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Optimal Information Centric Caching in 5G
Device-to-Device Communications

Changqiao Xu, Senior Member, IEEE, Mu Wang, Xingyan Chen, Lujie Zhong, and Luigi Alfredo
Grieco, Senior Member, IEEE

Abstract—Device-to-Device (D2D) communications are a prominent feature of 5G systems, introduced to provide a native support
to distributed services in mobile environments. D2D technologies enable straight interactions between mobile terminals without a
compulsory involvement of base stations. In this manuscript, we study and propose an optimized caching strategy to content distribution
on top of D2D technology, based on Information Centric Networking (ICN) principles. The rationale is that ICN architectures can
provide seamless support to mobile services and decouple contents from node identifiers, thus providing a promising match with D2D
requirements. To this end, a novel fluid-based model in proposed hereby that catches the interplay between ICN functionalities, D2D
requirements and 5G specifications. Then, based on this model, an optimal content replication problem is formulated, encompassing
caching overhead and system load. Additionally, this problem is thoroughly analyzed to prove that it has an optimal solution with
time threshold form. A practical algorithm ς∗-OCP is further proposed in order to implement the optimal caching control in realistic
environments. Finally, a massive simulation campaign is carried out to test the proposed algorithm in comparison to state of the art
solutions.

Index Terms—Information Centric Networks(ICNs), 5G Wireless Networks, D2D, In-network Caching, Optimal Control.

F

1 INTRODUCTION

THe joint efforts of standardization groups such as 3GPP
and IMT-2020PG are turning the vision of fifth gen-

eration (5G) [1] [2] networks into reality. Thanks to the
integration of heterogeneous technologies (e.g., LTE, WiFi,
LiFi, mmWave [3]) deployed across macro, pico and femto
base stations, 5G networks can provide seamlessly access
and 1000x increase of network capacity. The expected hyper-
dense deployment of 5G systems and the rich and di-
versified eco-system of services they support the call for
new data sharing models that push to the edge traffic and
complexity to magnify the return of investment [4].

As one of the key technologies of 5G systems, device-
to-device (D2D) communications [5] reuse the cellular spec-
trum and caching at mobile devices to enable users sharing
content with each other directly, hence offloading traffic
to the edge and shortening the packet latencies. In D2D
scenarios, we expect mobile and static nodes that support
information centric services [6] and Internet of Things [1]
applications thanks to a capillary exchange of data without a
compulsory mediation of base stations. Besides, 5G D2D as a
heterogeneous network enables mobile devices concurrently
using multiple communication technologies [7] including
LTE-D2D, WiFi-Direct and mmWAVE, thus further improv-
ing the D2D data delivery performance. Unfortunately, such
a heterogeneous environment, coupling with high dynamic
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of mobile nodes, does not immediately match IP objectives,
thus requiring overlay structures that optimize content dis-
tribution to users [8], [9]. In particular, while the underlying
IP protocol provides host to host services, users demand
content oriented applications. In particular, while the under-
lying IP protocol provides host to host services, users look
for content oriented applications. This mismatch, especially
in mobile scenarios with in-network caching capabilities,
could impair the performance of the 5G D2D technology
[10], [11].

These limitations can be overcome thanks to Information
Centric Networks (ICNs) [12], which represent a possible
evolution towards future Internet. As a matter of fact, ICNs
are grounded on name based networking primitives and can
natively provide content oriented services also in mobile
networks [13], [14]. As Fig. 1 shows, the key idea of ICN
for 5G D2D scenarios is that: (i) a data consumer asks the
network for a specific content name by issuing a request
contains the name of requested content instead of address of
destination; (ii) the network locates one or more providers
(mobile devices that hold the copies of the asked content)
and sets up a D2D route; (iii) the providers return the asked
content along that route. As content requests are routed by
names instead of host identifiers, ICN can easily support
mobile scenarios because if a user switches its position in the
network this will not affect the way it will keep asking and
receiving contents (i.e., by names). This name-based routing
design also enables the identical requests from different
interfaces being aggregated at intermediate nodes and con-
currently served by forwarding data back via corresponding
incoming interfaces, hence, inherently accommodating mul-
tihoming of 5G and providing multicasting data delivery.
Moreover, mobile nodes that act as information relayers
can proactively cache contents to serve the same requests
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Fig. 1. An illustration of ICN 5G D2D networks

in the future. Thus, content access latency can be reduced
and the load to the core alleviated. With the advantages
of inherently supporting mobility, multihoming, multicast
and in-network caching, ICN outperforms the conventional
IP network at content distribution. Hence, by providing all
the needs of D2D communications and a natural match for
content delivery services (a killer application in 5G), the
development of ICN architectures for 5G D2D systems has
been considered as a very promising trend for future 5G in
many recent papers [13], [15], [16].

As caching mechanism is the decisive factor for the
content dissemination efficiency in information centric 5G
D2D scenarios, it is necessary to optimize the way different
contents are replicated and handled at mobile nodes [14],
[17]. Traditional caching strategies already devised in wired
ICN [18]–[21] cannot be directly adopted in 5G D2D scenar-
ios because the way they pre-assign content copies to nodes
does not take into account topology variations contributed
by the mobility of nodes. Moreover, mobile users can be
constrained in energy, memory and processing resources,
so that each time they cache a content they loose device
lifetime, thus requiring a multi-dimensional optimization
approach to caching, able to embrace the interplay among
ICN functionalities, D2D requirements and 5G specifica-
tions. Several studies consider the problem of caching co-
ordination among mobile nodes, but they are tailored to
different technologies than 5G [22]–[25].

To bridge this gap, the presented contribution affords the
challenges related to ICN-based 5G D2D systems as follows:

(1) We consider ICN as a dynamical system and adopt a
fluid-based model to characterize how mobile node pa-
rameters (i.e., number of content providers, consumers
and forwarders) evolve with system parameters (arrival
rate of content requests and caching policy). We also
present several numerical results to validate the accu-
racy of our fluid-based model.

(2) Based on the proposed model, we focus on the tradeoff
between caching redundancy and system load when
optimizing the caching decision and give the compre-
hensive proof for the existences of the optimal caching
control who has a time threshold form.

(3) We design a practical caching algorithm named ς∗-OCP
based on the proposed optimal time-threshold control.
We validate the proposed algorithm through a massive
simulation campaign, showing that our algorithm out-

performs state of the art solutions in terms of caching
utilization and content access latency.
The rest of the paper is organized as follows: Section 2

reviews related work. Section 3 introduces a novel fluid-
based model to catch replicas dynamic in distributed ICN
5G D2D. Section 4 analyzes and derives the optimal control
for caching policy. Sections 5 and 6 present a practical
algorithm and conduct simulation tests to prove the vali-
dation of optimal control in realistic environments. Section
7 concludes the paper and discusses future works.

2 RELATED WORK

So far, quite a few papers afforded the design of ICN-based
caching mechanisms. Literatures [18]–[20] consider different
objectives when formulating caching placement problem.
Wang et al. [18] formulated the caching placement problem
in order to maximize the caching hit ratio. Wu et al. in [19]
intend to maximize the overall caching benefit, which is
defined as the product of average request rate, popularity
of content, and hop reduction. The objective function of
the optimization problem in [20] aims to maximize the con-
tent provider’s total caching revenue, including the traffic-
proportional profit of serving user demand, the incentives
cost for selecting APs to use their storage and access band-
width, and the infrastructure costs triggered by cache misses
at APs. Above studies formulate the problem of caching
placement as integer programming problems, which have
already been proved to be NP-hard. Consequently, the corre-
sponding caching algorithms are heuristic and sub-optimal.
Another caching scheme proposed by Kvaternik et al. [21]
formulated the caching problem as a convex optimization
problem by jointly considering the delivery/caching energy
consumption, caching redundancy, and content complete-
ness. As there exists a unique optimal solution for convex
problem, a consensus-based caching algorithm is proposed
which optimizes the caching configurations by solving the
formulated convex optimization problem in a distributed
way. However, solutions above focus on caching optimiza-
tion in wired networks whose topology is static, which are
unsuitable for high topology dynamic 5G D2D scenarios.

To introduce the information-centric design into 5G,
Liang et al. proposed an information-centric virtualization
architecture for 5G wireless systems [15]. They formulate the
resource allocation and caching strategy as a joint optimiza-
tion problem, which aims to minimize the inter/intra-ISP
traffic and content access delay. The interior point method
is employed to derive the solution of above joint optimiza-
tion problem. Unfortunately, this solution still considers the
caching at access points such as based stations, neglecting
the D2D communications of 5G environment.

In fact, ICN in 5G D2D scenarios enable mobile users to
donate their storage space and bandwidth resource to facil-
itate the data dissemination. Hence, it is necessary to take
the dynamics of mobile users into consideration to design
caching strategies for ICN 5G D2D. Recently, several caching
mechanisms for ICN-based D2D have been proposed. For
instance, Grassi et al. applied the ICN architecture into
VANETs [22]. A caching everything every where (CEE)
strategy is employed to enable vehicle nodes caching ev-
ery content that received. However, unlike vehicles, which
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Table 1
Comparison of existing works

Literatures Analytical
model 5G D2D User

Mobility
Optimal
control

CHPR [18],
MBP [19], [20] × × × × ×

RCO-CCS [21] × × × ×
√

5G ICN [15] ×
√

× ×
√

VNDN [22],
DPC [23],

GrIMS [24]
× ×

√ √
×

EcoMD [25]
√

×
√

× ×
ICN D2D [13] ×

√ √
×

√

Our solution
√ √ √ √ √

have enough storage and energy resources to execute CEE,
most mobile devices such as smart phones and laptops
are energy-hungry and resource constrained, which cannot
sustain the high resource consumption of CEE. Random-
probabilistic caching (RND (p)) in [10] reduces the caching
redundancy by caching the forwarded content with a given
probability p. For example, p = 0.5 implies that mobile
nodes will have 50% percent probability to cache a receiving
content, hence reducing the caching redundancy with re-
spect to CEE. However, the randomness feature of RND (p)
results in the unguaranteed of caching performance.

Deng et al. [23] proposed a distributed probabilistic
caching strategy for vehicular environment. In this solu-
tion, each mobile node calculates the caching probability
of given content by the weighted sum of users demand,
node centrality and relative movement speed. However, the
optimal caching configuration still cannot be achieved as the
caching probability is determined by a heuristic method. In
our early proposed information-centric architecture GrIMS
[24] over VANETs environment, a Cloud-assist information
centric architecture is built to monitor the balance between
video supply and demand of system. If supply capacity of
corresponding content is insufficient, a cooperative caching
strategy will be employed to allocate the content replicas
to selected nodes. We also proposed an information-centric
multimedia content distribution framework over the vehic-
ular networks named EcoMD [25]. A queuing model is built
for each content to estimate the bandwidth requirement
and average waiting delay. According to the estimation,
all nodes on data delivery path will dynamically allocate
caching space to storage passing content in order to min-
imize the overall average waiting delay. However, due to
the lack of theoretical analysis on the usage and variation
of caching, above solutions in D2D-based ICN still use
heuristic methods that cannot provide theoretically proved
performance bounds.

Another study that relates to our work introduces a
virtualized wireless ICN architecture and considers the re-
source allocation under D2D communications [13]. Specifi-
cally, the optimization problem is formulated to maximize
the utility of virtual network operators, and focuses on how
to continuously optimize the caching resource allocation
among mobile devices in order to improve the backhaul
efficiency. Unlike [13], we build a fluid-based model to
analyze how the population of consumers and content
copies in 5G D2D scenarios evolve with the user demand
and caching policy, hence providing theoretical guidelines
for the optimal caching design. Moreover, instead of only

Table 2
Notations used in model

Symbol Description
A (t) population fraction of ordinary nodes at time t
D (t) population fraction of activated consumers at time t
B (t) population fraction of inactivated consumers at time t
X (t) population fraction of satisfied consumers at time t
Df (t) population fraction of activated forwarders at time t
Bf (t) population fraction of inactivated forwarders at time t
Y (t) population fraction of satisfied forwarders at time t
βk average request rate of chunk k
|Ē| average number of nodes in one-hop range
λ information spreading rate

σ (t) controllable cache probability at time t
υk average cache eviction rate of chunk k

considering the backhaul efficiency as in [13], we consider
the caching optimal problem in 5G D2D scenarios as the
tradeoff between system load and caching cost. The com-
parison of existing works with our work is shown in Table
1.

3 SYSTEM MODEL

This section proposes a novel fluid based model to describe
the dynamics of ICN caching in 5G D2D systems. The
notations used in the model is summarized in Table 2

3.1 Assumptions
Before presenting our model, we make following assump-
tions:

First, without loss of generality, we consider a 5G D2D
scenarios where Named Data Networking (NDN) [22] is
employed 1, since NDN paradigm is a mature ICN archi-
tecture and continuously developed by researchers world-
wide. In NDN, content consumers issue an Interest packet
for requesting a content, and routers, upon receiving that
Interest, firstly check whether the requested content is in
their content store (CS). If not, the name and incoming
interface of Interest packet will be recorded in pending
Interest table (PIT) and forwarded out to the next-hop
according to the forwarding information base (FIB). The
above process is repeated until at least one content provider
if found, which is in possess of the asked content. Then, the
content provider returns the data packets encapsulating the
requested content along the reverse direction of searching
path and nodes on-path will proactively cache the content
into their CS. We assume that every mobile device in NDN
is equipped with 5G D2D interface. In this way, it is possible
to set up a distributed system in which each node can act
as content consumer, forwarder, and producer, thanks to the
interplay between ICN, caching, and D2D capabilities of 5G.

Second, we assume the content is divided into several
chunks and each chunk has equal size, nodes request/cache
the content in the unit of chunks as done in [21].

Third, we assume the movement behavior of mobile
nodes follows the Random Way Point (RWP) model, which
is a general mobility model used in the studies of mobile
networks, especially for D2D environment [26], [27]. In this
model, mobile nodes move in a convex area A (i.e., square,
unit disk, etc.) with randomly selected destinations and

1. The proposed model also holds for any other ICN architecture over
5G D2D based on in-network caching.
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movement speed. For instance, according to RWP, node n
will move fromA1 toA2 (A1 andA2 as the start/destination
points chosen randomly over A) along a straight line with
velocity V1 whose value is selected by distribution fV (v).
Once reaching the destination, the node n will reselect a
new destination A3 from uniform distribution over A and
move straightly to A3 with newly selected velocity V2.

3.2 Replica dissemination in mobile ICN
Let K = [1, ...,K] be the set of chunks belonging to all
contents in the network. We now discuss how to build a
fluid-based model for a given chunk k (∀k ∈ K) in ICN 5G
D2D. First, we define four roles of mobile nodes: Consumer,
the node which issues an Interest packet for k; Relay, an
intermediate node which receives and forwards an Interest
packet because the requested chunk is not in local cache;
Provider, the node which holds the replica of k; Ordinary,
the node which does not belong to any role above. To
further describe the node states according to above roles,
we introduce the following four bits:
• Request bit (R): 1 if the node is a consumer for the chunk,

0 otherwise.
• Forward bit (F): 1 if the node is a relay for the chunk, 0

otherwise.
• Spread bit (S): 1 if the node is able to spread the request

to neighbor node, 0 otherwise.
• Have bit (H): 1 if node is a provider, 0 otherwise.

Then, we define 7 possible node states during the chunk
dissemination by four bits above. Each state can be de-
scribed as follows:
• Ordinary state A (R=0, F=0, S=0, H=0): a node in this

state is an ordinary node, let A (t) be the population
fraction of nodes in this state at time t.
• Activated consumer state D (R=1, F=0, S=1, H=0): this

state indicates that a consumer node is preparing to send
a request, we denote D (t) as the population fraction of
nodes in state D at time t.
• Inactivated consumer state B (R=1, F=0, S=0, H=0): the

node is consumer that already sent out request and are
waiting for corresponding data back, we define B (t) as
the population fraction in state B at time t.
• Consumer satisfied state X (R=1, F=0, S=0, H=1): in this

state, a consumer already obtained the asked chunk and
can be considered as a provider in the system. We define
X (t) as the population fraction of nodes in X at time t.
• Activated relay state Df (R=0, F=1, S=1, H=0): a relay

node enters in this state when it receives a request and
prepares to forward it. We define Df (t) as the population
fraction in Df at time t.
• Inactivated relay state Bf (R=0,F=1, S=0,H=0): the state

of relay nodes already sent out the request for k and are
waiting for data reply. We define Bf (t) as the population
fraction of Bf at time t.
• Relay satisfied state Y (R=0, F=1, S=0, H=1): a relay

node in state Y that has received chunk k and decides
to replicate a copy in its local caches, let Y (t) be the
population fraction of nodes in this state at time t.
Each node in networks is one of seven state, hence the

sum of all nodes of each state is constantly equal to the total
number of nodes in networks, namely:
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Fig. 2. Possible state transitions of nodes in ICN-based 5G D2D

A (t) +D (t) +B (t) +X (t) +Df (t) +Bf (t) + Y (t) = 1

3.3 Fluid-based model
In this subsection, we build a fluid based model to describe
the dynamics of A (t), D (t), B (t), X (t), Df (t), Bf (t),
Y (t). As the dynamic of population fraction of each state
is derived by the state transition rate, a key point is how to
analyze the state transition among above states. According
to the data dissemination process in ICN 5G D2D, the
transition of above 7 states can be interpreted as Fig. 2,
where ten possible types of state transitions (represented by
the straight line with arrow) are existing among the states.
Now we give the detail description of each state transition:
• Transition 1: If node in state A become interested in

chunk k, it will convert to D. We assume that each node
becomes interested in k in a small time interval ∆t with
a given probability βk∆t, βk is the parameter of Poisson
distribution, which is only related to the popularity of
content k. As βk∆t ≈ βkdt when ∆t is small enough, the
conversion rate of a single ordinary node is βk. Thus, the
conversion rate of transition 1 can be denoted by βkA (t)
when the population fraction of ordinary node is A (t).
• Transition 2: After sending out the Interest packet, an

activated consumer in state D will transit to inactivated
state B. Because all consumers will send out the Interest
packets to request the chunk k, the conversion rate is
equal to D (t) the population portion of nodes in D at
current time t.
• Transition 3: After receiving requested chunk, inactivated

consumers in state B will become satisfied consumers,
namely convert from state B to X . In our model, a
consumer can obtain the content from a neighbor node
who is in state X and Y . In this case, the probability of
converting fromB (t) toX (t) can be approximated by the
pairwise meeting probability between a node in state B
and a provider of chunk k. Namely, the conversion rate of
transition 3 is equal to the density of provider X (t)+Y (t)
times the density of B (t). Let P (t) := X (t)+Y (t), the
conversion rate can be represented as P (t)B (t).
• Transition 4: This transition indicates that an ordinary

node becomes an activated relay. The Interest forward-
ing in 5G D2D can be considered as an epidemic process
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(EP) [29] since the activated relays are trying to transform
their neighbors into activated relays. Hence, activated
relays and consumers can be treated as infect individuals
in EP, and ordinary nodes can be treated as suspected
individuals in EP. Besides, nodes in NDN do not for-
ward a request that already received [12], which indicates
nodes in inactivated state can be treated as recovered
individuals in EP that will not participate in the epidemic
spreading process. In this case, the conversion rate of this
transition can be represented by the following equation
according to [29]:

λ|Ē|A (t) (D (t) +Df (t)) (1)

where λ is the spreading rate, |Ē| denotes the average
number of nodes that connect with an ordinary node.
In our model, we consider two types of Interest for-
warding strategies: broadcast-based and unicast-based.
For broadcast-based Interest forwarding, all ordinary
nodes that receive the Interest will certainly convert to
activated relays within ∆t, hence the λ in Eq. (1) can be set
to 1. For unicast-based Interest forwarding, the activated
relay will forward the Interest to only one next-hop and
the spreading rate λ of unicast-based forwarding is 1

|Ē| .
Now we discuss how to estimate |Ē| for RWP model.
Recall that mobile nodes are moving in a convex area A,
according to [26], the probability of node n locating at a
position r (r is an two-dimension vector that indicates the
coordinate over A) can be given as follows:

f (r) =
1

l̄s2
A

∫ π

0
a1a2 (a1 + a2) dφ (2)

where l̄ is constant and set to 0.521 for RWP, sA is the
area of the A, a1 and a2 are simplify for the a1 (r, φ) and
function a1 (r, φ), which are the length of line segments
from r to broader of A whose direction are φ and π −
φ, respectively. We consider the communication range of
node is a disk with radius R, for node n at position r, the
probability of a node in n’s one-hop range is given by the
following curve integral:

pr =

∮
Ar

f (r) ds (3)

where Ar is a circular function with centre r and radius
R. Hence the average number of connected nodes of n at
r is Npr , where N is the total number of nodes (as nodes
in RWP is statistic equivalent). Therefore, based on Eq. (2)
and (3), |Ē| can be derived by following:

|Ē| =
∮
f(A)

Nprf (r) ds (4)

where f (A) denotes the curve function of area A.
• Transition 5: After forwarding the Interest packet, relays

will convert from state Df to Bf . Similarly to transition
2, all activated relays in state Df will send out the Interest
packet for requested chunk and hence the conversion rate
of this transition is Df (t).
• Transition 6: When a relay receives the requested chunk

and decides to cache it in local, it will become a
member in state Y . Similarly, as transition 3, relayers
can obtain the chunk from a neighbor who holds the

Table 3
Update and conversion rate among states

Transition State update Conversion rate
1 (0,0,0,0)→(1,0,1,0) βkA (t)
2 (1,0,1,0)→(1,0,0,0) D (t)
3 (1,0,0,0)→(1,0,0,1) P (t)B (t)
4 (0,0,0,0)→(0,1,1,0) λ|Ē|A (t)

(
D (t) +Df (t)

)
5 (0,1,1,0)→(0,1,0,0) Df (t)
6 (0,1,0,0)→(0,0,0,1) σ (t)P (t)Bf (t)
7 (0,1,0,0)→(1,0,0,0) βkBf (t)
8 (0,0,0,1)→(1,0,0,1) βkY (t)
9 (1,0,0,1)→(1,0,0,1) υkX (t)
10 (0,1,0,1)→(1,0,0,1) υkY (t)

replica. Accordingly, the conversion rate of transition 6
is σ (t)P (t)Bf (t), where σ (t) determines whether cache
the receiving chunk or not at time t. Namely, σ (t) can
be considered as the caching policy. For instance, when
employing CEE, the σ (t) ≡ 1.
• Transitions 7 and 8: Since relays are also mobile users and

may become interested to k, they may covert from Bf to
B and Y to X . Similar as transition (1), the conversion
rate of transitions 7 and 8 are equal to βkBf (t) and
βkY (t), respectively.
• Transitions 9 and 10: These two transitions indicate mo-

bile nodes evict chunk k from local cache. We denote the
cache eviction probability of k in one node as υk, namely
the rate of transition 9 and 10 are υkY (t) and υkX (t),
respectively. Now we discuss how to derive υk. As υk
is the inverse of average cache lifetime E (Tk), namely
υk = E (Tk)

−1, hence υk can be obtained by deriving
E (Tk). The cache lifetime Tk can be interpreted as the
difference between cache miss interval t [28] and t0, where
t0 is denoted as the time interval between cache evic-
tion and cache miss. We consider the least recently used
(LRU) as the cache replacement strategy which evicts the
recent least used chunk from the cache, namely k will
be replaced if the time interval between two consecutive
requests is larger than given value τk. Once the requested
chunk is not in cache, a cache miss will occur. Thus,
according to [28], the cache miss interval t for LRU is
composed of a sequence of independent random variable
{t1, t2, ..., tm}, namely:

t =
n−1∑
i=1

ti + tm (5)

where ti (i ≤ m− 1) denotes the epoch between two
cache hit and tm denotes the time interval between
the last cache hit and cache miss. Apparently, for any
i ≤ m− 1, ti ≤ τk and tm > τk. Since the request arrival
probability follows a Poisson distribution with parameter
βk according to analysis in transition 1, the average value
of t can be given as E [t] = β−1

k eβkeτk [28]. According
to the definition of t0, t0 = tm − τk, τk is a constant
value for any given k. Because tm > τk, we thereby
derive the expectation of tm by the following conditional
expectation:

E [tm] = E [tm | tm > τk]

=

∫ ∞
0

tmf (tm | tm ≥ τk) dtm

=
e−βkτk

(
τk + 1

βk

)
eβkτk

(6)



IEEE TRANSACTIONS ON MOBILE COMPUTING 6

Table 4
Parameters setting for 5G D2D

Parameter Value
Max BSs/UE Tx power for cellular 46/23 dBm
Max UE Tx power for D2D 10dBm
Noise figure 7,11 dB
Mac channel delay 250ms
Communication range 150m
Download Data Rate 300Mbps
Upload Data Rate 50Mbps
Operating frequency 3.5GHz
PropagationLossModel FriisPropagationLossModel
EnergyDetectionThreshold -71.9842

Therefore, we have

E (Tk) = E [t]− E [t0]

= β−1
k eβkeτk −

e−βkτk
(
τk + 1

βk

)
eβkτk

+ τk

(7)

In Table 3, we summarize transitions rate of 10 types
of transition we derived. According to Fig. 2 and Table 3,
the dynamics of U (t) can be expressed by following O.D.E
functions with initial value Ut0 at time t0:

Ȧ = −βkA (t)− λ|Ē|A (t) (D (t) +Df (t)) + υkP (t) (8)

Ḋ = βkA (t)−D (t) (9)

Ḃ = D (t)− P (t)B (t) + βkBf (t) (10)

Ẋ = P (t)B (t) + βkY (t)− υkX (t) (11)

Ḋf = λ|Ē|A (t) (D (t) +Df (t))−Df (t) (12)

Ḃf = Df (t)− σ (t)P (t)Bf (t)− βkBf (t) (13)

Ẏ = σ (t)P (t)Bf (t)− (βk + υk)Y (t) (14)
U |t=t0 = Ut0 (15)

where initial value Ut0 =(A (t0), D (t0), B (t0), X (t0),
Df (t0), Bf (t0), Y (t0) ).

Remark: Although the fluid-based model we built is
for 5G-D2D environment, it can be also extended to other
mobile scenarios with some modifications on model pa-
rameters. For instance, since different routing policies and
mobility models are distinguished by the value of λ and
|Ē|, applying our model to mobile wireless networks [30]
or wireless sensor networks [31] only need to re-set the
λ and |Ē| by investigating the routing policy and mobil-
ity model of the considered scenarios. In addition, other
caching replacement policies such as FIFO or LFU could also
be considered in model by regulating the caching eviction
rate υk .

3.4 Accuracy of the O.D.E Approximation
In order to evaluate the accuracy of our fluid-based model,
we conduct a series of simulation tests by ndnSIM [32] based
on NS-3 [33]. The simulation parameter settings in terms of
network and users are given as follows:

We consider a 6000*6000 m2 scenario and 2000 mobile
nodes are moving in the scenario according to the RWP
model, whose velocity ranges from [10, 40]m/s. In order
to simulate the 5G-D2D scenarios in NS-3, we basically re-
set the physical and MAC layer parameters and modula-
tion schemes according to the requirement of 5G industrial
standarization [34]. The detail parameter settings are given
as Table 4. Our simulation considers videos with 2000kbps

playback bit rate and 120s long. We further divide each
video into 60 chunks, namely each chunk is 2s long with
size of 500KB. The size of cache in each node is set to 20000
MTUs, where a MTU is equal to 1500B. In this case, mobile
node can store at most 60 chunks. The cache operation of
each node is in chunk-level as it will cache or switch out the
whole chunk. The cache replacement policy is LRU.

Figs. 3 and 4 show the system evolving with different ini-
tial states based on broadcasting Interest forwarding. Figs.
5 and 6 show the system evolving with different initial states
based on random unicast Interest forwarding. For each
scenario, we repeat 20 runs with different random seeds
and take the average of results. As shown in the figures,
our fluid model converges well to the simulation tests in
both scenarios with only small difference. We also observe
that when request rate of content is given, the variation
of B (t) has a strong relationship with number of caching
copies Y (t0). This because according to the O.D.E function
(8)-(14), high value of Y (t) can accelerate the transiting from
B to X . As a result, system load (number of nodes that wait
for data returning, i.e., B (t)) can be effectively alleviated.
In contrast, lower Y (t0) will in turn lead to higher B (t).
This observation is consistent with the fact that caching can
speed up the data dissemination and reduce the waiting
delay of users.

4 CACHING OPTIMIZATION

In this section, we will discuss how to optimize the caching
policy in ICN 5G D2D based on our fluid-based model.

4.1 Problem Formulation

ICN 5G D2D offloads from networks by replicating content
copies at mobile nodes. In principle, the more nodes enable
caching operations the better are. On the other hand, since
intermediate nodes in 5G D2D scenarios are also mobile
users with constrained resources, caching operations should
be carefully enabled to preserve device lifetime. Addition-
ally, considering 5G D2D networks are highly dynamic in
terms of topology and nodes state, it is necessary to enable
mobile nodes continuously configure the cache strategies
in order to adapt the dynamic environment. We conclude
three cache optimization guidelines for ICN 5G D2D: 1)
chunks that belong to more popular contents and having
less replicas in the network should be cached with a higher
priority; 2) resources devoted to caching should be properly
tuned to strive a balance between network responsive-
ness and device lifetime; 3) the caching process duration
T (T →∞) in 5G-D2D should be divided into time slots as
[21], [24], i.e., T := (T1, T2, . . . , Tn, . . .), where each time
slot ∆Ti = Ti+1 − Ti, (i = 1, 2, 3, . . .). Mobile nodes will re-
configure the caching strategies at the beginning of the time
slot ∆Ti to accommodate the network dynamic.

According to the above guidelines, the objective function
of caching optimization problem can be expressed by:

J∆Ti,σ = ψBTi,σ (Tσ) + (1− ψ)YTi,σ (Tσ) (16)

where BTi,σ (�) and YTi,σ (�) denote the value of B (t) and
Y (t) with caching control σ (t) and initial condition U |t=Ti .
We define Tσ as the time of BTi,σ (t) reaches the peak
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Fig. 6. Initial: unicast forwarding, N=2000,βk=0.05,y (0) = 0.01

value in time slot ∆Ti, namely
{
Tσ

∣∣∣∣BTi,σ (Tσ) = max
∆Ti

Bσ

}
.

Accordingly, YTi,σ (Tσ) indicates the population fraction of
nodes in state Y when BTi,σ (t) reaches the peak value.
ψ ∈ (0, 1) and can be treated as weight parameters. Intu-
itively, the first term in Eq. (16) penalizes the system that
suffers a higher peak load, which is consistent with the first
guideline. The second term can be considered as a penalty
for cache redundancy in networks, which is consistent with
second guideline. In addition, since YTi,σ (Tσ) implies the
caching cost which can reflect the total caching and energy
consumption, the objective function we formulated inher-
ently considers energy consumption when optimizing the
caching configuration. The form of caching optimization
problem in each time slot ∆Ti can be stated as follows:

min J∆Ti,σ (17)
s.t 0 ≤ σ (t) ≤ 1, t ∈ [Ti, Ti+1] . (18)

4.2 Optimal Control

In this subsection, we will discuss how to establish an
optimal control σ (t) for minimizing J∆Ti,σ . Most current
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given initial condition of the O.D.E function

caching solutions in D2D environment [23], [24] are using
random caching solutions which cache the content accord-
ing to a given probability, namely the caching control pa-
rameter σ (t) in these strategies is constant in each time
slot ∆T (i.e., σ (t) ≡ p, p ∈ (0, 1)). Instead of applying
probabilistic caching strategy, we consider caching control
with a time-threshold form σTi,ς (t) in each ∆Ti:

σTi,ς (t) =

{
1, Ti ≤ t < Ti + ς
0, Ti + ς < t ≤ Ti+1

(19)

Eq. (19) indicates that chunk will be cached by inter-
mediate nodes if receiving time is within ς . Otherwise, the
received chunk will only be returned back to consumer
without replicating a copy in local cache.

The main reason of optimizing caching with a time
threshold form rather than probabilistic can be explained
by numerical results of fluid model and theoretical analysis.
Fig. 7 shows the numerical results of σTi,ς (t) (ς = 3.5) and
probabilistic caching policy with σ (t) ≡ 0.315. We observed
that when Tσς = Tσ (t = 6.245s), Y (Tσς ) = Y (Tσ),
B (Tσς ) ≤ B (Tσ). Namely, time threshold control σTi,ς (t)
has lower value of Eq . (16) than probabilistic control σ (t).
In addition, to justify the dominance of threshold-based
caching control theoretically, we give the following theorem
and prove it by the lemmas given in Appendix. A.

Theorem 1. Given the cost function (16) according to the
O.D.E system of (8)-(14), for any probabilistic cache policy with
σ (0 < σ ≤ 1) or other dynamic control σ (t), there always exists
a time-threshold based cache policy with following form:

σTi,ς (t) =

{
1, Ti ≤ t < Ti + ς
0, Ti + ς < t ≤ Ti+1

(20)

with a lower value of J∆Ti,σ .

Proof. See Appendix. A.

Now we discuss the existence of a solution with time-
threshold form for the optimization problem (17) (18). Let
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BTi,σ (Tσς ) denote the peak value of B (t) with time thresh-
old caching control σTi,ς (t), YTi,σ (Tσς ) and J∆Ti,σς are
the corresponding YTi,σ (Tσ) and J∆Ti,σ of σTi,ς (t), respec-
tively. The optimization problem (17) (18) for time threshold
caching control can be rephrased as:

min J∆Ti,σς (21)
s.t Ti ≤ ς ≤ Ti+1. (22)

Fig. 8 shows how BTi,σ (Tσς ), YTi,σ (Tσς ) and J∆Ti,σς

vary with ς , where ψ is set to 0.5. With the increasing of ς ,
we can see a monotonic increasing trend of YTi,σ (Tσ). It is
because more intermediate nodes will decide to cache the
passing chunk since the time threshold increasing. We also
see a decrement trend for BTi,σ (Tσς ), this is because the
increase rate Ḃ (t) of state B descends with the increasing
of population fraction Y (t) according to the Eq. (10). For the
value of cost function J∆Ti,σς , we can see the corresponding
curve firstly experience a decrease trend and then increase
with the ς , namely exists a minimal value with the vary of
ς . The following theorem ensures the existence of optimal
solution with time threshold based form:

Theorem 2. Given the optimization problem (21) and (22)
according to the O.D.E system of (8)-(14) with initial condition
U |t=Ti , there exists an optimal time threshold cache policy
σ∗Ti,ς (t) for optimization problem (21) (22), where caching time
threshold is ς∗.

Proof. See Appendix. B.

5 PRACTICAL ALGORITHM

In order to validate the effectiveness of our time thresh-
old caching control in realistic environment, we propose a
practical caching policy named ς∗−opporturnitistic caching
policy (ς∗−OCP). We consider a mobile information-centric
network where all mobile nodes use 5G-D2D interface to
share content and equipped with GPS to record the geo-
graphical location and moving velocity. 5G base stations
(BSs) in this scenarios act as coordinators to collect the
network information.

To accommodate with the dynamic variation of network
in terms of request rate and number of users in the area,
ς∗−OCP is designed as an online algorithm that executes
every time slot ∆Ti. To derive the optimal caching time
threshold ς∗ of all chunks in each time slot, we need
to build the corresponding O.D.E equations (8)-(14) and
calculate its numerical solutions. In ς∗-OCP, mobile nodes
create a 4-bit map (R,F,S,H) for each chunk k, where R,
F, S, H follow the same definitions of request, forward,
spread, and have bit in section 3. A state list is maintained
at mobile node to record the 4-bit map of each chunk.
To further save storage space, chunks in ordinary state
A(R = 0,F = 0,S = 0,H = 0) will not be recorded in the
state list. Each node submits this state list and current
movement velocity to coordinators every ∆Ti. In order
to alleviate the extra bandwidth consumption caused by
submission process, we smuggle this information into MAC
layer control frame. The population fraction of each state
can be estimated by the state lists that submitted by all
nodes, |Ē| can be estimated by equation (4) according to the
area of scenarios and average moving speed. To calculate

Algorithm 1 ς∗−Opporturnitistic Caching Policy
Coordinator side:
/* Algorithm proceed in coordinator side */
for each time slot ∆Ti
collect (R,F,S,H) and velocity from mobile nodes;

for all chunk k ∈ K
set network state in current time t0 as initial condition;
build the fluid-based model for k by Heun’s method;

calculate the optimal time threshold ς∗ by searching the close interval;
broadcast ς∗ to all mobile nodes in communication range;

end for
end for

User side:
/* Algorithm proceed at mobile user n */
upload (Cn (t) , Rn (t) , Sn (t) , Vn (t))
wait for data packet of chunk k coming;
if n is a intermediate node

if ReceiveT ime ≤ ς∗
create a replica of k in local CS;

end if
send k out according to the entry in PIT;

else if i is a consumer for k
create a replica of k in local CS;

end if

the request producing rate βk, let
(
tk
ni

)∞
ni=1

denote time

sequence of node becoming (R = 1,F = 0,S = 0,H = 0)
for chunk k, we can approximate βk (t) in ∆Ti by :

βk (t) =
1

NA (t) ∆Ti

∫
∆Ti

∞∑
ni=1

δ
(
t− tk

ni

)
dt (23)

where δ (.) is unit impulse function with a form of

δ (t) =

{
1, t = 0
0, otherwise

NA (t) denotes the number of nodes in state A at time t.
Therefore, as the initial state and βk, |Ē| and υk are

given, the O.D.E equations of (8)-(14) for each chunk can
be built. There are several numerical methods available for
deriving the solution of O.D.E equation, such as Euler’s,
Runge-Kutta and Heun’s method [35]. In our algorithm,
we use Heun’s method to derive the numerical solution
of (8)-(14) by the following reasons: Euler’s method is
simple but has unstable performance in terms of accuracy.
Runge-Kutta is more accurate than Euler’s, yet requires
more execution time and memory. Heun’s method can be
considered as a tradeoff between accuracy and execution
overhead, which is preferred by resource limited mobile
environment. To determine the value of weight parameter ψ,
we analyze the sensitivity of ς∗-OCP to ψ, which is shown
by the Fig. 9. B∗Ti,σ (Tσ) and Y ∗Ti,σ (Tσ) denote the value
of BTi,σ (Tσ) and YTi,σ (Tσ) when corresponding J∆Ti,σ

is minimum, respectively. As Figure shows, B∗Ti,σ (Tσ) (
Y ∗Ti,σ (Tσ), respectively) decreases (increases, respectively)
with the rising of weight parameter ψ. Moreover, it is also
observed that B∗Ti,σ (Tσ)’s gradient declines gradually, and
the growing rate of Y ∗Ti,σ (Tσ) rises with ψ. This suggests
that setting ψ too big (small) will result in the high cost
of caching redundancy (system load), which hinders the
performance of the algorithm. Thus, to balance the tradeoff
between two optimizing objectives, we set the ψ in ς∗-OCP
to 0.5. As the optimization problem (21) (22) has an optimal
solution by Theorem 2, namely there exists a time threshold-
based caching policy that can jointly optimize the system
load and caching cost. To find the optimal time threshold-
based caching policy practically, we employ the numerical
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sweeping method which obtains the optimal caching time
threshold ς∗ by traversing the close interval [Ti, Ti + ∆T ].
Consequently, ς∗-OCP derives the caching time threshold
that optimizes the problem (21) (22), namely the correspond-
ing caching policy ς∗-OCP is optimal.

After obtaining the optimal time threshold ς∗, the coor-
dinator broadcasts ς∗ of each chunk k to all nodes in the
communication range via the MAC layer beacon frame. The
receiving nodes of chunk k will decide whether to replicate
a copy of this chunk in local according to the threshold time
ς∗ of k. Specifically, if the receiving time exceeds ς∗, the node
only forwards the content to the upstream node. Otherwise,
the node will replicate the content to local cache and send
out data. The pseudo code of the above process is given
as Algorithm 1. For complexity of this algorithm, we have
following proposition.

Proposition 1. The overall complexity of the algorithm proceed
at coordinator side is limited by

O

(
| K | .

(
max{∆T

ε
,H}

))
where | K | is the total number of chunks, ε is the accuracy of
searching method and H is the complexity of Heun’s method.

Proof. In each time slot, the complexity of this algorithm
at server side is determined by the number of chunks, the
searching algorithm and Heun’s method. As the size of
chunk set is | K |. Searching the interval with accuracy
ε require at most ∆T

ε iterations. For Heun’s method, the
corresponding complexity is determined by the number of
iterations H . As the searching algorithm and Heun’s are
proceed in parallel for each chunk. Hence, the proposition
is proved.

As the time complexity of Heun’s method and search-
ing is fixed when the accuracy requirement is given, the
proposed algorithm only has a polynomial complexity as
the number of chunk grows. The algorithm at user side
requires them to submit state list and movement velocity to
coordinator and receive the optimal caching time threshold
every ∆Ti, which can be considered as O (1).

6 PERFORMANCE EVALUATION

In this section, we conduct a series of simulation tests to
compare the performance of ς∗-OCP with three state-of-art
D2D-based caching strategies, GrIMS [24], DPC [23] and
RND(0.5). The parameter settings of network and mobility
model are the same as in Section 3.4. The simulation scenario

is a 2000*2000 m2 square with 200 mobile nodes, and simu-
lation time is set to 1000s. Furthermore, to approximate the
realistic environment, we adopt at most 40 different videos
in our simulation tests. The length of each video is ranging
from 120s to 240s, which means the number of chunks
contained by a video is from 60 to 120. The distribution of
users request for video-level content is described by Zipf
distribution according to user behaviors analysis in [36],
which means given a video set with n videos, the request
probability of the r-th most popular video is

P (r) =

(∑N
k=1

1
kρ

)−1

rρ
(24)

where ρ is the Zipf parameter and set to 0.8. After determin-
ing which video to watch, users will request the chunks of
video in sequence and choose another video after finishing
the playback of current video.

We also deploy 25 base stations (BSs) uniformly in the
network to collect state list and velocity of users and pe-
riodically broadcast the caching time-threshold every 30s
according to Algorithm 1.

6.1 Simulation Test
We test the performance of four solutions in terms of aver-
age cache hit ratio, caching cost, average downloading time
and control overhead. The detail analysis is as following.

Average Cache Hit Ratio (ACHR): In ICN, if one node
receives a request and the corresponding chunk is in its local
cache, it will be considered as a cache hit event. Otherwise, it
is a cache miss event. ACHR indicates average ratio between
the number of cache hit events and the total number of
received requests. We estimate the ACHR at time t by the
following equation:

ACHR (t) =
1

|N (t) |
∑
i∈N(t)

Hh
i (t)

Hi(t)

where N (t) denotes set of nodes received requests till t and
|N (t) | is its cardinality,Hh

i (t) andHi(t) denote the number
of cache hit events and total number of received requests at
node i till time t, respectively.

According to Fig. 10, the overall performance of ς∗-
OCP is the best among four solutions, i.e., ς∗-OCP is about
10%/20%/16%/5% higher than the best of other three
solutions when the size of video set |V | is 10/20/30/40,
respectively. GrIMS outperforms DPC in some cases. For
example, GrIMS outperforms DPC after 500s in 10 (a) and
700s in 10 (b). RND(0.5) has the worst performance among
all the solutions. The superiority of ς∗-OCP is because it
has low system load with respect to probabilities solutions
according to Theorem 1 and 2, which means the demand
chunk can be quickly discovered, namely a higher cache
hit ratio. Comparing with GrIMS that estimates the request
rate from the whole system to configure the global cache
resource, DPC determines the caching probability by calcu-
lating the local requests rate at each mobile node. Thus, the
chunk demand estimation of DPC may be more inaccurate
than that of GrIMS and hence DPC results in lower ACHR.
The reason that RND(0.5) performs the worst is simply
caching all passing content with constant probability not
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Fig. 10. Average cache hit ratio vs. simulation time along 4 sizes of video sets: (a)|V | = 10;(b)|V | = 20;(c)|V | = 30;(d)|V | = 40;
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Fig. 11. Caching Cost vs. simulation time along 4 sizes of video sets: (a)|V | = 10;(b)|V | = 20;(c)|V | = 30;(d)|V | = 40;
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Fig. 12. Average download time vs. simulation time along 4 sizes of video sets: (a)|V | = 10;(b)|V | = 20;(c)|V | = 30;(d)|V | = 40;

only ignores the popularity diversity of different content
chunks but also neglects the time varying characteristics of
content demand.

Caching Cost (CC): The CC is defined as the total num-
ber of caching events and we calculate the CC at time t by
following equation:

CC(t) =
t∑

s=0

∑
i∈N

∑
j∈V

Ci,j (s)×M

where Ci,j (s) is an impulse function, which indicates mo-
bile node i cache chunk j at time s when Ci,j (s)=1 and 0
otherwise. V denotes the chunk set, M denotes the number
of data packets contained by each chunk. N is the the set of
nodes in simulation.

Fig. 11 (a)(b)(c)(d) show the CC comparison with dif-
ferent sizes of the video set, i.e., |V |=10, 20, 30 and 40. As
shown in figures, ς∗-OCP achieves the best performance
among four solutions during the second half of simula-
tion in each figure. Especially, when video set grows, the
difference between ς∗-OCP and other heuristic strategies is
becoming more and more obvious, i.e., ς∗-OCP outperforms
than GrIMS, DPC and RND(0.5) at 1000s by 5%, 22% and
25% in Fig. 11 (a). And this superiority is extended to
20%, 42% and 45% when the video set size reaches 40. The
results are consistent with Theorem 1 which declares that

time threshold based solution overwhelms the probabilis-
tic based caching control in terms of caching cost. GrIMS
achieves lower caching cost than that of DPC and RND(0.5)
when simulation time exceeds 800s. This is mainly because
GrIMS allocates the caching resource by globally estimating
the chunk demand and node residual caching space, which
can alleviate part of unnecessary caching, namely reducing
the caching cost. DPC and RND(0.5) have similar perfor-
mance in terms of the CC since these two methods make
caching decision locally, and the average caching probability
of all chunks in DPC is also around 0.5.

Average Download Time (ADT): ADT denotes the av-
erage time interval between the time to issue the Interest
packet of chunk k and the time to receive the corresponding
chunk. This metric reflects the access latency of content,
which is an important metric for delay-sensitive application
such as video streaming.

Fig. 12 (a), (b), (c) and (d) show that all curves firstly
decrease sharply before 200s, then reveal an increasing
trend during the rest of simulation. This is because all
mobile nodes have enough caching space to ensure that
content can be placed to users nearby at the beginning of
simulation, which reduces the ADT. However, due to the
growing cache hit distance caused by cache miss when local
cache is full, the downloading latency as well increases.
From Fig. 12, we can also see ς∗-OCP has lowest ADT
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Fig. 13. Control overhead vs. simulation time

among four solutions. GrIMS performs better than other
two probabilistic solutions in most cases. The reason can
be explained by follows, ς∗-OCP has higher ACHR than
other three solutions which is shown in Fig. 10, namely a
nearby cache may be hit with higher probability, resulting
in lower ADT. Comparing with DPC and RND(0.5), GrIMS
can achieve better ACHR by estimating the content supply
and demand globally, also resulting lower ADT. However,
GrIMS still uses a heuristic solution whose performance is
unbounded, hence underperforms the ς∗-OCP. The fixed
probability utilized by RND(0.5) has higher frequency of
cache miss due to the ignorance of demand variation of
different chunks, which in turn leads to long ADT.

Control Overhead (CO): In our simulation, we count
the average occupied bandwidth per second of signalling
used to optimize the global caching as the control overhead
(CO). In our ς∗-OCP, the CO is mainly the traffic of state
list and caching configuration information generated by
users and coordinators, respectively. In GrIMS, every node
is required to submit the request information and node
capacity, the Cloud coordinator determines which to cache
for each node individually. The traffic generated by such
information and control are considered as the CO of GrIMS.
DPC and RND(0.5) configure the caching locally, hence have
no CO. As Fig. 13 shows, the CO of ς∗-OCP and GrIMS both
experience a growing trend during the simulation. This is
mainly because with the increase of simulation time, more
users join and begin to request content, which enlarges the
CO accordingly. GrIMS performs worse than ς∗-OCP in the
sense that corresponding CO is almost 40% higher than that
of ς∗-OCP when simulation time is 1000s. The main reason
is the coordinator in GrIMS needs to control the caching
decision of each node by unicast-based message exchange
method. Instead, ς∗-OCP uses broadcasting-based method
to control caching in all mobile nodes, hence results in a
lower control overhead. Although DPC and RND(0.5) have
no CO because they make caching decision according to
local information, however, this comes at a price in terms
of lower caching hit ratio and higher downloading latency
and caching cost.

7 CONCLUSION AND FUTURE WORK

This paper studied the problem of optimal caching in ICN
5G D2D environment. We modeled replica dissemination

process in ICN 5G D2D as a fluid-based model, which cap-
tures the dynamic relationship between content replication
and users behavior under controllable caching operations.
Furthermore, our formulation has led to an optimal control
problem to jointly minimize the caching cost and system
load. We then proved the superiority of this time threshold
caching control with respect to probabilistic-based meth-
ods and existence of a time threshold solution for above
optimization problem. Additionally, we also designed a
practical caching algorithm named ς∗-OCP which integrate
with our time threshold-based optimal caching control. Sim-
ulation results showed our ς∗-OCP achieves higher caching
hit ratio, lower caching redundancy and delivery latency
when comparing with the state-of-art solutions.

Our work also opens some avenues for future work
in this field. First, although RWP is an general mobility
model, yet is not well suit for vehicular environment where
vehicles are moving along the pre-given routes (such as
streets). Hence, new models could be introduced in order to
provide more comprehensive analysis. Second, in our fluid-
based model, we consider two widely used ICN forwarding
schemes: random unicast and broadcast, other forwarding
strategies such as geographical-based forwarding [22] can
be also adopted with some modification on fluid-based
model. In this case, except for investigating the caching
dynamic, the proposed fluid-based model can be also used
to analyze the performance of request forwarding strategies.
Third, as our model can be also used to describe the data
dissemination under different forwarding strategies, our
future work may also include designing efficient forwarding
strategies that reduce the delivery latency and forwarding
energy costs.
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