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Abstract
In this work, the sliding contact of viscoelastic layers of finite thickness on rigid sinusoidal

substrates is investigated. Two different configurations are considered: a free layer with a uniform

pressure applied on the top, and a layer rigidly confined on the upper boundary.

It is shown that the thickness affects the contact behavior differently, depending on the boundary

conditions. In particular, the confined layer exhibits increasing contact stiffness when the thickness

is reduced, leading to higher loads for complete contact to occur. The free layer, instead, becomes

more and more compliant as thickness is reduced.

We find that, in partial contact, the layer thickness and the boundary conditions play a very

peculiar role on the frictional behavior. Interestingly, at low contact penetrations, the confined layer

shows higher friction coefficients compared to the free layer case; whereas, the scenario is reversed

at large contact penetrations. Furthermore, for the confined layers, a shift of the sliding speed

related to the friction coefficient peak is reported as the contact penetration increases. However,

once full contact is established, the friction coefficient has a unique behavior not depending on

thickness of the layer and boundary conditions.
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I. INTRODUCTION

Rubber-like materials have found increasing utilization in the last decades in many prac-
tical applications, such as tyres, seals, conveyor and power transmission belts. The growing
interest in polymeric materials, strongly supported by industrial demands, has boosted the
scientific effort in such field of materials. The demanding problem of an accurate modelling
of the viscoelastic contact behavior has been addressed by analytical approaches [1–7], nu-
merical sophisticated simulations [8–13] and experimental investigations [14–18]. One of the
most common assumptions in contact mechanics is that the contact bodies can be well rep-
resented by semi-infinite solids. This idea holds true for a large class of contact mechanics
problems, as confirmed by theoretical arguments and experimental evidences. For instance,
in the case of Hertzian contacts, it can be shown that, if the dimension of the contact area
is sufficiently small compared with the thickness of the elastic bodies, the contact quantities
can be correctly predicted by modelling the bodies as half-spaces.

However, when dealing with contacts involving thin layers, where the contact character-
istic length is comparable with the layer thickness, the half-space assumption fails and the
semi-infinite model is no longer able to correctly address the contact problem. Moreover, in
the case of viscoelastic materials employed in power transmission belts, seismic energy dis-
sipation systems, tyres, just to enumerate a few examples, the amount of dissipated energy
and, in turn, the tribological properties of the contact are indeed strongly affected by the
thickness.

For this reason, here we extend the results obtained in Ref. [7] for a viscoelastic half-
plane in sliding contact with a periodic wavy profile, to the case of viscoelastic layers. In
particular, we focus on two different configurations: a viscoelastic layer rigidly confined on
the upper boundary and a free layer uniformly loaded on the top.

Such apparently simplified contact configuration is a powerful tool to investigate more
complicated contact configurations. Hence, the proposed solution can be exploited in multi-
scale approaches (e.g. [19, 20]) to capture the features of the viscoelastic contact of real
randomly rough surfaces, which are the main focus of interest in modern contact mechanics
([4, 5, 21–26].

Under the assumption of steady sliding and taking into account linearity and translational
invariance, the contact problem can be mathematically formulated in terms of a Fredholm
integral equation of the first kind. However, since the value and the position of the contact
area are not known a priori, two additional conditions are required. Such conditions can be
obtained by observing that the mode I stress intensity factor KI at the trailing and leading
edges of the contact must vanish [27–29].

II. THE PROBLEM FORMULATION

Fig. 1 shows the sliding contact between a slightly wavy rigid profile with amplitude
Λ and wavelength λ, and a viscoelastic layer of thickness h. As already mentioned, two
different configurations are considered: a free layer with a uniform pressure applied on the
upper edge, and a layer rigidly confined on the top. The contact penetration ∆ is defined
as the distance between the mean line of the deformed viscoelastic layer and the crests of
the sinusoidal substrate, whereas the layer interfacial displacement v (x, t) is measured from
the mean line of the deformed body, i.e. it is calculated as the difference between the local
and averaged displacement of the layer at the interface. Furthermore, any kind of tangential
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interaction at the contact interface is neglected, as well as large deformations effects (e.g.
membrane stress stiffening), as we focus on slightly wavy profile (i.e. Λ/λ ≪ 1).

(a)

(b)

FIG. 1: The sliding contact of a viscoelasic layer of thickness h with a rigid slightly wavy
profile. Different boundary conditions on the upper face are considered: (a) free layer
(model A); (b) confined layer (model B). Tangential interactions at the interface are
neglected. In particular, ∆ is the contact penetration, and v is the layer displacement

measured from the mean line of the deformed profile.

Under the assumption of steady sliding motion at constant velocity V , the layer displace-
ment v (x, t) and the contact pressure p (x, t) are related, assuming linear viscoelasticity,
through the equation [7, 8]

v (x) = −

∫

Ω

ΘV (x− s) p (s) ds (1)

where Ω = [−a, a] is the contact domain (see Fig. 2), and ΘV (x) is the viscoelastic Green’s
function for steady sliding contacts, which parametrically depends on the sliding speed V .
The function ΘV (x) has been already derived for rolling contacts in Ref. [1], and for periodic
contacts in Ref. [7], where it has been shown that

ΘV (x) = J
(

0+
)

G (x) +

∫ +∞

0+
G (x+ V t) J̇ (t) dt (2)

being G (x) the ‘purely elastic’ Green’s function given in [17, 31], and J (t) the viscoelastic
creep function. The generalized linear viscoelastic model with a spring in series with N Voigt
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elements (the latter consisting of a Hookean spring in parallel with a Newtonian dashpot)
is usually employed to characterize J (t). In such case

J (t) = H (t)

[

1

E0
−

N
∑

i=1

Ci exp (−t/τi)

]

(3)

where H (t) is the Heaviside step function, E0 is the zero-frequency elastic modulus of the
material, τi are the relaxation times of the Voigt elements and Ci are the elastic compliances
of the relative springs.

FIG. 2: The shape of the contact area. The contact area is shifted of a quantity e with
respect to the crest of the sinusoidal asperity, because of the delay in the viscoelstic

response of the material.

Substituting (3) in (2) and recalling that J (+∞) = 1/E0 and J (0) = 1/E∞, where E∞

is the high frequency elastic modulus, the long time response viscoelastic Green’s function
writes as

ΘV (x) =
1

E∞

G (x) +
N
∑

i=1

Ci

∫ +∞

0+
G (x+ V τizi) exp (−zi) dzi (4)

being zi = t/τi.
For a viscoelastic material with only one relaxation time, the creep function simplifies as

J (t) = H (t)

[

1

E0
−

1

E1
exp (−t/τ)

]

(5)

with 1/E1 = 1/E0 − 1/E∞, and eq. (4) becomes

ΘV (x) =
1

E∞

G (x) +
1

E1

∫ +∞

0+
G (x+ V τz) exp (−z) dz (6)

The expressions of the elastic Green’s function G (x) for both the models under investi-
gation (see Fig. 1) can be given in the form (see Ref. [17, 31])

G (x) =
2 (1− ν2)

π

(

log

[

2

∣

∣

∣

∣

sin

(

kx

2

)
∣

∣

∣

∣

]

+

∞
∑

m=1

Am (kh)
cos (mkx)

m

)

(7)
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where k = 2π/λ and

Am (kh) =
2mkh + sinh (2mkh)

1 + 2 (mkh)2 − cosh (2mkh)
+ 1 (8)

for the free layer (Fig. 1a), and

Am (kh) =
2hkm− (3− 4ν) sinh (2hkm)

5 + 2 (hkm)2 − 4ν (3− 2ν) + (3− 4ν) cosh (2hkm)
+ 1 (9)

for the confined layer (Fig. 1b). Moreover, it can be shown that the displacement um of the
mean plane is

um =
1 + ν

1− ν

1− 2ν

E0
pmh (10)

where pm = λ−1
∫

Ω
p (x) dx is the mean contact pressure.

A. Solution

Fig. 2 shows that the contact area is asymmetric with respect to the crest of the sinusoidal
profile. In fact, due to the delay in the viscoelastic response of the material, the contact
area presents a certain eccentricity e (see Ref. [7]). In the contact domain Ω, hence, where
the layer displacement is v (x) = ∆ − Λ [1− cos (kx+ ke)], the Fredholm integral equation
of the first kind (1) can be rewritten as

∆− Λ [1− cos (kx+ ke)] = −

∫ a

−a

ΘV (x− s) p (s) ds x ∈ Ω (11)

Eq. (11) allows to calculate, for given ∆ and V , the contact pressure distribution in terms
of the contact size a and eccentricity e. In order to accomplish this purpose, we exploited the
numerical procedure already drawn in Ref. [31], relying on nonuniform discretization of Ω.
After calculating the contact pressure p (x), the displacements in the region of non-contact
can be evaluated as

v (x) = −

∫ a

−a

ΘV (x− s) p (s) ds x /∈ Ω (12)

Anyway, in order to completely define the contact behavior, we need two additional
conditions to calculate a and e. In this respect, according to [27–29], we can observe that
the mode I stress intensity factors at the contact trailing and leading edges (see Fig. 2) must
vanish. Therefore, recalling the expressions of KI given in Ref. [32], we have

KI,1 = − lim
x→a−

√

2π (a− x)p (x) = 0 (13)

at the leading edge and

KI,2 = − lim
x→−a+

√

2π (a + x)p (x) = 0 (14)

at the trailing edge.
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The contact size and eccentricity calculation can be mathematically formalized as a con-
strained optimization problem with objective function defined as

F (a, e) = K2
I,1 (a, e) +K2

I,2 (a, e) (15)

with constraints
a ≥ 0, e ≥ 0 (16)

It is worth noticing that the solution of the problem Eqs. (15, 16) is unique. In
fact, the objective function F (a, e) is convex as well as the feasible domain T =
{(a, e) ∈ R

2 | a ≥ 0, e ≥ 0}. The optimization problem then belongs to the class of con-
vex optimization problems for which, recalling that F (a, e) ≥ 0, only one global minimum
exists.

III. EXAMPLE RESULTS

Results are given in terms of the following dimensionless quantities: h̃ = kh, ã = ka,
Λ̃ = kΛ, ζ = kV τ and p̃ = 2 (1− ν2) p/ (EkΛ). Moreover, in all calculations we have
assumed E∞ = 3E0 and Poisson’s ratio ν = 0.5 (i.e. incompressible material), so that
um = 0.
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FIG. 3: The dimensionless deformed profile of the free (a) and confined (b) layer. Results

are obtained for h̃ = 1, ∆̃ = 0.35, Λ̃ = 1 and ζ = 1.5. Notably, regardless of the
configuration, both the contact area and the displacement field shows a certain asymmetry.

A. The contact behavior

Fig. 3 shows the deformed profile of the viscoelastic layer for both the models under
investigation. Results are obtained under displacement controlled conditions, with ∆ = 0.35.
In both cases, asymmetry in the displacement field and contact area occurs. Moreover, a
smaller contact area is observed in the free layer model (Fig. 3a), as a result of a larger
compliance.
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FIG. 4: The dimensionless mean contact pressure p̃m (a) and contact area ã (b) as
functions of the dimensionless contact penetration ∆̃ for different values of the

dimensionless layer thickness h̃. Thick and thin solid lines refer, respectively, to the
confined and to the free layer. The halfplane solution (given in Ref. [7]) is also plotted
with dashed line. Results are given for Λ̃ = 1 and ζ = 1. In (b), complete contact is

obtained when ã = π.

The dimensionless mean contact pressure and contact area are plotted in Fig. 4 as
functions of ∆, for fixed sliding velocity (we adopted ζ = 1 to highlight the viscoelastic
behavior) and different values of the layer thickness. Thin solid lines refer to the free layer,

whereas thick solid lines are used for the confined layer. Notably, in the limit of h̃ → ∞,
the viscoelastic half-plane solution [7] (dashed line) is recovered in both cases.

As expected (see Ref. [31, 33]), the thickness affects the contact behavior differently,
depending on the layer boundary conditions. In fact, from Fig. 4a one infers that the
free layer contact stiffness is reduced as the layer thickness increases, whereas the opposite
behavior is observed for the confined layer. Moreover, Fig. 4b shows that the contact area of
the confined layer (thicker lines) is larger compared to the viscoelastic half-plane case. Such
a behavior can be related to the joint effect of material incompressibility and layer finite
thickness (Ref. [31]). The free layer contact behavior (thinner curves), instead, is mainly
governed by bending, as show in Ref. [33]. As a result, the contact area is very small and
is negligibly affected by ∆ at small contact penetrations, whereas a strong increase occurs
when the penetration takes higher values, in proximity of the complete contact.

Fig. 5a shows, for h̃ = 1.5, the influence of the sliding velocity on the minimum value
of the mean contact pressure p̃m,FC required to obtain complete contact between the layer
and the rigid substrate. The results are compared with the viscoelastic half-plane solution
(given in Ref. [7]) and the viscoelastic Euler-Bernoulli (E-B) beam case (given in Appendix
B).

Interestingly, we observe that the results are qualitatively similar in all the cases. In par-
ticular, at very low and very high sliding speeds the material behaves elastically, regardless
of the system configuration. Moreover, in the intermediate range of ζ , the load required to
establish full contact monotonically increases with the speed and, as expected, the ratio be-
tween the limiting values calculated at high and low velocities is equal to the ratio between
the elastic moduli E∞/E0 = 3. Even the trend of the increase of p̃m,FC is not affected by the
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FIG. 5: The minimum value of the dimensionless mean pressure required to obtained full
contact as a function of: (a) the dimensionless sliding velocity ζ , and (b) the dimensionless

layer thickness h̃. Notice, the scales in the diagrams are different. The thin solid line refers
to the free layer, whereas the thick line to the confined layer. The halfplane (dashed line)
and the the Euler-Bernoulli viscoelastic beam (dashed-dot line) solutions are also plotted

for comparison. Results are given for Λ̃ = 1.

system configuration, hence the transition from the softer to the stiffer response occurs in
the same range of ζ [see Eq. (A5) in Appendix A]. Finally, the observed results suggest that,
applying a mean load lying in between the two limiting values of p̃m,FC , a speed induced
transition from full contact to partial contact can occur (see Ref. [7]).

Furthermore, p̃m,FC strongly depends on the layer thickness. This is clearly shown in Fig.
5b, where, at fixed ζ = 1, the two configurations exhibit a very different behavior. Indeed,
focusing on very thin free layers (h̃ ≪ 1), we observe that p̃m,FC vanishes. Additionally,
the comparison with the viscoelastic E-B beam, which shows similar results in a relatively
wide range of thickness (0 < h̃ < 2), confirms that the free layer behavior is mainly related
to a pure bending mode (see Ref. [33]). On the contrary, larger forces are required for
the confined layer to achieve full contact, and a limiting thickness exists below which full
contact can no longer be established because of the interference between the rigid profile
and the upper rigid constraint. Again, for thicker layers, the differences between the two
layer configurations vanish and, in the limit of h̃ → ∞, the viscoelastic half-plane solution is
approached. Notably, for h̃ > 2 the viscoelastic E-B beam model leads to unrealistic results.

B. The viscoelastic friction

Dealing with viscoelastic materials may, in general, give rise to global friction even when
tangential interfacial stresses are neglected. This mechanism is strongly affected by the
frequency spectrum of the external excitation: although the viscoelastic materials behave
elastically for very low and very high frequencies, an intermediate range exists at which bulk
energy dissipation and hence friction occurs [2]. Focusing on the problem under investigation,
we expect that the boundary conditions and the thickness of the viscoelastic layer play a
key role in determining the amount of energy dissipation. Firstly, notice that the stress and
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strain fields in the bulk of the material are subjected to a spectrum of exciting frequencies, of
which the fundamental is related to the substrate periodicity, thus being ω0 = kV . However,
simple dimensional arguments show that the input spectrum must also present an important
contribution at ωa = 2πV/a = kV (λ/a) , where a is the size of the contact area (depending
on ∆). As we show in the sequel, the pulsating frequency ωa has a fundamental role in
determining the sliding velocity at which the systems exhibits the largest values of the
viscoelastic friction coefficient.

D
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D
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= 0.8

h
�
 = 1

0.01 0.1 1. 10. 100.
0.0

0.1

0.2

0.3

0.4

Ζ

Μ

FIG. 6: The friction coefficient µ as a function of the dimensionless sliding velocity ζ for
different dimensionless contact penetration ∆̃. Results are given for h̃ = 1 and Λ̃ = 1. Thin
solid lines refer to the free layer, whereas thick lines to the confined layer. The halfplane

solution is also plotted with dashed line for comparison.

Let us consider first the free layer case. This contact configuration is characterized (for
each given value of ∆ < 1) by a decrease of the contact area a as the thickness of the layer
is reduced. This is clearly shown in Fig. 4b and can be easily explained in terms of local
stiffness and bending stiffness of the layer (the reader is referred to Ref. [33] for a detailed
explanation). Therefore, for thin layers, ωa is large and must interest the glassy region
of the viscoelastic spectrum of the material, where no dissipation and, hence, no friction
is generated. In this case, the main contribution to viscoelastic friction comes from the
fundamental frequency ω0. Thus, the largest viscoelastic energy dissipation occurs when
Im [E (ω)] / |E (ω)| is maximized, i.e. at values of ω0τ = kV τ = ζ ≈ 1 as, indeed, observed
in Fig. 6 (thin lines).

The confined layer and the half-plane necessarily exhibit a significantly different behavior
compared to the free layer case. In fact, this time, the quantity a, at given ∆, increases
as the thickness of the layer is reduced (see Fig. 4b). Under this condition, an important
contribution to energy dissipation, and hence to friction, occurs when ωaτ = kV (λ/a) τ =
ζ (λ/a) ≈ 1, i.e., when ζ ≈ a/λ < 1. Increasing ∆ from zero, leads to a continuous increase
of the contact area a and, therefore, to an increase of the dimensionless velocity values ζ at
which the friction peak is located. Finally, when ∆ is close to 1, full contact conditions are
almost established, i.e. a ≈ λ, and the friction peak will be again obtained at ζ ≈ 1.

The above qualitative analysis is totally confirmed by the behavior shown in Fig. 6,
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where the friction coefficient

µ = −
1

pmλ

∫

Ω

p (x) v′ (x) dx (17)

is plotted as a function of the dimensionless sliding velocity ζ , for h̃ = 1 and ∆ ranging from
small to high values. Bell-shaped curves are obtained in all cases, and vanishing friction
occurs at high and low speeds.

Interestingly, dealing with large contact penetrations, the friction coefficient takes larger
values for the free layer, whereas the opposite behavior is observed at small penetrations,
where µ is larger for the confined layer and for the half-plane. The above results can be
explained by arguing that, at large contact penetrations, the energy dissipation is large for
the free layers, as the cyclic bending deformation involves the whole body. On the contrary,
for confined layers and half-plane, bending is inhibited and the viscoelastic deformation
involves regions of smaller size. In fact, given the penetration ∆, the deformation of the
solid involves a volume (per unit width) of the order of a2 (half-plane) or ah (confined layer,
provided that a ≥ h).

At small penetrations, if we focus on the contact region, the local penetration of the
substrate into the layer can be estimated as δi ≈ Λ [1− cos (kai)], where ai is the contact
area semi-width and i = C,H, F , where the subscripts C, H , and F refer, respectively, to
the confined layer, the half-plane and the free layer. Moreover, since we deal with stationary
conditions, the energy dissipated per unit width, when the contact advances of a distance λ,
must balance the work done by the tangential force per unit width. Therefore, dimensional
arguments lead to

FTλ = Ed = λ

∫

Ω

pu′ (x) dx ≈ λpmax
δi
2ai

(2ai) sin [ϕ (ω)] = λδipmax sin [ϕ (ω)] (18)

and
FT ≈ pmaxδi sin [ϕ (ω)] (19)

where ϕ (ω) = arg[E (ω)]. Notice in the above estimation we have introduced the quantity
sin [ϕ (ω)] because, being the friction force due to the energy dissipation in the viscoelastic
medium, FT must be proportional to Im [E (ω)] / |E (ω)| (see appendix A and Ref. [34]).

The normal force per unit width is instead

FN ≈ pmax (2ai) (20)

and

µi =
FT

FN

≈
δi
2ai

sin [ϕ (ω)] (21)

Taking the ratio between the free layer and confined layer friction coefficients one gets

(µF )max

(µC)max

≈
δF
aF

aC
δC

(22)

which for small contact areas, i.e. ∆ ≪ 1, being δi ≈ Λ (kai)
2 /2, gives

(µF )max

(µC)max

≈
aF
aC

< 1 (23)
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FIG. 7: The friction coefficient µ as a function of the dimensionless sliding velocity ζ for
different dimensionless values of the thickness h̃, ∆̃ = 0.8 and Λ̃ = 1. Thin solid lines refer
to the free layer, whereas thick lines to the confined layer. The halfplane solution is also
plotted with dashed line for comparison. The free layers show higher friction coefficient,

compared to the confined ones.

as, from Fig. 4b, aF < aC .
Finally, Fig. 7, shows the effect of thickness on the friction coefficient, for a given ζ .

The half-plane solution (dashed curve) is recovered for increasing values of h̃. We note,
however, that the effect of thickness on the friction curves must vanish when complete
contact conditions are considered. In fact, as shown in appendix A, full contact friction only
depends on the dimensionless amplitude kΛ of the wavy profile and on the argument of the
complex viscoelastic modulus of the material.

IV. CONCLUSIONS

In this paper, the sliding contact of a viscoelastic layer on a rigid sinusoidal profile is
analyzed. In particular, we have focused on two different system configurations: a free layer
loaded with a uniform pressure on the upper boundary, and a layer rigidly constrained on the
top. As expected, the latter shows higher contact stiffness that is reduced by increasing the
layer thickness h. An opposite trend is exhibited by the free layer. Anyway, the differences in
the behavior of the two configurations vanish as the layer thickness increases, finally leading
to the half-plane solution in both cases.

As typical in viscoelasticity, different behaviors can be identified depending on the sliding
speed: at low and high sliding speeds, the system behaves elastically and the corresponding
pressures required to obtained complete contact are related by the proportionality factor
E∞/E0 ; at intermediate speeds, viscous effects are dominant and a threshold speed can
be defined, above which, under load controlled conditions, a transition from full contact to
partial contact occurs.

Since the hysteretic behavior of viscoelastic materials gives rise to global friction also
in absence of tangential interfacial stresses, the dependence of the friction coefficient µ on
the sliding speed has been investigated. At high contact penetrations, the free layer shows
higher values of µ, as larger amount of material is involved in cyclic deformations, giving
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rise to higher dissipation compared to the confined layer. At low contact penetrations, the
opposite behavior is observed accompanied, in the case of confined layer, by a shifting of
the sliding speed at which the friction peak occurs. We qualitatively estimate these results
by means of dimensional arguments.

Finally, in the Appendix, we show that the friction coefficient, in full contact conditions, is
not affected by the layer configuration, and only depends on the amplitude of the sinusoidal
profile and on the complex elastic modulus.

APPENDIX A: FRICTION FOR A VISCOELASTIC LAYER IN FULL CON-

TACT WITH A SINUSOIDAL PROFILE

In what follows, we consider a viscoelastic layer in full contact with a rigid sinusoidal
profile. Because of the linearity of the problem, in the Fourier domain, the stress σ and the
displacement v are related by (see, for example, Ref. [4, 17])

σ (k, ω) = M−1 (k, ω, h) v (k, ω) (A1)

where

σ (k, ω) =

∫

dxdtσ (x, t) e−i(kx−ωt) (A2)

v (k, ω) =

∫

dxdtv (x, t) e−i(kx−ωt) (A3)

and

M (k, ω, h) =
G (k, h)

E (ω)
(A4)

is the viscoelastic response function, and G is a function accounting for the periodicity of
the contact and the thickness of the layer. The sinusoidal profile is v (x) = Λ cos (kx). At
constant sliding velocity V , the displacements field and the interfacial stress distribution will
have different phases. Moreover, the viscoelastic material is subjected to a single exciting
frequency ω = kV . As a result, since the system is linear, the stress at the interface can be
written as

σ (x) = σ0 [1 + cos (kx+ ϕ)]

where

σ0 = Λ
∣

∣M−1 (k, kV, h)
∣

∣ (A5)

ϕ = arg
[

M−1 (k, kV, h)
]

= arg [E (kV )] (A6)

The friction force due to the viscoelastic dissipation is then

FT =

∫

λ

dxσ(x, kV )v′ (x) (A7)

= πΛ2
∣

∣M−1 (k, kV, h)
∣

∣ sin (ϕ) (A8)

= πΛ2ℑ
[

M−1 (k, kV, h)
]

(A9)
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where λ = 2π/k. Now, recalling that FN = λσ0, the friction coefficient is then

µ =
FT

FN

=
kΛ sin [arg [E (kV )]]

2
(A10)

which is identical to that obtained in Ref. [7] dealing with a viscoelastic half-plane.
Eq. (A10) shows that, in the case of full contact with a sinusoidal profile, the main

contact quantities, as well as the friction coefficient, are not affected by the layer thickness,
and only depend on the amplitude Λ of the wavy profile and on the viscoelastic material
response E (ω). Hence, it follows that, under these conditions, even the trends of the σ0 and
µ with respect to the sliding speed V are the same regardless of the system configuration,
as V only affects E (ω = kV ).

APPENDIX B: THE 2D EULER-BERNOULLI VISCOELASTIC BEAM RE-

SPONSE FUNCTION

The equilibrium equation for a 2D Euler-Bernoulli elastic beam is

uIV (x, t) =
σ (x, t)

EI
(B1)

where uIV is the fourth spatial derivative of the displacement field, E is the elastic modulus,
and I is the second moment of area of the beam cross-section.

For a viscoelastic beam, on the basis of the elastic-viscoelastic correspondence principle,
eq. (B1) can be rewritten in the Fourier domain as

u (k, ω) =
σ (k, ω)

k4E (ω) I
(B2)

Therefore, referring to Eq. (A1), the response function of a 2D Euler-Bernoulli viscoelastic
beam is

M (k, ω) =
1

k4E (ω) I
(B3)
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