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Abstract 

Fluid Viscous Dampers have been widely applied to reduce the effects of vibrations in civil 

engineering structures. Good understanding of the dynamical behavior of these devices is required 

for the analysis of structures equipped with  Fluid Viscous Dampers. The simple Kelvin–Voigt and 

Maxwell rheological models do not have enough parameters to suitably capture the frequency 

dependence of device parameters and for this purpose other models representing some 

generalizations of basic Kelvin–Voigt and Maxwell models have been developed. This paper is 

devoted to parameters identification basic and generalized Kelvin–Voigt and Maxwell models for 

Fluid Viscous Dampers. The identification procedure furnishes the best mechanical parameters by 

minimizing a suitable objective function that represents a measure of difference between analytical 

and experimental applied forces. For this purpose the Particle Swarm Optimization is adopted. 

Results are obtained under various test conditions, comparing the agreement of various models with 

experimental data. Finally, a numerical investigation is performed on a simple one degree of 

freedom structure, equipped with Fluid Viscous Dampers and subject to a real seismic motion. 
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1. Introduction 

Among various passive vibration control technologies adopted to reduce detrimental effects 

associated to large vibrations in civil structures (Marano et al., 2010, and Marano et al, 2007) 

additional damping represents one of the different ways that have been projected over the year to 

allow structures to achieve optimal performances when they are subjected to external actions. 

Conventional approach would dictate that the structure must inherently attenuate or dissipate the 

effects of transient inputs through a combination of strength, flexibility and deformability. 

However, generally, the level of damping in a conventional elastic structural system is very low, 

and therefore the amount of energy dissipated during transient excitations is also very low. For 

example, during strong earthquakes conventional structures typically deform well beyond their 

elastic limits, and eventually fail or collapse.  Therefore, most of the energy dissipated is absorbed 

by the structure itself which is subjected to damage. Adding supplemental dampers to a structure 

has, as consequence, that much of the energy introduced into the  structure will be absorbed, not by 

the structure but by the additional devices properly designed for this purpose. 

Additional damping can be provided by fluid and solid viscous dampers. Silicone oil is used to 

build the fluid dampers, while the solid dampers are made of copolymers or glassy substances. The 

Fluid Viscous devices developed in recent times include Viscous Walls and Fluid Viscous Dampers 

(FVD) which represent the object of this study. The Viscous Wall, developed by Sumitomo 

Construction Company, consists of a plate moving in a thin steel case filled with highly viscous 

fluid (Soong and Spencer, 2002).  



FVD operates on the principle  of fluid flow through  orifices. A stainless  steel piston travels 

through chambers that are filled with silicone oil. The silicone oil is inert, non flammable, non toxic 

and stable. The pressure difference between the two chambers produces silicone oil to flow through 

an orifice in the piston head: input energy is then transformed into heat, which dissipates into the 

atmosphere. The force/velocity law  can be characterized as F Cx  where F is the output force, 

x  the relative velocity across the damper, C is the damping coefficient and α is a constant which 

assumes usually a value between 0,3 and 1,0.  

In order to enhance the effectiveness of application of FVD and in order to provide a reliable 

support for designing an efficient protection strategy, a suitable description of behavior of these 

dampers is needed.  In the past different models were developed  to describe the dynamic behavior 

of viscous dampers and both the classical and the so-called fractional-derivative models of viscous 

dampers are available. The simple models, like the Maxwell model and the Kelvin-Voigt model 

(Zhao-Dong, 2007; Zhao-Dong et al., 2011; Sing et al., 2003; Lee et al., 2004)  are very frequently 

adopted to represent FVD. For example the Kelvin–Voigt model, which consists of the spring and 

the dashpot connected in parallel, is used in papers (Singh and Moreschi, 2002; Shukla and Datta, 

1999; Galucvio et al., 2004), while the Maxwell model built from the serially connected spring and 

dashpot is used in (Lee et al. 2004; Hatada et al., 2000;Sing and Moreschi, 2002; Shukla and Datta, 

1999). 

However, these models present the disadvantage to correctly model the mechanical properties of 

the dampers only for individual frequencies. On the contrary,  the mechanical properties of the 

polymers used in these devices are strongly frequency dependent and for this purpose standard 

mechanical rheological models, whose parameters are determined from experimental studies, like 

the generalized Maxwell or generalized Kelvin - Voigt models, have been often used the FVD 

(Park, 2001; Park, 2001). 



Fractional models are becoming more and more popular because of their ability to describe the 

behavior of visco-elastic dampers using a small number of parameters. Using the fractional calculus 

a number of rheological models, e.g., the fractional Kelvin– Voigt model (Papoulia et al., 2010), the 

fractional Zener model (Pritz, 1996; Atanackovic, 2002), the fractional Jeffreys model (Soong and 

Jiang, 1998), the fractional Maxwell model (Makris and Constantinou, 1991) and the fractional 

derivative Maxwell Model (Jiu et al., 2007) have been proposed. It has been shown in (Park, 2001) 

and (Schmidt and Gaul, 2002) that the fractional derivative models can better capture the frequency 

dependent properties of viscous  dampers. However, a significant problem related with the 

fractional rheological models, is the evaluation of model parameters from experimental data. 

Various methods have been utilized to evaluate model parameters from both static and dynamic 

tests (Gerlach and Matzenmiller, 2005; Syed and Philips, 2000; Aprile et al., 1997; Hansen, 2007; 

Gaul and Schmidt, 2002). The process of parameter identification is an inverse problem which is 

over determined and can be ill conditioned  (see, for example (Syed and Philips, 2000; Hansen, 

2007) because of noises existing in the experimental data. The mathematical difficulties may be 

surmounted by  the regularization method which is described, for example, in (Gerlach and 

Matzenmiller, 2005).  

Current identification techniques for viscous dampers are mostly based on parametric models. 

Although parametric identification techniques have been successfully used to identify viscous 

dampers, non-parametric identification techniques are more suitable in structural health monitoring 

SHM (Soong and Dargush, 1998) because the system characteristics may continuously vary over 

time, both quantitatively as well as qualitatively. Several identification approaches, both parametric 

and nonparametric, are compared in (Yun and Bahng, 2000; Yun et al., 2008) by using real data 

carried out from full-scale nonlinear viscous dampers commonly used with large flexible bridges. 

About the parametric techniques, the capability of the Adaptive Random Search is explored in (Yun 

and Bahng, 2000): the authors solved an optimization problem in which the numerical values of the 

unknown model parameters were estimated by minimizing an objective function based on the 



normalized mean square error between the measured and identified damper responses, evaluated as 

displacement/velocity and obtained by integrating dynamic equilibrium equations of FVD 

constitutive law subject to experimental applied force history. 

This paper focuses on the evaluation of performance of classical and generalized Kelvin-Voigt 

and Maxwell models for FVD modeling. In the study here proposed generalized Kelvin-Voigt 

(GKV) model and Generalized Maxwell model (GMM) are a modification of the classical Kelvin-

Voigt and  Maxwell models, where the main difference between classical and generalized models is 

that the generalized one incorporates nonlinearity in both the spring and the viscous element. More 

precisely, the resistant forces of both elements in these two generalized models have fractional 

exponential coefficients.  In order to assess the efficiency of these generalized models to capture the 

hysteretic behavior of real FVD, analytical models will be verified by experimental test. Therefore, 

the identification scheme is developed comparing the experimental and the analytical values of the 

forces experienced by the device under investigation, where the experimental one has been recorded 

during the dynamic test, while the analytical one is obtained by applying a displacement time 

history to the candidate mechanical law. In this way, a measure of the “distance” between 

experimental and analytical result is introduced as the integral of the difference along the whole 

experiment considered. The optimal set of parameters is thus derived by minimizing this distance 

by using an evolutionary algorithm. For the parametric identification of a real FVD the authors 

adopt the Particle Swarm Optimization (PSO). Identification is carried out under various test 

conditions comparing also generalized and standard models: some considerations about agreement 

with experimental data are also furnished. Finally, a numerical investigation is performed on a 

simple one degree of freedom structure equipped with a FVD and subject to a real seismic motion. 

For FVD classical and generalized models are considered whose parameters have been previously 

identified. 



The next of the paper is organized as follows: in section 2 a survey of standard and generalized 

Kelvin-Voigt and Maxwell models is reported. In section 3 the identification scheme is reassumed 

and some remarks of PSO algorithm are given. Moreover, in section 4 some details of experimental 

test are furnished and in section 5  the results of the identification are illustrated and some 

conclusions are carried out. In section 6 a numerical investigation on a simple one degree of 

freedom structural system equipped with FVD and subject to a real seismic motion is performed in 

order to assess the variability of the response to device modeling. In section 7 come conclusions are 

then discussed. 

 

2.  Mechanical models for fluid  viscous dampers 

In this paper two rheological models, i.e. the Kelvin-Voigt and the Maxwell models  (see Figure  

1), are used to describe the dynamic behavior of FVD. This selection has been made because, due to 

their simplicity, Kelvin–Voigt and Maxwell models are adopted frequently  to represent the 

behavior of  viscous dampers.  

 

2.1 Kelvin-Voigt model 

Experimental studies have demonstrated that the resistance force of some viscous dampers 

depends not only on damper velocity but also on damper deformation. This  mechanical property 

may be mathematically modeled connecting a spring element and  a viscous element, respectively. 

In the Kelvin–Voigt model these two elements are connected in parallel (Figure 1a). The equation 

of the motion of this element can be written as  

 

F Kx Cx             (1) 



In equation (1) F  represents the damper (axial) force; x denotes the damper deformation, x

represents the deformation rates; K denotes the stiffness value of the spring element; C is the 

damping coefficient of the viscous element.  

This classical model can be generalized incorporating a nonlinearity in both the spring and the 

viscous element (Figure 1b); the resistant forces of both elements in this generalized model have 

fractional exponential coefficients  

 

F Kx Cx              (2)
 

 

In this study the classical and generalized Kelvin-Voigt models given in equations (1) and (2) 

will be employed to simulate a nonlinear FVD. For these models two characteristic parameters, K 

and C  (classical Kelvin-Voigt model) or four characteristic parameters, K, C,    and   

(generalized Kelvin-Voigt model) must be identified. 

 

(a) 

 

(b) 

(c) (d) 

 

Figure 1. Rheological  models of viscous damper: (a) Kelvin-Voigt, (b) Generalized Kelvin-Voigt, 

(c) Maxwell, (d) Generalized Maxwell. 



2.2 Maxwell model  

In the Maxwell model the spring and the dashpot element are connected in series (Figure 1c). 

Mechanically this model must satisfy the following kinematic conditions 

 

e v
x x x 

 

e v
x x x 

            (3) 

 

and also the following force condition 

 

e v
F Kx Cx 

           (4) 

 

In equation (4) F represents the damper (axial) force; x denotes the total damper deformation; 

e
x  and 

v
x  denote the deformations of the stiffness and viscous components, respectively. In 

addition  x , e
x  and 

v
x represent the corresponding to x, 

e
x  and 

v
x ;  K denotes the stiffness value 

of the spring element; C is the damping coefficient of the viscous element.  

Also this classical model can be generalized incorporating a nonlinearity in both the spring and 

the viscous element (Figure 1d); the resistant forces of both elements in this generalized model have 

fractional exponential coefficients  

 

e v
F Kx Cx  

           (5) 

 



In this study also the classical and generalized Maxwell models given in Eq. (4) and (5) will be 

employed to simulate a nonlinear FVD. For these models the two characteristic parameters, K and C  

(classical Maxwell model) or the four characteristic parameters, K, C,    and   (generalized 

Maxwell model) must be determined. 

 

2.3 Numerical method for the Generalized Maxwell model 

In this section it will briefly develop the numerical method used in the simulation of the 

generalized Maxwell model, needed in the next part of this paper to simulate the model response to 

compare with experimental data. Because the hysteresis loop of a damper is the relation between the 

damper force F and the total damper deformation x, first of all one needs to solve F as a function of 

x.  

For this purpose equation  (5) can be written as  
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             (6) 

 

In addition from equation (3) it results  

 

e v
x x x 

            (7) 

 

and then 
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             (8) 

 

Now, if the damper total deformation x is assigned and is considered as an external excitation, 

equation (8) represents the dynamic equation of the generalized Maxwell model forced by 

prescribed disturbance x . Mathematically this equation is also a first-order ordinary differential 

equation with 
e

x  and it can be solved by many numerical methods. Once the differential equation 

has been solved in 
e

x  one can obtain F . 

 

3. Identification scheme: objective function and optimization problem 

Identification aims to evaluate the four parameters K, C,    and   (generalized models) or 

only the two parameters K, C (classical models). These are collected in the vector  , named 

parameter vector, that is a two or four dimensions vector, respectively, in case of classical or 

generalized models. After the design vector has been specified, the second step for parameters 

identification scheme requires the formalization of a suitable objective function to be minimized. 

The model parameters x of the viscous damper are identified by solving the following single-

objective optimization problem 

 

  min       f
x

x            (9) 

s.t. l u x x x  

 



in which x = {x1,…,xj,…,xn} is a set of real parameters, in this case x collects the mechanical 

models parameters, xl = {x1
l,…,xj

l,…,xn
l} and xu = {x1

u,…,xj
u,…,xn

u} are its lower and upper bounds, 

respectively. The solution that minimizes the objective function f(x) (OF) is denoted as x*. 

The following integral is assumed as a suitable measure to define the OF  in the identification 

problem: 
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where tstart  and tend  are the start and end time records, fexp(t) is the experimental force measured, 

while fe(t) is the force estimated obtained by numerical differentiation of experimental displacement 

time history with a 3rd order algorithm to limit numerical noise. 

The OF evaluation is extremely computational cheap if compared to the alternative dissimilar 

approaches, in which the duality of starting from an experimental force leads to the theoretical 

displacement obtained by integration as a solution of the differential equation. In order to solve the 

problem previous stated Particle Swarm Optimization (PSO) is adopted. PSO is a population-based 

stochastic optimization technique appropriate for global optimization with no need for direct 

evaluation of gradients. Introduced by Kennedy and Eberhart (1995), the method mimics the social 

behavior of flocks of birds and swarms of insects and assures the axioms of swarm intelligence, 

namely proximity, quality, diverse response, stability and adaptability. The basic PSO algorithm 

variant works by having a population of possible solutions that are moved around in the research 

space according to a few simple formulae. Their movements are guided by their own best known 

position in the search-space as well as the entire swarm's best known position. In some more details 

there are two primary operators; position update and velocity update. Each particle during each 



generation is accelerated toward the particles previous best position and the global best position. 

The evaluation of new velocity in each iteration for each particle is referred to its current velocity, 

the distance from its previous best position, and the distance from the global best position. When 

improved positions are being discovered these will then come to guide the movements of the 

swarm. The process is repeated and by doing so it is hoped, but not guaranteed, that a satisfactory 

solution will eventually be discovered. 

 

4.  Experimental studies 

4.1 Test device 

The 750 kN viscous damper was tested at SISMALB laboratory in Taranto, Italy. The test setup 

(Figure 2) consists of a high resistance steel frame to withstand loads of tension and compression of 

2200 kN. The device is anchored to structure by means of a pin, and is stilled to the servant cylinder 

by means of a threaded connection and bolted. The movements are generated by a servant cylinder 

of 1400 kN, controlled in force and/or displacement. Between servant cylinder and device is located 

a load cell of 2500 kN, which acquires the forces applied to the device during the entire duration of 

the experiment. In a displacement imposed test, the device movements are controlled by a 

transducer mounted on the device. The control and data acquisition system is able to generate a real 

time analysis device displacements by instantaneous variation of applied forces by the servant 

cylinder, by means of a computer automatic control hydraulic pressure system. The displacement 

time history should be imposed with different laws, from sinusoidal to triangular, or through a 

generator step of generic ones. Acquiring systems have 30 channels and can command 2 actuators 

at the same time. Table 1 shows the design characteristics of the tested FVD. The imposed time 

displacement history adopted is a sinusoidal one with a transient initial phase to reach the stationary 

regime; the same is at the end of the process, when a decreasing phase is adopted. In both the 



phases (starting and ending) the automatic control system use a variable amplitude process whit the 

same frequency of the stationary one. Amplitude increase with a linear low so that in two pulsations 

it reaches the final value. Some noise due in control phase are in those two phases, especially in first 

2 – 3 seconds, and are related to the difficulty in controlling instantaneously this process from the 

beginning, but it do not decrease sensibly test accuracy. 

 

 

(a) 

 

(b) 

 

Figure 2. (a) A photo of the test apparatus with the FVD and (b) a schematic description . 

 



F 

[kN] 

Stroke [mm] C [kN/(mm/s)] V [mm/s] α 

750 ± 100 406.24 460 0.1 

Table 1. FVD Design Condition. 

 

4.2 Test cases 

Three experiments were performed to obtain dynamic response of the viscous damper. The 

experiments were designed to determine the dynamic performance characteristics of the damper at 

varying velocities and to determine the effective energy dissipation of the device. The damper was 

subjected to multiple sets of monotonic sinusoidal excitations at peak velocities of 92 mm/s and 460 

mm/s. The first two tests had a 3-cycle excitation period, while the third test (energy dissipation 

test)  had a 10-cycle period. The specifications of test are summarized in Table 2. 

 

 

No. 
Load  

(kN) 

Test stroke  

(±mm) 

Velocity 

(mm/s) 

Cycles   

Test 1 750 20 92  3 

Test 2 750 20 460 10 

Test 3 750 20 460 3 

Table 2. Fluid viscous damper test condition. 

 

5. Parameters identification results 

For the evaluation of optimal values of the unknown quantities the parametric identification 

which makes use of a non-classical method (PSOA) was applied with a population size N=50 and 



maximum number of iterations L=100. The parametric identification has been performed by solving 

the single-objective optimization problem whose objective function is given by Equation (10). The 

algorithms have been performed fifty times and the best solution has been carried out as the final 

identification result. These are shown in table 3 for each test and for each model examined. 

Voigt 

 C K OF 

Test 1 6.4963    12.6587 0.2877 

Test 2 3.5944  15.5999 0.2049 

Test 3 3.0240 12.8350 0.3074 

Maxwell 

 C K OF 

Test 1 7.3107   139.2401 0.2882 

Test 2 4.0123 259.4377  0.1784 

Test 3  3.3335 205.6275 0.2869 

Generalized Voigt 

 C K 
c  k  

OF 

Test 1 
24.1856     0.7847     0.6932     2.0000 

 

0.2300 

Test 2 1.0213 1.1889  1.2407 2.0000 0.1816 

Test 3 4.7018 52.2115 0.9249 0.4756 0.3079 

Generalized Maxwell 

 C K 
c  k  

OF 

Test 1 132.0147 267.8712 0.3331     1.0006 0.1269 

Test 2 122.1587 358.5821 0.3360 1.0060 0.1240 

Test 3   119.2544 277.8710 0.3333 1.0017 0.1535 

Table 3. Identified parameters for the four analyzed models for FVD.  

 



More precisely, for each model the minimized objective function is furnished  together with 

optimum parameters obtained by solving the optimization problem given in equation (9),. i.e. the 

parameters that best fit the experimental cycles of FVD, and this is achieved by using the 

optimization searching scheme PSO. The results are distinguished for different tests in order to 

assess the influence on the solution performance of the frequency, of the load application and of the 

cycles number.  

In Figures 3-6 the experimental hysteresis loops of the damper are compared with those 

simulated by the selected models previous described, for load application velocities V1, V2 (in 

figures different tests are individuated with Test1 Test2 and Test3. More precisely, in Figures 3-6 

both relationships force-displacement (a) and force-velocity ( b) are shown. The blue lines represent 

the experimental loops, while the red lines are the theoretical loops obtained by using the identified 

parameters for each model.  

By observing the plots one can notice that the experimental and theoretical loops have exactly 

the same relative displacement (and velocity), whereas the damper force of the theoretical loop is 

computed according to each of the models. The comparison between theoretical and simulated 

loops points out that the analyzed models have a different  ability to capture the hysteretic behavior 

of the fluid damper under excitations of different frequencies and different number of cycles; this 

last aspect is related to the relative importance of the transient response with respect to the entire 

duration of the load. 

 

 

 

 

 



 

 

 

Figure 3 (a). Comparison between theoretical and experimental force -displacement relationships 

for the Voigt model.  



 

 

 

Figure 3 (b). Comparison between theoretical and experimental force – velocity relationships for 

the Voigt model. 



It is evident that the classical Voigt model is unable to simulate the experimental loops because 

it shows approximately an elliptical shape which is rather dissimilar from the experimental loop 

recorded under different tests. This outcome is clearly manifest by numerical results of 

identification procedure (Table 3) which point out  the higher value of the OF for the Voigt model. 

On the contrary, both the numerical results in Table 3 and hysteresis loops in Figure 5 point out that 

the generalized Maxwell model fits very well with the experimental loops under all the performed 

tests. However, also the capability of generalized Maxwell model to match the recorded hysteresis 

loops varies with the frequency and with the number of cycles; the greater performance (minimum 

of the OF) corresponds to test 2, i.e. when the frequency and the number of cycles increases. In 

effect, as previous mentioned, one can observe in each experimental test in Figures 3-6 that there is 

a transient phase in which, except for the generalized Maxwell model (Figure 6), the theoretical 

loops is unable to match with the experimental one and only after some cycles the theoretical loop 

fits the experimental one. This means that if the transient phase is large with respect to the entire 

duration of the load, a lower performance corresponds (greater OF ) because this latter is computed 

over the entire duration. This consideration explains the increase of fitting as the number of cycles 

grows up (from test 3 to test 2) and this behavior can be noticed for all the analyzed models. This 

consideration can be appreciated in Figures 7 and 8, where for the four models the relationship 

force - displacement is plotted.   

 

 

 

 

 

 



 

 

 

Figure 4 (a). Comparison between theoretical and experimental force -displacement relationships 

for the Maxwell model.  



 

 

 

Figure 4 (b). Comparison between theoretical and experimental force -velocity relationships for the 

Maxwell model. 



 

 

 

Figure 5 (a). Comparison between theoretical and experimental force -displacement relationships 

for the Generalized Voigt model.  



 

 

 

Figure 5 (b). Comparison between theoretical and experimental force –velocity  relationships for 

the Generalized Voigt model.  



 

 

 

Figure 6 (a). Comparison between theoretical and experimental  force -displacement  relationships 

for the generalized Maxwell model.  



 

 

 

Figure 6 (b). Comparison between theoretical and experimental force -Velocity  relationships for 

the generalized Maxwell model.  



In addition, one can observe that from test 1 to test 3 (with higher frequency with respect to test 

1), the matching of the generalized Maxwell model (but also the others) is inferior. The matching 

increases with the number of cycles, i.e. in the test 3,  in which reaches the better performance for 

the reason previous explained. Also the standard Maxwell model works well in the test 2, whereas 

for low frequency the discrepancy between the standard and the generalized Maxwell model 

increases.  

In the test 1 the Maxwell and Voigt models show approximately the same performance 

(OF=0.28). One should securely deduce that, concerning the variability of the matching with the 

frequency and the duration of the test, the model which works better is the generalized Maxwell 

model and that which works less is the Voigt one. This latter underestimates the force for all tests 

and especially under low frequency. (v) This justifies the use of series models with respect to 

parallel ones, that should be derived also from some mechanical considerations. Actually FVD 

presents an orifice that induces not only a turbulent oil flow during its activation, but also a quite 

high difference of pressure between the two damper oil tanks, and compressed oil shows an elastic 

behavior in this phase. Due to this, the force transmitted should be more reasonably represented by 

a series model instead that by a parallel one, as experimental results show. In addition to this, the 

Voigt model doesn't improve mostly in the passage to the non linear generalization, and one can 

observe only a little increase of the matching in the generalized Voigt model with respect to the 

standard one. The generalization of the model on the contrary produces a large improvement of the 

matching in the Maxwell model. 

 



 

 

Figure 7. Comparison between theoretical and experimental force-time relationships for the 

Maxwell and Generalized Maxwell models.  

 

 

Figure 8. Comparison between theoretical and experimental force-time relationships for the 

Voigt and Generalized Voigt models. 

Another important aspect that one should consider is the stability of identified parameters with 

respect to the test performed. In effect, also from this point of view, the Generalized Maxwell 

model performs very well with respect to the other ones, showing high stability with respect to the 



test specimen. This aspect of the problem is very important in practical applications if one considers 

that when a FVD is installed on a structure it will be subject to diverse load conditions and, 

therefore, a suitable model should be stable when conditions such as load frequency and duration 

change. On the contrary, the model which shows the lower stability of identified parameters with 

respect to the test specimen is the Generalized Voigt one.  

Moreover, in figures 3-6 also the relationship force-velocity is given. One should observe that 

the Generalized Maxwell model fits well also the force-velocity experimental loop, especially for 

high excitation frequency. However, also the standard Maxwell model is able to capture the 

experimental force -velocity loop, except for the test  1 The other models have a lesser ability to 

well represent real force - velocity loops.  

There is also another important aspect to consider in this identification procedure; it uses an 

integral Objective Function, that simply means it minimizes differences between predicted and 

experimental device forces during the entire experiment. It takes into account not only stationary 

response (when sinusoidal displacement is reached) but also transient phase, at the beginning and at 

the end. This is strongly different from a standard frequency approach, that considers only 

stationary part. Moreover, in the proposed approach the transient phase contribution to the 

identification is function of its duration with reference to the entire experiment one. Some 

considerations should be added by observing, separately, the experimental-identified differences 

during the initial phase, when the imposed displacement grows up till to the request sinusoidal 

amplitude. In figures 7 and 8 differences between optimal parallel and series models (standard and 

generalized) with experimental behavior are reported.  

It is evident that, in general, the Voigt model (fig. 8) doesn’t match well the transient phase, 

showing a good agreement with experimental data only when the stationary regime is reached. With 

more details, at the beginning, in the very first instants, both two Voigt models (standard and 

generalized) show a completely different phase with experimental data. Moreover, the generalized 



model don’t increase significantly the accuracy. Differently, the Maxwell model shows a more 

accurate agreement with experimental data in this transient phase, and the generalized one exhibits 

a more accurate prediction instead of linear one. This should be an important point for the 

identification of such  devices, because sinusoidal stationary experiments are quite far from real 

seismic excitations, where transient phase are dominant. With regard to this point it seems that 

standard  Maxwell model presents the best agreement with experimental data not only during 

stationary but also during non stationary excitation, and so it will be used also for this reason. 

  

6. Numerical study on a single degree of freedom system equipped with FVD 

In the previous section it has been concluded that the generalized Maxwell model is able to 

accurately capture the hysteretic behavior of fluid viscous damper under harmonic excitation, 

demonstrating at the same time a great stability of identified parameters under various test 

conditions. In this section, in order to further investigate the effectiveness of the generalized 

Maxwell model, a sequence of simulations are performed to evaluate the seismic response of a 

single degree of freedom system, which simply models a structural system vibrating in its 

fundamental motion, under a real earthquake ground motion and equipped with a FVD. The 

earthquake motion selected is the El Centro record (comp. S00E) of the 1940 Imperial Valley 

earthquake. The selected system has mass m= 1000 kg, a damping coefficient equal to 2% and a 

natural period of 0.5 sec. 



 

 

Figure 9. Comparison between displacement and acceleration time histories for a single DOF 

system without damper, and equipped with FVD. The Voigt model has been utilized, whose 

parameters have been identified under the three tests. 

 



 

 

Figure 10. Comparison between displacement and acceleration time histories for a single DOF 

system without damper, and equipped with FVD. The Generalized Voigt model has been utilized, 

whose parameters have been identified under the three tests.  

 



 

Figure 11. Comparison between displacement and acceleration time histories for a single DOF 

system without damper, and equipped with FVD. The Maxwell model has been utilized whose 

parameters have been identified under the three tests.  

 

 



 

 

Figure 12. Comparison between displacement and acceleration time histories for a single DOF 

system without damper, and equipped with FVD. The Generalized Maxwell model has been utilized 

whose parameters have been identified under the three tests.  

 

Under the El Centro Earthquake, Figures 9-12 compare the displacement and acceleration time 

histories of the SDOF system without protection and equipped with FVD. In each figure, 

corresponding to the four analyzed models, four different responses are plotted which correspond to 

three set parameters obtained under the three test conditions and to the system without FVD.  



 

Figure 13. Comparison between spectral response for a single DOF system, without damper and 

equipped with FVD. For each model the parameters identified under the three tests have been 

utilized.  

 

A first observation that can be carried out is that the modeling of FVD can affect the real 

evaluation of damper efficiency in reducing dynamic response of the main system. In effect, the 

different models adopted in this study, from the simple linear to the more comprehensive non-linear 

ones, can differently capture the real behavior of FVD . In effect, if a simple linear model is 

adopted, this can underestimate the FVD performance with respect to the generalized models. This 

last, taking  properly into account the real dissipative capacity of FVD, produces a larger evaluation 

of the reduction of the response of the main system with respect of the reduction evaluated by 

adopting a linear model, such as the Voigt one (Figure 9). For this last model, in addition the 



evaluation of the response reduction is affected by the parameters which have been evaluated under 

different test conditions. If the FVD is modeled by means of the generalized Kelvin-Voigt model 

(Figure  10) a larger evaluation of the response reduction is attained, observing at the same time a 

reduced variability with respect the test specimen from which the parameters have been identified..   

If the Maxwell model (Figure 11) is selected to model the FVD, the evaluation of the main 

system response reduction is larger with respect to the same evaluation attained by adopting 

standard and generalized Kelvin-Voigt models. This obvious depends on the different ability of the 

models to capture the real FVD behavior. Figure 12 shows, finally, that the adoption of the 

Generalized Maxwell gives the higher reduction of the structural response under El Centro 

Earthquake.  

Figure 13 shows the spectral response obtained considering the four analyzed models under the 

El Centro earthquake. Also if these results concern only a single seismic records and must not be 

generalized, some considerations should be done. The remarks above carried out are better 

noticeable in the spectral response, where the great superiority of the Generalized Maxwell model is 

clear in capturing the real behavior of FVD, showing at the same time a very good stability of 

identified parameters. Therefore, one should conclude that the Generalized Maxwell model is very 

suitable to model the real behavior of FVD. Another important aspect that one should consider is 

the stability of identified parameters with respect to the test performed. In effect, also from this 

point of view the Generalized Maxwell model performs very well with respect to the other ones, 

showing high stability with respect to the test specimen. It is clear, however, that these conclusions 

are in particular correct for this specific earthquake, and therefore they should be considered as an 

indicative result that will be deeply analyzed in the future. 

 



7. Conclusions 

This paper focuses on the generalized Kelvin-Voigt and Maxwell models for FVD; the resistant 

forces of both spring and dashpot elements in these two generalized models have fractional 

exponential coefficients. In order to assess the efficiency of these generalized models to capture the 

hysteretic behavior of real FVD, analytical models have been tested experimentally; identification 

scheme is developed comparing the experimental and the analytical values of the forces 

experienced by the device under investigation, where the experimental one has been recorded 

during the dynamic test while the analytical one is obtained by applying the time history of 

displacements to the candidate mechanical law. The parametric identification of a real fluid viscous 

damper has been developed by Particle Swarm Optimization (PSO).  

The results have shown that the generalized Maxwell model fits very well with experimental 

test for all test conditions; on the contrary, the model which works poorer is the Voigt one. This 

latter underestimates the force for all tests and especially under low frequency. 

Also numerical simulation under real seismic event shows the superiority of the Generalized 

Maxwell model, both in capturing the real behavior of FVD and in stability with respect to the test 

conditions from which parameters have been assessed. 
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