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CHARACTERIZING HERMITIAN VARIETIES IN 3-
AND 4-DIMENSIONAL PROJECTIVE SPACES

ANGELA AGUGLIA

(27 July 2017)

Abstract

We characterize Hermitian cones among the surfaces of degree q+1 of PG(3, q2) by their
intersection numbers with planes. We then use this result and provide a characterization
of non-singular Hermitian varieties of PG(4, q2), among quasi-Hermitian ones.
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1. Introduction

An m-character set in the projective space PG(n, q), q any prime power,
is a set of points of PG(n, q) with the property that the intersection number
with any hyperplane only takes m values, where m is a positive integer.

A non-singular Hermitian variety H(n, q2) of PG(n, q2) is a remark-
able example of a two-character set, precisely a set of (qn+1 + (−1)n)(qn −
(−1)n)/(q2 − 1) points of PG(n, q) with the property that a hyperplane Π
meets it in either

(qn + (−1)n−1)(q(n−1) − (−1)(n−1))/(q2 − 1)

points, in case Π is a non-tangent hyperplane to H(n, q2) or,

1 + q2(qn−1 + (−1)n)(q(n−2) − (−1)n)/(q2 − 1)

points, in case Π is a tangent hyperplane to H(n, q2); see [21].
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Quasi-Hermitian varieties are generalizations of non-singular Hermitian
varieties such that they have the same size and the same intersection num-
bers with respect to hyperplanes.

Actually, a point set S of PG(n, q2), n > 2, having the same intersection
numbers with respect to hyperplanes as a non-singular Hermitian variety
H(n, q2) has also the same number of points of H(n, q2); for n = 2 the size
of S can be either q3 + 1 that is, the size of a Hermitian curve also called
a classical unital or, q2 + q + 1 which is the number of points of a Baer
subplane of PG(2, q2); see [7].

As far as we know, the only quasi-Hermitian varieties of PG(n, q2), which
are not isomorphic to Hermitian varieties were constructed in the following
series of papers [1, 2, 5, 6, 18, 19].

The definition of quasi-Hermitian variety can be extended to that of
a singular quasi-Hermitian variety, that is point sets which have the same
number of points and the same intersection numbers with respect to hyper-
planes as singular Hermitian varieties. Each cone over a quasi-Hermitian
variety is a singular quasi-Hermitian variety thus, a natural question is also
whether such a cone is isomorphic to a singular Hermitian variety.

Various characterizations of a non-singular Hermitian variety among the
quasi-Hermitian ones in PG(n, q2), with n ∈ {2, 3} have been given, but very
few in higher dimensional cases; see [3, 7, 8, 17]. In [3] singular Hermitian
varieties were also characterized among singular quasi-Hermitian ones.

Here we first consider point sets of PG(3, q2) such that their intersection
numbers with respect to planes takes three values as well as the Hermitian
cone with one singular point that is, q2 + 1, q3 + 1 or q3 + q2 + 1.

Combining geometric and combinatorial arguments with algebraic ge-
ometry we prove the following result.

Theorem 1.1. Let S be a surface of PG(3, q2), of degree q+1. If every
plane meets S in either q2 + 1, q3 + 1, or q3 + q2 + 1 points of PG(3, q2)
then, S is a cone projecting a Hermitian curve in a plane π from a point V
not in π.

Next, we also provide the following characterization of non-singular Her-
mitian varieties of PG(4, q2).

Theorem 1.2. Let S be a quasi-Hermitian variety of PG(4, q2). If S is
a hypersurface of degree q + 1 then S is a non-singular Hermitian variety.

2. Preliminaries

Let Σ = PG(n, q2) be the Desarguesian projective space of dimension n
over GF(q2) and denote by X = (x1, x2, . . . , xn+1) homogeneous coordinates
for its points.
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We use σ to write the involutory automorphism of GF(q2) which leaves
all the elements of the subfield GF(q) invariant. A Hermitian variety H(n, q2)
is the set of all points X of Σ which are self conjugate under a Hermitian
polarity h. If H is the Hermitian (n+ 1)× (n+ 1)–matrix associated with
h, then the Hermitian variety H(n, q2) has equation

XH(Xσ)T = 0.

When H is non–singular, the corresponding Hermitian variety is non-singular,
whereas if H has rank r+1, with r < n, the related Hermitian variety is sin-
gular and it is a cone Πn−r−1H(r, q2) with vertex an n− r−1-space Πn−r−1

and basis a non-singular Hermitian variety H(r, q2) of an r-space disjoint
from Πn−r−1.

A d-singular quasi-Hermitian variety is a subset of points of PG(n, q2)
having the same number of points and the same intersection sizes with hy-
perplanes as a singular Hermitian variety with a singular space of dimension
d.

Non-singular Hermitian varieties of PG(n, q2) are in particular hypers-
ufaces. We recall that a projective hypersurface S of degree d is a set of
points of PG(n, q2) whose homogenous coordinates satisfy

F (X0, X1, . . . , Xn) = 0, (1)

where F is a form of degree d over GF(q2).
However, to understand the geometry of the hypersurface S, the zeros

of F over GF(q2) and over any extension of GF(q2) are required. Thus,
S is viewed as a hypersurface over the algebraic closure of GF(q2) and a
point of PG(n, q2) in S is called a GF(q2)-point or a rational point of S; in
general a GF(q2i)-point of S is a point P (a0, . . . , an) in PG(n, q2i) such that
F (a0, . . . , an) = 0. The number of GF(q2i)-point of S is denoted by Nq2i(S).
When n = 2, a projective hypersurface S is called a projective plane curve,
whereas when n = 3, S is called a projective surface.

The following results will be crucial to our proof.

Lemma 2.1 ([20]). Let d be an integer with 1 ≤ d ≤ q + 1 and C be a
curve of degree d in PG(2, q) defined over GF(q), which may have GF(q)-
linear components. Then the number Nq2(C) of rational points of C is at
most dq + 1 and Nq(C) = dq + 1 if and only if C is a pencil of d lines of
PG(2, q).

Lemma 2.2 ([13, 14, 15]). Let d be an integer with 2 ≤ d ≤ q + 2, and
C be a curve of degree d in PG(2, q) without GF(q)-line components. Then
the number of rational points of C is at most (d− 1)q + 1 except for a class
of plane curves of degree 4 over GF(4) having 14 points.
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Lemma 2.3 ([11]). Suppose q 6= 2. Let C be a plane curve over GF(q2)
of degree q + 1 without GF(q2)-line components. If C has q3 + 1 points over
GF(q2), then C is a Hermitian curve.

Lemma 2.4 ([16]). Let S be a surface in PG(3, q2) without GF(q2)-plane
components. If the degree of S is q+1 and the number of its rational points
is (q3 + 1)(q2 + 1) then S is a non-singular Hermitian surface.

Finally, a hyperplane of PG(n, q2) intersecting a point set S of the pro-
jective space in i points will be called an i-hyperplane whereas, a line meeting
S in s points will be called an s-secant line if s ≥ 1 or an external line to S
if s = 0.

Lemma 2.5 ([8]). If each intersection number with planes and hyper-
planes of a point set H in PG(4, q2) is also an intersection number with
planes and hyperplanes of H(4, q2), then H is a non-singular Hermitian va-
riety H(4, q2).

3. Hermitian cones of PG(3, q2)

Theorem 3.1. Let S be a surface of PG(3, q2), of degree q + 1, q any
prime power. If every plane meets S in either q2 + 1, q3 + 1, or q3 + q2 + 1
points of PG(3, q2) then S is a cone projecting a Hermitian curve in a plane
π from a point V not in π.

Proof. Let π be a q3 + q2 + 1-plane. As S is a surface of degree q + 1
then C = S ∩ π is a plane curve of degree q + 1. By Lemma 2.2, C must
have some GF(q2)-line component and thus by Lemma 2.1, C turns out to
be a pencil of q+ 1 lines of π. Furthermore, each line of π has to meet S in
1, q + 1 or q2 + 1 rational points and in particular, the surface S contains
lines of PG(3, q2).

Now, assume that the plane π is a q3 +1-plane which does not have any
GF(q2)-line of S. In this case C = π ∩ S is a plane curve of degree q + 1
without GF(q2)-line components and it has q3 + 1 GF(q2)-points; thus, by
Lemma 2.3, C is a non-singular Hermitian curve for q 6= 2.

We are going to prove that S meets every line of PG(3, q2) that is, S is
a blocking set with respect to lines of the projective space. First, we assume
q 6= 2 and consider a line r of PG(3, q2). If r is on a q3+ q2+1-plane then r
is at least a 1-secant line of S. In the case in which r lies on a q3 + 1-plane,
say π, either π contains some line of S or π ∩ S is a Hermitian unital of π;
in both cases r turns out to be at least 1-secant line of S.

Thus, if r is an external line to S, all planes through r have to be q2+1-
planes and the number Nq2(S) of rational points of S is (q2 + 1)2. Let t be
a 1-secant line of S lying in some q3 + q2 + 1-plane and let ti denote the
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numbers of i-planes through t. Counting the number of GF(q2)-points of S
by using all planes through t we obtain

(q2 + 1)2 = tq2+1q
2 + tq3+1q

3 + tq3+q2+1(q
3 + q2) + 1

that gives
1 = (q − 1)tq3+1 + qtq3+q2+1,

namely tq3+1 = 0 and tq3+q2+1 = 1/q, a contradiction.
Now we assume q = 2. An algebraic plane curve of degree 3 in PG(2, 4),

with 9 rational points, without GF(4)-line components is a unital or is pro-
jectively equivalent to the curve C′ : X3

0 + wX2
1 + w2X3

2 = 0, which meets
each line in either 0, 2 or 3 rational points; see [10, §11]. Therefore, if r
is an external line to S then, r could be contained either in 5-planes or in
9-planes. Suppose that there is at least a planar section of S which consists
of 5 rational points on a line. In this case, a 9-plane never can intersect S
in an algebraic plane curve which is projectively equivalent to C′ therefore,
only 5-planes can pass through an external line r of S. Arguing as in the
case q 6= 2, we get a contradiction.

Hence, each planar section of S with 5 points has to be an absolutely
irreducible cubic curve with a cusp or a non-singular cubic with one rational
inflexion; see [10, §11]. Thus, a line of S lies either on a 9-plane or on a
13-plane, whereas a 2-secant line lies either on a 5-plane or on a 9-plane.
Let m be a 2-secant line of a 5-plane, that we know to exist and denote by
xm the number of 5-plane through m. Next, take a line ` of S and denote by
x` the number of 9-planes through `. Counting the number of GF(4)-points
of S by using all planes through ` and all planes through m we get

x`(9− 5) + (5− x`)(13− 5) + 5 = xm(5− 2) + (5− xm)(9− 2) + 2,

that gives x` = xm + 2. As xm ≥ 1, we obtain x` ∈ {3, 4, 5}. Consequently,
the number of rational points N4(S) ∈ {33, 29, 25}. In order to prove that
none of the previous possibilities can occur for N4(S), we count in double
way the number of planes, the number of pairs (P, π), where P ∈ PG(3, 4)
and π is a plane through P , and the number of pairs ((P,Q), π), where
P,Q ∈ PG(3, 4) and π is a plane through P and Q. Let x, y, z denote the
numbers of 5- 9- 13- planes respectively, we get the following equations

x+ y + z = 85

5x+ 9y + 13z = 21N4(S)

20x+ 72y + 156z = 5N4(S)(N4(S)− 1).

(2)

For N4(S) = 25 or N4(S) = 29, (2) provide z = 0 or z = −1 respectively,
in both cases a contradiction. When N4(S) = 33, (2) give z = 3 that is,
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there are 3 13-planes, each of which meets S in 3 concurrent lines. On the
other hand, exactly 2 13-planes have to pass trough each line of S and hence
we get a contradiction. Thus, S is a blocking set with respect to lines of
PG(3, q2) for all prime power q.

We recall that a blocking set with respect to lines of PG(2, q2) which
consists of q2 + 1 points is a line; see [4]. Thus, if π is a q2 + 1-plane then
π ∩ S consists of q2 + 1 points on a line.

Furthermore, each line which is not contained in S meets S in i points
with 1 ≤ i ≤ q + 1 as S is a surface of degree q + 1 over GF(q2).

Next step is to prove that each line meets S either in one, or q+1 or q2+1
GF(q2)-points. By way of contradiction, assume that there is an i-secant line
to S, say m, with 2 ≤ i ≤ q. Then, each plane through m has to be a q3+1-
plane containing some line of S. Counting the number of GF(q2)-points of
S by using all planes through m we obtain Nq2(S) = (q2+1)(q3+1−i)+i =
q5 + q3 + q2 − iq2 +1. Let us consider a q2 +1-plane, say α and let ` be the
line α∩S. By considering that each plane through ` has at most q3+ q2+1
GF(q2)-points of S we get that Nq2(S) ≤ q2q3 + q2 +1 = q5 + q2 +1. Then,
i ≥ q and hence i = q which gives Nq2(S) = q5 + q2 + 1. In particular
each line of S is contained in at most one q2 + 1-plane. Now, let xi denote
the numbers of i-planes with respect to S. In this case double counting
arguments give

∑
i xi = (q4 + 1)(q2 + 1)∑
i ixi = (q5 + q2 + 1)(q4 + q2 + 1)∑
i=1 i(i− 1)xi = (q5 + q2 + 1)(q5 + q2)(q2 + 1).

(3)

By solving (3) we obtain in particular that the number xq2+1 of q2+1-planes
is q3 + 1.

Denote by Σ = {α1, . . . , αq3+1} the set of all q2 + 1-planes to S and set
`i = αi ∩ S for all αi ∈ Σ. We observe that any two lines `i and `j , with
i 6= j intersect in a point and never three of these lines form a triangle. In
fact, a triangle PQR of such lines would be contained in a q3 + 1-plane π;
since every line of π would meet S in at least two points we would obtain
in particular that every line of π through P would be at least a q-secant to
S and hence we would get |π ∩ S| ≥ (q2 − 1)(q − 1) + 2q2 + 1 > q3 + 1, a
contradiction.

This means that the q3 + 1 lines contained in S are concurrent at a
point V . Since S has exactly q2(q3 + 1) + 1 rational points, each other line
contained in S cannot pass through V and has to meet q2+1 lines among the
lines `i, with 1 ≤ i ≤ q3+1. Thus, we find a GF(q2)-planar component of S
which is excluded. Hence, S contains exactly q3+1 lines and for each line `
contained in S exactly one q2 + 1-plane through it exists whereas no plane
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through ` are q3 + 1-plane. But then, there are no q3 + 1-planes containing
some line of S, a contradiction.

Thus, each line which is not contained in S meets S in either 1, or q+1
rational points. For q 6= 2, from [12, Th. 23.5.1] S has to be a cone Π0S ′

with S ′ of type

I. a unital;

II. a subplane PG(2, q);

III. a set of type (0, q) plus an external line;

IV. the complement of a set of type (0, q2 − q).

As the possible intersection sizes with planes of PG(3, q2) are q2 + 1, q3 +
1, q3 + q2 +1, possibilities II, III, and IV must be excluded, since their sizes
cannot be possible. This implies that S = Π0S ′, where S ′ is a unital. On
the other hand S ′ turns out to be an algebraic curve of degree q+1 without
linear components and with q3 + 1 points over GF(q2). Thus, for q 6= 2
Lemma 2.3 applies and S ′ has to be a Hermitian curve.

For q = 2, there is just one point set in PG(3, 4) up to equivalence,
meeting each line in 1, 3 or 5 points and each plane in 5, 9 or 13 points,
that is the Hermitian cone, see [9, Theorem 19.6.8]. Thus also for q = 2 our
theorem follows.

As an easy consequence of Theorem 3.1 we get the following.

Corollary 3.2. Let S be a surface of PG(3, q2) of degree d. If every
plane meets S in either q2+1, q3+1 or q3+q2+1 points over GF(q2) then,
d ≥ q + 1. If d = q + 1 then S is a cone over a Hermitian curve.

4. A characterization of H(4, q2)

Theorem 4.1. Let S be a quasi-Hermitian variety of PG(4, q2). If S is
a hypersurface of degree q + 1 then S is a non-singular Hermitian variety.

Proof. We recall that S has q7 + q5 + q2 + 1 rational points and its
intersection numbers with respect to hyperplanes over GF(q2) are q5+q2+1
or q5 + q3 + q2 + 1.

First we prove that S does not contain any plane of PG(4, q2). Suppose
on the contrary that there is a plane α which is contained in S. Let us
denote by x the number of hyperplanes through α meeting S in q5 + q2 + 1
GF(q2)-points.

Counting the number Nq2(S) of GF(q2)-points of S by using all hyper-
planes through α we obtain

q7+q5+q2+1 = Nq2(S) = (q2+1−x)(q5+q3−q4)+x(q5−q4)+q4+q2+1
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that is,
xq3 = −q6 + q5 + q2,

a contradiction. This implies that Σ = S∩Π is an algebraic surface of degree
q + 1 without GF(q2)-plane components. In the case in which Nq2(Σ) =
q5 + q3 + q2 + 1, by Lemma 2.4, Σ is a non-singular Hermitian surface.

Now let Π′ be a hyperplane of PG(4, q2) meeting S in q5+q2+1 rational
points and set Σ′ = Π′ ∩ S. We are going to study the planar sections
of Σ′. Thus, let us denote by α a plane contained in Π′. If at least one
q5+q3+q2+1-hyperplane passes through α then, α∩S is either a Hermitian
curve or a pencil of q + 1 concurrent lines and hence, Nq2(α ∩ Σ′) = q3 + 1
or Nq2(α ∩ Σ′) = q3 + q2 + 1.

Suppose that all hyperplanes containing α meet S in q5+ q2+1 rational
points and set y = Nq2(α ∩ S). Then we obtain,

q7 + q5 + q2 + 1 = Nq2(S) = (q2 + 1)(q5 + q2 + 1− y) + y

namely y = q2 + 1 and thus, Nq2(α ∩ Σ′) = q2 + 1.
Theorem 3.1 applies and Σ′ turns out to be a cone over a Hermitian curve.

Then, each intersection number over GF(q2) with planes and hyperplanes of
S is also an intersection number with planes and hyperplanes of H(4, q2). By
Lemma 2.5, S has to be a non-singular Hermitian variety of PG(4, q2).
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