired Associate Learning (from CANTAB)

Paired Associate Learning (PAL) is a test that allows to evaluate the visual episodic memory.
During the test, the screen displays firstly 6 boxes and shows the interior of each box in randomized
order to briefly reveal patterns in boxes [53]. The total number of patterns (n) goes from 2 to 6
(some boxes can be empty). After this phase, patterns are showed in the middle of the screen and the
subject is asked to identify the right box to which it belongs. The time available to perform the test is
30 s. This test is an indirect measure of decision making, response control, and visual memory. The IPR
of the subject can be evaluated as follows:

IPRPAL =
n× log2 n + m× log2 6

30

[bit
s

]
(4)

where m is the number of patterns (m ≤ n) correctly associated to boxes. The amount of information
needed to recognize one pattern is log2(n), n × log2(n) is the total amount of information to be
elaborated in order to recognize all the n patterns. The amount of information to be elaborated to
identify the box associated with a pattern is log2(6) (the subject always chooses between 6 equiprobable
alternatives (boxes)), and m*log2(6) is the information volume elaborated by the subject in identifying
the m patterns in 30 s.

3.1.4. The Experience of Deary and Der

In the study of Deary and Der [54], an experimental research with a large number of participants
tested the correlation of the reaction time (RT) of male and female populations differently aged. The size
of the samples (900 subjects aged in 16–63 years) gives high reliability to the results obtained. The RT
was measured using a portable device with a display and a five response keys; the keys were labelled
1, 2, 0, 3, and 4 from left to right. For the evaluation of “single-choice” RT the subjects were asked
to place a finger of their preferred hand over the central “0” key and they were instructed to press
it as quickly as possible after the number “0” appears on the display. For the “four-choices” RT,
the subjects were asked to place the second and the third finger of each hand over the keys labelled 1,
2 (left hand) and 3, 4 (right hand) and they were instructed to press the corresponding key when one
of the four digits appears on the display. In the former case (single choice RT), the subject processes
one bit of information in each test run; in the latter case (four choices RT) the subject processes 2 bits of
information. Starting from the Hick’s law [55] a linear dependency between the reaction time RT and
the information volume to be processed is adopted:

RT = SRT + Tp,c × Ic [s] (5)

where, SRT (Simple Response Time) is the sum of all-time delays not associated with decision-making,
Tp,c (s/bit) is the time to process one bit of information, and Ic is the information volume (in bit)
processed in the cognitive task, as per Equation (1).

3.2. Tests of Motor Abilities

Using information theory, the amount of information processed during a task that requires
movement of the subject can also be expressed in bit unit, similarly to the abovementioned cognitive
tasks. Let us consider a subject executing a reaching task within a time interval called movement
time. During the movement, the subject processes an amount of information [56] expressed by the
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“Shannon formulation” of the Fitts’s Index Difficulty (ID) parameter [22]; based on the theorem 17 of
Shannon [21], ID can be expressed as follows:

ID = log2

( D
W

+ 1
)
[bit] (6)

where D is the distance from the hand’s starting point to the center of the target and W is the width of
the target measured along the line connecting the two motion’s endpoints.

Purdue Pegboard Test (PPT)
In the Purdue Pegboard Test (PPT) participants are asked to pick up pegs from a bowl by their

right hand, left hand, and then by both hands (three runs) and place them in one of the 25 vertical
holes of a plate. During the test, after each pick and place movement, the operator is required to move
his/her arm back to the bowl and grab another peg. The test score is measured as the number of pegs
the subject places within 30 s [57,58]. The test evaluates manual dexterity. The more pegs the subject
can place correctly in 30 s (one run), the higher his manual dexterity is.

Based on the relationship given by Fitts [56], a linear dependency between the movement time
(MT-time needed by the operator to perform the task) and the information volume to be processed
(Im-bit) is adopted:

MT = Tp,m × Im [s] (7)

where, Tp,m (s/bit) is the time needed to process one bit of information and Im is the information
volume to be processed during the motor task. Based on models from information theory, the time
required to perform a task with 0-bit information content must be 0, yielding a null Y-intercept for the
Fitts’ law (as in Equation (7)), which is the working assumption used in the regressions performed in
the next section.

Equation (7) is applied to the PPT to quantify the amount of information of a test run. The diameter
of the holes is 0.25 cm, the distance between two contiguous centers equals five times the diameter
of the holes, the distance between the bowl that contains the pegs and the center of the first hole is
3.37 cm, and the MT (as the duration of the entire PPT test) is 30 s. The center of the bowl and every
hole of the board are aligned. Under these test conditions, the movement time (MT) of the test run is
obtained by adopting Equation (7) where Im is calculated as:

Im = Im,ID + Im,MTM =
n∑

i=1

log2

(Di

W
+ 1

)
+ Im,MTM [bit]. (8a)

The first term, Im,ID, is the index of difficulty that quantifies the information volume associated
with the n reaching movements, i.e., the number of pegs placed by the subject in the board within MT;
Di is the distance from the starting point (bowl with all the pegs) to the i-th target (hole), and W is the
width of the target (constant holes diameter). The second term, Im,MTM, is the amount of information
associated with translating, picking and placing movements not considered in Im,ID. Im,MTM is obtained
by the Method-Time Measurement (MTM) standard time as follows:

Im,MTM =
MTM
T∗p,m

[bit] (8b)

where MTM is equal to the sum of Method-Time Measurement standard times of all n translating,
picking, and placing movements of the hand, and T∗p,m is an average (on age and sex) value of the
motor processing time. Method-Time Measurement (MTM) is defined as a system that “analyses any
manual operation or method into the basic motions required to perform it and assigns to each motion
a predetermined time standard which is determined by the nature of the motion and the conditions
under which the motion is made” [59].
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In the next Section, on the basis of Deary and Der [54] and Purdue Pegboard Test data available in
literature [57,58] and Equations. (1, 5, 6, 7, 8a, and 8b), performance time of differently aged and sexed
individuals involved in tasks with different cognitive content will be evaluated.

4. An Information-Based Model for Age- and Sex-Dependent Performance Time of Workers

4.1. Cognitive Tasks

Assessing processing speed of an individual has been carried out by different types of observable
variables mainly related to the research field of investigation. In [60] six different variables are
identified. In the field of psychometric research, decision speed and perceptual speed are adopted;
decision speed refers to moderately complex cognitive tests; on the contrary, perceptual refers to
very simple tasks like elementary comparison search and substitution operation to be performed in a
specified time. When manual tasks are considered, psychomotor speed is the variable observed in
psychometric and experimental field of research. Psychophysical speed variables are investigated
to asses decision accuracy of individuals subjected to visual or auditorily stimuli; this is the case of
inspection time-based activities. Time course of internal responses is a further variable investigated in
psychophysical researches. A widely adopted variable to measure processing speed is the reaction
time [54], evaluated as the time required by an individual to explicit a choice (by means of an action)
when subjected to visual stimuli. Literature review shows that reaction time is a prominent variable in
the field of cognitive gerontology, where there is an interest in the age-related changes in information
processing. The role of speed of processing in aging research is emphasized, since “speed is often
viewed not only as a behavioral measure but also as a fundamental property of the central nervous
system” [61]. The age-related decrease in reaction time is well known [62]; however, there are debates
about the correlation of change of reaction time with age and sex [63].

In this paper, processing speed is measured by the reaction time as it is a variable mainly concerned
with cognitive abilities in simple choice decision making and related manual responses. Such tasks
are more and more required by differently aged individuals in modern work environments and
daily activities.

Consistently, we refer to experimental data available in [54]. Here, an extended research on
subjects differently aged (900 subjects from 16 to 63 years old), based on the UK’s Health and Lifestyle
Survey (HALS) [64]. The experiments consisted of identifying single or multiple right choice out of
several possible options. In this paper, data have been used to find correlations between age and
reaction time in an information-theory perspective.

An information-based model evaluating the information volume to be processed to accomplish a
cognitive task is proposed. The related cognitive processing time (Tp,c) required by an individual of a
specific class of age and sex to accomplish the task is evaluated. The reaction time (RT) is defined as
the time for decision making and consists of different contributions, including processing time and
further elementary sensorial delays from input to action [65]. Delays do not depend on the information
volume to be processed: They are due to neural transmission, latency of muscles, and sensory receptor
delays. The sum of such delays is identified as Simple Response Time (SRT) (as in Equation (5)) and is
responsible for a fraction k (30–40%) of the overall RT. The complementary amount of 60–70% of RT is
due to the central processing time. Single or multiple choices tasks, in the study of [54], require the
subject to process a different information volume Ic, resulting in different RT.

Under these hypotheses and by using Equation (5), the processing time of subjects with the same
sex (s) and age (A), Tp,c(s, A), can be evaluated by RT (Ic, s, A), measured in [54] as follows:

Tp,c(s, A) =
RT(Ic, s, A) × (1− k)

Ic

[ s
bit

]
(9)

where Ic is the volume of information of the cognitive task and k is a constant (0.3≤ k≤ 0.4) representing
the fraction of the RT due to delays not depending on central processing time (SRT = k × RT).
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Consistently, the information processing rate of population of given sex and age class in accomplishing
a cognitive task, can be obtained as:

IPRc(s, A) =
1

Tp,c(s, A)

[bit
s

]
. (10)

In the experiments of Deary and Der [54], the single-choice RT (SC-RT) and multiple-choice RT
(MC-RT) were estimated for both male and female individuals, aged from 16 to 63 years. The mean RT
values for different age classes are shown for both sexes and for the single-choice and multiple-choices
tests in Table 1.

Table 1. Mean single-choice reaction time (SC-RT) and mean multiple-choice reaction time (MC-RT) for
different age classes and sex (M for male, F for female). Source: Authors’ elaboration of data from [54].

Age Class 16 24 36
Age Range 15–16 23–26 31–41

Sex M F M F M F

SC-RT (ms) 293.4 295 294.7 306 304.4 314.9
MC-RT (ms) 577.8 580.1 546 556.5 618.9 621.5

Age Class 44 56 63
Age Range 39–50 54–58 62–66

Sex M F M F M F

SC-RT (ms) 316.2 332.8 348.1 345.6 373.5 375.1
MC-RT (ms) 642.5 630.3 721.2 718.1 739.1 735

When male and female populations are considered altogether, RT values increase linearly with
the age class (Figure 2), for single and four-choices test runs, with an increase of about 20–30% from
age 24 to 60 +. Also, Higher reaction time values are observed in case of higher information volumes
processed (four choices test runs).
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On the basis of data in [54] and Equation (9) of the model proposed (by assuming k = 0.35),
Tp,c (s, A) values are computed for both single-choice and multiple-choice tests. Results are in Table 2.
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Table 2. Cognitive processing time Tp,c (s, A) in single-choice (SC) and multiple-choice (MC) tests (M
for male, F for female) derived from Equation (9) on the basis of data from [54].

Age Class 16 24 36
Sex M F M F M F

Tp,c-SC (ms/bit) 190.7 191.8 191.6 198.9 197.9 204.7
Tp,c-MC (ms/bit) 187.8 188.5 177.5 180.9 201.1 202.0

Average Tp,c (ms/bit) 189.3 190.1 184.5 189.9 199.5 203.3

Age Class 44 56 63
Sex M F M F M F

Tp,c-SC (ms/bit) 205.5 216.3 226.3 224.6 242.8 243.8
Tp,c-MC (ms/bit) 208.8 204.8 234.4 233.4 240.2 238.9

Average Tp,c (ms/bit) 207.2 210.6 230.3 229.0 241.5 241.3

As shown in Figure 3, a linear trend (R2 > 0.9) of Tp,c vs. age is observed for male and female;
for each age class, sex slightly affects processing time.
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The linear regression analysis leads to:

Tp,c(s, A) = αc(s) + βc(s) ×A
[ s
bit

]
(11)

where regression parameters αc and βc are in Table 3.

Table 3. Parameters αc and βc values for male and female individuals.

Sex αc (ms) βc (ms/bit)

Male 160.75 1.20
Female 165.94 1.12

By (Equation (10)), the information processing rate IPRc (s, A) can be easily evaluated for differently
aged male and female subjects.

4.2. Motor Tasks

In order to evaluate the information based processing time in case of motor task with low cognitive
content (Tp,m), experimental test data from to two previous researches have been considered [57,58].
Data are obtained by the Purdue Pegboard Test (PPT); they refer to individuals with different age with
a total of 437 subjects (219 females and 218 males). The first study [57] provides data referring to people
aged from 15 to 40 years old; the second study [58] focuses on people aged from 40 to 89 years old.
Data available from the literature are used to evaluate the correlations between age and movement
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time by an information-based approach. An information-based model evaluating the information
volume to be processed to accomplish a motor task is proposed. The related motor processing time
(Tp,m) required by an individual of a specific class of age and sex to accomplish a motor task with low
cognitive content is evaluated.

The time to perform the task in the PPT is the movement time (MT) of 30 s during each test
run. Only data related to the preferred hand of the subjects are considered (so to not influence the
performance with the different manual dexterity of the hands). Under these hypotheses, Equation (7)
is considered to evaluate the motor processing time for a given sex and age (Tp,m (s, A)) as:

Tp,m(s, A) =
MT(Im, s, A)

Im

[ s
bit

]
. (12)

Consistently, the information processing rate of population of sex s and age class A, can be
obtained as:

IPRm(s, A) =
1

Tp,m(s, A)

[bit
s

]
. (13)

In order to evaluate the motor processing time (Tp,m (s, A)) from data provided by the PPT,
the Im,MTM (Equation (8b)) has to be calculated.

MTM standard provides average standard time not distinguishing age and sex. As a consequence,
an average information volume corresponding to MTM standard times can be calculated by means
of Equation (8b) where an average (on age and sex) value of the motor processing time (T∗p,m) is
considered. In order to evaluate this value (T∗p,m), an iterative procedure has been adopted. At the first
iteration, T∗p,m is assumed equal to 250 ms/bit (named T∗p,m,0). This value has been adopted to evaluate
Im,MTM using Equation (8b) and then Im from Equation (8a) for different values of n. For each subject
observed during PPT (s, A), by using Equation (12) (MT equal to 30 (s)), the corresponding Tp,m (s, A)
value has been obtained. Finally, the mean of the Tp,m (s, A) values has been compared with initial
assumed value T∗p,m,0. At the first iteration a relative error of 9% on the initial approximate value of
T∗p,m has been obtained. The initial value of the second iteration has been set equal to the mean value
obtained by the first iteration. After four iterations, the calculation converged on T∗p,m = 180 ms/bit.
Evaluating Im by Equation (8a), the Tp,m (s, A) average values for all pairs (s, A) can be calculated by
Equation (12). Tp,m (s, A) values are shown in Table 4.

Table 4. Performances (average number of placed pegs (#)) and motor processing times (Tp,m) of the
Purdue Pegboard Test (PPT) (M for male, F for female). Source: Authors’ elaboration of data from
[57,58].

Age Class 18 23 28 36
Age Range 15–20 21–25 26–30 31–40

Sex M F M F M F M F

Performance (#) 15.56 16.69 15.54 16.64 16.22 17.25 15.35 15.94
Tp,m (ms/bit) 274 253 275 254 261 244 278 265

Age Class 45 55 65 75
Age Range 41–49 50–59 60–69 70–79

Sex M F M F M F M F

Performance (#) 14.6 15.9 14.4 15 13.6 14.6 13 13.8
Tp,m (ms/bit) 295 267 299 285 319 295 336 314

As in the case of cognitive task, linear trends are observed (Figure 4), with large R2 values for
both male and female (~0.9) and small differences (~6.5%) in the Tp,m values between male and female
for each age class.
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The linear trend observed for Tp,m (s, A) is as follows:

Tp,m(s, A) = αm(s) + βm(s) ×A
[ s
bit

]
(14)

Values of αm and βm parameters are in Table 5:

Table 5. Parameters αm and βm values for male and female individuals.

Sex αm (ms) βm (ms/bit)

Male 155.33 0.70
Female 144.55 0.67

The information processing rate in case of motor tasks with low cognitive content (IPRm) can
be evaluated as the inverse of Tp,m (s,A) for differently age classes of male and female subjects
(Equation (13)); decreasing values of IPRm are observed with age for male and female.

4.3. Information-Based Model of Human Motor-Cognitive Performance

The model considers the motor and cognitive abilities of a subject with given age and sex in
order to evaluate his/her performance in term of completion time in accomplishing a given task with a
known cognitive and motor information content:

Performance Time(Ic, Im, s, A) = RT(Ic, s, A) + MT(Im, s, A) (15)

where:

• Ic [bit] = information content of the cognitive part of the task;
• RT(Ic, s, A) = reaction time (refer to Equation (9));
• Im [bit] = information content of the motor part of the task (Im,ID + Im,MTM); and
• MT(Im,, s, A) = movement Time (refer to Equation (12))

This model is based on a preliminary decomposition of the task in its components (high
cognitive-low motor, and high motor-low cognitive). The information content of the two components
(Ic, Im) can be obtained by means of Equations (1) and (8a), respectively. The time required by the
subject to complete the cognitive (RT) and the motor (MT) part of the task are calculated starting from
the processing times Tp,c (s, A) and Tp,m (s, A), respectively. Tp,c (s, A) can be obtained from Equation (9)
by adopting the parameters corresponding to the subject characteristics (Table 3); Tp,m (s, A) can be
obtained from Equation (12) by adopting the parameters corresponding to the subject’s characteristics
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(Table 5). The proposed model allows to predict the human performance in the form of completion
time for subjects of different age and sex involved in tasks characterized by both a cognitive and a
motor component. When ID (Equation (6)) is adopted for the calculation of Im,ID as in the present
formulation, the model directly applies to reaching motor tasks; nevertheless, the model is quite
general and by adapting the information content of the motor component could be applied to different
tasks and contexts, from everyday life activities, to rehabilitation medical treatments, to operations in
production systems.

5. A Case Study from the Automotive Industry

The model defined in the previous section has been tested on a case study inspired by an assembly
line of an automotive factory in which high pressure pumps for diesel injection systems are assembled.
The line consists of highly automated workstations, and workstations with a small degree of automation.
The line is operated on three eight hours shifts. The line has a cycle time of 45 (s). One component of the
pump, the flange, is pre-assembled on a sub-line consisting of three workstations (WSs). The sub-line
is operated only in the first eight hours work shift and provide flanges for the subsequent three shifts,
thus having a cycle time of 15 (s). A semi-automated punching machine is operated in each WS.
Operators are in charge of pre-assembling and verifying the right position of components on the flange
and of initiating the process on the machine. At the end of the process, operators of each WS perform
a (visual) quality control on the product in order to identify scraps. The case study allowed to test
the model and to find the operator–machine allocation minimizing idle time of the line or equalizing
workloads of the WSs. Furthermore, the developed model allows to verify whether an operator is
eligible to work on a WS or whether his/her operating time (performance time + machine time) is
not compliant with the cycle time. In the case study, three WSs and five operators are considered.
The operator’s characteristics (age and sex) are in Table 6.

Table 6. Operator’s characteristics.

Operator Sex (M/F) Age

A M 25
B F 35
C M 50
D M 60
E F 60

In the first WS a thrust ring is set into the flange; in the second WS the oil seal is assembled onto
the flange; in the third WS a bushing is assembled into the triangular ring of the flange. Each WS is
composed by multiple sub-tasks that can be classified as having more cognitive or motor information
content. For each WS, the information content of the cognitive part of the task (Ic) and the information
content of the motor part of the task (Im) are calculated by Equations (1) and (8a), respectively. As far as
Im,MTM term is concerned (Equation (8b)), the time required for the simple movement of the upper limbs is
obtained from MTM standard times. The time measurement unit for each simple movement is expressed
in TMU (Time Measurement Unit), being 1 TMU is equal to 0.036 (s). TMU values and the equivalent
MTM times used for the simple actions of reaching, grasping, moving and releasing are in Table 7.

Table 7. TMU values for the simple actions: Reach, grasp, move and release. MTM:
Method-Time Measurement.

Reach Grasp Move Release

Distance (cm) 40 - 30 -
TMU Value 11.3 2 12.9 2

MTM (s) 0.41 0.07 0.46 0.07
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For each single sub-task of the WSs, the information content is provided in Table 8.

Table 8. Information content of sub-tasks performed in each workstation (WS).

Ic Im

Sub-Tasks WS1: Set the Thrust Ring into the Flange Ic [bit]
(Equation (1))

Im,ID [bit]
(Equation (8a))

Im,MTM [bit]
(Equation (8b))

1 Grasp the flange - - 2.66
2 Place the flange under the magnifying glass - 1.58 -
3 Verify the presence of the defect 1.00 - -

4 Put the flange in the scrap basket in the presence
of the defect * - - 2.98

5 Place the flange on the punching machine - 1.32 -
6 Grasp the thrust ring on the flange - - 2.66
7 Place the thrust ring on the flange - 2.00 -
8 Verify the correct position of the thrust ring 1.00 - -
9 Push the button start on the punching machine 2.00 - -

10 Push the button “scrap” * on the punching
machine(wrong punching) 1.00 - -

11 Grasp and put the flange in the basket (OK
flange/NOK flange) - - 5.64

Sub-Tasks WS2: Set the Oil Seal into the Flange Ic [bit]
(Equation (1))

Im,ID [bit]
(Equation (8a))

Im,MTM [bit]
(Equation (8b))

1 Grasp the flange - - 2.66
2 Verify the punching (OK/NOK punching) 1.00 - -
3 Place the flange on the punching machine - 1.32 -

4 Verify that the oil seal side of the flange is facing
upwards 1.00 - -

5 Grasp the oil seal - - 2.66
6 Place the oil seal on the flange - 2.81 -

7 Verify that the spring side of the oil seal is facing
downwards 1.00 - -

8 Push the button start on the punching machine 2.00 - -

9 Push the button “incorrect positioning” * (repeat
action 7) 2.00 - -

10 Push the button “scrap” * (wrong punching) 1.00 - -

11 Grasp and put the flange in the basket (OK
flange/NOK flange) - - 5.64

Sub-Tasks WS3: Set the Bushing into the Triangular Ring
of the Flange

Ic [bit]
(Equation (1))

Im,ID [bit]
(Equation (8a))

Im,MTM [bit]
(Equation (8b))

1 Grasp the triangular ring from the basket - - 2.66
2 Place the triangular ring on the punching machine - 1.32 -
3 Verify the correct position of the triangular ring 1.00 - -
4 Grasp the bushing from the basket - - 2.66
5 Place the bushing on the punching machine - 2.81 -
6 Verify the correct position of the bushing 1.00 - -
7 Push the button “punching” 2.00 - -
8 Verify the correct punching 1.00 - -

9 Grasp and put the flange in the basket (OK
flange/NOK flange) - - 5.64

* The corresponding time required to complete these sub-tasks is evaluated by considering 5% of scraps.

For each operator assigned to each WS, the performance times are obtained by Equation (15).
In Table 9 are summarized the operating times as the sum of the operator performance times calculated
and machine times. Machine time is 7.2 (s), 9.6 (s), and 8.6 (s), for WS one, two and three, respectively.
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Table 9. Operating times of WSs including operator and machine times.

Operator TWS1 (s) TWS2 (s) TWS3 (s)

A 11.16 13.72 12.67
B 11.17 13.76 12.71
C 11.62 14.22 13.17
D 11.81 14.42 13.37
E 11.61 14.23 13.18

Being the cycle time equal to 15 (s), the operator-WS assignment that minimizes the idle time of
the line can be obtained by solving the following optimization problem:

min
{xi,k}

5∑
i=1

3∑
k=1

(Tc − Ti,k) × xi,k (16a)

subjected to:
Tc − Ti,k ≥ 0 ∀ i, k (16b)

where i = 1, . . . ,5 is the i-th operator, k = 1, . . . 3 is the k-th WS, and xi,k is a boolean variables of the
assignment problem (xi,k = 1 if the i-th operator is assigned to the k-th WS; xi,k = 0 otherwise).

In order to balance the workload among the WSs, the following optimization problem can be
formulated aiming at minimizing the standard deviationof the WSs idle times:

min
{xi,k}

σDt(i,k)
(17a)

subjected to:
Tc − Ti,k ≥ 0 ∀ i, k (17b)

where σDt(i,k) is the standard deviation of the Dt(i,k) values obtained as:

Dt (i,k) = (Tc − Ti,k) × xi,k ∀ i, k (17c)

where Dt(i,k) represents the idle time of the k-th WS operated by the i-the operator; xi,k is a boolean
variables of the assignment problem (xi,k = 1 if the i-th operator is assigned to the k-th WS; xi,k = 0
otherwise). The operator-WS assignments and related objective functions values evaluated by solving
problems (16-Case 1) and (17-Case 2) are in Table 10 in case of cycle time Tc = 15 (s).

Table 10. Operator-WS assignments for Tc = 15 s.

Operator-WS Assignment (WS1-WS2-WS3)

Case 1 (problem 16a) Minimum idle time (s) 4.88 D-B-C
Case 2 (problem 17a) Minimum idle time Std. Dev. (s) 0.31 D-A-E

To increase the line productivity, a reduction of the cycle time to 14 (s) has been considered in
solving problems (16a-Case 1) and (17a-Case 2). New operator-WS assignments have been obtained.
Results are in Table 11.

Table 11. Operator–WS assignments for Tc = 14 s.

Operator-WS Assignment (WS1-WS2-WS3)

Case 1 (problem 16a) Minimum idle time (s) 1.89 D-B-C
Case 2 (problem 17a) Minimum idle time Std. Dev. (s) 0.31 D-A-C



Appl. Sci. 2020, 10, 5958 15 of 21

Synthesis of the Results

Starting from data available in the scientific literature on cognitive and motor tasks, processing
time of humans with different age and sex have been obtained in the framework of the information
theory (Section 4). Human cognitive and motor performance have been combined in a holistic model.
The model has been applied to a case study from automotive industry in order to identify the optimal
assignment of operators with different age and sex to workstations of an assembly line.

In the case study, five operators of different age and sex have been considered (Table 6). At first,
sub-tasks of each workstation have been classified according to their prevalent nature, i.e., prevalent
cognitive or motor nature. For each sub-task, the information content has been evaluated for both
cognitive sub-tasks (Ic, Equation (1)) and motor sub-tasks (Im, Equation (8a)). The RT (Equation (5))
and MT (Equation (7)) of each operator in processing the information volumes (Ic, Im) evaluated for
sub-tasks have been calculated. Finally, the operation time of each WS has been calculated by summing
the operator performance time (calculated by Equation (15)) and the machine time (Table 9).

Two optimization problems have been defined to identify operator-WS assignments. In the first
case the objective function consists of minimizing the overall idle time of the assembly line (case 1);
in the second case, the minimization of the standard deviation of the idle times of the WSs has been
searched for (case 2). Table 10 shows results of the optimization problems in case of Tc = 15 (s). It can be
observed that operating times of each operator (Table 9) is lower than Tc = 15 (s): Hence, all operators
are eligible to be assigned to each WS. By reducing the cycle time to Tc = 14 (s), so as to meet higher
productivity of the line, only the youngest operators (operators A and B, Table 6) can be assigned to
each WS (Table 9).

It should be observed that the simple case study developed referring to only 5 operators and
3 WSs does not limit the general applicability of the model on a larger scale.

6. Discussion of Research Findings

The results of this study indicate that the information processing model developed can be adopted
to assess the performance time of differently aged and sexed individuals accomplishing cognitive
(i.e., with low motor content) or motor (i.e., with low cognitive content) tasks. Section 4 shows that
for both types of task the processing time increases with age. No significant difference in cognitive
processing times of males and females have been observed, while sex shows a slight influence on motor
processing times. Results of the case study in Section 5 show the capability of the developed model in
industrial contexts to plan the job assignment on the basis of operators’ characteristics (sex and age)
mainly in I4.0 work environment.

Further Research

Further research should be focused on validating this model in different production systems
observing operators’ performance time in accomplishing task of different nature (cognitive/motor)
ranging from quality control to production planning activities to mention a few. Observations will
validate performance time provided by the model.

A further stream of research will be focused on assessing the role of physical properties of workers
or robotics systems in task execution under a common information-based approach. As it has been
shown in chapter 3, tasks with prevalent cognitive or motor content are characterized by a given
amount of information that an operator has to process. Shannon entropy measures have been adopted
to evaluate the information content of a task. We referred to the Shannon entropy formulation for “n”
equiprobable choices, in case of cognitive tasks, and to the “Shannon formulation” of the Fitts’ Index
Difficulty, in case of motor tasks.

The operator can be an artificial or a natural system. A robot or a worker or a cobot (human/robot
system) are asked to accomplish a task. The accomplishing of a task in a given time requires the system
(natural or artificial) to follow a “trajectory”, i.e., to follow a sequence of states the system can reach.
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States of a system are possible configurations the system can assume. Configurations depend on
physics and dynamics of the body, number and power of “actuators” (servors or muscles), number of
degrees of freedom of each actuator. The set of possible configurations expresses the “information” the
operator (system) displays through its body as it is stated in [66]. Here, a general framework based on
the Shannon Entropy measures for equiprobable states is adopted to measure information expressed
by moving bodies.

Following this approach, information processed by the system in following a “trajectory” can be
estimated. At a given time, the system is in a state, i.e., assumes one the possible configurations. In a
discrete time range, the system can reach the successive state in the “trajectory”, i.e., can assume a
configuration among the possible ones, consistent with the task to be accomplished. The “choice” of
the state to be reached requires the system to process an information volume depending on the number
of possible reachable configurations starting from the starting state. A continuous feedback control
mechanism of the brain-body-environment allows the system to follow the designed “trajectory” in
order to minimize errors between the actual and the designed state to be reached [67]. It should be
observed that a state can be characterized by a set of variables like position, velocity/acceleration
vectors and distribution of masses, power/forces available. In other words, the wide meaning of state
allows defining the system “trajectory” as a temporal sequence of physical configurations the system
assumes over time in accomplishing a task.

Following this theoretical framework, a new information-based approach can be adopted to
interpret the behavior of moving bodies. The approach is referred to as “morphological intelligence”
of bodies. Let us introduce the concept by simple line of reasoning.

Most human motor activities are governed by a continuous feedback control mechanism of the
brain–body–environment system; the phenomenon would be almost impossible to carry out at a usual
human information processing speed, due to both the time delays of the neural transmissions between
brain and upper/lower limbs and limits of the brain processing speed.

For example, muscles’ elasticity can enable a man (biological system) to run on a disconnected
ground (the environment) without requiring the brain to process information coming from the
environment at a high information rate. Further evidence can be found in motor and cognitive activities
of aged people. Decreases in motor functions of adults are experienced in walking stability, reduced gait
speed, and increased falls while decline in working memory and processing speed are main effects of
deterioration of cognitive processes [16].

Similarly, the walking and balance behaviors of a robot is the result of physical interactions of its
physical structure and properties (stiffness of materials, weight distribution, length of arms and legs,
. . . ) with the environment (ground morphology, friction, and stiffness, gravity . . . ) [68,69]. A proper
design of structures and choice of materials could help reducing information processing (computational
demand) and energy of actuators.

Fast interactions between brain, body, and environment can be managed by the limited brain
capacity if an “embodied intelligence” is admitted in the morphological features of the body. “Embodied
intelligence” is a form of artificial intelligence. In this regard, referring to embodied cognition theory can
help interpreting the role of body in cognitive processes. According to the traditional cognitivist theory,
the sensory-motor system of a body gathers information to be transferred to and processed by the brain.
Cognitive processing is considered conceptually separated from the sensory modalities. The traditional
paradigm is similar to the classical SOR (stimulus–organism–response) paradigm adopted in work
environments. Here, perceptual, mediation, and communication/motor processes interacting with
human memory are considered to model operators’ behavior in a man–machine system [65]. In the
classical sandwich model, systems responsible for thinking are considered “sandwiched” between
systems responsible for sensing and acting.

Classical cognitive paradigms are discussed and criticized in [70] where the embodiment effects
on mental phenomena are discussed.
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According to the embodied cognition theory, the sensory-motor systems of a body and cognitive
processes interact and cooperate. Theory states that the body is not merely an input of information for
computational processes of the brain; instead, body actions are co-producers of cognitive processes.
A review of traditional and embodied cognition theoretical frameworks is in [71]; here effects of age on
motor and cognitive processes are interpreted by the embodied cognition theory.

The role of the body in information processing pertains both natural and artificial systems as the
body partially reduces the computation performed by the brain (natural or artificial). Information
processed by the body depend on its morphological features. Under this perspective, the concept of
“morphological computation” is introduced to consider the capability of the body interacting with the
environment in limiting information transmitted to the brain, information that otherwise would have
to be processed by the brain [72].

A “morphological computation” can be interpreted as a process performed by a “morphological
intelligence” of a body; the concept is relevant in the study of biological and robotic systems.
The theoretical framework of the “morphological intelligence” can be found in [73]: The framework is
based on coupling systems dynamics with the entropy-based morphological intelligence measures.
The framework offers a unifying approach for modelling human cognitive/motor performances from
an information-based perspective.

Biological systems show higher performance than artificial ones in processing information within
the brain-body-environment sensory-motor loop. This becomes evident for robotic systems that,
while outperforming humans in terms of central processing speed and local latencies, cannot replicate
nor exceed human-like walking and balance performances [74,75] due to a poor “embodied intelligence”.
A targeted robot morphology (e.g., mechanical design, actuation) can significantly contribute to reduce
the information volume to be processed by the CPU and reduce the overall computational needs and
energy consumption of robots.

The approach here outlined paves the way to future research finalized to interpret and model motor
or cognitive tasks to be performed by natural or artificial operators under a holistic information-based
approach. Configurations of an operator, i.e., states the human or robotic system can assume,
will lead to focus on the abilities’ offered by the operators in performing a task or to design proper
devices (e.g., exoskeleton, cobot) supporting the operator in assuming the required configuration.
The approach is promising as it is consistent with the same information-based approach followed
in this paper to characterize a task. A number of possible applications are expected in designing
robots, coupling robot-operator, assigning workers of different age and physical abilities to a given task.
Biomechanics and neurorehabilitation research would also benefit from such an information-based
model, where the effects of age, pathology, and training exercise can be studied from the lenses of
information processing speed and time.

7. Summary and Conclusions

The focus of this paper is to assess the performance time of operators of different age and sex
involved in cognitive or motor task. Starting from data coming from experimental test available in the
scientific literature, a model to predict information processing time has been proposed and applied to a
case study.

The case study deals with an assembly line with three WSs and five differently aged and sexed
operators. The model allowed to evaluate the optimal assignment of an operator to each workstation
in order to meet the cycle time of the line. The model paves the way to industrial applications having
important managerial implications, especially in digital work environments where workforce aging
could affect productivity.

The model proposed is based on a holistic information-based approach that revealed effective in
capturing performance time of operators. Since model evaluations are based on statistical samples
of individuals subjected to predefined test runs, further analysis aiming at estimating the statistical
variance of results should be carried out, possibly based also in further test data available in the literature.
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Investigation on statistical variance could confirm the robustness of the model and his effectiveness in
assessing cognitive abilities by performance time of operators, in spite of the controversial findings on
this concern provided by the available research. Improvements in the understanding of such complex
phenomena (cognitive abilities) will require a multidisciplinary approach and competence that will
characterize future research.
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34. Francikowski, J.; Łozowski, B.; Rozpędek, M.; Kaczmarzyk, M. The influence of context on the usage of
working memory capacity expressed in bits. Sens. J. Mind Brain Cult. 2016. [CrossRef]

35. Umanath, S.; Marsh, E.J. Understanding How Prior Knowledge Influences Memory in Older Adults.
Perspect. Psychol. Sci. 2014, 9, 408–426. [CrossRef]

36. Cattell, R.B. The measurement of adult intelligence. Psychol. Bull. 1943, 40, 153–193. [CrossRef]
37. Carroll, J.B. Human cognitive abilities: A survey of factor-analytic studies: Review. Can. J. Exp. Psychol.

1993, 38, 1074.
38. Cattell, R.B. Theory of fluid and crystallized intelligence: A critical experiment. J. Educ. Psychol. 1963,

54, 1–22. [CrossRef]
39. Verhaeghen, P.; Salthouse, T.A. Meta-analyses of age-cognition relations in adulthood: Estimates of linear

and nonlinear age effects and structural models. Psychol. Bull. 1997, 122, 231–249. [CrossRef] [PubMed]
40. Baddeley, A. Working memory: The Interface between Memory and Cognition. J. Cognitive Neuroscience

1992, 4, 281–288. [CrossRef]
41. Silverstein, M. Meeting the challenges of an aging workforce. Am. J. Ind. Med. 2008, 51, 269–280. [CrossRef]

http://dx.doi.org/10.2190/AG.66.2.b
http://www.ncbi.nlm.nih.gov/pubmed/18453179
http://dx.doi.org/10.1037/0096-3445.128.2.131
http://dx.doi.org/10.1037/h0043158
http://www.ncbi.nlm.nih.gov/pubmed/13310704
http://dx.doi.org/10.1080/00207543.2020.1735659
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1207/s15327051hci0701_3
http://dx.doi.org/10.1093/epirev/mxs004
http://dx.doi.org/10.1186/s13104-019-4392-z
http://dx.doi.org/10.5465/amr.2004.13670969
http://dx.doi.org/10.1093/workar/wav001
http://dx.doi.org/10.1037/0033-2909.124.2.262
http://dx.doi.org/10.1146/annurev-psych-120710-100328
http://www.ncbi.nlm.nih.gov/pubmed/21740223
http://dx.doi.org/10.1037/ocp0000086
http://dx.doi.org/10.3109/0142159X.2014.889290
http://dx.doi.org/10.1016/j.learninstruc.2009.03.003
http://dx.doi.org/10.1159/000096792
http://dx.doi.org/10.7790/sa.v0i0.419
http://dx.doi.org/10.1177/1745691614535933
http://dx.doi.org/10.1037/h0059973
http://dx.doi.org/10.1037/h0046743
http://dx.doi.org/10.1037/0033-2909.122.3.231
http://www.ncbi.nlm.nih.gov/pubmed/9354147
http://dx.doi.org/10.1162/jocn.1992.4.3.281
http://dx.doi.org/10.1002/ajim.20569


Appl. Sci. 2020, 10, 5958 20 of 21

42. Rudolph, C.W. Lifespan developmental perspectives on working: A literature review of motivational theories.
Work. Aging Retire. 2016, 2, 130–158. [CrossRef]

43. Ng, T.W.H.; Feldman, D.C. The Relationship of Age to Ten Dimensions of Job Performance. J. Appl. Psychol.
2008, 93, 392–423. [CrossRef]

44. Lezak, M.D.; Howieson, D. Neuropsychological Assessment, 5th ed.; Oxford University Press: New York, NY,
USA, 2012.

45. Rabbitt, P. Introduction: Methodologies and models in the study of executive function. In Methodology of
frontal and Executive Function; Psychology Press: East Sussex, UK, 1997; pp. 1–38.

46. Albinet, C.T.; Boucard, G.; Bouquet, C.A.; Audiffren, M. Processing speed and executive functions in cognitive
aging: How to disentangle their mutual relationship? Brain Cogn. 2012, 79, 1–11. [CrossRef]

47. Park, D.C. (Ed.) The basic mechanism, accounting for age-related decline in cognitive function. In Cognitive
Aging: A Primer; Taylor & Francis: New York, NY, USA, 2000; pp. 3–19.

48. Salthouse, T.A.; Madden, D.J. Information Processing Speed and Aging; Taylor & Francis: Boca Raton, FL,
USA, 2013.

49. Jaeger, J. Digit symbol substitution test: The case for sensitivity over specificity in neuropsychological testing.
J. Clin. Psychopharmacol. 2018, 38, 513–519. [CrossRef]

50. Rosano, C.; Simonsick, E.M.; Harris, T.B.; Kritchevsky, S.B.; Brach, J.; Visser, M.; Yaffe, K.; Newman, A.B.
Association between physical and cognitive function in healthy elderly: The health, aging and body
composition study. Neuroepidemiology 2005, 24, 8–14. [CrossRef] [PubMed]

51. Rosano, C.; Perera, S.; Inzitari, M.; Newman, A.B.; Longstreth, W.T.; Studenski, S. Digit symbol substitution
test and future clinical and subclinical disorders of cognition, mobility and mood in older adults. Age Ageing
2016, 45, 687–694. [CrossRef] [PubMed]

52. Dassanayake, T.L.; Ariyasinghe, D.I. Sex-, age-, and education-adjusted norms for Cambridge
Neuropsychological Test Automated Battery in literate Sri Lankan adults. Clin. Neuropsychol. 2019,
33, 106–124. [CrossRef] [PubMed]

53. Pangelinan, M.M.; Zhang, G.; VanMeter, J.W.; Clark, J.E.; Hatfield, B.D.; Haufler, A.J. Beyond age and gender:
Relationships between cortical and subcortical brain volume and cognitive-motor abilities in school-age
children. Neuroimage 2011, 54, 3093–3100. [CrossRef]

54. Deary, I.J.; Der, G. Reaction time, age, and cognitive ability: Longitudinal findings from age 16 to 63 years in
representative population samples. Aging Neuropsychol. Cogn. 2005, 12, 187–215. [CrossRef]

55. Hick, W.E. On the Rate of Gain of Information. Q. J. Exp. Psychol. 1952, 4, 11–26. [CrossRef]
56. Fitts, P.M. The information capacity of the human motor system in controlling the amplitude of movement.

J. Exp. Psychol. 1954, 47, 381–391. [CrossRef]
57. Yeudall, L.T.; Fromm, D.; Reddon, J.R.; Stefanyk, W.O. Normative data stratified by age and sex for 12

neuropsychological tests. J. Clin. Psychol. 1986, 42, 918–946. [CrossRef]
58. Bolla-Wilson, K.; Kawas, C.H. Purdue Pegboard Age and Sex Norms for People 40 Years Old and Older.

Dev. Neuropsychol. 1988, 4, 29–35.
59. Maynard, H.B.; Stegemerten, G.J.; Schwab, J.L. Methods-Time Measurement; McGraw-Hill: New York, NY,

USA, 1948.
60. Salthouse, T.A. Aging and measures of processing speed. Biol. Psychol. 2000, 54, 35–54. [CrossRef]
61. Madden, D.J. Speed and Timing of Behavioral Processes. In Handbook of the Psychology of Aging; Academic Press:

San Diego, CA, USA, 2001; pp. 288–312.
62. Mathey, F.J., IV. Psychomotor Performance and Reaction Speed in Old Age. In Patterns of Aging;

S. Karger: Berlin, Germany, 2015; pp. 36–50.
63. Fozard, J.L.; Vercruyssen, M.; Reynolds, S.L.; Hancock, P.A.; Quilter, R.E. Age differences and changes in

reaction time: The Baltimore longitudinal study of aging. J. Gerontol. 1994, 49, 179–189. [CrossRef] [PubMed]
64. Huppert, F.A.; Whittington, J.E. Changes in Cognitive Function in a Population Sample; Springer:

Berlin/Heidelberg, Germany, 1993.
65. Park, K.S. Human Reliability, Prediction, and Prevention of Human Errors; North Holland: Amsterdam,

The Netherlands, 1987; Volume 7.
66. LaViers, A. Counts of mechanical, external configurations compared to computational, internal configurations

in natural and artificial systems. PLoS ONE 2019, 14, e0215671. [CrossRef] [PubMed]

http://dx.doi.org/10.1093/workar/waw012
http://dx.doi.org/10.1037/0021-9010.93.2.392
http://dx.doi.org/10.1016/j.bandc.2012.02.001
http://dx.doi.org/10.1097/JCP.0000000000000941
http://dx.doi.org/10.1159/000081043
http://www.ncbi.nlm.nih.gov/pubmed/15459503
http://dx.doi.org/10.1093/ageing/afw116
http://www.ncbi.nlm.nih.gov/pubmed/27496932
http://dx.doi.org/10.1080/13854046.2019.1662090
http://www.ncbi.nlm.nih.gov/pubmed/31537170
http://dx.doi.org/10.1016/j.neuroimage.2010.11.021
http://dx.doi.org/10.1080/13825580590969235
http://dx.doi.org/10.1080/17470215208416600
http://dx.doi.org/10.1037/h0055392
http://dx.doi.org/10.1002/1097-4679(198611)42:6&lt;918::AID-JCLP2270420617&gt;3.0.CO;2-Y
http://dx.doi.org/10.1016/S0301-0511(00)00052-1
http://dx.doi.org/10.1093/geronj/49.4.P179
http://www.ncbi.nlm.nih.gov/pubmed/8014399
http://dx.doi.org/10.1371/journal.pone.0215671
http://www.ncbi.nlm.nih.gov/pubmed/31067278


Appl. Sci. 2020, 10, 5958 21 of 21

67. Beamish, D.; Bhatti, S.; Chubbs, C.S.; MacKenzie, I.S.; Wu, J.; Jing, Z. Estimation of psychomotor delay from
the Fitts’ law coefficients. Biol. Cybern. 2009, 101, 279–296. [CrossRef] [PubMed]

68. Mummolo, C.; Mangialardi, L.; Kim, J.H. Concurrent contact planning and trajectory optimization in one
step walking motion. In Proceedings of the International Design Engineering Technical Conferences and
Computers and Information in Engineering Conference, Boston, MA, USA, 2–5 August 2015; pp. 1–7,
Paper No: DETC2015-47745, V008T13A018.

69. Mummolo, C.; Peng, W.Z.; Gonzalez, C.; Kim, J.H. Contact-dependent balance stability of biped robots.
J. Mech. Robot. 2018, 10, 1–13. [CrossRef]

70. Foglia, L.; Wilson, R.A. Embodied cognition. Wiley Interdiscip. Rev. Cogn. Sci. 2013, 4, 319–325. [CrossRef]
71. Costello, M.C.; Bloesch, E.K. Are older adults less embodied? A review of age effects through the lens of

embodied cognition. Front. Psychol. 2017, 8, 267. [CrossRef]
72. Ghazi-Zahedi, K.; Haeufle, D.F.B.; Montúfar, G.; Schmitt, S.; Ay, N. Evaluating morphological computation

in muscle and DC-motor driven models of hopping movements. Front. Robot. AI 2016, 3, 1–10. [CrossRef]
73. Ghazi-Zahedi, K. Morphological Intelligence: Measuring the Body’s Contribution to Intelligence; Springer:

Berlin/Heidelberg, Germany, 2019.
74. Mummolo, C.; Cursi, F.; Kim, J.H. Balanced and falling states for biped systems: Applications to robotic

versus human walking stability. In Proceedings of the 2016 IEEE-RAS 16th International Conference on
Humanoid Robots (Humanoids), Cancun, Mexico, 15–17 November 2016; pp. 1150–1160.

75. Mummolo, C.; Kim, J.H. Passive and dynamic gait measures for biped mechanism: Formulation and
simulation analysis. Robotica 2013, 31, 555. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s00422-009-0336-3
http://www.ncbi.nlm.nih.gov/pubmed/19862551
http://dx.doi.org/10.1115/1.4038978
http://dx.doi.org/10.1002/wcs.1226
http://dx.doi.org/10.3389/fpsyg.2017.00267
http://dx.doi.org/10.3389/frobt.2016.00042
http://dx.doi.org/10.1017/S0263574712000586
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Aging and Human Cognitive Abilities in the Workforce 
	A Review of Experimental Tests of Motor-Cognitive Abilities from Information Theory Perspective 
	Tests on Cognitive Abilities 
	Digit Symbol Substitution Test (DSST) 
	Reaction Time (from CANTAB) 
	Paired Associate Learning (from CANTAB) 
	The Experience of Deary and Der 

	Tests of Motor Abilities 

	An Information-Based Model for Age- and Sex-Dependent Performance Time of Workers 
	Cognitive Tasks 
	Motor Tasks 
	Information-Based Model of Human Motor-Cognitive Performance 

	A Case Study from the Automotive Industry 
	Discussion of Research Findings 
	Summary and Conclusions 
	References

