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Abstract

This paper proposes a decentralized control strategy to assign destinations to
Autonomous Guided Vehicles (AGV) and let them autonomously coordinate
their paths to avoid deadlock and collisions. The AGVs move inside a zone-
controlled guidepath network and solve a distributed assignment problem by
performing a discrete consensus algorithm in order to locally minimize the
global cost for reaching the destination zone. Successively, the AGVs coor-
dinate their paths by a decentralized coordination protocol that is based on
a zone-controlled approach which guarantees the avoidance of deadlock and
collisions. Moreover, the proposed decentralized strategy is implemented by
means of a simulation software, which allows the user to define the guide-
path network and runs the two algorithms showing the behavior of the AGVs
starting from their initial position to the destination.

Keywords: Autonomous Guided Vehicles, Consensus Algorithms,
Decentralized Control, Deadlock Avoidance

1. Introduction

The problem of coordinating and controlling Autonomous Guided Vehi-
cle (AGV) systems has received a large attention in the last years. First,
it is important to provide some basic definitions concerning Guided Path
Networks (GPNs): they are systems where the paths are enforced through
a control software. In these systems, it is possible to assign a set of trips to
each vehicle between various locations: if the vehicles follow a pre-assigned
route, the assigned path is static, or, if the path is determined in real time,
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the path is dynamic [1]. Moreover, in some cases there is a docking station in
the network where the vehicles return after concluding their path and wait
for the next mission (open system). On the other hand, in more complex sys-
tems the vehicles remain in the guided-path during the idling period (closed
system).

In the related literature, the AGVs are coordinated by using either a
centralized or decentralized control architecture. In centralized systems, a
central unit (i.e. a controller) performs either some or all of the following
jobs: destination assignment, path planning and coordination of vehicles in
order to avoid collisions and deadlock. The central unit can send control
actions to perform to all the agents in the network, also having a complete
knowledge of the whole system [2–5].

Furthermore, in order to avoid the physical collision of the vehicles, the
entire GPN is partitioned into a number of segments, and only one vehicle
is allowed in any segment at any point in time; in the relevant terminology,
these segments are known as zones and the resulting guidepath-based traffic
system is said to be zone-controlled.

In particular, [2] and [3] propose policies and control strategies to avoid
deadlock and collisions in zone-controlled networks with AGVs modeled by
Coloured Petri Time nets. The authors in [4] deal with Resource Alloca-
tion Systems by developing a liveness-enforcing supervisor in order to avoid
forbidden states; on the other hand, [5] presents an efficient AGV deadlock
prediction and avoidance algorithm to be used in container port operations.

In centralized approaches, the control paradigm is robust but suffers from
complexity which increases with the number of the agents resulting in too
conservative policies.

On the other hand, decentralized strategies typically manage the AGVs
in two phases: i) the definition of the optimum path for each vehicle by
minimization of a cost function; ii) a distributed coordination of each agent
with its neighbors in order to avoid conflict and deadlocks. However, the path
assignment is performed by a centralized approach (i.e., a supervisor), that
assigns the tasks to the AGVs. Moreover, the applied deadlock strategies
resolve the deadlock by applying deadlock recovery procedures and do not
prevent these blocking scenarios.

In particular, in the algorithm of [6], vehicles autonomously plan and
execute their motions, detect and solve collisions and deadlock with other
vehicles in communication range by conducting decision making. Neverthe-
less, this approach does not deal with the distributed assignment of destina-
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tions. In [7] the decentralized algorithm provides strategies to detect but not
prevent local deadlocks and livelocks. Authors in [8] present a distributed
approach which solves the task allocation, path planning and feedback con-
trol of robots, but does not deal with deadlock situations. Moreover, in
[9] starting from an initially deadlock-free condition, blockings are avoided
by replanning strategies. In addition, in [10] the collision avoidance is im-
plemented in a decentralized way and replanning strategies are proposed to
recover from deadlocks. The works [11, 12] propose a two-layers control archi-
tecture to manage the traffic with hybrid path planning (partly centralized,
partly decentralized) and a fully decentralized coordination. In addition, pa-
per [13] uses a multi-layered hierarchical roadmap constructed using sonar
data. Other methods include resource allocation systems [14] and rule-based
approaches [15].

This paper considers an industrial zone-controlled GPN: the problem con-
sists in assigning a set of tasks to be executed in some zones to a set of AGVs
and to control the moves of the vehicles in order to avoid deadlocks and colli-
sions. Such assignment problem can be formulated as an Integer Linear Pro-
gramming (ILP) problem that is NP-hard and requires large computational
resources when the system dimension increases. Hence, some distributed
approaches are proposed in literature, which provide optimal or good subop-
timal solutions [16], [17], in reasonable time by exploiting the new challenges
of the Information and Communication Technology tools.

In this paper, the problem of assigning tasks to AGVs, and routing them,
is solved with distributed algorithms.

First, the “intelligent” AGVs assign themselves the destinations (tasks)
to be reached by means of a distributed discrete consensus algorithm. Such
an assignment is autonomously performed by the vehicles that iteratively
solve some Local Integer Linear Programming (L-ILP) problems [16] with a
set of vehicles with which they can communicate. The global objective is
minimizing the total completion time of all the tasks in the systems. The
main advantage of the decentralized assignment approach is that the task
assignment problem, which is an NP complete problem, can be solved in
reasonable time among a subset of AGVs.

Second, after the completion of the assignment phase, the vehicles move
across the guidepath network to reach their destination using a decentralized
zone-control based coordination algorithm. We prove that the proposed co-
ordination protocol guarantees collision and deadlock avoidance, if operating
in a suitable class of network topology.
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A first version of the proposed algorithm is presented in [18] and this paper
improves the decentralized control strategy as follows: i) the formalism and
notations are revised and improved; ii) the liveness of the system guaranteed
by the decentralized deadlock avoidance policy is proved; iii) the assignment
phase is simplified by considering a different initial assignment (i.e., a feasible
solution of the defined L-ILP): the consequence is that it is not necessary to
define a different programming problem to be applied when the L-ILP is not
feasible, like in [18]; iv) the coordination algorithm is modified by reducing
the communications among the agents and clarifying in more details their
actions; v) a simulation software is implemented in order to allow users to
describe a GPN and the behavior of the decentralized controlled AGVs.

Finally, the proposed algorithms are applied to GPN inspired by a com-
pany located in the Southern Italy. The company designs AGV systems
and the relative control software: a decentralized management strategy is
requested in order to deal with large fleets of AGVs. Here, with the aim
of clearly explaining the proposed control strategy, the management of a
simplified network topology is analyzed.

The rest of the paper is organized as follows. Section 2 states the prob-
lem and describes the system model also characterizing the liveness of the
system. Sections 3 and 4 present the assignment algorithm and the coordi-
nation strategy, respectively. Finally, Section 5 discusses an application of
the algorithms by a simulation software and Section 6 draws the conclusions.

2. System Description

2.1. Problem Specification

We consider an industrial Guided Path Network (GPN) composed of Z
zones and a set of N AGVs A = {n|n = 1, 2, . . . , N} travelling in the system:
only one AGV is allowed in each zone, which is exclusively allocated to it. The
set of AGVs has to complete a set of K ≤ N tasks U = {j|j = 1, 2, . . . , K}
that have to be assigned to the AGVs. The tasks are considered as zones
to be reached by the AGVs starting from their initial position. Note that
n ∈ A and j ∈ U can be considered the id numbers to identify respectively
each AGV and task.

The vehicles have the following information about the system: i) the GPN
layout, i.e., the network topology and the location of the Z zones; ii) the set
of tasks to be completed and the relative position in the GPN.
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The assignment of the tasks in U is performed autonomously by the
vehicles in A and the assigned destinations have to be reached in a distributed
manner, avoiding collisions and deadlocks.

Therefore, we decompose this problem into two sub-problems to be solved
by two distributed algorithms executed in sequence by the vehicles:

• the decentralized assignment problem that the AGVs solve by Algorithm
1; after the algorithm execution each AGV knows its final destination
task (zone) and the route to reach it;

• the decentralized coordination problem that is solved by Algorithm 2
performed by the AGVs in order to reach the assigned destinations,
also guaranteeing collision and deadlock avoidance.

2.2. System Model

We describe the system dynamics inspired by the Discrete Event model
presented in [1]: each event is described by the advance of vehicles in A from
a zone to the next one. Moreover, the system state s is represented by a
labeled partially directed graph G(s): the graph topology is determined by
the layout and the zoning of the GPN. The labeling function l is defined on
the set of edges and it labels an edge with the identification number of the
vehicle lying on the corresponding zone.

A partially directed graph is described by a triple G = (V ,Z, D) where:

• V is the set of the nodes representing vertices to cross in order to go
from a zone to another one;

• Z is the set of the graph edges with Z ∈ (V×V) representing the zones
of the GPN: edge zx,y between the two vertices vx and vy is directed
if an AGV is moving from node vx to node vy or viceversa while it is
undirected if there is no vehicle on that edge;

• D is a partial function on Z such that D(zx,y) = vy if there is an AGV
on zx,y moving towards vy. If z is undirected then D(z) is not defined.

Moreover, given the graph G it is possible to state the following definitions:

• A path π = {v0, z0,1, v1, . . . , vn−1, zn−1,n, vn} with n ≥ 0 is a sequence of
vertices connected by edges such that the generic edge zx,y points from
a generic vertex to the following of the sequence. A path is simple if
all the vertices are distinct, except, possibly, for the first and the last.
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• A cycle c is a simple path such that n > 0 and v0 = vn.

• A joint between two cycles c and c’ is a simple path that is a sub-path
of both c and c’.

• A bridge is an edge whose removal disconnects the remaining subgraph.
Therefore a bridge is an edge not contained in any cycle.

• A pass p between two cycles c and c’ is a simple path such that its first
vertex lies on c, its last vertex on c’, and all its edges are undirected and
are not components of either c or c’. We denote with P = {p1, . . . , pm}
the set of all the passes in the network.

• A chain in G is a subgraph defined by a sequence
ch =< c1, π2, c2, . . . , πn, cn >, n ≥ 1 such that ci are cycles and each
path πi is a joint or a pass that connects two or more cycles.

Example 1. Figure 1 shows an example of graph belonging to the class of
the proposed GPN layouts. Figure 1(a) shows an example of labelled graph
G(s) describing the state s: there is a pass of two-bridges length between
vertices v3, v4 and v5, i.e. p1 = {v3, z3,4, v4, z4,5, v5}. Moreover, AGV 1 lies in
the zone z2,3, while AGV 2 is in edge z3,9: therefore z2,3 and z3,9 are directed
edges. Since the bridges z3,4 and z4,5 form a pass, the graph constitutes a
chain.

Moreover, Fig. 1(b) describes the same network at a different state: AGV
3 is on edge z4,5 and therefore this is now a directed edge; in this configuration
there is not a pass between v3, v4 and v5 anymore. There are two chains ch1
and ch2 and both contain paths that are either cycles or joints. When an
event occurs the new state s’ is described by the updated G(s’): e.g., if AGV
3 occupies edge z5,6 then the edge z4,5 becomes a bridge again and z3,4 and
z4,5 constitute a pass.

2.3. Characterization of the System Liveness

In this section we prove in the framework of [1] that graphs with a topol-
ogy belonging to a specific class are deadlock-free.

Definition 2.1. In the guided path network, state s is chained iff G(s) is
chained.
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Figure 1: Example of a partially directed graph

Definition 2.2. In a guided path network, state s is semi-chained if it is
generated from chained states by transferring a single vehicle between two
cycles c and c’ connected by a path in some given chain.

More clearly, the definition of the class of semi-chained states charac-
terizes the state from which it is possible reach a chained state through an
event sequence that concerns the advancement of a single vehicle in a network
simple path.

Now, in order to characterize the liveness of the system, we recall the
results proved in [1].

Definition 2.3. The guided path network system is live if every vehicle i ∈ A
maintains its capability to reach any zone of the guidepath network throughout
a presumably infinite horizon of the system operation.

Let R(s) be the set of states that can be reached from a given state s through
an event sequence. Moreover, the following theorem proved in [1] character-
izes the state liveness of a guided path network of Z zones and b bridges.

Theorem 2.4. In a guided path network with N < Z − b− 1 vehicles, state
s is live iff the reachability set R(s) contains a chained state s’.
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Assumption 2.5. Let us consider a class of guided path networks in which
the sense of the vehicle motion is imposed by the following rules on the par-
tially directed graph G:

a) delete each pass from G;

b) determine the strongly connected components of the graph;

c) impose one sense of the vehicle motion in one of the shortest cycles in
each strongly connected component;

d) in each strongly connected component force the sense of the vehicle motion
in the remaining shortest cycles according to the sense of vehicle motion
imposed by rule c).

The application of these rules on the graph of Fig. 1 is shown in Fig. 2.

The following proposition guarantees the liveness of the system in the
proposed class of GPN layouts for each reachable state.

Proposition 2.6. Let us consider a guided path network where the sense of
the vehicle motion is established by Assumption 2.5. If in the live state s
there are N < Z − b − 1 vehicles and only one vehicle is admitted in each
pass, then each state s’ ∈ R(s) is live.

Proof: In order to prove the proposition, if we show that each state
s’∈ R(s) is a chained or a semi-chained state, then the sufficient condition
of Theorem 2.4 is verified.

Indeed, by Definition 2.2 a semi-chained state is a state that reaches a
chained state by a sequence of events involving the advance of a vehicle. Let
the system be in a live state s and let i ∈ A be a vehicle which has to move
from zone zx,y to zone zy,w that is not occupied. By Assumption 2.5, four
cases are possible:

1. zones zx,y and zy,w are not bridges. Then zx,y and zy,w are edges be-
longing to a strong component. By Assumption 2.5 if s is chained then
the state s’ reached by the advance of vehicle i is chained;

2. zone zx,y is not in a cycle and zone zy,w is an edge of a cycle (by
hypothesis zy,w can not be a bridge because only one vehicle is admitted
in each pass). Then s is semi-chained and by the layout of Assumption
2.5, s’ is chained;

8



3. zone zx,y is an edge of a cycle and zone zy,w is a bridge. In this case
the state s is chained and state s’ is semi-chained by Assumption 2.5;

4. both zx,y and zy,w are bridges. Then states s and s’ are semi chained
but in a finite number of steps the state will result in case 2.

Summing up all the reached states are chained or semi-chained. This proves
the proposition. �

3. Assignment Problem

This section briefly describes the assignment problem and introduces the
consensus algorithm that the vehicles apply in a decentralized approach in
order to distribute themselves the tasks. The objective is to minimize the
total completion time, i.e. the time necessary to complete all the tasks in the
system. Starting from the knowledge of the costs to reach each destination
zone in the network, the AGVs at time t = 0, in a decentralized manner,
reach a consensus about the task that each of them has to perform.

3.1. Assignment problem specification

Let us consider the set A of the AGVs in the system and the set U of
tasks that should be assigned to the AGVs at time t = 0. The following
constraints are considered:

1. each task can be assigned to only one vehicle that can perform only one
task (capacity constraint);

2. each vehicle can communicate only with the vehicles lying within a com-
munication radius ρ equal to a number of edges of the graph: Nn(t) ⊂ A
is the set of the AGVs with which AGV n ∈ A can communicate at time
t ≥ 0 (communication constraint);

3. the time is discretized in time units and t ∈ N.

The problem is defining a discrete consensus algorithm that the AGVs have
to perform for autonomously assigning to each of them a destination zone by
minimizing the total task completion time.
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Figure 2: Application of rules of Assumption 1
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The communication among the AGVs is modelled by a undirected com-
munication graph GC = (A,E) where A is the set of nodes (vehicles) and
E ⊆ {A × A} is the set of edges: there is an edge from node n to node i if
and only if n can transmit information to i and vice versa.

We introduce the following assumptions:

A. each AGV has a full knowledge of the GPN layout but does not know the
position of the other AGVs;

B. the initial and goal positions can not be located on the bridges;

C. the communication radius ρ is greater than the length of the longest pass
in the network;

D. the communication graph during the assignment phase is connected.

We remark that assumptions B and C are introduced in order to avoid
deadlocks according to Proposition 2.6. Moreover, assumption D guarantees
the convergence of the assignment algorithm.

The assignment strategy is performed in two phases:

1. cost evaluation phase, each AGV n ∈ A determines vector cn, where
each element cnj is the cost required to reach destination j ∈ U in the
GPN;

2. assignment phase, the vehicles assign themselves a task by a discrete
consensus algorithm.

3.2. Cost evaluation phase

Each AGV n ∈ A builds the route rnj that is the shortest sequence of
zones connecting the current zone occupied by n with the destination zone
of j. Now, the current notations are necessary to characterize a route rnj:

• the k-th zone of the zone sequence rnj is denoted by rnj(k) and the
number of zones in rnj is indicated by |rnj|;

• the operation rnj = rnj−rnj(k) cuts from the route rnj the zone rnj(k);

• the notation zij ∈ rnj means that the zone zij is part of the route rnj.

Hence, the cost required by n to reach the destination zone of j ∈ U is
cnj = |rnj| and is computed by each n ∈ A for each j ∈ U by using a generic
optimal path search algorithm (for instance A* algorithm [19]).
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3.3. Assignment phase

In this section we present the discrete consensus algorithm used by the
AGVs for the destination assignment.

Let us denote with yn(t) ∈ {0, 1}K the assignment vector of vehicle n
at time t, composed by the elements yn,j(t) where yn,j(t) = 1 if task j is
assigned to AGV n at time t, yn,j(t) = 0 otherwise.

The state of the network at time t is denoted by the K × N matrix
Y (t) = [y1(t)y2(t) . . . yN(t)].

Moreover, the following sets are defined:

• I(t) = {n}∪Nn(t), set of vehicles involved in the optimization at time
t;

• J(t) = {j ∈ U |yi,j(t − 1) = 1 and i ∈ I(t)}, set of tasks assigned at
time t− 1 to the vehicles that are involved in the optimization at time
t (i.e., the vehicles in set I(t)).

We consider the following objective function that represents the maximum
value of the task cost (the distance to the task zone) assigned to each vehicle:
it represents the makespan, i.e., the time necessary to complete all the tasks:

f = maxn∈A(cTnyn) (1)

The global objective is minimizing the GPN makespan. Now, let us de-
fine the following L-ILP that is solved by the set of vehicles I(t) at time t:

L-ILP

min{maxi∈I(t)(cTi yi(t)} (2.a)
s.t.
∑
i∈I(t)

yi,j(t) = 1 ∀j ∈ J(t) (2.b)

1Tyi(t) ≤ 1, ∀i ∈ I(t) (2.c)

yi,j(t) ∈ {0, 1} ∀i ∈ I(t),∀j ∈ J(t). (2.d)

The local objective function (2.a) to be minimized is the cost of the tasks
involved in the local optimization. The first constraint (2.b) states that each
task must be assigned to only one AGV belonging to I(t) and involved in
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the current optimization; the second constraint (2.c) imposes that only one
task is assigned to each vehicle (capacity constraint).

At the beginning of the assignment phase starting at time t = 0, the initial
task assignment is chosen as follows: yi,j(0) = 1 if i = j and yi,j(0) = 0 if
i 6= j, ∀ i ∈ A and j ∈ V . In such a way, each vehicle i ∈ A autonomously
assigns itself the task j ∈ U that has its same identification number (i.e.,
j = i). Hence, each L-ILP problem to be solved at time t > 0 is feasible. At
the subsequent instant time, the updating of the task assignment is performed
as follows. At time t = 1 a node n wakes up at random and solves the L-ILP
with its neighbours. At time t = t + 1 for each t > 1, a random neighbour
node of the agent selected at time t performs the subsequent optimization.

Now, Algorithm 1 describes in details how the vehicles assign to them-
selves the optimal or suboptimal task assignment in order to minimize the
completion time.

Algorithm 1.
Step 1. Set t = 0 and the initial task assignment yij(0) = 1 if i = j and
yij(0) = 0 if i 6= j, ∀i ∈ A and j ∈ V .
Step 2. Select n ∈ A at random with uniform probability.
Step 3. Set t = t+ 1
Step 4. Set Nn(t), I(t) = {n} ∪ Nn(t), J(t) = {j ∈ U |yi,j(t− 1) = 1 and
i ∈ I(t)}.
Step 5. Solve the L-ILP problem (2).
Step 6. Let the task assignment y∗i for i ∈ I(t) be the solution provided
by the L-ILP problem. If maxi∈I(t)c

T
i y
∗
i = maxi∈I(t)c

T
i yi(t − 1) then set

y∗i = yi(t− 1).
Step 7. Set yi(t) = y∗i ∀ i ∈ I(t), select n ∈ I(t) at random, go to Step
3.

The AGVs start Algorithm 1 by assigning to themselves the tasks with the
same identification number (Step 1). At Step 2 a random AGV n ∈ A wakes
up and at Step 4 node n defines the sets Nn(t) of the vehicles involved in
the L-ILP problem solution (itself and its neighbours) and the set J(t) of
the tasks to be assigned by solving the L-ILP. Note that such tasks are the
ones that at the previous time t − 1 were assigned to the neighbours. At
Step 5, the L-ILP problem is solved by the AGVs belonging to I(t). Since
the objective function is non-increasing, if the solution does not improve the
local objective function, i.e., maxi∈I(t)c

T
i y
∗
i = maxi∈I(t)c

T
i yi(t − 1), then at
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Step 6 the AGVs set y∗i = yi(t − 1) (i.e., the assignment does not change
at time t). Finally, the algorithm proceeds by updating the task assignment
and selecting at random a new node belonging to I(t) (Step 7).

Remark that the Algorithm 1 convergence properties are proved in [17]
and the expected convergence time is evaluated by the theory of random
walks. It turns out to be equal to O(N3) for connected graphs and O(N2)
for regular graphs.

After the completion of Algorithm 1 a task j ∈ U is assigned to each
AGV n ∈ A that has to follow the determined route rnj.

4. Coordination Problem

In this section we describe the coordination phase that the vehicles have
to perform in order to reach their destination zone, by avoiding collisions
and deadlocks. Assume that the zones in the GPN are of equal length and
that the AGVs either stand still or proceed at a fixed velocity. Hence, the
time required to travel between two adjacent zones is constant and it is the
time unit for the algorithm application. Such assumptions are important for
the synchronization of the vehicle moves and the coordination of the AGVs.
However, the coordination algorithm could be extended to deal with a more
general assumption.

Moreover, each time unit t is further divided into two slots t = tc(t) +
tm(t): during tc(t) the neighboring AGVs communicate among them, com-
pete in order to occupy the subsequent zone of their path and determine their
state; during the slot tm(t) each vehicle moves by crossing the node that links
its current zone and the following one or stops in its current zone. In the fol-
lowing, in order to simplify the notation, the dependence of sequence r from
variable j is removed since to each AGV is assigned at most one destination
task.

Now, the following definitions are introduced to describe the dynamic
conditions of AGV n ∈ A:

• µn(t) ∈ {PROCEED,STOP,RELOCATE,DEST} denotes the ac-
tion that n has to perform in the time slot tm(t) of t ;

• dn(t) is the sequence of the zones assigned to n at time t.
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Moreover, the relationships between µn(t) and dn(t) at time t are specified
as follows:

µn(t) = PROCEED, dn(t) = rn with |rn| > 1
µn(t) = STOP, dn(t) = rn with |rn| > 1
µn(t) = RELOCATE, dn(t) = rn = 〈za,b, zb,d〉
µn(t) = DEST, dn(t) = rn with |rn| = 1.

The state of n ∈ A at time t is denoted by the pair xn(t) = [µn(t), dn(t)]
that fully describes the condition of each AGV in the system. In particular:

• if µn(t) = PROCEED then n has to perform the remaining route
dn(t) = rn and, during tm(t), n has to move from rn(1) to rn(2);

• if µn(t) = STOP , then n has to perform the remaining route dn(t) = rn
and during tm(t), n has to wait in its current position rn(1) without
proceeding to the subsequent zone;

• if µn(t) = RELOCATE, then n has already reached its destination but
an AGV i 6= n needs to occupy the position of n, say za,b: consequently,
during tm(t), n has to move in an adjacent free zone, say zb,d (i.e.,
dn(t) = 〈za,b, zb,d〉);

• if µn(t) = DEST then n arrived to its destination zone and it can hold
it till a new destination is assigned or it holds dn(t) = 〈za,b〉, where za,b
is the zone occupied by n.

The following coordination algorithm is executed simultaneously by each
AGV n ∈ A during the time slot tc(t) in order to determine the state dn(t)
and guarantee deadlock and collision avoidance.

Moreover, some priority rules are applied by the algorithm:

• if an AGV is in a pass it has to complete the route of the pass without
stopping;

• if at time t several AGVs compete for the same zone, then the AGV with
highest priority can occupy the zone. Here, we consider the priority
equal to the number of the zones that the AGV has to visit starting
from time t, i.e., we favour among the competing vehicles the one that
has to perform the longest path.
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Algorithm 2.
Step 1. Set t = 1 and ∀n ∈ A Set dn(t) = rn.
Step 2. If |rn| = 1

then set µn(t) = DEST , send xn(t) and go to Step 8
End If

Step 3. If rn(1) ∈ ph and ph ∈ P
then set µn(t) = PROCEED, send xn(t) and go to Step 9

End If
Step 4. Send dn(t) and Receive di(t) ∀i ∈ Nn(t)
Step 5. If ∃ i ∈ Nn(t) such that ri(1) = rn(2) and µi(t) = DEST

then send RELOCATE request
Set µn(t) = STOP and go to Step 10

End If
Step 6. If ∃ i ∈ Nn(t) such that |ri| > 1

If D(ri(1)) = D(rn(1)) or ri(2) = rn(2)
If |dn(t)| < |di(t)|

then set µn(t) = STOP and go to Step 10
End If

End If
End If

Step 7. If rn(2) ∈ ph, ph ∈ P
If ∃ i ∈ Nn(t) such that D(ri(1)) ∈ ph ∨ ri(2) ∈ ph

If µi(t) = PROCEED or |dn(t)| < |di(t)|
then set µn(t) = STOP and go to Step 10

End If
Else set µn(t) = PROCEED and go to Step 9

End If
Step 8. If n receives a RELOCATE request

If ∃ zb,d available and adjacent to rn = 〈za,b〉
then set rn = 〈za,b, zb,d〉, dn(t) = rn, µn(t) = RELOCATE

End If
End If

Step 9. Execute the operation according to µn(t) in tm(t)
If µn(t) = PROCEED or µn(t) = RELOCATE

Then set dn(t) = rn − rn(1),
End If

Step 10. Set t = t+ 1 and go to Step 2.
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First, at Step 1, n initializes the state variable t and the route to the assigned
destination dn(t).

At Step 2, if the vehicle is already arrived at destination, then it sets
its state variable µn(t) = DEST and sends to its neighbours its state vec-
tor xn(t) in order to communicate that it could be available to relocate its
position.

At Step 3, if the AGV is currently in a pass, it necessarily has to set
µn(t) = PROCEED in order to carry on its route, sends the state vector to
its neighbours and goes to Step 9.

At Step 4 if the AGV is not arrived at destination and is not currently
in a pass, then it sends dn(t) to its neighbors, also receiving the same data
from them.

At Step 5 if n needs to enter a zone, which is already occupied by one
of its neighbours i ∈ Nn(t) at destination, then n sends a RELOCATE
request, sets its state µn(t) = STOP and goes to Step 10.

Step 6 deals with the collision avoidance procedure: AGV n at time t
competes with every neighbor i 6= n which has to cross D(rn(1)) or occupy
rn(2). In this case, the AGV with the highest priority can cross the contended
node or occupy the contended zone. We give higher priority to the AGV
farther from its destination: if |dn(t)| < |di(t)| then n sets µn(t) = STOP ,
otherwise it continues the execution of the algorithm.

At Step 7 AGVs execute the procedure dealing with the access to a pass:
if the next zone in the route of vehicle n belongs to a pass, i.e., rn(2) ∈ ph,
the following cases are possible:

• if pass ph is already occupied by a vehicle i (µi(t) = PROCEED) then
n sets µn(t) = STOP ;

• if pass ph is free and there is an AGV i trying to access the same pass,
then it checks the priority: if |dn(t) < |di(t) then it set µn(t) = STOP
else µn(t) = PROCEED;

• if n is the only one trying to access the pass or if rn(2) does not belong
to a pass, then n can set µn(t) = PROCEED.

Step 8 is reached only if the AGV is already at destination. If it receives
a RELOCATE request from a vehicle i ∈ Nn(t) it should move to a free
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Figure 3: Flow diagram of the coordination strategy.
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adjacent zone. If this is possible, it sets µn(t) = RELOCATE, otherwise it
does not change the value of its variable (µn(t) = DEST ).

At Step 9, all the vehicles execute the operation according to its state
µn(t) and all the vehicles with µn(t) = PROCEED or µn(t) = RELOCATE
update their dn(t) by deleting rn(1).

The presented algorithm ensures that there are no collisions between ve-
hicles (thanks to the procedure of Step 6) and also satisfies Proposition 2.6,
allowing each pass to be occupied only by an AGV at once, thanks to the
procedure presented at Step 7.

A flow diagram of the coordination strategy is reported in Fig. 3 and it
is easy to infer that the complexity of Algorithm 2 is of O(N).

With respect to the coordination algorithm proposed in [18], this paper
describes more in detail the state of each AGV by introducing the new state
condition DEST . As a consequence, the updating of the vehicle states and
the actions that the AGVs have to perform at each step are simplified and
clarified. Moreover, the more rational formalism to describe the vehicle states
allows reducing the data that the vehicles have to exchange. More precisely,
in [18] each AGV has to send, at the beginning of the algorithm, its state, the
zone that it occupies and the requested one. In this version of the algorithm,
the AGVs send just the necessary data.

5. Application of the Zone-Control Strategy by a Simulation Soft-
ware

In this section the proposed algorithms are applied to a GPN inspired
by a company located in the Southern Italy. The company designs AGV
systems and the relative control software, then it asks for decentralized man-
agement strategies in order to deal with large fleets of AGVs. With the aim
of showing the real applicability of the proposed algorithm, a simulation soft-
ware describes the GPN vehicles behaviour under the presented zone-control
strategy. For the sake of brevity, a simplified topology of the real case study
is considered.

5.1. Simulation Software

The simulation software is developed using C++ with the Ubuntu QML
Toolkit and performs the following four procedures.

1. calculate_path_cost(): the software allows the definition of the GPN
and the sense of motions for each edge. Then, it is possible to select the
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positions of the AGVs and the destinations. Moreover, the possible paths
and their relative costs for each AGV in the network to reach the available
destinations are determined;

2. evdaa(): Algorithm 1 is applied iteratively and the L-ILP problems are
solved by an AGV with its neighbours. This procedure makes use of the
C++ library lp_solve;

3. coordination(): the software performs Algorithm 2 and updates the
paths for each AGV in the network;

4. gui(): the stored paths are displayed to the user step by step, highlighting
the destination zones and showing that each vehicle reaches its destination
avoiding collisions and deadlock.

5.2. Example Simulation

In this subsection the GPN of Fig. 4 is described: the menu in Fig. 5
allows the user to determine the GPN width and to select the nodes which
belong to the graph by clicking on them. Then, the user selects the edges
to be removed from the GPN: in this example, edges z15,21, z16,22, z17,23 and
z18,24 are removed since they are not present in the graph of Fig. 4. In
addition, the user can select the bridge edges belonging to the graph and
performs the operations reported in Assumption 2.5.

The software shows the GPN with the corresponding sense of motions for
each edge (Fig. 6) and allows selecting the positions of the AGVs and the
destination zones: N = 9 vehicles (in red) and K = 9 destination tasks (in
green) are shown in Fig. 7. Note that the communication radius is ρ = 3
since the longest pass in the network is p1 = {v3, z3,4, v4, z4,5, v5} of length 2:
therefore this choice abides by the assumptions of Section 3.2.

Then, the software performs the function calculate_path_costs() which
computes the costs of the shortest paths connecting each vehicle and each
destination. Table 1 shows on the first column the initial positions of each
vehicle i and on the second row the positions of each task j with the corre-
sponding cost ci,j.

Moreover, given the initial positions of the vehicles and the value of ρ, it
is possible to obtain the communication graph Gc for t = 0, represented in
Fig. 8.
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Figure 4: The guided path network of the example.

Figure 5: Simulation Software: selecting the nodes.
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Figure 6: Simulation Software: GPN setup.

Figure 7: Simulation Software: initial AGV positions.
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Figure 8: Communication graph at time t = 0.

Table 1: AGV and Task Positions and Costs

Task Position

AGV Position z30,31 z27,28 z23,24 z15,16 z11,12 z8,9 z9,10 z1,8 z2,9
z28,34 19 19 2 18 5 18 16 13 6
z26,32 3 3 18 2 15 2 4 7 12
z36,37 21 21 4 20 7 20 18 15 8
z32,33 9 9 14 8 11 8 6 3 8
z12,18 13 13 10 12 3 12 10 7 4
z21,22 7 7 16 6 13 6 4 5 10
z26,27 11 11 12 10 9 10 8 1 6
z10,16 10 10 15 9 12 9 7 4 9
z12,13 8 8 13 7 10 7 5 2 7

The software then performs the evdaa() function simulating the AGVs that
apply Algorithm 1. The AGVs start at time t = 0 with the specified initial
task assignment: yi,j(0) = 1 if i = j and yi,j(0) = 0 if i 6= j, for i = 1, ..., 9
and j = 1, ..., 9.

Moreover, the vehicle assignments evolve as shown in Table 2: the first
column denotes the current iteration of the algorithm, the second column
indicates the vehicle that at time t begins the optimization with the neighbors
that are reported in the third column. In addition, the subsequent columns
denote the ids of the tasks assigned to each AGV in the current iteration
and the last one reports the value of the global objective function in the
considered iteration.
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Table 2: Execution of Algorithm 1

t i Ni AGVs and Assigned Tasks f(y∗(t))
1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9 19
1 3 1,3,5 5 2 3 4 1 6 7 8 9 13
2 5 3,5,7 5 2 3 4 7 6 1 8 9 11
3 7 4,5,6,7,8,9 5 2 3 4 9 1 8 7 6 8
4 4 2,4,6,7,8,9 5 1 3 4 9 2 8 7 6 8
5 6 4,6,7,8,9 5 1 3 4 9 2 8 7 6 8
6 7 4,5,6,7,8,9 5 1 3 4 9 2 8 7 6 8

We observe that for t ≥ 4 the task distribution between the AGVs
does not change, leading to the final solution with the objective function
f(y∗(t)) = 8.

Then function coordination() runs and simulates the Algorithm 2 ap-
plication. Table 3 reports the sequences of the zones occupied by each vehicle
at the time instants shown in the first column. The algorithm proceeds until
t = 14 when all the vehicles reach their respective destinations.

The execution of Algorithm 2 is displayed step by step by function gui(),
showing each AGV reaching the assigned destination without collisions and
deadlocks.

Furthermore, Figures 9, 10 and 11 report the travels of the vehicles in
three steps. In particular, Fig. 9 shows the initial positions of each AGV,
Fig. 10 and 11 show the AGV positions at steps t = 3 and t = 12, displaying
how the system manages pass accesses: at step t = 3 the AGVs 4, 6, 8 and
9 need to cross pass {v14, z14,20, v20}; vehicle 6 is the first one to occupy the
pass by crossing v14 while the other AGVs stop. At step t = 12, AGVs 6,
9 and 4 have crossed the pass and AGV 8 can cross it in order to reach its
destination zone.

Note that at the bottom left of each figure the time required to run the
control strategy is shown and it is equal to 3.493 seconds.

Lastly, Fig. 12 shows the configuration of the network at the final step of
Algorithm 2 where all the vehicles reach their destinations.
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Figure 9: Coordination: initial AGV positions.

Figure 10: Coordination: access to the pass at time t = 3.
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Figure 11: Coordination: access to the pass at time t = 12.

Figure 12: Final positions of vehicles.
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Table 3: Execution of Algorithm 2

Occupied Zones

t 1 2 3 4 5 6 7 8 9

1 z30,31 z27,28 z23,24 z15,16 z11,12 z8,9 z9,10 z1,8 z2,9
2 z24,30 z27,33 z23,29 z9,15 z5,11 z8,14 z10,16 z1,2 z8,9
3 z24,25 z33,34 z29,30 z8,9 z5,6 z14,20 z10,16 z2,9 z8,14
4 z19,25 z28,34 z30,36 z8,9 z6,12 z20,26 z10,16 z2,9 z8,14
5 z18,19 z28,34 z36,37 z8,9 z12,13 z26,27 z10,16 z2,9 z8,14
6 z12,18 z28,34 z36,37 z8,14 z12,13 z27,33 z10,16 z8,9 z14,20
7 z12,18 z28,34 z36,37 z8,14 z12,13 z32,33 z10,16 z8,9 z20,26
8 z12,18 z28,34 z36,37 z8,14 z12,13 z26,32 z10,16 z8,9 z26,27
9 z12,18 z28,34 z36,37 z14,20 z12,13 z26,32 z10,16 z8,14 z21,27
10 z12,18 z28,34 z36,37 z20,26 z12,13 z26,32 z10,16 z8,14 z21,22
11 z12,18 z28,34 z36,37 z26,27 z12,13 z26,32 z10,16 z8,14 z21,22
12 z12,18 z28,34 z36,37 z27,33 z12,13 z26,32 z10,16 z14,20 z21,22
13 z12,18 z28,34 z36,37 z32,33 z12,13 z26,32 z10,16 z20,26 z21,22
14 z12,18 z28,34 z36,37 z32,33 z12,13 z26,32 z10,16 z26,27 z21,22

6. Conclusions

This paper proposes a decentralized control strategy for assigning paths
and coordinating Autonomous Guided Vehicles (AGVs) in Guided Path Net-
works (GPNs).

First, the AGVs apply a decentralized discrete consensus protocol in or-
der to autonomously assign themselves the destination task by iteratively
solving a Local-Integer Linear Programming problem. Then the AGVs move
across the network to reach the assigned destination zone by performing a
decentralized coordination algorithm based on a zone-controlled approach.
The proposed coordination procedure guarantees collision avoidance and it
is proved that, in the proposed class of guided-path network layouts, also
guarantees the deadlock avoidance. Then, a software is presented, which
allows performing simulations of the proposed strategy, also showing to the
user the result of the application of the two algorithms to a realistic scenario.

Future work will investigate on two main aspects: i) analysing the possi-
bility of optimizing the task distribution also considering different objective
functions and more generic costs; ii) studying deadlock avoidance strategies
that could be applied on more generic network topologies.
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