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13 Abstract 
 

14 The study of the dynamic behavior of slender masonry structures is usually related to the 

15 preservation of the historic heritage. This study, for bell towers and industrial masonry 

16 chimneys, is particularly relevant in areas with an important seismic hazard. The analysis of the 

17 dynamic behavior of masonry structures is particularly complex due to the multiple effects 

18 that can affect to the variation of its main frequencies along the seasons of the year: 

19 temperature and humidity. Moreover, these dynamic properties also varies considerably in 

20 structures built in areas where land subsidence due to the variation of the phreatic level along 

21 the year is particularly evident: the stiffness of the soil-structure interaction also varies. This 

22 paper presents a study to evaluate the possibility of detecting the variation of groundwater 

23 level based on the readings obtained using accelerometers in different positions on the 

24 structure. To do this a general case study was considered: a 3D numerical model of a bellower. 

25 The variation of the phreatic level was evaluated between 0 and -20 m, and 81 cases studies 

26 were developed modifying the rigidity of the soil-structure interaction associated to a position 

27 of the phreatic level. To simulate the dispositions of accelerometers on a real construction, 16 

28 points of   the   numerical   model   were   selected   along   the   structure   to   obtain   modal 

29 displacements in two orthogonal directions. Through an adjustment by using neural networks, 

30 a good correlation has been observed between the predicted position of the water table and 

31 acceleration readings obtained from the numerical model. It is possible to conclude that with a 

32 discrete register of accelerations on the tower it´s possible to predict the water table depth. 
 

33 Keywords: Dynamic identification, phreatic level, masonry, slender structures, dynamic soil- 

34 structure interaction. 
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36 1. INTRODUCTION 
 

37 The study of the dynamic behavior of slender masonry structures has been extensively 

38 investigated by several authors ([1], [2], [3]). Some studies are developed to make a dynamic 

39 identification and / or characterization of the structural behavior of the structure [3]. In other 

40 cases the dynamic behavior have been analyzed to obtain the structural response under 

41 different loads [2] such as earthquakes, or dynamic actions produced by the swinging of bells 

42 [1], [4] either to study its serviceability limit state (SLS) or its ultimate limit state (ULS) [5]. 
 

43 Examples of these case studies may be the Osmancikli works [6] that analyses the stiffness 

44 changes of a bell tower because of some restoration activities or the Saisi [7] works where the 

45 stiffness changes of a tower are analysed due to a seismic event. There are very limited studies 

46 analyzing the variation of the dynamic behavior of masonry structures depending on the 

47 humidity and temperature, but is fully shown that when continuous records are performed 

48 during different seasons in the same structure, the variation of the main frequencies can be 

49 detected [8]. 
 

50 Regarding the seismic behavior of these structures, a basic parameter are their main 

51 frequencies and their possible interactions with the frequency components of the seismic 

52 accelerogram for the location of the structure. If these frequencies vary, the same structure 

53 may have a different response to the same earthquake depending on the season due to the 

54 changes of humidity and temperature on the structure. 
 

55 In some areas is particularly remarkable the phenomenon of subsidence [9], and therefore the 

56 variation of the water table under construction along the different seasons. This phenomenon 

57 generates some changes on the stiffness of the soil and therefore the variation of the stiffness 

58 of the soil-structure interaction, thereby producing ultimately a variation on the main 

59 frequencies of the structure and ultimately varying the response of this structure against the 

60 possible seismic loads. Ivorra [10] studied the influence of this rigidity changes in the soil- 

61 structure interaction in dynamic response of a belltower with forces generated by the bell 

62 ringing. 
 

63 The aim of this paper is to present a methodology based on neural networks to determine the 

64 depth of the water table under a slender masonry structure from the ambient vibration 

65 accelerations obtained at different points on the structure. In an indirect way, through the 

66 registration of accelerations at known points of structure, their main frequencies influenced by 



67 the rigidity of the soil-structure interface and corresponding mode shapes are determined. In 

68 this paper, the methodology will be validated using results from numerical models. 
 

69 The changes on the main frequencies of a structure can be produced by temperature and most 

70 important for masonry structures, the humidity level. Some authors have detected changes 

71 along the winter-spring-summer-autumn seasons due to temperature and humidity changes. 

72 In this theoretical paper, we only study the effect of the table level because we only put 

73 accelerometer sensors, in the case of humidity changes and temperature changes its necessary 

74 put more specific sensors on the structure and introduce the results of these sensors on the 

75 neural network procedure. 
 

76 There are diverse neural network applications to masonry structures [11]. However, as 

77 background of its dynamic applications, can be cited the work of Facchini [12] in which the 

78 neural networks are used for the modal identification of structural systems, presenting 

79 satisfactory results. In this case, the progressive stiffness change of the structure is based on 

80 the generation of a known damage in some parts of a steel structure. In some selected point of 

81 this structure, ambient vibrations accelerations are recorded and these movements are some 

82 of the parameters used for training and validate the network. 
 

83 Neural networks have been established as an increasingly tool used in a variety of fields such 

84 adjustment functions, pattern recognition or data clustering, among others. The basic feature 

85 of these networks is their ability to learn to assess the participation of the input variables at 

86 the output from a set of input-output training. Therefore they are be able to supply a vector of 

87 output from a not present in the training data entry, which is very useful in adjusting functions 

88 with multiple input variables, whose analytical expression is unknown. That is, we only need 

89 one set of input-output data known to train the network, which functions as a black box of 

90 adjustable parameters automatically. 
 

91 Figure 1 shows a typical neural network comprising an input layer of two neurons (input vector 

92 components), two hidden layers and an output layer of two neurons (output vector 

93 components). 



 
94 Figure 1. A feedforward neural network with two hidden layers. N1 N2: input-neurons; N3, N7, 

95 N11: Bias-neurons;  N4, N5, N6: first hidden layer neurons;  N8, N9, N10: second hidden layer 

96 neurons; N12, N13: output-neurons. 
 

97 
 

98 The mathematical process for an individual neuron, for example N4 in figure 1, is: each input 

99 from a neuron of the previous layer (included the bias signal) is multiplied by a weight  and 

100 the sum of this product is computed. This summatory is transformed using a nonlinear 

101 function activation σ, and the resulting output is passed to all neurons of the next layer. This 

102 process is repeated on all neurons in the network. The output of this neurone N4 is shown in 

103 equation (1). 

 
104 (1) 

105 In compact form, the functionality of an active (no bias) neuron in the hidden layer (and the 

106 output if the same activation function is used), can be written as in equation (2). 

107   (2) 

108 where 



109 Result of neurone j of layer k 

110 Activation function 

111 Number of the first neurone in the previous layer 

112 Number of the first neurone in the previous layer (BIAS) 

113 Result of neurone i of layer k-1 

114 Synaptic weight of i, j connection 

115 Connection weight BIAS 

116  
 

117 During learning, the synaptic weights are adjusted automatically. While the number of neurons 

118 in the input and output layers is given by the dimensions of the corresponding vectors, the 

119 number of hidden layers and neurons in each of these layers depends on the characteristics of 

120 the particular problem to be solved, there being no established rule for choosing them. Most 

121 problems can be solved with one or two hidden layers and number of neurons involved must 

122 be determined by tests with different network architectures. 

 
123 123 

 

124 2. CASE STUDY 
 

125 To perform a generic analysis of a slender masonry structure, a bell tower of 35 m height with 

126 a square section of 5x5 m has been considered, with a constant thickness over the entire 

127 height of the tower of 0.5 m (Figure 2a). In order to simulate the soil-structure interaction and 

128 the influence of variation of the water table in the ground stiffness under the structure, these 

129 possible stiffness variations are simulated each 0.25 m, from level 0 to a depth of 20 m. (Figure 

130 2a). 

 

131 Some numerical models were developed including the structure and the soil rigidity. These 

132 models were calculated using SAP2000TM commercial software [13]. 4-node area finite 

133 elements were used to mesh the model with three degrees of freedom per node. The same 

134 finite area elements were used to model the masonry structure and the soil. 
 

135 81 numerical models of this tower were calculated. Each model has a different stiffness on the 

136 foundation, where each stiffness correspond to an increment of the foundation depth of 0.25 

137 m. (Figures 2b and 2c). An initial non-linear analysis was developed for the self-weight loads 

138 considering the non-linear behaviour of a generic masonry [14]. A modal analysis was 

139 calculated with the stiffness of the soil-structure model obtained by the non-linear analyses. 

140 The Non Linear staged construction procedure was implemented where the initial non-linear 



141 static analysis was calculated before the modal analysis, developing it with the deformed 

142 structure after the non-linear static analysis. 

143 Only the 3 main frequencies are calculated, assuming that in an experimental dynamic test in a 

144 real structure these values are the usually obtained. 

145 The main assumptions for the numerical model are: 

146 • Constant average material density 18 kN/m3 for masonry structure and for the soil 

147 material model. 

148 • The Poisson’s ratio of the masonry was held constant and equal to 0.15 and 0.5 for soil. 

149 • The interaction between soil and structure is considered by modelling the soil by Area 4- 

150 node finite elements with one-meter thickness. 

151 • All the nodes of the soil have restricted the horizontal displacements, only the lower soil 

152 layer has restrained all the displacements. 

153  
 

(a) (b) (c) (d) 
154 Figure 2. Generic model for a slender masonry structure. (a) General description. (b) Numerical 

155 model with the phreatic level at -8.25m. (c) Numerical model with the phreatic level at -20 m. 

156 (d) Location of the registered displacements to training the network. 

157 



158 In this structure, the numerical model shows two main bending frequencies an a third 

159 frequency of torsion, as the results obtained in similar experimental cases ([3], [4]). Figure 3 

160 shows the changes on the main frequency of this tower when the stiffness of the soil changes: 

161 Lower stiffness shows lower main frequency. These stiffness changes can be associated with 

162 changes in the position of the phreatic level. 

 
163 163 

164  

165 Figure 3. Results of the numerical model. Changes on the soil stiffness, changes on the main 

166 frequencies (Lower frequency of the modal analysis) of the structural model. 

167 

168 3. VALIDATION PROCEDURE. THE USE OF NEURAL NETWORKS 
 

169 The problem to solve is to predict a numerical value output (water table depth) based on an 

170 input vector of 87 components (displacement of 14 knots and 3 modal frequencies). In our 

171 case, the problem is obtain an approximation function; the Feedforward type network has 

172 been used. 
 

173 The neural network has been implemented with © Wolfram Mathematica general purpose 

174 software, and used the Neural Network Package for Mathematica MathLink for the definition 

175 and basic training of the network. The graphics output and graphs network architecture have 

176 been specially programmed for this job using Wolfram Language, Combinatorics and Graph 

177 Utilities Package. In our case, being an approximation problem function. We used a 

178 Feedforward network type as described in Section 1-Introduction. This type of network is also 

179 used for classification and dynamic systems modelling, one of the most versatile and widely 

180 disseminated. For specific use in classification, they exist Hopfield, Perceptron or Vector 

181 quantization type. For clustering and self-organizing maps are more suitable type of 

182 Unsupervised. 



183 The nonlinear activation function used for the hidden and output layers has been the Sigmoid 

184 Simmetric σ(x) in the interval [-1, +1]. This function is shown in equation 3 and represented in 

185 Figure 4. This is a nonlinear step function; the slope can be adjusted using the coefficient 

186 exponent s. 
 

187 

   (3) 

188 
 

189  

190 Figure 4. Sigmoid Symmetric activation function. 
 

191 The network used in this study contains 87 neurons in each of the input and output layers and 

192 two hidden layers with 44 neurons each, plus 3 neurons bias to correct the bias of the hidden 

193 and output layers. The total number of neurons is 265 and the network topology used, have 

194 created 9,767 synaptic connections (Figure 5). 



 
195 195 

 

196 196 

Figure 5. Overview of the neural network used.. 

 

197 The large number of connections and neurons prevents detailed network observation that, 

198 despite its complexity, has allowed training times of less than 1.75 s / 1000 epochs in a 

199 computer equipped with i7 processor with a set of 70 pairs of input-output vectors. Figure 6 

200 and Figure 7 show partial details of the start and middle of the network. 
 

201 Figure 6. Partial view of the neural network used. Synaptic connections 1-300. 



 
 

202 Figure 7. Partial view of the neural network used. Synaptic connections 2.100 a 3.000. 
 

203 4. ANALYSIS OF RESULTS OBTAINED BY NEURAL NETWORKS. 
 

204 A data set with 80 input-output vectors obtained by the 80 numerical models developed has 

205 built (87 components of input and output) representing many other cases of deep water table. 

206 The network was trained with 70 of these randomly chosen vectors and then a test of training 

207 was carried out with the remaining 10 vectors. Figure 8 shows the results of network training, 

208 Mean Squared Error obtaining a between the data and the desired target set equal to that era 

209 MSE = 10-4. The total training time was 298.68 s. 



 
 

210  
 

211  

Figure 8. Training results 

 

212 Linear regression between the target data (used for training) and the output of the network 

213 trained with the obtained input parameters corresponding network is obtained to check the 

214 validity of the setting, and the result is shown in Figure 9. 
 

215 The corresponding coefficient of determination was R2 = 0.999, with equation 4. 
 

216 216 

 
217 217 

 

218 218 

  (4) 



 
 

219 Figure 9. Regression Target/Output for the training vectors 
 

220 This equation shows as can be seen in Figure 9: The points (Target Output) are too tightly with 

221 the line and has a slope of 45 °. It indicates a high quality in the adjusted parameters for the 

222 neural network during training. 
 

223 Finally, there has been developed a further check with the 10 vectors that are non-used in the 

224 training. The results are shown in Figure 10. These results validate the neural network. 



 
 

225 225 
 

226 226 

Figure 10. Regression Test/Output for the 10 additional vectors. 

 

227 In Figures 9 and 10 points whose coordinates are pairs of values (actual and calculated by the 

228 network once trained) for different input vectors are represented. Figure 9 relates to the 

229 training vectors (70). At each point the abscissa is the desired output value for an input vector 

230 (Target), which is the known value used in training, and the ordinate is the output value 

231 delivered by the network to the same input vector (Output). Figure 10 refers to the vectors 

232 used to test the adjustment (10). At each point the abscissa is the desired output value for an 

233 input vector (Target), which is the known value NOT used in training, and the ordinate is the 

234 output value delivered by the network to the same input vector (Output). Obviously, in a 

235 perfect fit every point would be located on the diagonal, ie Output Target and identical for 

236 each input vector both training as Test. As noted above, values are normalized and 

237 represented as shown in Figures 9 and 10, all output values (depths) and Output Target vary 

238 between 0 and 1. 
 

239 In the specific case of this tower, the target corresponds to the water table associated with the 

240 input data used for validation. In this case, 10 sets (input vector) of data were used. This input 

241 vector has 87 components: displacements at different heights for different nodes, directions 

242 and associated vibration modes. Each input vector has a known water table depth calculated 

243 numerically with SAP2000TM and this value is the target. For each input vector the network 



244 produces another value for the water table depth, this is the output. Hence, the comparison 

245 between target (known data) and output (data predicted by the network) can indicate the 

246 validity of the prediction technique. 

 
247 247 

 

248 5. CONCLUSIONS 
 

249 A theoretical dynamic study on a masonry bell tower is described in the paper. Main 

250 frequencies and modal displacements of selected points are calculated when the stiffness of 

251 the soil changes. This change can be associated to variations of the water table depth. 
 

252 The following conclusions can be drawn from the study: 
 

253 1. A simplified and low-cost method is described to evaluate the dynamic soil-structure 

254 interaction when exist variation of the phreatic level. 
 

255 2. A non-destructive technique, based on neural networks is presented to obtain the 

256 variation and position of the phreatic level. 

257 
 

258 Through an adjustment by using neural networks, a good correlation has been observed 

259 between the predicted position of the water table and displacements readings registers 

260 obtained from the numerical model. It’s possible, to conclude that with a discrete register of 

261 accelerations on a slender structure it´s possible to predict the water table depth if the neural 

262 network is well calibrated with accelerometers and piezometers registers. 
 

263 This preliminary theoretical analysis will be the base of a more accurate analysis on a slender 

264 masonry structure monitored continuously with accelerometers to predict the evolution of the 

265 water table depth and its main frequencies. 

 
266 266 
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