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Abstract.
Starting with Run II, future development projects for the Large Hadron Collider will

constantly bring nominal luminosity increase, with the ultimate goal of reaching a peak
luminosity of 5·1034cm−2s−1 for ATLAS and CMS experiments planned for the High Luminosity
LHC (HL-LHC) upgrade. This rise in luminosity will directly result in an increased number of
simultaneous proton collisions (pileup), up to 200, that will pose new challenges for the CMS
detector and, specifically, for track reconstruction in the Silicon Pixel Tracker. One of the first
steps of the track finding work-flow is the creation of track seeds, i.e. compatible pairs of hits
from different detector layers, that are subsequently fed to higher level pattern recognition steps.
However, the set of compatible hit pairs is highly affected by combinatorial background resulting
in the next steps of the tracking algorithm to process a significant fraction of fake doublets. A
possible way of reducing this effect is taking into account the shape of the hit pixel cluster to
check the compatibility between two hits. To each doublet is attached a collection of two images
built with the ADC levels of the pixels forming the hit cluster. Thus the task of fake rejection
can be seen as an image classification problem for which Convolutional Neural Networks (CNNs)
have been widely proven to provide reliable results. In this work we present our studies on CNNs
applications to the filtering of track pixel seeds. We will show the results obtained for simulated
event reconstructed in CMS detector, focusing on the estimation of efficiency and fake rejection
performances of our CNN classifier.
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1. The CMS Trigger System

The Compact Muon Solenoid (CMS) [1] is a general purpose detector designed for the precision
measurement of leptons, photons, and jets, among other physics objects, in proton-proton as
well as heavy ion collisions at the CERN LHC [2]. The LHC is designed to collide protons at
a center-of-mass energy of 14 TeV and a luminosity of 1034cm−2s−1. At design luminosity, the
pp interaction rate is about 1 GHz but only a small fraction of these collisions contains events
that can be interesting for CMS physics analyses and can be stored to be accessible offline.
The trigger system is devoted to the selection of these events from the totality of the inelastic
collision events. In order to accomplish this task, the CMS trigger system utilizes two levels [3].
The first one (L1) is implemented in custom hardware (FPGAs and ASICs). Within 4µs of a
collision, it makes selection of candidates objects based on raw data from calorimeters and muon
detectors and it restricts the output rate to 100 kHz. Events are then passed to the High-Level
Trigger (HLT) that further refines the purity of the physics objects, and selects an average rate
of 400 Hz for final offline storage.

Figure 1. Average processing time
per event with respect to the average
instantaneous luminosity. [4]

Figure 2. The Run 2 updated Silicon
Pixel Tracker geometrical layout, optimized
to offer full 4-hit tracking coverage up to a
value of the pseudo-rapidity of 2.5 [5]

2. Track reconstruction at HLT

The HLT hardware consists of a processor farm, the Event Filter Farm (EVF) with about 26000
Intel Xeon cores [3].The HLT gathers information from all the CMS detectors and among them
the Silicon Pixel Tracker has a crucial role in two of the first steps for the selection: the track
reconstruction and the primary vertex finding. The track reconstruction software used at HLT
is practically identical to that used for offline reconstruction with the difference that it has to
fulfill stringent CPU timing constraints: the event selection has to be fulfilled with an average
latency smaller than 260 ms. With the instantaneous luminosity increasing up to the ultimate
goal of 5 · 1034cm−2s−1 for the High Luminosity LHC (HL-LHC) upgrade, this time constraint
is rapidly approaching (see Figure 1). Beside this, the number of simultaneous proton collisions
per bunch crossing (”pileup”) will continue to increase: the highest pileup reached averaged over
a data run in 2011 and 2012 was ≈ 16 and ≈ 34, respectively, while in 2016 it exceeded 50 [6].

The track reconstruction procedure can be roughly split in four steps [3]. The first step is the
construction of seeds (seeding), i.e. few (2-4) Pixel hits that act as the building blocks for track
candidates and define the initial estimate for trajectory parameters. These candidates are then
propagated by means of Kalman Filter techniques to find further compatible hits and build a
track (building). The tracks are then fitted and marked with quality flags (fitting and selection).
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In the current configuration, the very first step of seeding consists in collecting and mapping
all the valid hits on the Silicon Pixel Detector layer. The Run 2 updated Silicon Pixel Tracker
is arranged in four barrel layers (BPIX) and three forward disks (FPIX) in each end cap region
(see Figure 2). Then, iterating on all the couples of consecutive seeding layers, the algorithm
selects and collects all the compatible hit pairs (doublets), i.e. the hit pairs that could belong to
the same particle and track. The compatibility between two hits is evaluated only on the basis
of geometrical considerations, such as cuts in η, φ and r.

The doublet production is thus highly dominated by combinatorial background and
constitutes a bottleneck for the subsequent steps. For example, for tt̄ simulated events at energy
of the center of mass of

√
s = 13 TeV, with average pileup < PU >= 35 and bunch time spacing

of 25 ns, about 106 doublets are produced per each event. Therefore the reduction of the track
reconstruction time hinges on the rejection of seeding combinatorial background. In the next
sections a method for filtering doublet seeds based on CNNs is proposed.

3. Convolutional Neural Networks for Doublet Seeds Filtering

A traditional deep neural network is a machine learning model whose goal is to approximate a
function f̂ by composing a sequence of simpler functions. It consists of an input layer, one or
more hidden layers and an output layer [7]. To a first approximation, each layer acts on the
input as a composition of a matrix multiplication, tuned with a set of biases (b) and weights (w),
and an activation function. Convolutional Neural Networks [8] are a specialized kind of neural
network for processing data that has a grid-like structure, such as 2D images. The building block
of a CNNs is a layer that uses discrete convolution in place of general matrix multiplication [7].
A convolutional layer takes in input a n×m× r two dimensional image where r is the number
of channels or depth, e.g. an RGB image has r = 3. The layer is characterized by k filters of
size k × l × q where k and l are smaller than the dimensions (n, m) of the image and typically
q = r (the filter has full depth receptive field). Each filter is devoted to detect some specific type
of feature or shape at some spatial position in the input. The output of one or more stacked
convolutional layers is usually passed to pooling layers that perform dimensionality reduction.
A p×p′ pooling layer replaces a p×p′ region of the image with a single value, e.g. the maximum
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Figure 3. Example of a BPix1-BPix2 true doublet generated from tt̄ simulated events
corresponding to a π+ track.
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value in that region for a max pooling layer.

3.1. Doublet Hits Cluster Shape

As described above, while building seeds, the compatibility between two hits is evaluated only
on the basis of geometrical considerations. A possible way of reducing the doublet fake ratio
is taking into account that each hit is actually a cluster of pixels with its own shape. Each
pixel is characterized by its 16-bit A.D.C. level (maxADC = 216 − 1) and its local position (x, y)
on the layer, where x is the azimuthal direction in the barrel detector and radial direction in
the forward detectors. Then a single hit can be considered as a collection of three vectors: the
x, the y and the ADC levels of each of its pixels. For each hit a 15×15 squared matrix M is
built with the pixel local x on the rows and the local y on the columns. The matrix center
is matched with the hit center of charge and each element mij is set to the A.D.C. level of
the corresponding (xi, yj) pixel. Those pixels that stride over the hit cluster boundaries are
set to zero (zero-padding technique).With this procedure each doublet can be considered as a
collection of two 15×15 matrices, an example is shown in Figure 3, or as a two channel 2D image
(n×m× r = 15× 15× 2). Thus the rejection of fake doublets is reduced to an image/pattern
recognition task, perfectly suitable for being dealt with CNNs.

3.2. Doublet dataset: generation and features

To test the feasibility of this kind of approach, the generation (via PYTHIA 8 [9]) and the
reconstruction of tt̄ events at energy of the center of mass of

√
s = 13 TeV, with average pileup

< PU >= 35 and bunch time spacing of 25 ns has been simulated within the CMS software
framework (CMSSW [10]). For each event, both all the doublets produced and all the MC
matched reconstructed tracks, i.e. associated with a tracking particle, are collected. A doublet
is then labeled as true only if it is formed by pixel hits belonging to the same MC matched track.
About 106 doublets are produced per each event and the ratio between true and fake doublets
is between 300-400. For each doublet 537 parameters are stored:

• 225 + 225 pixels for the inner and the outer hit;

• 63 doublet features defined for each doublet and that include detector information and
further hit and cluster characteristics;

Figure 4. Layer map model architecture
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• 24 track labels defined only for MC matched doublets, e.g. the corresponding track vertex
coordinates, pt and eta;

On the whole, 1000 events are simulated, 800 for the training dataset, 150 for testing and 50
for validation. The training and the validation set are balanced so that the ratio between fake
and true doublet is one. The whole balanced training dataset is composed of approximately 2.5
millions doublets.

4. CNN Classifier: the layer map model

The architecture for the doublet filtering classifier (layer map model) is shown in Figure 4 and
it concatenates:

(i) CNN block : conventional stack of convolutional layers (4) with 5 × 5 or 3 × 3 filters and
max pooling layers (2) whose output is reduced to a one dimensional structure through a
flatten layer that returns a 1024 elements vector.

(ii) Dense block : stack of two fully connected layers that are fed with the one dimension reduced
images from the previous block and 59 further doublets info (such as hits’ detectors and
coordinates).

The architecture is completed by a batch normalization layer inserted between the two blocks,
linear rectifier activations for the convolutional and dense layers, three dropout layers and
a softmax output layer for binary classification [7]. The two output neurons return the
complementary probabilities that a doublet is fake or true (ptrue + pfake = 1.0). The 15 × 15
doublets pads, before being fed to the first block, are pre-processed as follows.

• Each pixel content is standardized with the mean and the standard deviation pre-computed
on the whole 2.5 millions doublet dataset: µ = 13382.00, σ = 10525.13.

• The input is split in 4 angular channels, 2 for the inner hit and 2 for the outer hit. From each
hit pixel matrix Mi,o two matrices are extracted as extra channels: one (M cos

i,o ) resulting
from the multiplication of the original matrix by the cosine of the hit incident angle and
one by the sine of the angle (M sin

i,o ) (θi for the inner and θo for the outer hit, see Figure 5).

• The input is split in 20 additional detector channels, 10 for the inner hit and 10 for the outer
hit. Every channel corresponds to a single layer of the detector (4 barrel and 6 endcap)
and is initialized to a 15 × 15 zero matrix. Then only the two channels corresponding to
the inner and the outer layer are set, respectively, to the inner hit and the outer hit cluster
matrix. This approach allows us to separate the hit shape clusters based on the specific
layer and to apply a different transformation.

Figure 5. Example of an
hit doublet with the inner hit
on the third barrel layer (B3)
and the outer hit on the first
forwared layer (Fp1).
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Figure 6. Accuracy for train (red ——) and
validation datasets (blue - - - -) with early
stopping patiance=25.

Figure 7. ROC curves for the train,test and
validation dataset.

To sum up, the input dataset for the layer map model is composed of 24 channels 15 × 15
images standardized with their mean and their standard deviation. The model has been
developed and trained with the Keras package [11], a high-level neural networks API, running
on the top of TensorFlow library [12]. The network has been trained on NVIDIA Tesla K20
nodes at Bari Physics Department Tier 2 (ReCaS) [13] and on NVIDIA GTX1080 Ti GPUs at
CERN.

5. Model testing and results

Once tested and tuned on a smaller sample, the model has been trained on the whole dataset
(2.5M doublets) split in ten batches of 250k doublets in order to fit the available memory.
The model has been trained with a categorical cross entropy loss function [7], using Adam [14]
optimizer and accuracy as evaluation metric. At each batch training iteration the weights and
the parameters of the trained network are passed to the next step. This procedure has been
carried out for 20 global epochs on the whole dataset and each iteration is run with an early
stopping callback, that is a form of regularization used to avoid over-fitting. It stops the network
training when the selected metric (validation accuracy in our case) does not improve for a given
number of consecutive epochs, denoted as patience (p=25 for the layer map setup). The training
took about 5 days on a NVIDIA Tesla K20 node.

Figure 8. Network score for true
(blue) and fake (doublets) for train (filled
histogram) and test dataset (diamond
markers). In purple the 0.94 accuracy
threshold. In green the 0.99 efficiency
threshold.



7

1234567890 ‘’“”

ACAT2017 IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1085 (2018) 042040  doi :10.1088/1742-6596/1085/4/042040

Table 1. Layer map network scores for train,validation and test dataset.

TN/N at fixed TP/P TP/P at fixed TN/N
AUC Acc TP/P = 0.99 TP/P= 0.999 TN/N=0.99 TN/N=0.5

Train 0.982 0.940 0.85426 0.6706 0.5896 0.9997
Test 0.982 0.941 0.8542 0.6709 0.5899 0.9996
Val 0.982 0.939 0.8525 0.6707 0.5948 0.9996

Figure 6 shows the model accuracy for train and validation dataset versus the number of
training epoch for the first 250k batch. Validation curves follow the same trend as the training
ones and this indicates that the network is not over-fitting on the training data. Note that the
validation accuracy is always greater than the training one. This behavior depends on the fact
that dropout layers are turned off when the network process the validation data. Therefore the
network has more connections and neurons active thus is more complete and accurate.

The ROC curves for validation, test and training dataset, shown in Figure 7, completely
overlay each other, and the area under the curves (AUCs) is more than 0.98. While assuring a
0.99 efficiency (true positive rate), network’s sensitivity (true negative rate) reaches 0.85. The
highest accuracy reached is about 0.94 for all the three datasets. See Table 1 for further network
performance results. The normalized output score, namely the network estimated probability
that a doublet is true (ptrue) shows optimal separation between fake and true doublets sample.
Both train and test ptrue distributions are plotted in Figure 8 and the cut for an efficiency of
0.99. In order to compare them a two sided Kolmogorov-Smirnov test has been performed. This
tests whether two samples are drawn from the same distribution [15]. For both true and fake
histograms, the resulting score is KS ≈ 0.070 corresponding to a p-value of pval ≈ 0.961, that
assures us that the two histogram come from the same distribution with a very high level of
confidence.

6. Conclusions and acknowledgments
In conclusion, the results described show that CNN techniques for mitigating combinatorial
explosion look very promising and need to be further explored. Ongoing work includes the
verification of the effect on the downstream track reconstruction, the exploration of different
hardware architectures for fast inference and the final integration in the CMS reconstruction
framework.
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