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Abstract

We study an ultrasonic experimental approach fa& ttamage characterization of polymer
composites. Our approach is based on the key cotitapdamage of polymer composites involves
a damage induced anisotropy superimposed to theitidgive anisotropy of the material. Thus, we
correlate the damage to the analysis of the chantee anisotropy of the acoustic response of the
material, by using an innovative goniometric ultnais immersion device designed and built at our
laboratory. The experiments are performed on asdiasr—reinforced composite material (GFRP),
damaged first by a low velocity impact (LVI), arfteh by fatigue load cycles.

We first identify possible changes in symmetry afeepustic axes) and/or in the symmetry class of
the material due to the damage; to this aim, wepaymthe velocity curves and the slowness curves
of the composite before and after the damage. Thmiing from the velocity measurements
acquired in goniometric ultrasonic immersion tegésformed before and after the damage, we
determine the variations of the elastic constant® do the damage. For a quantitative
characterization of the damage, a suitable anigmtiiamage model developed in the framework of
the Continuum Damage Mechanics theory is emplolethis model, the damage is related to the

relative variation of the elastic constants of iegterial.



For the validation of the procedure, ultrasonicultssare also compared with experimental data
obtained by conventional mechanical tests. Theimddaresults show the effectiveness of the
proposed approach for the damage characterizatipolymer composites.

Keywords:

A. Ultrasonic goniometric immersion test;

B. Damage induced anisotropy;

C. Polymer composites;

D. Slowness Surfaces;

E. Low Velocity Impact test.

1. Introduction

Today, non-destructive testing techniques play waciat role for ensuring the integrity, and
therefore the structural safety, of composite conepts in aerospatial, aeronautical, mechanical
and civil constructions, during both the manufacigirand the service life. In particular, structural
components made of polymer composites usually gadeyclic different static and dynamic loads
(compression, traction, shear, torsion, etc.), sochetimes also to the sudden action of impact
loads. These loads may involve damage of the comepashich corresponds to a change of the
mechanical behavior of the material. A typical dgm@rocess correspond to the development of
microcracks; their nature and evolution depend lo@ lbading type and on the mechanical
properties of the composite [1]. For cyclic loadgnerally microcracks are distributed rather
uniformly; thus we have a diffuse damage. Convgrdel impact loads the damage is localized in
limited area, and consist in concentrated micrd@am intralaminar o interlaminar delaminations,
fiber fractures, interface failures (fiber-matriglwbnding), buckling of fibers, etc.. Whereas a troa
literature on concentrated damage of compositegxiffuse damage has received less attention
by the researchers [2]. The propagation and théueon of damage in composite components
could lead to the failure, compromising the safdtyhe whole structure: this justify the relevance
of the study of increasingly effective and capadtperimental methods for the diagnosis and the
monitoring of damage in composites [3-6].

Notice that the substantial progress recently n@dé¢heoretical and computational modeling of
composite structures [7-11] have lead to the desifymcreasingly lighter and more efficient
structures, for which of course the need of expental methods for the monitoring of possible

damages assumes an even more essential role.



In this context, ultrasonics represents a fast effective non-destructive experimental technique
for detecting defects and damage in compositeststes (identification of cracks, microcracks,
interlaminar voids, delamination, fracture matretc.). For example, ultrasonic C-Scan tests are
broadly employed for qualitative analyses of damiageomposites. In these tests, suitable devices
scan the surface of the component, and defectarnaged zones are associated to variations of the
amplitude of ultrasonic waves travelling into tleergposite [12].

Thanks to new experimental approaches recently loleee, and to the progress made in the
theoretical modeling of the phenomena involvedliragonic experiments, ultrasonic tests allow for
not only a merely “qualitative analysis”, but alémr a “quantitative analysis” of the damage
[13,14]. In this vein, a key concept is that insmtropic materials like composites defects like
microcracks are characterized by their orientatuith respect to the load direction and to material
symmetry axes [15,16]. Thus, the damage induce dtiti@nal anisotropy superimposed on
constitutive anisotropy of the composite [17,18¢nde, the damage may be related to the damage
induced anisotropy, and consequently the damagehbmayuantitatively evaluated by determining
the variation of the symmetry axes (acoustic axa%), the variation of the degree of anisotropy of
the composite [19,20].

Since ultrasonic tests are a very effective expemtal tool for the characterization of the
mechanical response of anisotropic materials [R1principle those tests may also efficiently used
for the quantitative evaluation of the damage imposites through the characterization of the
damage induced anisotropy superimposed to the itdnst anisotropy. Anyway, this is a very
complicated and ambitious research goal, becaws@#ntification of the anisotropic features of
the damage requires the determination of all tastiel constants of the composite; moreover, it is
necessary to distinguish the anisotropy due toddmmage from the constitutive anisotropy. For
overcoming these problems, the choice of suitabipeemental procedures and of suitable
theoretical models for the interpretation of expenntal data it is needed. In particular, from an
experimental point of view the use of contactlesshhiques like ultrasonic immersion techniques
and ultrasonic laser techniques [21,22] allowsdenerating ultrasonic waves propagating along
any direction into the composite, and then for prgbthe elastic response in any direction.
Moreover, suitable anisotropic damage models, tegewvith the reconstruction of the slowness
surfaces and the velocity surfaces, may allow feargjitatively characterizing the damage. This
also in the case, rather less tractable, of diftleseage.

In this vein, here we propose a theoretical andeempental approach for the ultrasonic
characterization of the damage induced anisotropfiber reinforced polymer composites. The

experimental procedure is based on the use ofteasahic immersion goniometric device designed
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and built by our laboratory (Laboratorio “M. SalvatBy rotating a composite sample immersed
into a water tank also housing the ultrasonic psphe is possible to continuously vary the
propagation direction of ultrasonic waves. Moreowear predicted by the Snell law, by varying the
angle of incidence between the ultrasonic beamth@dample surface it is possible to propagate
any kind of polarized ultrasonic waves into the pemboth “pure” waves (longitudinal and shear
waves) and “not pure” waves (quasi-longitudinal gudsi-shear waves). The latter are typical of
acoustic behavior of anisotropic material. Thuss foniometric device allows for experimentally
facing two fundamental problems in the study of thechanical response of materials: “the
classification problem”, that is the characteriaatof the anisotropy class of a given material, and
the “representation problem”, that is the determamaof the independent elastic constants of a
material once known its symmetry class.

Since the close correlation between the theorefieahework and the proposed experimental
approach, in Section 2 we present a comprehensmegh outlook of the theoretical fundamentals;
in particular, the characteristic acoustic surfamesintroduced, and the main aspects of the dpecia
case of wave propagation in transversely isotref@stic materials are summarized.

Section 3 is devoted to the experimental testherglass fiber reinforced polymer composite under
investigation. We first determine the anisotropassl of the material, and evaluate all the elastic
constants needed for the description of its meca&mnesponse. Then, we cause the damage of the
composite by a low velocity impact followed by agée fatigue test. After the damage, we again
perform ultrasonic immersion tests for evaluatitg tdegree of anisotropy of the damaged
composite, for determining the variation of the syetry axes (acoustic axes), and for measuring
the variation of the elastic constants due to traabe.

In Section 4 we employ the experimental data fer gmantitative evaluation of the damage by
adopting an anisotropic damage model proposed lsfeBand Audoin [15,16] and developed in
framework of the Continuum Damage Mechanics theBlgreover, the damage is also studied by
the comparison between the slowness curves andetbeity curves of the undamaged and of the
damaged polymer composite.

The proposed approach proves to be very effectvahie characterization of the damage in the
examined GFRP composite; moreover, the comparisdh the measurements obtained by

conventional mechanical tests confirms the accuodtlye ultrasonic measurements.

2. Wave propagation in anisotropic elastic materials



2.1 Some fundamental concepts of the linear elgstodic theory

From a theoretical point of view, wave propagatinadeling in anisotropic elastic materials is a
very well developed research subject [21,22] [2}-Since ultrasonic waves are viewed as small
perturbations of the reference state (eventuakgtpessed), for the description of wave phenomena
involved in the ultrasonic tests the linearizedswldynamic theory is usually employed. In other
words, it is assumed that the material behave flinedastically for these small perturbations.hét
reference state is stress-free, the simpler liaksmtodynamic theory may be applied.

Here we adopt the latter hypothesis, and we sdarcéolutions of the equations of motion in the

form of progressive plane waves. A plane wave & atterized by a displacement field of the form:
u(xt) =ag(xm-vi), 1)
where: the vectora and n represent the direction of motion and the directod propagation,
respectively; the scalar v represents the propagaglocity;e is a real valued smooth function.

A plane wave is said to be a progressive elasticewhit satisfies the fundamental equation of

elastodynamic; that is, in absence of body forttesfollowing equation of motion:
Div (1 [Du]) = pu )

where p=p(x) is the mass density and =[] (X) is the elasticity tensor (a fourth order tensor

endowed by the first and second minor symmetry )[24he Fresnel-Hadamard propagation
condition [24] states that necessary and suffictemnidition for the propagation of plane progressive

elastic waves with propagation directiorand direction of motioa is that:
[r(n) -pvi]a=o0 3)

where the second order tensB(n) is called the Kelvin-Christoffel propagation tengor the

directionn, and is defined as

r'(n) =0'[n 0 n (4)



(the superscript “t” denotes the minor transpositiperation for a fourth order tensor). By (4), the
Christoffel tensorF(n) is related to the elastic properties of the matehrough the elasticity

tensor [/, and to the direction of propagation From (3) it is clear that if an elastic wave
propagates in a given direction then the square of the propagation velocity ansigenvalue of
the Christoffel tensor (for the propagation direntn), while the direction of motiora is the

associated eigenvector.

If the elastic tensof] is symmetric (that is, if]l =07), then the Christoffel tensoF(n) is

symmetric and admits for each direction of prop@agat at least three real eigenvect@sa,,a,,

with related eigenvalueg?, v2, v2. Moreover, if the elastic tensar is strongly elliptic (that is, if

(aob)@ (aob)>0,0a0b0 Dya{O}, where Dya is the set of all the vectors dyad®ntthe

Christoffel tensor is positive definite; consequgnhe square roots of the eigenvalues are redl, a
therefore can be properly considered as wave petjmagvelocities. In the following, as usual in
the linear elasticity theory, we admit thatis symmetric and positive definite, which implathl

is also strongly elliptic.

By (4), the features of the elasticity tensor related to the symmetry properties of the elastic
response of the material affect, through the Clbﬁfslttensorr(n), the properties of progressive

elastic waves propagating along a certain direation particular, according to the polarization
vectora, it is possible to have longitudinal waves, forietha andn are parallel, and transverse
waves for whicha andn are perpendicular. These kind of waves representso-called “pure”
modes of wave propagation, which are the only kafhdlane progressive waves supported by
isotropic materials. Generally, also “not pure” raef propagation are possible; in the latter case
the polarization vectoa is neither parallel nor perpendicular to the pgaien directiom. In the
literature “not pure” modes are often referred aasitlongitudinal waves or quasi-shear waves,
depending on the proximity of the directionaofo the direction ofi or to a direction orthogonal to

n. “Not pure” modes may propagate in materials ghtibit anisotropic mechanical behavior, due
either to constitutive properties (so-called tegtimduced anisotropy) or to the damage (so-called
damage induced anisotropy). More details on thearpaation of elastic waves come from the
Federov-Stippes theorem [24fthe elasticity tensor is symmetric and stronglyptic, then at one
pointx there is at least an elastic longitudinal wave awg elastic transverse wavdsurthermore,

if the elasticity tensor! is symmetric and strongly elliptic, it is possilbbeshow that ik is the unit



vector of an axis of material symmetry, then thexest an elastic longitudinal wave and two elastic

shear waves whose direction of propagatiaa is

2.2 The characteristic acoustic surfaces

In ultrasonic experiments on the mechanical charaetion of anisotropic materials, the study of
three families of characteristic acoustic surfackk& ‘velocity surfaces VS, the ‘wavefront
surfaces WS and the Slowness surfacesSS, plays an important role. Each of these fagilbf
surfaces represents the variation with the propagatirection of the phase velocity, the energy
velocity and the inverse of the phase velocitypeesively, of acoustic waves having each possible
polarization. By restricting the study to the prgaon in a certain plane, we get from the above
surfaces three family of characteristic curvegel6city curvesVC, the “wavefront curvéswWC

and the slowness curvéssC, respectively.

Denoted with v the phase velodityhe ‘velocity surfaceVs is the polar plot of the phase velocity
vectorv=vn as a function of the direction of propagatioof a wave with a certain polarization. A
family of three sheet of velocity surfaces can kéngd: one for longitudinal waves and two for
transversal waves. Notice that the longitudinal evalieet contains both the transversal wave sheets
because the phase velocity of longitudinal wavesvigys greater than the phase velocity of shear
waves.

A “slowness surfateSS is the polar diagram of the inverse of thesgheelocity as a function of
the direction of propagation of a wave with a certain polarization. By considgrthe three
possible polarizations, a family of three sheeslofvness surfaces is obtained. A slowness surface
is described by thslowness vectas, expressed as the ratio between the wave numbtrkeand

the angular frequenay:

k n
S:—:—
Py (S)

Sinces andv are collinear and s v=1, Whe$=|51, the velocity surface and the slowness surface

are related by an inversion through the originslalso possible to show that the energy velocity
vector is normal to the slowness surface for eaopapation direction.
A “wavefront surfaceWs is the polar plot of the energy velocity vectd as a function of the

direction of propagation of a wave with a certain polarization. Since inp&pdix A it is shown

! Some fundamentals abauttase velocity, group velocityw® andenergy velocity® are recalled in Appendix A.
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that the group velocity? is equal to the energy velocity, a wavefront surface is also the polar
plot with n of the group velocity vectos. By considering the three possible polarizatianfamily

of three sheet of wavefront surfaces is defineditAs shown in [26], the vector joining the origin
to a point on the wavefront surface representsdibiance travelled by the elastic energy in unit
time. Moreover, the direction of propagatiof a plane wave having energy velooifyis normal

to the wavefront surface. Finally, the directiontlod energy velocity vectof® (or, equivalently, of
the group velocity vector) is skewed with respect to the wave number vectavhich is always
normal to the wavefront surface.

A slowness surface and the corresponding wavefuniiace are related by:

Vi8=1, (6)

which links the energy velocity vectef to the slowness vectsr Thus, a wavefront surface is the
polar reciprocal to the corresponding slownessaserf that is, the direction of energy velocity
vector v® (or, equivalently, of the group velocity vecta?) indicates the normal direction to the
slowness surface, and the direction of the phaleeitAe vector (i.e., the vector numbley indicates

the normal direction to the wavefront surface. ig.FL we show a wavefront curve and the
corresponding slowness curve; those curves areosecbf the corresponding surfaces with a

propagation plane.

wavefront curve

k.

X

slowness curve

k/w

Fig. 1. Wavefront curve and slowness curve.



For isotropic materials, only pure waves propagdten, we have three pure wave velocity
surfaces. For anisotropic materials, instead, lineet velocity surfaces refer generally to not pure
waves (one quasi-longitudinal waves sheet and masietransversal waves sheets), even though
along certain directions (material symmetry axé®) propagating waves become pure. The same
holds for the slowness surfaces and for the waneborfaces.

Moreover, since for isotropic materials the velesitof propagating waves do not depend on the
directions of propagation, each slowness surface consists in a sphere adting equal to the
inverse of the phase velocity. Since the normah#&osurface of a sphere is collinear with its radiu
vector, phase and group velocity vectors are adliinFor anisotropic materials, instead, phase and
group velocity vectors are no longer collinear #mel shape of the slowness surfaces is no longer
spherical, and may be very complex depending omtiotropy features of the material. Each kind
of material symmetry is related to a particular pghaf the slowness surfaces [25]; thus, the
slowness surfaces can be viewed as a “fingerpohthe acoustic response of a material, and their

experimental reconstruction allows for identifyithg symmetry class of the examined material.

2.3 Wave propagation in transversely isotropic matg

For the purposes of the experimental analyses sieclin Section 3, we restrict our attention to the
case of wave propagation in transversely isotrdpiearly elastic materials. In particular, we
consider a reference system such that the traresisgopy axis coincide with thg-axis; thus, the

elasticity tensof! have the following representation in Voigt notatio

C, C, C, O 0 0]
C, C, C4, 0 0 O
1 ./Ca Ca G 0 0 O -
o 0 0 C, 0 O
o 0 0 0 G, O
0 0 0 0 0 G

Wlth C12:C11'2C66'
In particular, for wave propagation in thexx “isotropic” plane f, plane), orthogonal to the
transverse isotropys»axis, that is by assuming=(cosp, sinp, 0), the Christoffel tensor (4) take the

form:



C,,c08p°+ Cyesimp®  (C,,-Cy) sinpcosp 0

F(n) =|(C,-Cy) simpcosp C,sinp’+ C comp® 0 |, (8)
O O C44

and it is possible to show that only a pure lordjital wave and two pure transversal waves may
propagate (see [21]). Thus, the velocities of pgagpiag ultrasonic waves do not depend on the
direction of propagatiom. If we consider instead the propagation of ultrésavaves in the s
plane (i3 plane), which contain the transverse isotropyaxs, that is by assuming=(cosp, O,
sing), the Christoffel tensor (4) take the form:

C,,c08p”+ C,,simp? 0 (Cis*+C,,) sirp cosp
r(n) = 0 C,,Sinp?+ Cycop? 0 : (9)
(C13+ C44) sinp cosp 0 Cas +( Cis 'C44) Sil’(pz

Now, wave velocity depends on the direction of @ggtion n. Indeed, by evaluating the
eigenvalues and the eigenvectors of the Christaffietor (9), we see that for each direction of
propagatiom a quasi-longitudinal wave (QL), a pure transvervgave (T) and a quasi-transversal

wave (QT) are possible, and that their slownesgmigenn through the anglé:

1 1 1
So = ————, § = L& =
QL .
A+JA%- 4B \/ CySiMTe + CeeCOSp A- A% 4B (10)
2p p 2p
where

A=C,cosp + C,sirfo + C,,

11
B:( C,,coso + CMsirf(p) (C LLCOS0 + C33sinch) -(C ¢ C)’sinfp cos?. -

Fig. 2 shows the theoretical velocity surfaces \ffdl alowness surfaces SS, respectively, of a
transversely isotropic material; those surfaces ao&ined by plotting the slowness (10) as a
function of the directiom. In Fig. 2, the depicted surfaces are sectionehpplane; moreover, we

denote with different colors the surfaces relatethe differently polarized ultrasonic waves: blue

for quasi-longitudinal waves; green for pure trarsal waves; red for quasi-transversal waves.
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Notice that the slowness surfaces for a transwerseltropic elastic material are rotationally
symmetric about thesaxis (axis of transverse isotropy), and have céifte symmetry about the
n12 plane [27].

x1 (m/s) 1 (HRhOA
‘1“008000 O.(;DOEQOD — gl-wave (Th.)
s L

0 1OQQ — gl-wave (Th.) 0.0000+ & — pT-wave (Th.)
— pT-wave (Th.) Tt —qT-wave(Th) | |
— qT-wave (Th.)

@) (b)

Fig. 2. Transversely isotropic materials; transgesotropy axis=xaxis. (a) velocity surfaces VS; (b)

slowness surfaces SS.

2.4 Ultrasonic goniometric experimental procedui@sthe mechanical characterization of materials

The theoretical framework in Sect. 2.1-2.3 suggestsexperimental counterpart in terms of
ultrasonic non-destructive tests for the charars¢ion of the mechanical response of materials.
Indeed, the study of the Christoffel equation (B)ves for addressing two fundamental problems of
the mechanics of elastic materials: thw@a$sification probler) that is the determination of the
degree of anisotropy of a given material (detertmmaof the symmetry class and identification of
the material symmetry axes), and thepgresentation probleinthat is (once known the symmetry
class) the determination of the elastic moduli eeefdr the description of the elastic response.

In particular, starting from experimental measwkthe velocities of ultrasonic waves travelling in
various directions in the material and having défe polarizations, it is possible to experimentall
reconstruct the slowness surfaces of a materialatlows for identifying the symmetry class of the
material, and for determining the material symmetxgs. Notice that the material symmetry axes
coincide with the acoustic axes; then, these asestaracterized by the following properties [25]:
1) for each propagation mode, the direction of phasocity coincides with the direction of group
velocity; 2) according to the theorem of Federonp®ts, for some symmetry classes (for example,
in the case of transverse isotropy) transverse svavepagating along a material symmetry axis

have the same velocity.
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Once known the symmetry class of a material, thersgion of the Christoffel equation (3) allows
for determining all the independent componentshef ¢lastic tensor. To this aim, after having
experimentally measured the velocity of an ultraseovave propagating in a certain direction and
having a certain polarization, (3) gives a nondinequation in the elastic constants [25]. Thus,
starting from experimental measures of the velesitof ultrasonic waves propagating in suitable
directions and having suitable polarizations, p@ssible to get a set of non-linear equationfién t
unknown elastic constants. For the solution of ¢heguations, two fundamental issues have to be
addressed. First, the propagation directions todmsidered in the experiments have to be suitably
chosen in order to have access to all the elastistants. For example, if we consider the case of
transversely isotropic elastic materials, (8) shdhat for waves propagating in the “isotropic
plane” (the plane orthogonal to the transverserapgt axis) the Christoffel tensor involves only
three of the five independent elastic constantsisTin order to get equations also involving the
other two elastic constants, different directiorpadpagation have to be examined; for example, (9)
shows that directions lying in a plane containing transverse isotropy axis could be considered.
The second issue is typical of inverse methodshieiidentification of physical parameters based on
experimental measurements: since uniqueness prehieay arise, and in order to minimize the
errors in the parameters identification due to expental errors and data dispersion, it is usual to
perform a number of measures significantly largénwespect to the number of the parameters to be
identified, and then to adopt numerical proceduagmed at recovering the parameters by
minimizing the errors, like optimization method$]127,28].

For the above discussion, in ultrasonic experimdots the mechanical characterization of
anisotropic materials the need to examine propagagroperties in different directions suggests the
employ of goniometric ultrasonic techniques. Theelaare based on suitable experimental devices
aimed at rotate the ultrasonic probes and/or tleeisgen. Moreover, for experimental convenience
goniometric ultrasonic tests are preferentiallyf@ened without a direct coupling between the
ultrasonic probes and the specimen, that is bygusikperimental setups based on immersion
techniques [21,22] [30] or other techniques likeelaultrasonic [23] or air-coupled ultrasonic [31].
Today, goniometric ultrasonic tests can be consider of the most effective, versatile and reliable
technique for the mechanical characterization obaropic materials [21,22] [30] [32]. We
underline that this technique allows for the classiion of the anisotropy class of the materiahin
non-destructive and relatively uncomplicated wayffecently from other techniques like
mechanical tests. Moreover, the latter requireuseof a large number of specimens, and normally

require a priori assumptions on the anisotropyscla®rder to design and perform the experiments.
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Finally, since the characterization of the damage be performed through the analysis of the
anisotropic features of the changes of the mechhreésponse, goniometric ultrasonic tests are very
effective also for the analysis of the damage afaropic material. To this aim, the damage
induced anisotropy superimposed on the constituawesotropy of the material has to be
experimentally studied [33-36]. In particular,stpossible to characterize the damage starting from
the evaluation of the variation of the anisotrofgeatures of the elastic response and from the
variation of the anisotropic elastic constants. éseful tool for studying the variation of the
anisotropy of the material are the slowness susfao®l the velocity surfaces, which allow for
easily visualizing the changes due to the damagethe sake of simplicity, frequently the slowness
curves (or the velocity curves), which are sectiohghe slowness surfaces (or of the velocity
surfaces) with a propagation plane, are examined.

3. An ultrasonic goniometric immersion procedure for the mechanical

characterization of polymer composites

3.1 Experimental setup

The ultrasonic tests below described were carngdp using an innovative ultrasonic goniometric
immersion device designed and built by Laboratdvy ‘Salvati” of Politecnico di Bari [21,22].
This ultrasonic device has been specifically desilgrior the mechanical characterization of
anisotropic materials. Indeed, this goniometric icevallows for analyzing the features of the
propagation of ultrasonic waves in different diregs. For the reasons explained in Sect. 2.4, it is
then possible to determine the material symmetgg gfassification problemand the components
of the elastic tensorgpresentation problejnMoreover, the ultrasonic goniometric approach ca
be employed for evaluating the damage through th&racterization of the damage induced
anisotropy, that is, by analyzing the variatiortted anisotropic features of wave propagation from
the undamaged state to the damaged state.

The above mentioned ultrasonic goniometric immersilevice (shown in Fig. 4) consists in: an
immersion water tank; a frame housing ultrasonimersion transducers and/or a reflective surface
in Plexiglas; a rotating sample slot operated Isteppper motor. A reducer gearbox enables us to
rotate the sample with very small angular step83@): according to the Snell’s law, this allows
for accurately generating and analyzing any kingalarized ultrasonic (“pure” and “not pure”)

waves into the material for any direction of progégn, in a principal symmetry plane or in a
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generic plane. Moreover, for enhancing the versablf the experimental setup, the device can be
used in two different configurations: through-tnamssion tests, with two opposite ultrasonic
probes (transmitter and receiver), and back-refladests, with only one probe, acting at the same
time as transmitter and receiver, opposite to lact¥e surface.

In this paper, we report experimental results oletdiin back-reflection tests configuration. In
particular, ultrasonic waves are generated andvweddy an unfocused ultrasonic probe with a
central frequency of 1 MHz. The ultrasonic signate handled by an ultrasonic pulser/receiver
Olympus 5072PR and an oscilloscope Agilent DSO60XO® MHz, 4 channels).

The ultrasonic experiment is fully controlled (frahee management of the stepper motor up to the
stage of the analysis and the processing of uhliiassignals) by a LabVIEW software ad hoc
designed [21,22]. Moreover, the LabVIEW softwardrasts the data on the wave velocities
required for the mechanical characterization ofrttegerial. To this aim, for each rotation angle of
the sample, the software measures the time oftf[{f®F) At of ultrasonic waves by the cross-
correlation between the auto-correlated refererigaak (ultrasonic signals acquired in water
without the sample) and the average of the normadlsignals acquired (ultrasonic signals acquired
with the sample placed in the slot). Then, forvegiangle of incidence of the ultrasonic beam on
the surface of the sample, the LabVIEW softwarduzata the phase velocity, of ultrasonic waves
propagating into the sample by the following expi@s, which is valid for the back- reflection
technique [21-22] [32]:

%
2 At 2
vV, = (Ej —A cosﬁ+[vij (12)

2d \Y

w

where: d is the thickness of the samplgjssthe ultrasonic velocity in water (about 1,478mAt

the end of each ultrasonic test, when the entiearnpanged rotation angle of the sample has been
completed, the LabVIEW software displays a grapbwshg the measured ultrasonic phase
velocities y (m/s) versus the angle of incidertcédeg) of the ultrasound beam on the surface of the

sample.

3.2 The glass fiber-reinforced polymer sample detai

We study the propagation of ultrasonic waves irame of a glass fiber—reinforced composite
material (GFRP). In particular, the composite mateis made of 4 unidirectional fiberglass
reinforced layers of Orthophthalic Distitron | 18W%1.5 Polyester matrix, with an overall thickness
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of 3.8 mm. This GFRP composite is specifically daesd for the construction of innovative wind
turbine blades, developed within a research proggctmore efficient wind renewable energy
production.

Unidirectional fiber—reinforced composites like skounder investigations are usually modeled as
transversely isotropic linearly elastic materiaithathe transverse isotropy axis coincident witl th
axis of the fibers. In the following, we assumeference system withssaxis parallel to the axis of
the fibers as depicted in Fig. 3; thus — after hgwexperimentally confirmed that the material
actually behave as transversely isotropic — wereéar to the theoretical framework developed in
Sect. 2.3.

fiber g -
direction A

(IXIXIERXE)
sebesbanee
(X3 IIZTEE L
EANERRERES

|
e
w

Fig. 3. Unidirectional glass-fiber reinforced corsjie (GFRP).

Once determined the mass dengitpf the GFRP composite, by the inversion of theisbifel
equation (3) the velocity data recorded in theaslbnic goniometric tests allow us to determine the
five elastic independent constants;CCi3, Css, Caq and Gg) needed for the description of the
elastic behavior of the GFRP composite material.

In particular, since we have to characterize theharical response of a transversely isotropic
material, we have to propagate ultrasonic waveasvindifferent planes (see Sect. 2.3-2.4): one is
the isotropic plana;, which allows us to measure the elastic constantsCG, and Gg, the other is
the planer;s (a plane containing the fibers), which allows aisnteasure alsosgand Gs. Thus, we
performed the experimental analysis by arrangimgGirRP sample in the slot of the goniometric
device in two different configurations (Fig. 4)ethirst configuration is such that the rotationsagf

the sample is parallel tg-axis (i.e., the fiber axis), so that ultrasoniocves propagated in the plane
n12. In the second configuration the sample was plagédthe rotation axis orthogonal to the axis
of the fibers, and coincident with the-axis, so that the propagation of ultrasonic wawee& place

in the planer;s.
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Sufficiently large overall rotations of the GFRRrgde (up to 25°) have been considered in order to
obtain the mode conversions needed — accordinget®nell’s law — for generating each kind of
ultrasonic polarized waves, whose velocities haveet measured.

Fig. 4. (a) first test configuration: propagatiam planen;, and sample rotation aroung-axis; (b) second test
configuration: propagation in plame; and sample rotation aroungxxis.

3.3 Mechanical characterization of the undamagesgffiber-reinforce polymer composite

First, we performed ultrasonic goniometric immensiests on the undamaged GFRP sample. Fig. 5
shows the graph phase velocity-incident angle nbthas the result of the analysis performed in the
propagation in the isotropic plameg,, orthogonal to the fibers (first test configurafioWe observe
that, according to the Snell's law, ultrasonic lbtadinal waves propagate in the sample until the
first critical angle (approximately 12.5°) is reach In the planer;, the velocity of longitudinal
waves do not depend on the angle of incideficehus we have pure longitudinal waves as it
normally occurs in isotropic materials. After thest critical angle, we notice some spurious echoes
not representative of the actual mechanical behawtier these spurious echoes, the acquired
signals correspond to the propagation of shear svante the sample; in particular, we have pure
shear waves, since their velocity is almost coristaf varies.

Fig. 6 shows the graph phase velocity-incident engptained as the result of the analysis
performed in the propagation plang, parallel to the fibers (second test configurgtidfor small
incident angles, we expect the propagation of gegjitudinal ultrasonic waves into the sample
until the first critical angle (approximately 15)4% reached. In the plangs we notice that the

velocity of longitudinal waves slightly depends ttve angle of incidence (this is typical of quasi-
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longitudinal waves). After the first critical anglere observe two different kind of shear waves:
first, we observe quasi-shear waves, since theciglearies with the angle of incidenée After a
second critical angle (approximately 21.2°), pureas waves, whose velocity is almost constant as

0 varies, propagate.
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Fig. 5. Ultrasonic phase velocity-incident anglef@mr 2, undamaged composite).
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Fig. 6. Ultrasonic phase velocity-incident angleaf@m13, undamaged composite).

The acquired ultrasonic velocity data allow us faerifying if the assumed hypothesis of

transversely isotropic elastic behaviour actuatlyresponds to the observed acoustic response of

the sample. To this aim, we determine the theaketstowness curves in the hypothesis of

17



transverse isotropy, and we see that the experaitgnmeconstructed portions of the slowness
curves fit sufficiently well the theoretical premss. Fig. 7 reports the comparison between the
experimental and the theoretical slowness curveprfapagation in the plangs. Once figured out

the classification problem on the base of the arpemtal data, we can refer to the model of

transversely isotropic elastic material for thegmses of subsequent analyses.

kx1(s/m)

00008 — qL wave (T .) undam.GFRP

— i e (Th.) undam.GFRP
= qT wave ( h.) undam.GFRP
4 qL wave (Exp) undamag.GFRP
¢ pT-wave (Exp.) undamag.GFRP

0.0006 <>qT.-wave (Exp.) undamag.GFRP

0.0004

0.0002

: kx3 (s/m)
0.0002 0.0004 0.0006 0.0008

Fig. 7. Comparison between experimental and theadetlowness curves (plamgs, undamaged composite).

In particular, once measured the mass density ®/GERP compositep€1,740 kg/ni), we can
determine by the inversion of the Christoffel equat(3), written for the case of transversely
isotropic elastic materials, the 5 elastic constanf the undamaged composite material
(representation problem).

Since we have a redundant set of experimental data,enhancing the precision of the
determination of the elastic constants we performeédst square regression analysis, minimizing
the errors between experimental and theoreticalegalThe obtained values of the elastic constants
are collected in Table 1.

Tablel
Elastic constants of the undamaged GFRP compdaRal;
Cu (GPa) Cs; (GPa) Cu (GPa) Ces (GPa) Ci3(GPa)
12.29 32.96 2.23 7.98 2.26
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Moreover, we determine starting from the ultrasomeasurements the Young modulus in the
direction of the fibers (¥axis): =31,367 MPa. The latter is in a very good agreemetit the
value of & obtained by a conventional mechanical tensile Est31,20 MPa.

3.4 Low velocity impact (LVI) and fatigue post-lddimage of the sample

The GFRP sample was damaged by two artificial demagts aimed at reproducing possible
damages of the GFRP composite during the senfie@listructural components. In particular, the
artificial damage is aimed at reproducing a lowoedy impact (LVI) on a GFRP composite
structural component (for example, in the case iodvwurbine blades, the impact of a hailstone),
after which the component remain in service betbee inspection and the maintenance. Is then
important to analyze, subsequently to the LVI irelhadamage, the evolution of the damage
induced by fatigue loads.

The low velocity impact (LVI) test has been perfeanby a custom-made facility with a
hemispherical impactor with diameter 10 mm, impagtihe surface of the sample in the direction
named x (see Fig. 3). We measured an impact energy levélb The use of a low value of the
impact energy is justified, among other things,duse we do not want to break the specimen.
After the LVI test, we performed a fatigue tengést in order to induce in the sample a post-LVI
fatigue damage. In the fatigue test, the specimas subjected to different and increasing fatigue
load levels by a MTS uniaxial fatigue testing maehithe fatigue loads have been applied in the
direction of the axis of the fibers g>direction). In particular, we fixed the ratio be®n the
maximum and the minimum stress ®z/0min=0.1, and we performed 10oad cycles with
Oma=67 MPa followed by 1Dload cycles withoma=78 MPa, by 10load cycles witho=100
MPa, and by 1bload cycles withoma=122 MPa.

Fig. 8 show both the undamaged GFRP sample andatimaged GFRP sample as it appears at the
end of the fatigue post-LVI damage test. For thealged sample, we have highlighted in red the

very visible impact area and a fracture occurreat tige gripping area.
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@ (b)

Fig. 8. Undamaged (a) and fatigue post-LVI damageEBBsample (b).

3.5 Mechanical characterization of the damaged gjfiser reinforced polymer composite

After the two damage tests, we have again analilzeécoustic response of the sample by means
of ultrasonic goniometric immersion tests; Fig.rfal&ig. 10 show the acoustic behavior of the
GFRP sample after the damage. In particular, Fghd@vs the graph phase velocity-incident angle
obtained for ultrasonic wave propagation in thenpla;,, orthogonal to the fibers (first test
configuration). Pure longitudinal waves, having astconstant velocity &varies, propagate into
the sample until the first critical angle is readl{epproximately 9.3°). The latter is differentrfro

the first critical angle measured for the undamagpedple (see Fig. 5). After the first critical amgl
we observe (approximately up &=15.9°) the presence of some velocity measuremehtsh
cannot be considered “spurious echoes”, as indBe of the undamaged composite (see Sect. 3.3).
Instead, we assume that the damage suffered byathple has compromised the integrity of the
Polyester matrix. Thus, we ascribe these spuricelscity measurements to the presence of
discontinuities in the matrix; this hypothesis sldobe confirmed by suitable micromechanical
investigations. Afte6=15.9° quasi-shear waves, whose velocity depenth@rangled, propagate
into the sample.

Fig. 10 shows the graph phase velocity-incidenteamdtained in the second test configuration
(propagation in the plarnes). Ultrasonic quasi-longitudinal waves, with thdogity dependent on
the incident anglé, propagate into the sample until the first criti@agle is reached (approximately
16.6°). Again, the value of the first critical aegs different from that observed for the undamaged
sample (see Fig. 6). Then, we have guasi-shearsyavieose velocity depend on the anle

Finally, after a second critical angle (approxinhat23.1°), pure shear waves, whose velocity is
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almost constant dsvaries, propagate. We notice that also the secotichl angle differs from that
observed for the undamaged sample (see Fig. 6).

Now, since the damage involves a damage inducedotaopy superimposed on the initial
transverse isotropy of the composite, we need tibiéthe impact load and the subsequent fatigue
cycles have changed the symmetry class of the ralté/e recall that the impact load has acted
along a direction (xdirection) orthogonal to the principal axis ofrtsaerse isotropy gxdirection);
anyway, the energy of the impact has been very Tdven, fatigue loads have been applied in the
direction of the axis of the fibers j>direction). Given the above, we expect that thenaize
induced anisotropy results in a change of the degfeanisotropy of the material, but not in a
change of its symmetry class. In other word, comgdo the undamaged material we expect that
after the damage the material continues to behaveaasversely isotropic, but the anisotropic
behavior become more pronounced, especially;idlisection. Also, we expect a change in the

values of the elastic constants.
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Fig. 9. Ultrasonic phase velocity-incident anglea(@, 2, damaged composite).
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Fig. 10. Ultrasonic phase velocity-incident anglerfe;3, damaged composite).

In order to verify the above assumptions, we agéassify the symmetry properties of the elastic
response by comparing the theoretical slownessesuetermined in the hypothesis of transverse
isotropy, with the obtained experimental data. Ag E1 (which refers to propagation in the plane
n13) shows, the agreement between theoretical prexdsand experimental data is quite good; thus,
we can still refer to the model of transverselytrigpic elastic material for the purposes of

subsequent analyses.
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Fig. 11. Comparison between experimental and thieatelowness curves (plamg 3, damaged composite).
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Finally, starting from the velocity measurementsl &rom the measured density of the material
(p=1,740 kg/n), we determine by the inversion of the Christoffguation (3), again written for
transversely isotropic elastic materials, and tgsasquare regression analysis (see Sect. 3e85 th
elastic constants of the damaged composite matéhake constants are collected in Table 2.

Table?2
Elastic constants of the fatigue post-low velogitpact test damaged composite (GPa).
C11 (GPa) Cs; (GPa) Cu (GPa) Ces (GPa) Ci3 (GPa)
11.16 31.77 1.82 8.10 2.85

Also for the damaged composite, in order to vetifg accuracy of the ultrasonically determined
elastic moduli, we calculate from the above dagaYbung modulus £in the direction of the fibers
(xsz-axis): B=29,120 MPa. Then, we determine the same elastidum® by a conventional
mechanical tensile test; the obtained valug=2B,970 MPa, is nearly coincident with the

ultrasonically determined one.

4. Ultrasonic characterization of the damage for the GFRP composite

4.1 Quantitative analysis of the damage for anigpit composites

In the classical Continuum Damage Mechanics (COipty [37-39], the damage is quantitatively
evaluated on a macroscopic scale by measuringpefie change of the elastic constants. For
example, for isotropic materials a scalar damagewie related to the relative change of the Young
modulus is employed. Here, due to the constituawesotropy of composite materials, for a
guantitative evaluation of the damage mechanicaletsobased on tensorial damage measures have
to be used. These models allow for estimating Hraatje induced anisotropy superimposed to the
constitutive anisotropy of the composite. In patae, we adopt a damage model proposed by Baste
and Audoin in [10], developed in the framework bétCDM theory, and based on a tensorial
damage measui@ whose components are related to the specifimes# constants variation. This
model is general since it is applicable indeperigent the fibers reinforcement nature, of the
geometry and types of microcracks, interlaminardsoiand delaminations, and of failure
mechanisms of the composite. Moreover, this modeera phenomenological character since the

determination of the damage is directly related some measured quantities in ultrasonic
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goniometric immersion tests (i.e., to the phaseoaiteés of ultrasonic waves) through the

anisotropic tensorial damage measure [17-20]. ttiquéar, we have

D, =1-—L, i=1,2,..,6 (diagonal ér ns) (13)

-G . . _ (14)
D; = ' ., i,j=1,2,...6, ¥ |,(off-diagonal term$

' csion(c,-G)a (10)G (20 )

The wavy stiffness constants refer to the damagaignmal, while the unmarked stiffness constants
refer to the undamaged material. Theoreticallthéf norm[P| of the damage tensbris equal to O,
the material is not damaged; if @4k1, some damage happens;Dfd1, the material is totally
damaged.

The comparison between the graphs phase velodigie@nt angle obtained by goniometric
immersion ultrasonic tests for the GFRP composéfre and after the fatigue post-LVI impact
damage shows significant variations in the acoustponse due to the damage. This comparison
already allows us to perform a qualitative assessmiethe occurred damage.

Here, by employing the damage model above sumnthnge carry out a quantitative analysis of
the damage. In particular, starting from the valoéshe elastic constants collected in Table 1
(undamaged material) and in Table 2 (damaged madtenve determine by (13)-(14) the
components of the tensorial damage meabBufEhe latter are collected in Table 3.

Table3
Components of the damage tenBor
Dll D33 D44 D66 D12 Dl3

0.092 0.036 0.184 -0.015 0.014 0.181

We get that the norm of the tensorial damage measup|=0.153. The comparison between the
values of the elastic constant in Tables 1-2, ali as the examination of the values of the
components oD, shows that the effects of the fatigue post-LVimdge entail essentially the
following aspects. First, we observe the reductainthe elastic constant ;€ related to the
extensional behavior in the direction ¢direction of the impact); according, we havg=+D.092.
Moreover, we have a relatively larger reductiontlué elastic constants,Crelated to the shear
behavior in the planes ; andn,; (the latter is orthogonal to the direction of timpact); according,

we have @,=0.184. Finally, an increase of the elastic constapexpressing the coupling between
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extensional deformations in the directions orth@jdo the fibers (x and % directions) and the
normal stress in the direction of the fibers @eection); correspondingly, we havgs$0.181. The
variation of the elastic constang{related to the extensional behavior in the dioeck; (direction
of the fatigue loads), is relatively small sinces$9.036.

Finally, we observe that d9 come back to be negative ¢-0.015): this does not violate any

theoretical assumption or requirement on the teslstamage measuf® (see, also [33,34] [36]).

4.2. Damage induced anisotropy: analysis of theatizristic acoustic curves
The analysis of the change in the anisotropy ofGR&®P sample due the fatigue post-LVI damage
is also performed by the comparison between theactexistic acoustic curves of the undamaged

and the damaged composite.

x1 (m/s) — gL-wave (Th.) undam.GFRP
— pT-wave (Th.) undam.GFRP
2500 l. —_ — gT-wave (Th.) undam.GFRP
- I .. -- gL-wave (Th.) damag.GFRP
- - — -- pT-wave (Th.) damag.GFRP
- ST T -- qT-wave (Th.) damag.GFRP

2000 ¢

1500 ¢

1000 r

500 ¢

x3 (m/s)

1000 2000 3000 4000

Fig. 12. Theoretical velocity curves for the undgeth and the damaged GFRP composite (wave

propagation i3 plane ).

In particular, in Fig. 12 we show the reconstruasicof the theoretical velocity curves for the
undamaged and the fatigue post-LVI damaged GFRPIsanespectively, for wave propagation in
the planeris. These curves are the polar plots of the ultrasphase velocities calculated starting
from the estimated elastic constants collectedahlds 1-2; this theoretical reconstruction of the
velocity curves allows for extrapolate the expentaéresults to angles of propagation wider than
those examined during the tests. In Fig. 12, dolies refer to the undamaged sample, and dotted
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lines to the damaged sample; the depicted velatityes correspond to quasi-longitudinal waves,
to quasi-transverse waves and to pure transvergeswa

From the comparison between the velocity curvedHerundamaged and the damaged composite,
we observe a phase velocities reduction for quasgitudinal waves and quasi-transversal waves.
On the other hand, the velocity of pure transvewsales remains practically unchanged (except
near the ¥xaxis). Moreover, we notice that either for the améged or for the damaged composite
pure transversal waves and quasi-transversal wargsthe same velocity along theaxis: hence,

we infer that the xaxis remains an acoustic axis (material symmetiy) dor the composite even
after the damage.

Fig. 13 shows the reconstruction of the theoretgtalvness curves for the undamaged and the
fatigue post-LVI damaged GFRP sample, respectielywave propagation in the plang;. Also

in this case, these curves represent the slowrfegkrasonic waves calculated starting from the
estimated elastic constants collected in Tableslh-Rarticular, solid lines refer to the undamaged
sample, and dotted lines to the damaged sampleruhees in Fig. 13 correspond to quasi-

longitudinal waves, to quasi-transverse waves arglite transverse waves.
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— gT-wave (Th.) undam.GFRP
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Fig. 13. Theoretical slowness curves for the und&uamd the damaged GFRP composite

(wave propagation iny; plane).

Finally, Fig. 14 shows the portion of the slownessres in the plang;; for the undamaged and the
fatigue post-LVI test damaged GFRP sample, obtameglotting the experimentally determined

slowness as a function of the propagation angkeedah possible polarization (quasi-longitudinal,
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guasi-transverse and pure transverse waves). Betthéoretical slowness curves (Fig. 13) and the
experimental slowness curves (Fig. 14) show aneas® of the slowness of quasi-longitudinal
waves for the damaged composite, especially neaditection of the xaxis (direction of the
impact). For what concerns pure transversal wawed)in the range of propagation angles
experimentally investigated the experimental slasgneurves (Fig. 14) show almost the same
values of the slowness both for the undamaged andthe damaged sample. Anyway, the
theoretical reconstruction of the slowness cunkeg. (13) shows that the slowness of pure shear
waves are similar for the undamaged and the foraggoh composite only near theaxis, whereas
these slowness differ considerably near theaxis, where we notice a remarkable increase of the
slowness due to the damage. Finally, the expermhsitdwness curves for quasi-transversal waves
(Fig. 14) show an increase of the slowness du@éodamage in the range of the experimentally
investigated propagation angles. The theoreticabnstruction of the slowness curves for quasi-
transversal waves (Fig. 13) confirms an increas¢hef slowness due to the damage for each

propagation angle.
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Fig. 14. Experimental slowness curves for the undguiand the damaged GFRP composite (wave propagation

m13 plane).

In conclusion, we may argue that after the fatigost-LVI damage, all the examined slowness
curves show a change in their shapes. In partictih@ change induced by the damage on the
slowness curve related to quasi-transversal wandisdates an increase of the anisotropy degree in
both the directions of thesaxis (direction of the impact) and of thgaxis (direction of the fatigue
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loads). The variation of the slowness curve relabeguasi-longitudinal waves indicates an increase
of the anisotropy degree only in the directionlted i-axis, whereas change of the slowness curve
related to pure transversal waves indicates araser of the anisotropy degree only in the direction
of the %-axis. It would be interesting to further deepea éimalysis of the features of the change of
shape of the slowness curves in light of micromeda analyses of the occurred damage.
Moreover, the fact that the slowness of transvexsales (pure and quasi) propagating along the x
axis do not vary after the damage leads to thelgsion that %-axis remains an acoustic axis
(material symmetry axis) for the composite, evarrahe damage (as we observed speaking about
Fig. 12). This confirms the observation containedect. 3.5, i.e. that the damage appears to have

given rise to a fracture only of the Polyester madnd not of the fibers.

5. Conclusions

In this paper, we propose an experimental appréactltrasonically characterizing the damage in
polymer composites. In particular, the examined algenconsist both in a (concentrate) damage due
to a low velocity impact, and in a subsequent (di#f) damage due to fatigue loads. Since the
constitutive anisotropy of polymer composites, ur @approach the damage is associated to the
damage induced anisotropy superimposed to theituthst anisotropy of the material.

For effectively facing the above problem, we ussu#table ultrasonic goniometric immersion
device designed and built at our laboratory, whltbws us for determining the velocities of waves
travelling in different directions into the compiesand having different polarizations. This enables
us for analyzing the changes of the anisotropitufea of the acoustic response and the variations
of the elastic constants due to the damage.

The accuracy in the polar scan of our device allag/gor determining the velocity of all possible
kind of polarizations: this enhance the precisidrth@ obtainable results with respect to other
approaches in the literature, both for the chareetion of the constitutive anisotropy and for the
characterization of the changes due to the damage.

For what concerns the elastic constants easilysaddle by conventional mechanical tests, we have
validated the reliability of the results obtainegddur ultrasonic procedure by the comparison with
the results obtained in tensile tests.

For understanding the features of the damage ibdanesotropy it is very helpful the analysis of
the changes of the theoretical and experimentaiackeristic acoustic curves (velocity curves and

slowness curves) due to the damage.
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A quantitative evaluation of the damage is perfaniy using an anisotropic damage model
developed in the framework of the Continuum Damigigehanics theory, and based on a tensorial
damage measure.

We observe that our approach do not require anyoai @pssumption on the anisotropy degree of
the material and on the orientation of the axesnaferial symmetry, unlike other experimental
methods.

By high accuracy goniometric ultrasonic immersiests$ it is also possible to gather information
that can be useful for understanding which kinddamage has occurred (matrix cracks, fibers
rupture, debonding, etc.). For example, in our eérpents the graph phase velocity-incident angle
in Fig. 9 shows some unexpected discontinuitiesthe velocity measurements, and we
hypothesized that this is a symptom of discontiasitn the matrix due to the LVI damage. Thus,
an interesting subject for future developments hiat tof correlate the results of goniometric
ultrasonic immersion tests with the results of alie micromechanical investigations. Moreover,
our approach has proved to be effective for aptina to plane composite specimen of small
thickness; we are studying also the possibilityeofploying the same experimental procedure to
thick composites like, for example, those studmdirinovative applications in Seismic Engineering

[40], and for curved composites like, for examp@se employed for structural strengthening [41].
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Appendix A

Since ultrasonic signals employed in the experisiané wave packets, for a theoretical overview
of the characteristic acoustic surfaces in Se2titds convenient to define thghase velocity, the
group velocityv? and theenergy velocity® for an acoustic wave propagating in a directioand
having polarizatiora.

Thephase velocity is the velocity of the wavefront in the directinormal to the wavefront; then,

it is possible to define phase velocity vector=vn. Of course, the phase velocity coincides with
the propagation velocity in case of monochromataves, like (1). Theroup velocityv? is the
propagation velocity of the wave packet, and in@isathe energy flow direction. The group

velocity is also namerhy velocity and it is defined as:
vi=—, k=kn (A1)

with o the angular frequency of the wave packet, latite wave vector.

When ultrasonic waves propagate in isotropic maltgrthe phase velocity vectorcoincides with
the group velocityw?. Instead, when ultrasonic waves propagate in tjsic materials, a beam
divergence occurs, and the phase velocity vectergenerally different from the group velocity;
unless the propagation direction does not coineide a material symmetry axis. The deviation
between the directions of the phase velocity veetand of the group velocity vectef, named

beam skewings measured through tkewing angl&) (Fig. A.1).

ultrasonic
transducer
anisotropic

material wavefront

| |yE
o

Fig. A.1. Plane waves propagating in anisotropidemals: deviation between the

group velocity and the phase velocity vector.
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The energy velocitw® is given by the Poynting vector related to thepagation of the wave

divided by the total energy per unit volume. Itdessible to show that® has the following

expression:
._UOlaon]a
Vi —— (A.2)
pvala
For a displacement with unit magnitucja‘(= 1), the energy velocity becomes
Jla O nla
vet= [faona (A.3)

oV

The energy velocitw® point the direction of the “acoustic ray”, thattlse direction of energy
transport [21]. When the acoustic ray is perpendrcio the wavefront, and therefore parallehto
the mode of wave propagation is a “pure” mode ¢(@othat this definition encompass a broader
class of waves than pure longitudinal or pure rarse waves).

By the scalar product betweeft andn, we obtain, also recalling the minor symmetriesperties

of [1:

o1 O[a on]n
ve'lh =———— (A.4)
oV
from which by (3) we get:
Vi =v (A.5)

Then, for a plane wave, the projection of the epemjocity v®* in the propagation directiom is
eqgual to the phase velocity.

Moreover, it is possible to compare the energy aiglonith the group velocity. Indeed, in view of
(4) the condition for the existence of non-trivgalution of the Christoffel equation (3) is:

deff0'[n 0 n] -pVI] =0 (A.6)
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which relates the phase velocity v to the directidpropagatiom. Multiplying (A.6) by k® (see
[21]), we obtain

detf0'[kn 0 k] -pVKI] = (A7)

where: b=k and kv=w. Then, the dependence of the angular frequenoyn k is the same as the
dependence of the phase velocity vothis imply by (A.1) that

g _ 0w _ 0V

“ 5 " an (A.8)

It is possible to determingﬂ by differentiating 9, and by using the Fresnel-Hadamard condition
n

(3); indeed, after few passages, we get:

U O
on pala

whence, by (A.2) and (A.8) we have:

,_Ulaon]a _
- pva@d

v ve. (A.10)

Then, the group velocity’ is equal to the energy velocity.
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