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User satisfaction based model for resource allocation in bike-sharing systems

Abstract. Over the past decade, the number of ongoing bike-sharing programs has remarkably risen. In this framework, 
operators need appropriate methodologies to support them in optimizing the allocation of their resources to globally 
enhance the bike-sharing program, even without massive and costly interventions on the existing configuration of the 
system. 
In this paper, we propose an optimization model able to determine how to employ a given budget to enhancing a bike-
sharing system, maximizing the global user satisfaction. During the day, each bicycle station has a certain number of 
bikes that fluctuates according to the travel demand; it happens, however, that for certain time slots, the station is full 
or empty. Then, we propose to consider as key performance indicators the zero-vehicle time and the full-port time, 
that reflected respectively the duration of vehicle shortage and parking stall unavailability in the stations. Both these 
indicators, together with the lost users of the system, need to be kept to a minimum if the final aim is maximizing the 
customer satisfaction, i.e. not forcing the user to use other stations or turn/shift to other travel modes. We have 
analyzed the historical usage patterns of the bike-sharing stations, smoothing their trends (by wavelets), and operated 
a preliminary spatio-temporal clustering. Our model verifies the necessity of adding or removing racks to each station, 
setting at the same time the optimal number of bikes to allocate in them, and decide the eventual realization of further 
stations. Then, an application, both on a small test and a real-size network, is presented, together with a sensitivity 
analysis.

Keywords: resource allocation; bike-sharing system; spatio-temporal clustering. 

1. Introduction

Moving toward sustainable mobility, public bicycles schemes -better known as bike-sharing systems (BSSs)- have 
recently become increasingly popular for inner-city transportation. A BSS is a short-term bicycle rental service; it 
consists of a set of docking stations (i.e. pick-up and drop-off locations) usually scattered throughout an urban setting, 
together with a set of bicycles available to the system users. The principle is to provide individuals with a bicycle 
whenever they need it, without costs and responsibilities associated with bicycle ownership, leaving it behind once they 
reach the desired destinations. 
Among their undeniable benefits, we could mention (Shaheen et al., 2010) the reduction of congestion and emissions, 
the individual financial savings, the health benefits due to physical activity and their support for multimodal transport 
connections (by acting as an effective ‘last-mile’ complement to other public transit systems). 
Despite their success, one of the main issue that a BSS may experiment is the lack of resources: this happens when a 
user arrives at a station that has no bike available, or vice-versa if he/she finds a full station when returning the bicycle. 
Indeed, the allocation of resources (i.e. bicycles and racks) needs to be opportunely managed by BSS operators, to 
guarantee an efficient functioning of the system and a reliable alternative to the other means of transportation (Fricker 
and Gast, 2016).
The goal of this paper is to address this resource allocation problem, investigating the problem of strategically enhance 
a BSS under a predefined available budget, even without operate massive interventions on the existing system. To do 
so, we propose an optimization model which provides a spatio-temporal clustering of the usage pattern data related to 
the BSS stations and a subsequent maximization of the user satisfaction. 
The method has been applied to a station-based BSS, but it could be easily adapted even to a free-floating one (Pal and 
Zhang, 2015), where docking stations and kiosk machines are not necessary, as the bicycles can be locked to ordinary 



racks close-by the final trip destinations. Every district/zone can be treated as a bike-sharing station, and the resource 
distribution subsequent the optimization be done uniformly within the perimeter of each zone (see Caggiani et al., 
2017 for further details). 
The remainder of the paper is organized as follows. In the next section, the literature review is presented. Then, the 
proposed methodology that allows properly allocate resources in the system is presented. An application of the 
methodology to two networks of different size is enclosed, together with a sensitivity analysis and some final remarks 
about our main findings.

2. How to set up and analyze a bike-sharing system: Literature background

In this section, a literature review is given. The review presents the relevant studies that have been done covering the 
various facets involved in this study. For sake of clarity, we divided the review into three subsections. The first one is 
devoted to the network design of a station-based BSS.  The second focuses on the associated indicators that have been 
used to assess the performance of the system. Finally, a summary of the main clustering techniques is reported.

2.1 Design and enhancing of BSSs

Recently, several research methods have been proposed and developed aiming at optimizing the bike-sharing system 
design and operation, considering as key decision variables the number of bikes (Sayarshad et al., 2012), the capacity 
and location of stations (Lin and Yang, 2011; García-Palomares et al., 2012; Angelopoulos et al., 2016) and/or the vehicles 
repositioning (Mahony and Shmoys, 2015 and references therein). These design decisions are commonly subject to 
restrictions and dependencies, such as the predicted user demand patterns, the synergies between the BSS and the 
operating transit system, the available budget, and so on. In Romero et al. (2012) proposed a model is used to optimize 
the location of docking stations in a public sharing bicycle system. They consider simultaneously private car and public 
bicycle transport modes, considering their interactions through the modeling of the modal split and the assignment of 
each mode's trips to the network.  Martinez et al. (2012) focused on the case of Lisbon presented a BSS design model 
based on a heuristic, encompassing a Mixed Integer Linear Program (MILP). The model simultaneously optimizes the 
location of shared biking stations and the fleet dimension considering the bicycle relocation activities too. The 
allocation and optimization of the layout of the bicycle-sharing system inside the scenic spot and around its influencing 
are the topics of the paper by Guo et al. (2014). They proposed an optimization model and relevant solution algorithm 
based on the idea of cluster concept and greedy heuristic.
Since public investments in bike-sharing schemes are normally subject to a given budget, one of the main concern of 
the public authorities is to maximize the benefits at the design and implementation stages to make their investment as 
profitable as possible. As a matter of fact, different studies have considered the budget as an essential constraint to 
include in the formulation of their models. For example, Saharidis et al. (2014) proposed a mathematical formulation 
for the establishment of a bike-sharing network. Given the available budget and a set of candidate locations, their 
models select the number and the location of the stations, their capacity, and how many bikes should they have at the 
beginning of the day (service starting) to minimize the unmet travel demand. Recently, a more comprehensive 
methodology for the dynamic management of the free-floating BSSs is given by Caggiani et. al (2018) where they 
propose a new dynamic bike redistribution methodology that starts from the prediction of the number and position 
of bikes over a system operating area and ends with a relocation decision support system. The relocation process is 
activated at constant gap times in order to carry out dynamic bike redistribution, mainly aimed at achieving a high 
degree of user satisfaction and keeping the vehicle repositioning costs as low as possible. 
Frade and Ribeiro (2015) proposed an optimization method to design a bike-sharing system based on the maximization 
of the covered demand and assuming the available budget as a constraint. In addition, it combines strategic decision 
(i.e. determining stations location and capacity, number of bikes in each of them) with operational decisions, such as 
the relocation of bicycles. The city of Coimbra is used as a testbed.
Also, Chen and Sun (2015) aimed at the minimization of the total travel time of all users, under the constraint of a 
certain investment budget, to guarantee that the needs for picking up and dropping off bikes could be satisfied. The 
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application to a numerical example shows how it is possible to determine not only the number and location of bike 
stations but also the number of bikes and parking lockers for each one of them.
However, if the BSS has been already implemented, there may be the necessity to allocate a limited amount of money 
to enhance its functioning, better adapting the system to its actual requirements. Therefore, this paper aims at 
establishing the most efficient way to invest a given budget in the determination of the optimal number of bikes and 
racks to add/subtract to each bike-sharing station of an operating system, looking primarily at the maximization of the 
user satisfaction. This more appropriate way to distribute the available resources could lead to an actual improvement 
of the situation without messing up with the actual configuration of the system.

2.2 Assessing the performance of a BSS

The design decisions of a bike-sharing scheme are made with concern for both total cost and service levels. Therefore, 
it becomes important to state the best way to measure the service quality of the system. 
Both Yang et al. (2010) and Lin and Yang (2011) proposed to consider at the same time the coverage level (i.e. the fraction 
of total demand at both origins and destinations that is within some specified time or distance from the nearest rental 
station) and the availability rate of pick-up bike requests at stations. More recently, Neumann-Saavedra et al. (2016) 
have defined the service level as the percentage of successfully realized demand trips during a given time horizon. The 
mean parking time of bikes in a station and the rebalancing frequency of a station are used as key performance index 
in Benarbia and Labadi (2013) and Labadi et al. (2012), where a Petri-Nets based control model of Public BSS is 
proposed. The unsatisfied demand level is used by Angeloudis et al. (2014). The total relocation cost is used to measure 
the performances of the BSS in the works by Benchimol et al. (2011) and Nair et al. (2013). In the work by Kaspi et al. 
(2016) user dissatisfaction is used and measured by using a weighted sum of the expected shortages of bicycles and 
lockers at a single station. 
However, the most accepted measure in literature seems to be the one that combines two possible situations of 
unsatisfied demand, namely: (1) a user needing a bike that finds the station empty; (2) a user returning a bike that finds 
the station full. These key performance indicators have been described by Kek et al. (2006 and 2009) and called zero-
vehicle time (ZVT) and full-port time (FPT). When ZVT occurs, the station has no available bicycles and users requests 
at that station will be rejected. On the other hand, when FPT occurs, the station has no empty racks and users 
requesting to return her/his bike to that station will also fail. Both ZVT and FPT reduce the attractiveness of BSSs. 
From operator’s point of view, ZVT implies a possible loss of revenue. From user’s point of view, ZVT forces users to 
use other stations, or turn to other modes of travel, while FPT forces users to return the vehicles later or to another 
station, incurring additional usage cost. The same indicators (although not using the same acronyms) have also been 
used by Fricker and al. (2012), Alvarez-Valdes et al. (2014), and Fricker and Gast (2016). More specifically, these last 
authors used as service indicators the so-called proportion of problematic stations, that stands for the ones where either 
no bikes are available, or that are totally saturated. 
In this paper, we decide to adopt ZVT and FPT to assess the performance of the bike-sharing system and reflect the 
user dissatisfaction.

2.3 Usage patterns and clustering techniques

One of the most important features that make a BSS successful and attractive is its ability to satisfy users’ demand. This 
task could be challenging, as the bike-requests fluctuate according to a variety of factors, such as time of the day, the 
day of the week, weather conditions, and so on. Underlying these apparently random changing in the everyday 
demand, there are patterns that need to be identified, aiming at planning and managing the system most effectively, 
maximizing at the same time the level of customer satisfaction (Alvarez-Valdes et al., 2014). 



In literature, clustering analysis - that aims at organizing a collection of different trends in a smaller number of 
homogeneous groups - has been widely used to explore the activity patterns connected to a bike-sharing system usage. 
They have turned out handy in dealing with BSS, as data collected on such systems are usually sizeable. Then, it results 
quite difficult to gain knowledge from them without a method able to supply a synthetic view of the fundamental 
information. 
In particular, several studies have addressed usage patterns and their characterization focusing on the spatio-temporal 
correlation among data. Froehlich et al. (2009) provided a spatio-temporal analysis of Barcelona’s shared bicycling 
system, identifying shared behaviors across stations, finding how these behaviors relate to location, neighborhood and 
time of the day. It is worth mentioning also Han et al. (2014), that correlated the historical usage records of Paris’ bike 
sharing system at both spatial and temporal scale, integrating this analysis into forecasting goals, underlining how this 
represents a necessary information for accurately predicting bikes demand of each station. The work by Feng et al. 
(2017) deals with the prediction of the future availability of bikes at a bike station. They used the moment analysis of a 
population continuous-time Markov chain model with time-dependent rates with reference to the case of Santander 
Cycles in London.
Clustering methodologies have been extensively used in literature to explore the activity patterns related to a shared 
system usage and reveal communities of users, with a wide range of final goals. For example, some authors have shown 
how cluster analysis is capable of revealing groups of stations with a similar trend of rental and return activities during 
the day (Vogel et al., 2011). Zhou (2015) analyzed the case of Chicago BSS by defining a bike flow similarity graph and 
using a fastgreedy algorithm to detect spatial communities of biking flows. They also examined the temporal demands 
for bikes and docks using a hierarchical clustering method. 
Recently, Caggiani et al. (2017a) proposed a bi-level method, able to aggregate at first temporally (making use of 
wavelets and hierarchical clustering) and after that spatially (through k-means clustering) patterns of available bikes in 
different zones of a city. With respect to the free-floating BSS Caggiani et al. (2017b) present a novel methodology for 
generating a flexible/dynamic zone clustering in order to define cost-efficient relocation strategies that allow to identify 
the optimal size and number of areas among which perform an effective and enhanced vehicle repositioning, reducing 
the necessity to move vehicles from one zone to another and, accordingly, shrinking the relocation costs. They show 
how the dynamic approach returns better results than the static ones. Other studies have conducted a spatio-temporal 
analysis of the bicycle station usage of bike-sharing systems, with real case studies application in Barcelona (Froehlich 
et al., 2009), Paris (Côme et al., 2014), London (Caggiani et al., 2017a).
The first step of the methodology suggested in this paper consists in spatiotemporally aggregate BSS stations, adopting 
a method similar to the one presented by Caggiani et al. (2017a), to obtain a clustering that represents the basis for the 
application of the subsequent optimization model. Further explanations can be found in the following section.

3. The proposed user satisfaction based model

In this section, we propose a methodology to calculate the optimal number of racks/bikes to allocate in each station of 
an operating BSS, aiming at enhancing its functioning, under the main constraint of a maximum budget to invest. At 
first, to reduce the amount of data to analyze in the subsequent phase, we operate a spatio-temporal clustering of the 
bicycle stations considering the similarities among their usage patterns. Then, we perform an optimization of the global 
service quality of the BSS, minimizing the time intervals in which a station is full or empty, and the total number of 
lost users. 
In the following, a flowchart (Fig. 1) summarized the main steps of our approach. After that, a notation box presents 
symbols and notations that are introduced in the next subsections and adopted throughout the paper.
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Spatio-temporal clustering

Set z and t

Temporal patterns: 
number of available 

bicycles throughout the 
day for every station 𝜑

Discrete 
wavelet 

transformati
on

Hierarchical clustering

Temporal clusters Tk

Optimization of mk for k 
 [1, 2, …, n]∈

k-means 
clustering

Spatio-temporal 
clusters 𝐒𝑢

𝑘

VARIABLES:  𝑟𝑢
𝑘,  𝑏𝑢

𝑘

Optimization of the service quality of the BSS:
minimization of (ZVT + FPT + lost users) 

Fig.1 Flowchart of the user satisfaction based method to allocate resources in a BSS.

Spatio-temporal clustering notation

 𝜑 the total number of bike-sharing stations

 𝜑 a generic station with   [1, 2, …, 𝜑 ∈ 𝜑 ]
Δz the width of the significative period of operation of the BSS
Δt the width of each time interval in which data are collected
n the total number of temporal clusters vectors 
T the temporal cluster set 
Tk the temporal cluster vector belonging to the set T with k  [1, 2, …, n]∈
wk the total number of Tk elements 

 𝑡𝑦
𝑘 a generic element of a temporal cluster vector Tk with y  [1, 2, …, wk]∈

 𝛯𝑘 the set of remaining  not included in the satisfactory clustering𝑡𝑦
𝑘

Sk the spatio-temporal cluster set associated with Tk

mk the total number of spatio-temporal clusters 
 𝐒𝑢

𝑘 spatio-temporal cluster vector belonging to the set Sk with u  [1, 2, …, mk]∈



 𝜂𝑢
𝑘 the total number of  elements 𝐒𝑢

𝑘
 𝑆𝑢ℎ

𝑘 a generic element of a spatio-temporal cluster vector  with h  [1, 2, …, ]𝐒𝑢
𝑘 ∈ 𝜂𝑢

𝑘
𝑐𝑢

𝑘 a generic centroid of a spatio-temporal cluster vector 𝐒𝑢
𝑘

wd average user walking distance
𝜗 the total number of spatio-temporal cluster iterations
𝜗 a generic spatio-temporal cluster iteration,   [1, 2, …, ]𝜗 ∈ 𝜗

 𝑓𝑢
𝑘 the total number of  , , belonging to a temporal cluster Tk’ inside the spatial boundary of 𝑆𝑢ℎ

𝑘' ∀ 𝑘' ≠ 𝑘
the cluster 𝐒𝑢

𝑘

𝛽 the maximum allowable value of  𝑏𝑢
𝑘

Optimization of the service quality of the BSS notation

𝛾1,𝛾2 weight coefficients
𝑈𝑖𝑛

𝐿 lost users – incoming (no available bicycles) 
𝑈𝑜𝑢𝑡

𝐿 lost users – outcoming (no available racks)
ZVT𝑢

𝑘 the zero-vehicle time of the cluster 𝐒𝑢
𝑘

FPT𝑢
𝑘 the full-port time of the cluster 𝐒𝑢

𝑘
𝑐𝑏 the cost of a new bike
𝑐𝑟 the cost of a new rack 
𝑐𝑠ℎ the cost of shifting one rack from a BSS station to another
𝑐𝜑 the cost of a new bike-sharing station facility
𝑏' the total number of new bicycles to buy
𝑟' the total number of racks to buy
𝑟'(𝑘,𝑢) racks to add to the cluster 𝐒𝑢

𝑘
𝑠ℎ the total number of rack shifts to operate
𝜑' the total number of new bike-sharing station facilities to build
B the total available budget
𝑏𝑢

𝑘 the total available bicycles at the beginning of the day in 𝐒𝑢
𝑘

𝑟𝑢
𝑘 the total number of racks in the cluster 𝐒𝑢

𝑘
𝜑𝑢𝜀

𝑘 a generic new bike-sharing station in  with  [1, …, v]𝐒𝑢
𝑘 𝜀 ∈

𝜎1,𝜎2 the minimum and maximum number of racks to allocate in a new station
𝜇 the maximum number of new stations in the cluster 𝐒𝑢

𝑘
𝛿1 the minimum number of available bicycles at the beginning of the day in a new station 𝜑𝑢𝜀

𝑘
𝛿2 the minimum number of available bicycles at the beginning of the day in the cluster 𝐒𝑢

𝑘
𝜌 the maximum number of new racks to add in the cluster 𝑟' 𝐒𝑢

𝑘
ξ the threshold associated with ZVT/FPT (usually equal to zero)

3.1 Spatio-temporal clustering method

The user satisfaction based methodology that we are presenting in this paper can be applied to any real cities/urban 
settings, in which a BSS has been already set up, and is regularly operating. Therefore, it follows that we are usually 
dealing with a considerable amount of data (big data) related to the BSS, that we need to understand and analyze to 
achieve a global enhancement of the system. This is the main reason why we suggest to operate a preliminary clustering 
to have a synthetic view of the information underlying the entire system.
Each bike-sharing station  has its own trend of available bicycles, that fluctuates during the time. This number of 𝜑
bicycles, for each station, is collected every time interval Δt. The maximum value that could be reached at every time 
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step is equal to the total number of racks in that station (station completely full). On the contrary, if all the bicycles 
have been picked-up, no one is available to use, and at that moment the collected number will be zero.
Before performing our analysis, we need to select a significative period of operation of the BSS. We denote this interval 
as Δz. It may coincide with the last year/season/month of the functioning of the system (more recently collected data). 
Alternatively, the analyst could select a Δz corresponding to the latest period (season, month, group of weeks) with the 
highest bicycle requests, to have data linked to the temporal interval in which the system had been used more intensely. 
This choice can be operated to satisfy the user demand especially in high-demand periods (for example, non-rainy 
seasons).
Once Δz has been defined, we have at our disposal a database with the number of available bicycles for each station , 𝜑
collected every Δt: these are the station temporal patterns that we propose to cluster/aggregate. The preliminary spatio-
temporal analysis of our methodology involves the definition of two main categories of clusters: temporal clusters (set 
T) and spatial clusters associated with each element Tk of the set T, called spatio-temporal clusters (set Sk).

Knowing the temporal patterns associated with each station φ and setting the total number of temporal clusters n, 
we can aggregate them according to their temporal trends. Therefore, we can assert that each station belonging to a 
given Tk, k  [1, 2, …, n], is a generic element of it with y  [1, 2, …, wk]. At first, a discrete wavelet transformation ∈ 𝑡𝑦

𝑘 ∈
(Guan and Feng, 2004; Zhang et al., 2008) helps in the analysis of signals (in this case, they are the temporal trends 
representing the number of available bicycles in each station), as it has been done by Vlachos et al. (2003). Discrete 
wavelets can de-noise and compress the signals, and are often used as a preprocessing step before clustering 
(Antoniadis et al., 2013). Then, the filtered data are aggregated into a given number of temporal clusters Tk, applying 
a hierarchical clustering methodology (Caggiani et al., 2017). At the end of this procedure, we obtain that each station 
belongs to a Tk. 

Next step aims at geographically aggregating groups of stations (Xu et al., 2013; Lee et al., 2014) belonging to the same 
Tk, creating a certain number of spatio-temporal clusters , u  [1, 2, …, mk], associated with each temporal one. 𝐒𝑢

𝑘 ∈
We propose to operate this second clustering using a k-means algorithm. The k-means method is a widely-used 
clustering technique, whose goal is seeking to minimize the average squared distance between points in the same 
cluster. It is not capable to guarantee accuracy; however, thanks to its simplicity and computing speed, it is very 
appealing in practical applications (see MacQueen 1967 and Arthur and Vassilvitskii, 2007 for further details).
We are assuming that, for any user, choose to pick-up a bicycle from one station rather than another, provided that 
the walking distance between them is comparable with wd, is equivalent. Then, we can assume that every spatio-
temporal cluster  should ideally have a size/maximum extension similar to the average distance wd that a user is 𝐒𝑢

𝑘
willing to travel by walk, beginning the trip from his/her starting location (origin). 
As a first approximation, the following bilevel optimization problem (to be repeated for each k  [1, 2, …, n]) is able ∈
to get a reasonable number of  related to each Sk:𝐒𝑢

𝑘

min mk (1)

min (2)∑𝑤𝑘
𝑦 = 1

∑𝑐𝑢
𝑘 ∈  𝐒𝑢

𝑘
EuclideanDist (𝑡𝑦

𝑘, 𝑐𝑢
𝑘)

s.t.

MaximumExt( ) ≤ wd (3)𝐒𝑢
𝑘

max    (4)𝑓𝑢
𝑘 𝛽



The upper-level objective (1) aims at minimizing the total number mk of  associated to each Sk. The lower level 𝐒𝑢
𝑘

objective (2) represents the k-means optimization, that is, the minimization of the distance (in our case, Euclidean 
distance) between the positions of the centroids   of each spatio-temporal cluster, and the elements belonging to 𝑐𝑢

𝑘 𝑡𝑦
𝑘

the temporal ones. Eq. (3) means that the maximum extension/size of each  has to be less than (or equal to) the 𝐒𝑢
𝑘

average distance wd that a typical user is willing to travel by walk. The last constraint (4) forces the maximum value 
of the total number of  , , belonging to temporal clusters Tk’ inside the spatial boundary of the cluster 𝑆𝑢ℎ

𝑘' ∀ 𝑘' ≠ 𝑘 𝐒𝑢
𝑘 

to be smaller or equal to a positive integer coefficient . For example, the lower is the value given to , the higher is 𝛽 𝛽
the number of spatial clusters associated to Sk. The coefficient  should be conveniently calibrated according to the 𝛽
given case study. If it is set equal to 0, it leads to an unfeasible problem; on the other side, if it is too big, it will involve 
a lot of overlapping among areas of  belonging to different Sk. 𝐒𝑢

𝑘
The output of this optimization is the optimal mk, that is the total number of spatio-temporal clusters  for each k 𝐒𝑢

𝑘
 [1, 2, …, n]. The spatial boundary of each  is (usually) a polygon, having as vertices some of the elements  (bike-∈ 𝐒𝑢

𝑘 𝑡𝑦
𝑘

sharing stations) belonging to Tk. We assume to consider these spatial clusters satisfactory if the number of these 
perimetric vertices is equal to or greater than 3 (that is, the minimum number that defines a polygon). However, it 
may happen that some  are made by only one or two elements ; hence, for these remaining  not included in the 𝐒𝑢

𝑘 𝑡𝑦
𝑘 𝑡𝑦

𝑘
satisfactory clustering -and constituting the set -, we decide to repeat the optimization for a number of iterations 𝛯𝑘
equal to . This procedure is carried out to take advantage of an inherent feature of the k-means clustering, that is the  𝜃
arbitrary choice of the initial centers of each cluster (Arthur and Vassilvitskii, 2007). Each iteration  selects different 𝜗
centers, and consequently there are more possibilities to further aggregate the remaining . In any case, it could still 𝑡𝑦

𝑘
happen that, at the end of all the iterations, some spatial clusters are made by only one or two elements. 
We can point out that this preliminary spatio-temporal clustering makes sense only for high-density BSSs, with 
stations located not too far away from each other. In urban contexts, where the distance between bike-sharing stations 
is averagely greater than wd (low-density BSSs), this first step can be skipped. The temporal trend of every station has 
to be considered, and the second and third steps of the methodology (subsections 3.2 and 3.3) can be applied straight 
away.
Finally, we can assert that, at the end of the spatio-temporal clustering, elements belonging to the same  result to 𝐒𝑢

𝑘 
be close to each other in space: it has been demonstrated by Vogel et al. (2011) and Côme et al. (2014) that temporal 
clusters belonging to the same category are usually adjacent spatially. Furthermore, stations that are neighboring to 
each other are likely to have a similar capacity to generate and attract potential users. The spatio-temporal  clusters 𝐒𝑢

𝑘 
are the starting point to keep on with the proposed methodology. 

3.2 Optimization of the service quality of the BSS

In this subsection, we describe the aim of the proposed optimization approach which consists in appropriately 
allocating the bike-sharing related resources (namely, bicycles and racks) in a BSS under analysis. Assuming a given 
budget, we aim to enhance the BSS level of service (i.e., minimizing the lost users of the system, and the time intervals 
with empty or full stations). 
As we are operating on the spatio-temporal clusters  previously defined, we can assert that the main variables of 𝐒𝑢

𝑘 
the problem are:

 racks/slots: optimal number of racks to allocate in each spatio-temporal cluster (sum of the racks of the bike-
sharing stations belonging to each  );𝐒𝑢

𝑘
 bicycles: optimal numbers of bicycles to allocate in each spatio-temporal cluster  at the beginning of any 𝐒𝑢

𝑘
operation day of the system (sum of the bicycles of the bike-sharing stations belonging to each  ).𝐒𝑢

𝑘

Analyzing the historical trends of available bicycles in each spatio-temporal cluster , we can calculate for how many 𝐒𝑢
𝑘

time-intervals Δt the spatio-temporal clusters have no available bicycles ( ), or vice-versa, no available racks ( ). ZVT𝑢
𝑘 FPT𝑢

𝑘

As explained before, these are the indicators that we have chosen to assess the quality of the service level of the system. 
The lowest is their value, the more efficiently the system is working. 
At the same time, it is also important to keep down the number of lost users of the system. Considering the actual 
behavior of the BSS, it is not possible to identify the exact number of unsatisfied users that the system loses, and then 
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we consider as a proxy ZVT and FPT. However, supposing to change the number of racks and available bicycles at 
the beginning of the day in each spatio-temporal cluster, and assuming that the usage patterns are maintaining similar 
trends, we could generate new lost users and  in the system: we have to minimize also their sum in order to 𝑈𝑖𝑛

𝐿 𝑈𝑜𝑢𝑡
𝐿

guarantee the efficiency of the BSS. To better understand this concept, look at the following graphs (Fig. 2):

Fig.2 Example of calculation of ZVT, FPT, and lost users. (a) Current status; (b) Scenario 1; (c) Scenario 2.

Given a hypothetical spatio-temporal cluster  with its current trend of available bicycles (Fig.2a), we can see that it 𝐒𝑢
𝑘

has a number of bikes at the beginning of the day equal to 5. During the considered time interval (Δz = 10 Δt ), we 
can see that the cluster has no available racks for one time-step Δt (i.e., = 1), and no vehicles to pick-up for two FPT𝑢

𝑘 
time-steps ( = 2). Let us suppose that the optimization suggests subtracting two racks at the cluster and allocate ZVT𝑢

𝑘 
3 bikes less at the beginning of the day (Fig. 2b). We can easily see that, keeping an analogous usage pattern, now FPT𝑢

𝑘 



= 0, = 3, and there are 3 lost users  in the system, not able anymore to pick-up a bike at that instant, since ZVT𝑢
𝑘 𝑈𝑖𝑛

𝐿

none is available. 
Fig. 2c depicts another possible scenario. If we suppose to allocate two more bicycles (7 rather than 5) at the beginning 
of the day, adding one rack at the original configuration of the cluster, =1, =0, and there is one lost user FPT𝑢

𝑘 ZVT𝑢
𝑘

 in the system, not capable anymore of dropping his/her bike in the station as all the racks are full. 𝑈𝑜𝑢𝑡
𝐿

Having this in mind, we can now formulate our problem (Eqs. 5-11):

min (5)∑𝑛
𝑘 = 1

∑𝑚𝑘
𝑢 = 1[𝛾1(𝑈𝑖𝑛

𝐿 (𝑘,𝑢) + 𝑈𝑜𝑢𝑡
𝐿 (𝑘,𝑢)) + 𝛾2(ZVT𝑢

𝑘 + FPT𝑢
𝑘)]

s.t.

(6)𝑏' ∙ 𝑐𝑏 + 𝑟' ∙ 𝑐𝑟 + 𝑠ℎ ∙ 𝑐𝑠ℎ + 𝜑' ∙ 𝑐𝜑 ≤  𝐵

(7)𝜎1 ≤ 𝑟(𝜑𝑢𝜀
𝑘 ) ≤ 𝜎2

(8)𝑣(𝑘,𝑢) ≤ 𝜇(𝑘,𝑢)

(9)𝑏(𝜑𝑢𝜀
𝑘 ) ≥ 𝛿1

(10)𝑏𝑢
𝑘 ≥ 𝛿2

(11)𝑟'(𝑘,𝑢) ≤ 𝜌

(12)𝑏𝑢
𝑘 ≤ 𝑟𝑢

𝑘

The objective function (5) aims at minimizing the total number of lost users in the system, plus the zero-vehicle time 
ZTV and the full-port time FPT, for each spatio-temporal cluster . The analyst may assign two different weights 𝐒𝑢

𝑘
 and  according to the components that he/she prefers to emphasize. The first constraint (6) is related to the 𝛾1 𝛾2

available budget: there is a unit cost for each resource that it is possible to allocate in the BSS, namely bicycles, racks, 
shift of racks, and new stations. We consider the possibility to build new stations in the spatio-temporal cluster 𝜑𝑢𝜀

𝑘  
 only if: there are suitable locations (ex. sidewalks, parks...) to place them at a convenient distance (wd) from the 𝐒𝑢

𝑘
centroid  of the cluster; it is not possible to add any other racks to the existing stations; the new stations have a 𝑐𝑢

𝑘
minimum and maximum number of racks respectively equal to  and  (7). The maximum number  of new 𝜎1 𝜎2 𝜇
stations to allocate in each  varies according to the specific configuration of the spatio-temporal cluster (8); each of 𝐒𝑢

𝑘
them needs to have at least  available bicycles at the beginning of the day (9). Furthermore, the bicycles  (to put 𝛿1 𝑏𝑢

𝑘
at the beginning of the day in each ) have to be at least equal or greater than a certain number  (10), and to each 𝐒𝑢 

𝑘 𝛿2
cluster is not possible to add more than  new racks (11). The last one (11) is a consistency constraint, asserting 𝐒𝑢 

𝑘  𝜌 𝑟'

that for each cluster  the number of available bicycles cannot overcome the number of racks.𝐒𝑢 
𝑘

At the end of this procedure, we obtain the optimal number of bicycles and racks to allocate in each spatio-temporal 
cluster. However, within each , there is a given number of bike-sharing stations: at first approximation, we propose 𝐒𝑢 

𝑘
to redistribute bikes and racks among the included station in a uniform way, without any additional constraint. We 
have pursued this criterion because, as we stated before, we are supposing that -for any user- choose to pick-up a 
bicycle from one station rather than another, provided that the walking distance between them is comparable with 
wd, is totally equivalent; then, no station has to be preferred to another if they are belonging to the same spatio-
temporal cluster .𝐒𝑢 

𝑘

A further remark can be made looking at the usage patterns of each cluster , that we are assuming to follow a similar 𝐒𝑢 
𝑘

trend (Fig. 2) also after the enhancement of the BSS. Basically, we are pretending that the request of bicycles (bike-
demand) is fixed. On the contrary, it could happen that, after the allocation of the novel resources, new potential 
users may be attracted by the system starting to use it (elastic demand). We suggest addressing this problem 
opportunely calibrating the thresholds ξ of both ZVT and FPT. As a matter of fact, it is true to assert that ZVT is the 
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zero-vehicle time, in which no vehicle is available in the cluster: this means that one vehicle is reckoned sufficient to 
satisfy the users’ demand. However, if the decision maker/analyst believes that a higher number has to be assured in 
order to face a potential increase of bike-requests, (e.g., 3 vehicles), it can be possible to apply the same model setting 
ξ ZVT equal to the number of vehicles to guarantee minus one (e.g., ξ ZVT =3-1=2). This means that, in this way, each 
spatio-temporal cluster needs at least 3 vehicles to be self-sufficient and ensure a proper functioning of the BSS (the 
same applies to the FPT). 
An alternative strategy to pursue could be artificially increasing the bike-requests in the network for every time 
interval, multiplying them by a certain number, to simulate a more intense use of the BSS.

4. Numerical application

This part of the paper concerns the application of the proposed method to a test network and to a real sized one. The 
aim is verifying the effectiveness of our optimization model, performing a sensitivity analysis with different budgets 
B and different thresholds ξ for ZVT and FPT to the test network. Then, a further application to a larger case study 
is presented, and the results discussed. 

4.1 Test network case: results and sensitivity analysis

The user satisfaction based model that has been described in the previous section is here applied to a test network. 
The study area (1 km2) consists of 36 bike-sharing stations , whose coordinates have been generated perturbating the 𝜑
ones of the centroids of a 6×6 squares grid (see Fig. 3, where the number of racks and available bicycles for each  are 𝜑
printed next to each station). Note that the proposed methodology could be applied to any kind of spatial 
configuration. On average, the distance between two stations is around 160 m, that is, comparable with the one 
detected in the city centers of big cities like Paris or London. Under these assumptions, the operating BSS can be 
considered a high-density one, and it makes sense to apply the preliminary spatio-temporal clustering (as reported in 
section 3.1). The acceptable walking distance wd of a typical user has been set equal to 250 m (Kabra, Belavina and 
Girotra, 2016).

 



Fig.3 Test network with the indication of the 36 bike-sharing stations, and their respective available bicycles and racks.

Aiming at building a system as realistic as possible, we assume to have 4 different typologies of bike-sharing stations: 
central (with the highest demand), peripheral with a low demand request, peripheral with an average demand request, 
peripheral with a high demand request. Their temporal trends of available bicycles have been obtained thanks to the 
BSS simulator proposed by Caggiani and Ottomanelli (2012 and 2013), setting (for each station typology) two diverse 
levels of bike demand according to the days of the week. We set Δz = 14 days, and Δt = 5 minutes; 4 temporal clusters 
Tk and 10 spatio-temporal clusters  have been obtained, considering  (i.e. the maximum value of the total number 𝐒𝑢

𝑘 𝛽
of  , , belonging to temporal clusters Tk’ inside the spatial boundary of the cluster ) smaller or equal to 𝑆𝑢ℎ

𝑘' ∀ 𝑘' ≠ 𝑘 𝐒𝑢
𝑘

1. Looking at Fig. 4, the stations (dots) have four distinct colors, corresponding to each temporal cluster; the 10 
polygons (with asterisks indicating their centroids ), marked with a progressive ID number, are the resulting spatio-c𝑢

𝑘
temporal clusters. Each  has a total number of racks that goes from 12 to 48 and a number of available bicycles 𝐒𝑢

𝑘
between 11 and 33.

Fig.4 Spatio-temporal clustering of the bike-sharing stations. 

Among the remaining parameters that we have to set before performing the optimization of the BSS level of service, 
there are the unit costs of the resources to allocate ( = 100€;  = 200€; = 100€;  = 300€) and the various 𝑐𝑏 𝑐𝑟 𝑐𝑠ℎ 𝑐𝜑
thresholds to be respected ( =5; =15; =5; = =2; =5). This means that we can build not more than 5 𝜎1 𝜎2 𝜇 𝛿1 𝛿2 𝜌
additional stations in every , and that each station can have 5 to 15 racks. At least 2 bicycles need to be available at 𝐒𝑢

𝑘
the beginning of an operation day, both in a new station and in each spatio-temporal cluster; finally, not more than 
5 new racks can be added in each . Both ξ ZVT and ξ FPT have been set equal to 0: this means that (respectively) one 𝐒𝑢

𝑘
bicycle/one rack is reckoned sufficient to satisfy the users’ demand. The total budget available to implement the 
optimal solution correspond to B=10000€.
The results in terms of bicycles, racks and new stations to build are summarized in Table 1.

Table 1. Resources allocated in each one of the 10 spatio-temporal clusters according to the proposed optimization 
model.

Cluster ID 1 2 3 4 5 6 7 8 9 10
Racks (starting 

values) 24 36 36 36 12 25 25 25 25 48
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Bicycles (starting 
values) 22 33 33 33 11 15 15 15 15 24

New stations φu
k 0 0 1 0 0 0 0 0 0 0

𝐒u
k 27 41 41 37 16 27 27 28 29 51

Racks
φu

k 0 0 7 0 0 0 0 0 0 0
𝐒u

k 24 34 33 36 13 16 16 16 16 25
Bicycles

φu
k 0 0 5 0 0 0 0 0 0 0

Calculating the value of the objective function corresponding to the starting configuration (i.e. before performing 
the allocation of new resources), it results equal to 10070. As the lost users of the BSS cannot be computed at this 
stage, we can assert that this number is achieved summing both the ZVT and FPT time intervals of Δt = 5 minutes, 
in which respectively no bicycles/no racks are available. 
At the end of the optimization -performed using a genetic algorithm-, using the budget B to enhance the functioning 
of the system, the objective function manages to reach the value of zero: this means that there are no time-steps with 
ZVT or FPT, neither expected lost users. This result can be guaranteed buying (globally) 18 new bicycles and 39 new 
racks, without transferring racks from one bike-sharing station to another, and building only one new station 
(spending 9900€, i.e. less than the available B), as deduced by looking at the data reported in Table 1. 
It is now possible to further verify the achieved performance of the BSS with this resource allocation. To do so, we 
can consider another generic Δz constituted by 14 different days. We have generated again (with the BSS simulator, 
see Caggiani and Ottomanelli, 2012 and 2013) the temporal patterns of the stations during this time interval, 
considering analogous levels of bike-requests as input variables, but still with the randomness inherent in the 
simulation. The location of the stations is unchanged, while racks and bicycles are allocated as suggested by the model. 
Even in this case, the results are promising. The objective function value reaches a value equal to 7, still very close to 
zero (without the implementation, its value this time was corresponding to 9899). We can conclude that, with the 
considered budget, it is possible to substantially improve the functioning of the system.

After this preliminary result, we have conducted a sensitivity analysis. We want to verify if, varying the available 
budget, or the ZVT and FPT thresholds (i.e. supposing a potential future increase of bike-requests after the system 
optimization), our model still remains valid. The achieved results are summarized in Table 2.

Table 2. Results of the sensitivity analysis.

B = 2500€ B = 5000€
ξ = 0 ξ = 1 ξ = 2 ξ = 0 ξ = 1 ξ = 2

O.F. starting 10070 15380 19537 10070 15380 19537
best 514 2386 5908 0 1227 3369O.F. optimized median 755 3403 7066 77 1835 5592

O.F.’ starting 9899 15144 19521 9899 15144 19521
best 578 2528 6150 8 1293 3573O.F.’ optimized median 820 3619 7339 88 1853 5756

Tot. costs (€) 2500 2500 2500 4900 5000 5000
New bicycles 𝑏' 10 5 0 10 6 2

New racks 𝑟' 6 9 5 19 22 24
Transfer racks 

𝑠ℎ'

best
(O.F.)

3 2 15 1 0 0

B = 10000€ B = 15000€



ξ = 0 ξ = 1 ξ = 2 ξ = 0 ξ = 1 ξ = 2
O.F. starting 10070 15380 19537 10070 15380 19537

best 0 0 1744 0 0 434O.F. optimized median 0 85 3737 0 0 1292
O.F.’ starting 9899 15144 19521 9899 15144 19521

best 0 0 1914 0 0 465O.F.’ optimized median 0 120 3894 0 6 1379
Tot. costs (€) 6800 10000 9900 10800 12900 14900

New bicycles 𝑏' 16 22 20 15 24 30
New racks 𝑟' 26 39 38 45 51 55

Transfer racks 
𝑠ℎ'

best 
(O.F.)

0 0 0 0 0 0

The O.F. starting is the value of the objective function before applying the optimization model (i.e. before the 
allocation of new resources); the O.F. optimized, instead, reports the best and the median values obtained carrying out 
10 optimizations for each combination of B and ξ. The total costs and resources refer to the best-achieved values of this 
optimization (in the case of equality of the objective function values, we put in the table the ones with lower costs). 

On the other side, O.F.’ is related to another generic time-interval Δz, to verify the achieved performance of the BSS 
with the resulting resource allocation (as explained previously).

Looking at Table 2, we can state that as the available budget increases, better values of the objective function can be 
achieved. As expected, if we set ξ > 0, the sum of ZVT, FPT, and lost users is generally higher. A specific observation 
can be done comparing the total costs of the configuration B = 10000€ and ξ = 0, with the ones of B = 15000€ and ξ 
= 0. It seems that an optimal system status (with O.F.= 0 and O.F.’= 0) can be obtained in both configurations, but 
investing a different amount of money (6800€ instead of 10800€). We can avoid similar situations doing a sensitivity 
analysis varying the budget in a certain range comparable with the money available, in order to identify the best (and 
cheap) solution. However, we can observe that this seems to happen only with a high budget, i.e. sufficient to achieve 
an O.F.= 0.

4.2 Real-size test network: results of the optimization

The proposed user satisfaction based approach here has also been applied to a larger test network, to check its 
efficiency on a bigger reality. In this case, the study area (4 km2) consists of 144 bike-sharing stations , whose 𝜑
coordinates have been generated perturbating the ones of the centroids of a 12×12 squares grid. The remaining initial 
considerations that have been done for the test network (subsection 4.1) applies here. We set Δz = 28 days, and Δt = 
5 minutes; 4 temporal clusters Tk and 31 spatio-temporal clusters  have been obtained (Fig. 5). Each  has a total 𝐒𝑢

𝑘 𝐒𝑢
𝑘

number of racks that goes from 20 to 70, and a number of available bicycles between 16 and 54. In this case, the total 
available budget for the implementation of an optimal solution correspond to B=30000€.
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Fig.5 Spatio-temporal clustering of the bike-sharing stations. 

The value of the objective function corresponding to the starting configuration (i.e. before performing the allocation 
of new resources) results equal to 56585. Even this time, as the lost users of the BSS cannot be computed, we can assert 
that this number is achieved summing both the ZVT and FPT time intervals of Δt = 5 minutes, in which respectively 
no bicycles/no racks are available. At the end of the optimization, using the budget B to enhance the functioning of 
the system, the objective function reaches the value of zero: this means that (again) there are no time-steps with ZVT 
or FPT, neither expected lost users. This result can be guaranteed buying (globally) 87 new bicycles and 66 new racks, 
transferring 37 racks from one bike-sharing station to another and building four new station (spending 26800€, i.e. 
less than the available B): this can be deduced looking at the data reported in Table 3. 

Table 3. Resources allocated in each one of the 31 spatio-temporal clusters according to the proposed optimization 
model.

Cluster ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Racks (starting 

values)
20 20 50 50 40 40 60 50 40 60 50 50 50 60 60 50

Bicycles (starting 
values)

18 18 20 20 16 16 24 20 16 24 20 20 20 24 24 20

New stations φu
k 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0



𝐒u
k 24 25 48 55 45 38 65 55 38 56 52 51 40 53 54 49

Racks
φu

k 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0

𝐒u
k 19 20 21 22 20 17 27 32 20 25 22 21 21 25 27 23Bicycle

s φu
k 0 3 2 0 0 0 2 0 0 0 0 0 0 0 0 2

Cluster ID 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Racks (starting 

values)
40 50 60 60 70 40 20 40 20 40 50 40 60 50 50

Bicycles (starting 
values)

16 20 54 54 63 36 18 36 18 36 45 36 36 30 30

New stations φu
k 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0

𝐒u
k 42 55 64 57 75 42 25 45 24 43 51 44 64 55 52

Racks
φu

k 0 0 0 0 5 0 5 0 0 0 0 0 0 5 0

𝐒u
k 21 23 56 55 61 40 16 40 21 39 49 38 39 33 31Bicycle

s φu
k 0 0 0 0 4 0 3 0 0 4 0 0 0 2 0

We have verified the achieved performance of the BSS with this resource allocation for another generic Δz constituted 
by 28 different days (same consideration of section 4.1 applies here). Then, we have obtained an objective function 
value equal to 96 (sum of ZVT, FPT, and lost users). This result is a great achievement, considering that the starting 
value, in this case, was 57418. In Fig. 6, the convergence of the genetic algorithm used to perform the service level 
optimization is presented. The optimal solution is obtained after 775 generations using a population of 50 individuals 
and a maximum number of 1000 generations.

Fig. 6 Convergence of the genetic algorithm applied to solve the problem.

5. Conclusions and further research

In this paper, we proposed a user satisfaction based model to allocate resources (bicycles and racks) in an operating 
BSS, to enhance its functioning under (primarily) a budget constraint. We suggest performing a preliminary spatio-
temporal clustering, which allows reducing the amount of collected data, returning a global and synthetic view of the 
functioning of the system. 
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The optimization of the service quality of the BSS has been done from a user perspective: i.e., trying to minimize the 
eventuality that he/she does not find an available bicycle/rack when he/she needs it, and at the same time keeping 
low the number of lost users of the system. The achieved results are promising and seem to opportunely suggest the 
optimal way to invest the available budget granting a general improvement of the system. However, we can even 
notice that, although indirectly, this approach takes into account also the operator interests: assuring that ZVT and 
FTP are minimized, means at the same time that we are reducing the necessity to perform bicycle relocations in the 
system, essentially reducing the management costs of the BSS. Not secondarily, less lost users mean also a greater 
(potential) revenue.
Further research could explore the possibility of performing a temporal clustering of the station usage patterns 
according to the days of the week since a different behavior of the system has been widely recognized between 
weekdays and weekend. In this way, the number of bicycles to allocate in each station at the beginning of the day can 
be opportunely calibrated according to the real necessities of the BSS.
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