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Abstract

Contact mechanics between rough solids usually relies on the half-space ap-

proximation, which assumes that the contact area dimension is much smaller

than the thickness of the layers of materials that characterise the surfaces of

the contacting bodies. However, such simplifying assumption is often inad-

equate when industrially relevant applications are considered, in particular

those of biomechanical interest. Indeed, a large variety of systems, including

not only classical engineering applications such as gear boxes, shafts, tyres,

etc., but also biological tissues such as human skin, is characterised by su-

perficial coatings; very often the mechanical properties of these coatings are

very different from those of the bulk region of the bodies in contact. The aim

of this paper is to shed light on the role played by the thickness of the layer

of material used as a coating, with specific focus on the contact between a

rigid rough surface and a thin deformable layer bonded to a rigid substrate.
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Starting from a recently developed Boundary Element formulation (Carbone

and Putignano, 2013), we derive a methodology which accounts for finite

thickness by a corrective coefficient modulating the classical Greens func-

tion, and extends our analyses to periodic domains. This enables to avoid

border effects and provides an innovative tool to tackle viscoelastic contacts

with realistic roughness. This is exploited to perform a thorough investi-

gation of the mechanisms responsible for frictional losses in layered systems

characterised by different materials, thickness and loading conditions. Re-

sults show that decreasing the layer thickness corresponds to an increase in

the contact stiffness. Furthermore, in the case of viscoelastic layer, particular

attention has to be paid to the changes in the viscoelastic dissipation due to

the finite thickness of the surface layer.

Keywords: viscoelastic contact mechanics, finite thickness, boundary

element methods.

1. Introduction

In the last two decades, contact mechanics between rough surfaces has

assumed a prominent role in engineering research, with hundreds of papers

employing analytical, numeric and experimental approaches to shed light on

several issues of the problem. Beyond pure theoretical interest, such vast

research effort is directly linked to the wide variety of technologically impor-

tant phenomena strongly influenced by roughness of the surfaces in contact

problems. Indeed, in any real tribo-system, multiscale roughness, complex
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rheological behavior of contacting solids, and the presence of multi-phase

components combine to determine important macroscopic properties such as

friction, dissipation, wear, contact stiffness. This has a tremendous impact

on a large number of engineering applications. On one side, we have quite

traditional components requiring to be redesigned according to the trend of

modern engineering that prompts to boost reliability and energy efficiency:

car tyres and mechanical rubber seals are possible examples where a better

understanding of the energy dissipation and, in the second case, of the per-

colation mechanism can really improve a everyday-life component. On the

other side, there is a wide variety of innovative pioneering devices that, to

be fully developed, need a sharp improvement in our theoretical knowledge:

novel bio-inspired adhesives ([1], [10], [18], [19], [20], [27],[23],[28]) and me-

chanical and electrical micro systems (MEMS) ([2], [1]) have, for example, a

limited diffusion owing to the significant limitations in the understanding of

their physical working principles.

In order to deal with these challenging issues, a variety of methodologies

have been proposed in the scientific literature. Historically, the problem has

been firstly approached by developing the so-called multi-asperity models

aimed to solve the contact between elastic rough surfaces ([41],[42],[43],[44],[45])

: basically, these methodologies consider the rough surfaces constituted

by asperities -with a certain distribution of radii of curvature and height

distribution- which behave like independent Hertzian punches. This class of

theories, which does not take into account the mutual interaction between
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asperities in contact, has a further drawback: they reduce the shape of con-

tact spots to Hertzian circular or elliptical contacts and, thus, neglect the

fact that contact regions present fractal-like boundaries (see [13]) and can

assume non-simply connected shapes. This entails a variety of problems in

the correct estimation of many prominent quantities, including the contact

area and the contact stiffness. In particular, multi-asperity contact mod-

els have been shown in [32] to predict linearity between applied load and

true contact area only for extremely small applied loads. This is in contrast

with experimental and numerical evidences and, more importantly, seems

not to be coherent with the Amontons–Coulomb’s friction law, asserting the

direct proportionality between the friction force and the load and, there-

fore, suggesting the direct proportionality between the real contact area and

the applied load. Corrections to include interactions have also been pro-

posed ([53].); however, they only partially solve the issues identified above.

In the last decade, Persson has attempted to overcome these problems by

proposing a different approach ([12], [14]) based on the assumption that the

contact pressure probability distribution is governed by a diffusive process

as the magnification at which we observe the interface is increased. The the-

ory is formulated in such a way that in full-contact conditions its results are

exact, while in the case of partial contacts, although it provides only an ap-

proximate solution, is at least qualitatively valid as it still predicts linearity

between contact area and load (see e.g. Ref. [34] and [35] for a more detailed

discussion of the problem). Interestingly, Persson has developed his theory
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to account for materials with a linear viscoelastic rheology, thus providing

predictions for the viscoelastic friction ([12], [14]) . Furthermore, although in

this case the theory provides good qualitative trends and helps understanding

the behavior of contacts in the presence of complex rheology, its quantitative

validity is still widely debated; this can have dramatic implications for many

practical applications.

Given all these issues affecting analytical theories, a lot of different nu-

merical approach have been developed to get quantitatively and qualita-

tively accurate results. The variety of the proposed techniques includes

finite element methods (FEM) ([56]), boundary elements methods (BEM)

([54], [33],[27],[47]), molecular dynamics simulations ([62], [61], [63]) and hy-

brid approaches ([64], [65]). In all these cases, getting the full numerical

convergence is a crucial point that deeply influences the reliability of the

results (see [48] for a detailed discussion). The actual relation between real

contact area and load has been, for example, widely debated since, as shown

in [48], it strongly depends on the capability of converging. All these issues

are mainly due to the large number of length scales (covering several or-

der of magnitudes) involved in the rough contact. This point becomes even

more important when viscoelasticity is considered. In this case, the material

time-dependent behavior , in general, require to consider also the time do-

main and this really increases the simulation computational cost. Recently,

thanks to new computational techniques and more powerful computational

resources getting widely available, significant steps forward have been done
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both for elastic and viscoelastic contacts ([34], [63], [55],[31] ), but a lot of

work remains to be done.

In this paper, in particular, we focus on an issue that has not received so

far the right consideration it would have deserved: this is the study of the

effects related to the finite thickness of the bodies in contact. Indeed, the

almost totality of the boundary element methodologies formulated in the real

space and presented in literature ([54], [33],[27],[47]) relies on the half-space

assumption, which consists in assuming that the thickness of the solids in con-

tact is much larger than the contact area. In principle, boundary elements

techniques derived in the Fourier space can tackle contact problems with

surfaces characterised by layers of finite thickness ([68],[66],[67]); however,

systematic investigations of the effects related to the thin layer mechanics

are not common in literature. Furthermore, studies performed adopting fi-

nite element methodologies ([56],[24], [25]), molecular dynamics simulations

([62], [61], [63]) and hybrid techniques ([64], [65]), which intrinsically con-

sider the bulk of the contact solids in their formulation, usually do not pay

attention to the finite size effects and employs models with thickness values

that are believed, on heuristic basis, to be large enough to avoid any influ-

ence given by the thickness. However, as widely shown for smooth contact

mechanics problems ([57],[58]), finite thickness has often to be accounted

for: many systems -for example, all components with coatings- have a sur-

face layer whose characteristics are very different from the remaining bulk

region of contact body. In all these cases, the half-space assumption can lead
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to large errors in the estimations not only of contact stresses and strains, but

also friction and wear. This is relevant not only for many industrial com-

ponents, including turbomachinery blades, gears, seals, but also biological

tissues. Human skin is just an example of a layered system where finite size

effects cannot be neglected ([59], [60]). To tackle contact problems related

to these interesting topics, we derive a boundary element formulation which

modifies the methodologies presented in [33] and [52] to account for the finite

thickness layers made of both elastic and viscoelastic materials. The for-

mulation is further improved to include a fast numerical periodic solver that

allows simulating large contact domains (Section II). The proposed method-

ology is then used to explore the behavior contacts between a rough rigid

surface and an elastic or viscoelastic layer of finite thickness bonded to a

rigid substrate. Results are presented and discussed in Section III, when the

proposed methodology is also used to unravel some of the subtleties linked

to the specific behavior of viscoelastic layers.

2. Formulation

The modelling technique employed in this paper is a boundary element

method (BEM); such methodology is extensively used for contact mechan-

ics problems ([54], [33],[27]), and relates surface displacement to interfacial

pressure by means of a convolution integral. In particular, Ref. [33] ob-

served that, for rough periodic contacts, the displacement is the sum of two

terms: the first is equal to the mean displacement um; the second v (x,z) =
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u (x,z)−um (z), where x is the in-plane position vector, is just the additional

displacement related to the asperities-induced deformation. In a periodic do-

main made of square cells, D = [(−λ/2, λ/2)× (−λ/2, λ/2)], where λ is the

cell size, and subjected to periodic load conditions, it can be shown that the

mean displacement um = um (z = 0) of the elastic body at the interface and,

therefore, the total layer surface displacement uz (x,z = 0) = uz (x) are un-

bounded; therefore, only the term v (x,z = 0) = v (x) = uz (x)− um is finite.

As a matter of fact, for this kind of systems, the problem is formulated in

such a way that the displacements v (x) are related to the interfacial stresses

σ(s) by:

v(x)=
1

E

∫

D

d2sL(x− s)σ(s), x ∈ D (1)

with L (x) being the periodic Green’s function defined as

L (x) =
+∞
∑

k=−∞

+∞
∑

h=−∞

G (x− xhk)−Gm (2)

where E is the elastic modulus of the materia, and xhk = (x+ λh , y+ λk) .

In such a relation

G (x) = −(1− ν2)

π |x| (3)

is related to the Boussinesq solution for the elastic half-space [38], and Gm

is equal to Gm = λ−2
∑+∞

k=−∞

∑+∞

h=−∞

∫

D
G (x− xhk) d

2x . In Ref. [33], L (x)

is shown to be equal to elastic displacement at the interface uz(x) caused by

a periodically applied self-balanced normal stress distribution.
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Figure 1: A rough rigid surface sliding on a viscoelastic layer attached to a rigid substrate.

Such a formulation has to be modified to account for the finite thickness

of the contact layer. Starting from the formulation proposed in Ref. [10], we

re-write Eq. (1) in the following way:

v(x)=
1

E

∫

D

d2sT (x− s)σ(s), x ∈ D (4)

with the new periodic Green’s function T (x) accounting for the finite thick-

ness and being equal to:

T (x) =

+∞
∑

k=−∞

+∞
∑

h=−∞

Θ

( |x− xhk|
h

)

G (x− xhk)− Tm (5)

The mean term Tm is, now, equal to

9

Utente
Evidenziato



Tm = λ−2
∑+∞

k=−∞

∑+∞

h=−∞

∫

D
Θ (|x− xhk| /h)G (x− xhk) d

2x and Θ (|x| /h)

is the corrective parameter introduced to account for the slab thickness h:

Θ (r/h) =

∫ +∞

0

dwS (wh/r)J0 (w) , (6)

with S (wh/r) being a correction term which accounts for different constraints

or boundary conditions [10]. J0 (w) is the zero-th order Bessel function. In

the case we are interested in this paper, which refers to a deformable slab of

thickness h sandwiched between a flat rigid plate and a rigid substrate (see

Fig. 1), S (wh/r) assume the following expression [10]:

S (wh/r) =
(3− 4ν) sinh (2wh/r)− 2wh/r

5 + 2 (wh/r)2 − 4ν (3− 2ν) + (3− 4ν) cosh (2wh/r)
(7)

Figure 2a shows how Θ (r/h) approaches the unit value at relatively low

values of r/h, i.e. in half-space conditions, and rapidly vanishes as r/h → ∞.

The dimensionless Green’s function, T (x) /λ, is, then, plotted in Figure 2b

for a composite Young modulus E∗ = E/(1 − ν2) = 1 Pa , a Poisson ratio

ν = 0.5 and several values of the thickness t/λ. We may observe, inter alia,

that, since the volume has to be preserved, T (x) can invert its sign in some

regions.

Furthermore, the corrective coefficient, while modulating the fondamen-

tal function G (x), also has a strong effect on the correlation length lc(h),

here defined as the length at which G (x) vanishes. lc is infinite in the case

of a half-space, but is finite for finite values of the thickness h and tends
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to vanish when h → 0 . Indeed, by looking at Figure 2, we observe that

Θ (r/h) vanishes when r/h ≈ 10 and, consequently, lc is equal to lc ≈ 10h

. In other words, finite thickness introduces, in addition to the specific

modulation related to the form of Θ (r/h), a cut-off of the contact problem

response function. This means that a variation in h directly affects the con-

tact stiffness. In particular, when h vanishes and, therefore, the deformable

layer disappears, the contact becomes infinitely stiff as the surface and the

substrate, being both rigid, get in contact.

Furthermore, we observe that, given the particular form of the problem

under investigation, when we solve Eq. (4) following the iterative procedure

described in [33, 34, 48], the discretization step must be carefully selected:

this must be much smaller than the correlation length for the specific layer

thickness under investigation.

Turning now to more complex material rheology, in Ref. [34], an innova-

tive formulation has been presented to deal with the sliding contact between

linearly viscoelastic bodies, i.e. materials whose viscoelastic modulus E(ω)

is equal to 1/E(ω) = 1/E∞ +
∫

∞

0
dτC (τ) / (1 + iωτ) ([26]), with E∞ being

the elastic glass modulus, C (τ) a strictly positive function usually defined

as the creep spectrum, and τ the relaxation time [26] [50]. A viscoelastic

Green’s function GV (x,v) has been introduced and the problem has been

solved by means of the same techniques available for elastic contacts ([3]).

In particular, in Ref. [3] it is shown that the viscoelastic Green’s function

GV (x,v) can be calculated using Eq. (3) as

12



GV (x,v) = J(0)G(x) +

∫ +∞

0

dtG(x+ vt)J̇(t), (8)

with J(t) being the linear viscoelastic creep function [the symbol (·) stands

for the time derivative].

Such a methodology has already been successfully employed in Ref. [52] to

shed light on some of the fundamental issues marking the viscoelastic contact

mechanics between rough solids. Here the authors extend this formulation

not only to account for the role played by the finite thickness layer but also to

consider a fully periodic domain. Indeed, the original formulation proposed

in Ref. [34] is non-periodic; therefore, such an approach could be affected by

the ill-posedness of the boundary conditions when it is employed to study

quite large contact areas and the effect of the presence of layered bodies.

Periodicity has to be therefore implemented. To do this, we could follow the

same path proposed for elastic materials by employing Eq. 2 to define the

viscoelastic periodic function G (x,v):

G (x,v) = GP (x,v)− Gm (v) (9)

where

GP (x,v) =

+∞
∑

k=−∞

+∞
∑

h=−∞

GV (x− xhk,v) =

+∞
∑

k=−∞

+∞
∑

h=−∞

{

1

E∞

G (x− xhk)Θ

( |x− xhk|
h

)

+

∫ +∞

0

dτC (τ)

∫ +∞

0

dzG (x− xhk+vτz) Θ

( |x− xhk+vτz|
h

)

exp (−z)

}
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Gm (v) = λ−2

+∞
∑

k=−∞

+∞
∑

h=−∞

∫

D

d2xGV (x− xhk,v) (10)

As in the elastic case, the periodic Green’s function G (x,v) is equal to the

displacement at the interface caused by a periodically applied self-balanced

normal stress distribution. We observe that calculating G (x,v) in this way,

with no further development, would be numerically inefficient as an integral

term should be evaluated for each point of the double series and for each

creep coefficient. Computational cost can be largely decreased by manipu-

lating Eqs. 9-10: rather than periodizing directly the viscoelastic Green’s

function as just shown, we employ the periodic function T (x) to re-define

the viscoelastic Green’s function. In other words, we exploit the elastic-

viscoelastic Green’s function relation, stated in Eq. 8, but use, in this case,

T (x) instead of G(x), i.e.

GP (x,v) =
1

E∞

T (x)+

∫ +∞

0

dτC (τ)

∫ +∞

0+
dz exp (−z) T (x+vτz) (11)

This enables us to formulate the periodic viscoelastic rough contact problem

in the following form

v(x) =
1

E∞

∫

D

d2sT (x− s)σ(s)

+

∫

D

d2s

∫ +∞

0

dτC (τ)

∫ +∞

0+
dz exp (−z) T (x+vτz−s)σ(s).(12)
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By introducing the periodic function T (x) in the formulation of the vis-

coelastic Green’s function rather than directly periodizing the viscoelastic

Green’s function, as shown in [33] for the elastic case, we introduce very

large computational savings, with two or three order of magnitudes increase

in processing speed, therefore enabling solving problems whose size would be

inaccessible to alternative solvers, at least, in the real space. In this way, we

are able to account for both periodicity and finite thickness effects also in the

linear viscoelastic case. The proposed periodic formulation is particularly

helpful in this paper where, in order to investigate the role of finite thickness,

contact solutions with large contact areas need to be treated: the periodic

formulation enables us to eliminate any border effects, hence eliminating any

spurious contribution that finite size domains may cause.

3. Results and discussion

Results shown in next subsections are referred to the contact between a

deformable - elastic or viscoelastic- layer and rigid fractal self-affine surface

numerically generated by means of the spectral method described in [33].

These surfaces have spectral components in the range q0 < q < q1, where

q0 = 2π/L with L the size of the square computational cell and q1 = Nq0

being N the number of scales (or wavelengths). The surface employed in

this paper is generated with L = 0.01 m, N = 64 and the Hurst coefficient

H = 0.75 . Results are obtaining averaging 10 different realizations of this

surface.

15

Utente
Evidenziato



3.1. Elastic materials

We study the contact between the rigid surface described above and an

elastic layer with a Young modulus E0 = 7.5 MPa and a Poisson’s ratio

ν = 0.5. Results are shown for four different values of the dimensionless

thickness h/L and, in particular, for h/L → +∞ , h/L = 0.1 , h/L = 0.08

and h/L = 0.06 . In Figure 3, we show the relation between the dimen-

sionless contact area A/A0 and the dimensionless load σ0/E
∗ being σ0 the

normal mean pressure σ0 = P/A0 and E∗ the composite Young’s modulus

E∗ = E/(1 − ν2) . Indeed, no influence of the thickness is observed for

very low loads; however, as soon as the load and, consequently, the con-

tact areas increase, a large difference between the elastic half-space and the

layers with finite thickness is found. In particular, the more the thickness

decreases, the more the contact stiffness increases and, consequently, the

smaller the areas are obtained for fixed load. This is perfectly consistent

with the cut-off effect produced by the corrective coefficient Θ and described

in Section II. Incidentally, we observe that, when the half-space assumption

has put aside, the classical expression relating loads and real contact areas

A/A0 = κσ0/E
∗
√
2m2 with k approximately equal to k = 2 [33],[34] keeps

its validity only for very low loads, i.e. when the contact clusters are really

small. Indeed, for h → 0, we have actually contact between two rigid bodies

and κ → 0. This has to be carefully considered when a simulation, like Fi-

nite Element Methodologies (FEM) [62] or Molecular Dynamics (MD) [61],

needs to account also for the bulk region of the bodies in contact: insuffi-
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Figure 3: Contact area A/A0 as a function of the dimensionless load σ0/E
∗ for different

values of the thickness h/L : h/L− > +∞ (black curve), h/L = 0.1 (blue dotted curve),
h/L = 0.08 (red dotted curve) and h/L = 0.06 (yellow curve).

ciently large thickness values can lead to a significant underestimation of the

contact area .

Figure 4 shows the dimensionless separation s/hrms as a function of the

load σ0/E
∗. We observe that , at relatively high loads, in agreement with

many theoretical and numerical predictions ([5],[34] , [30]), a logarithmic

dependence between s/hrms and σ0/E
∗ is found. At smaller loads, such

a behavior is lost due the finiteness of the rigid surface employed in the

computations: indeed, when the separation overcomes the maximum value

of the heights hmax, no contact can occur and, therefore, for low loads, the

logarithmic trend cannot keep on being valid. Interestingly, when changing

the thickness of the deformable layer, such a trend is still present, but we find

prominent quantitative changes: when the thickness is lowered, the contact
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dotted curve), h/L = 0.08 (red dotted curve) and h/L = 0.06 (yellow curve).

stiffness grows and, fixed the load, the separation increases.

3.2. Viscoelastic materials

Let us now consider the case of the sliding contact between the same

rigid surface and a viscoelastic layer with E∞ = 107Pa, E∞/E0 = 3, and

τ = 0.01s . Also in the case of viscoelastic materials, decreasing the thickness

corresponds to increase the contact stiffness. This can be observed in Figure

5, where, fixed the load σ0/E
∗ = 4 · 10−3 , the contact area A/A0 is shown

as a function of the dimensionless sliding speed ξ = vτ/L: fixed the speed,

when the thickness decreases, we find smaller contact areas.

In Figure 6, we focus on the viscoelastic friction coefficient: as expected,

for smaller thickness values and same values of speed, ξ, a smaller volume
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(red dotted curve) and h/L = 0.06 (yellow curve).
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of material is deformed due to contact stiffening, and, therefore, the friction

coefficient is lower. Furthermore, also the anisotropy of the contact solution

decreases with the thickness, thus confirming the affinity between friction

and contact anisotropy suggested by the authors in [52]. In Figure 7, we plot

in a polar diagram m2(θ) that is the average square slope of the a profile

obtained by cutting the deformed surface u (x; ζ1, ζ2) along the direction θ

[51], for different values of the thickness. To quantify the anisotropy of the

deformed surface, one can focus on the ratio γ = m2min/m2max between the

minimumm2min and the maximumm2max values ofm2 (θ): when γ is equal to

1 and, so, the polar plot is a circumference, the deformed surface is perfectly

isotropic; on the contrary, when γ is smaller than 1 and, therefore, we have an

ellipse, the contact solution is anisotropic. In Figure 7, in all the four cases,

we have an anisotropic solution, but the degree of anisotropy decreases with

the thickness. Interestingly, the value of the angle θP which maximize m2 (θ),

i.e. m2 (θP ) = m2max is always close to 90◦ , thus confirming that, also for

thin layers, the contact area results stretched perpendicularly to the sliding

speed.

However, the contact stiffening is not the only effect related to the finite

layer thickness. This is somehow confirmed looking at Figure 6 , where the

curves referred to h/L = 0.1 , h/L = 0.08 and h/L = 0.06 do not have the

classical bell shape marking the half-space case and, actually, show almost

a plateau before decreasing for larger values of dimensionless speed. This

trend is also clearly present and further accentuated in Figure 8, where, for
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Figure 7: Polar plots of m2(θ) for a dimensionless sliding speed value ξ = 0.01 and a
constant normal load σ0/E

∗ = 4 · 10−3 . The four polar plots are referred to different
values of the thickness h/L : h/L− > +∞ , h/L = 0.1 , h/L = 0.08 and h/L = 0.06 .
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the thickness value h/L = 0.06 and for different normal load σ0/E
∗, the

friction coefficient is shown as a function of the dimensionless speed. We

observe that the friction coefficient curve has the usual bell-shaped behavior

only for the lowest normal load σ0/E
∗ = 10−3 , whereas for the highest value

σ0/E
∗ = 10−2 a completely different trend, with two maximum points, is

observed. Furthermore, it is surprising to notice that the friction coefficient

decreases with the normal load; one would expect to have more dissipation

when the deformed volume increases due to viscoelastic losses. To explain

such a behavior, we should focus on the physics governing viscoelastic fric-

tion: this is due to the dissipation happening in the material volume deformed

during the sliding motion. Now, when the contact layer has a finite thick-

ness, the amount of material, which can be deformed and, consequently, can

dissipate, is finite: once the region available for the dissipation to take place

is saturated, no further increase of the friction coefficient can be obtained by

increasing the normal force. This is clarified in Figure 9, where a schematic

shows that in the layered case the region capable of dissipating is saturated

and the saturation depends on the relative sliding speed for the viscoelastic

case.

In order to explore this behavior it is necessary to introduce a charac-

teristic length, leq, which qualitatively captures the extent of the dissipative

region; this allows a direct comparison with the other key length scale of the

problem, namely the thickness, h, of the viscoelastic layer. This characteris-

tic length should be ideally defined so that it can capture the saturation of the
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Figure 8: Vicoelastic friction coefficient µ as a function of the dimensionless sliding speed
ξ = vτ/L for the constant thickness h/L = 0.06 and different values of the normal load
σ0/E

∗ : σ0/E
∗ = 10−2 (black curve), σ0/E

∗ = 4 10−3 (green dotted curve), σ0/E
∗ = 10−2

(red dotted curve).

material’s capability to dissipate. In particular, if leq is thought as a mono-

dimensional measure of the volume over which dissipation takes place, when

the ratio leq/h is smaller than 1 there is still material capable of dissipating;

conversely, as soon as leq/h becomes greater than 1, the dissipative region

gets saturated. In contact problems characterized by regular or smooth sur-

faces, it would be straightforward to define leq as the contact characteristic

wavelength or contact width respectively; however, it is less easy to define a

unique wavelength for a specific contact problem when dealing with multi-

scale rough surfaces. In this paper, we choose to define leq as leq =
√
Am,

where Am is the mean value of the individual clusters in the contact area.

Despite this choice is somehow arbitrary, we underline that this definition
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Figure 9: Schematic of the viscoelastic friction for half-space and for a thin layer .
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would be rigorous in the case of a single scale rough surface in full contact

conditions, where this choice would coincide with a uniquely defined contact

characteristic wavelength. In Figure 10 , we plot the ratio leq/h as a function

of the dimensionless speed ξ for the same load values studied in Fig. 8. In-

terestingly, we observe that leq/h is not constant but depends on the sliding

speed, and two different regimes can be observed, especially in the case of

the highest load value σ0/E
∗ = 10−2. Indeed, we can distinguish between

speed ranges where the material is saturated ( leq/h > 1 ) and intervals where

the layer still has more material available for dissipating ( leq/h < 1 ). It is

noteworthy to observe how the plateau shown by the curve in Figure 8 and

the the two maxima obtained in the friction response correspond to the tran-

sition between the two regions in Figure 10. It is clearly shown that when

the ratio leq/h becomes smaller than 1 and, therefore, there is material that

can be added to the region in which viscoelastic losses take place, instead

of going on decreasing, the friction coefficient starts increasing again; this

corresponds to the second maximum developing on the friction response plot

in Fig. 8. We notice that, for the lowest load σ0/E
∗ = 10−3, no saturation

is present and, consequently, the friction coefficients values are higher than

the cases when saturation of the dissipative layer occurs.

The transition between two different regimes is observed also in Figure 11,

where we plot the dimensionless separation s/hrms as a function of the speed

ξ . Interestingly, we observe that, when the material has reached saturation,

the stiffness decreases and lower separation values are allowed.
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4. Conclusions

In this paper, we investigate the contact between rough bodies charac-

terized by a finite thickness of layers of material bonded to a rigid substrate;

the formulation presented by the authors overcomes the traditional half-space

limitations. Accounting for the finite thickness of components subjected to

contact is of crucial importance for a number of applications (in both indus-

trial and biomechanical fields), e.g. when one of the contacting bodies is re-

ally thin or, similarly, is made of a thin coating attached to a stiffer substrate.

In order to successfully develop a strategy to model this important class of

contact problems, we have introduced a Boundary Element Method capable

of accounting for the finite thickness of layers bonded to rigid substrates in

a periodic domain by the means of the corrective coefficient Θ. This is used

to modulate the Green’s function, T (x), employed to solve the discretized

problem and to obtain a finite correlation length, lc, defined as the length at

which the Green’s function T (x) tends to 0 . This has as direct consequence

the increase of the contact stiffness. The proposed periodic formulation pro-

vides for the first time the tools to explore a wide range of contact problems

in the presence of layered bodies and enables us to overcome some of the

limitations of the formulations proposed in Refs. [3] and [52]. Therefore, the

newly developed algorithm has been used to perform a systematic investi-

gation of a variety of contact problems characterised by layered elastic and

viscoelastic materials subjected to various loads and sliding speeds. In the

elastic case we observe that, by decreasing the dimensionless thickness, h/L
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, and applying the same normal load σ0/E
∗, we obtain a smaller contact area

and a higher separation. In other words, as expected observing the physics of

the problem, decreasing the thickness means increasing the contact stiffness.

When h− > 0 the stiffness tends to infinity since the problem degenerates

towards the contact between two rigid bodies (indenter and substrate). In

the viscoelastic case, this stiffening effect is still present, but the problem has

to be analyzed more carefully. In particular, we observe that the viscoelas-

tic friction is due to the dissipation occurring in the bulk of the material;

however, unlike what happens for cases where the half-space configuration is

studied, when dealing with layers of finite thickness the amount of material

that can dissipate is finite and, once it is saturated, no further increase of

the friction coefficient is possible. Since the dissipating region characteristic

length is found to be in close relation to the mean value of the contact area

clusters, we can have different behavior for the same layered system simply by

changing the sliding speed; in particular, the transition between a saturated

region and a regime still capable of increased dissipation has been identified.

This can entail friction coefficient trends that cannot be explained without

the fuller understanding of the physical mechanisms governing dissipation

and material response provided by the investigation carried out in this pa-

per; we have also shown that the results obtained using the newly developed

technique can be very different from the results obtained in the half-space

case [52].
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