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Bursts are recurrent, transient, highly energetic events characterized by localized varia-
tions of velocity and vorticity in turbulent wall-bounded flows. In this work, a nonlinear
energy optimization strategy is employed to investigate whether the origin of such burst-
ing events in a turbulent channel flow can be related to the presence of high-amplitude
coherent structures. The results show that bursting events correspond to optimal-energy
flow structures embedded in the fully-turbulent flow. In particular, optimal structures
inducing energy peaks at short time are initially composed of highly oscillating vortices
and streaks near the wall. At moderate friction Reynolds numbers, through the bursts,
energy is exchanged between the streaks and packets of hairpin vortices of different sizes
reaching the outer scale. Such an optimal flow configuration reproduces well the spatial
spectra as well as the probability density function typical of turbulent flows, recovering
the mechanism of direct-inverse energy cascade. These results represent an important step
towards understanding the dynamics of turbulence at moderate Reynolds numbers and
paves the way to new nonlinear techniques to manipulate and control the self-sustained
turbulence dynamics.

Key words:

1. Introduction

Turbulence is a widespread complex phenomenon influencing the behavior of a large
variety of natural and engineering systems. Flow in a channel (Sano & Tamai 2016),
ocean mixing (Moum et al. 2013), and the explosion of a rotating massive star (Mösta
et al. 2015) are three examples of very different phenomena characterized by turbulent
dynamics involving chaotic fluctuations of the physical properties and sharing the same
basic properties. The atmosphere itself, up to a hundred meters from the Earth’s sur-
face, is characterized by a turbulent, chaotic motion, whose deep knowledge and accurate
modeling may have tremendous implications for improving meteorological and climato-
logical predictions (Marusic et al. 2010). Yet, achieving a thorough comprehension of the
dynamics of wall-bounded turbulent flow remains a formidable challenge since turbulence
appears in a variety of different states and patterns competing with the ordered laminar
state (Barkley et al. 2015).

To determine low-order models for the onset of this chaotic motion from a laminar
regime, recent studies have turned the attention to the dynamics of large scale structures,
neglecting the random small scale motion: two main examples are the direct percolation
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model recently provided by Lemoult et al. (2016), and the front propagation scenario by
Barkley et al. (2015), explaining the coexistence of turbulent patterns competing with
the laminar state in the transitional regime.

Even when the flow reaches a fully developed turbulent regime, it remains characterized
by small-scale chaotic fluctuations as well as coherent structures, i.e. fluid motions highly
correlated over both space and time (Panton 2001), with characteristic wavelengths and
lifetimes. From a dynamical point of view, this coherent motion carries a much larger mo-
mentum than the chaotic motion at small scales; thus, a careful characterization of such
structures bears an enormous potential for modeling and controlling the self-sustained
turbulence dynamics.

The first evidence of coherent motion in turbulent flows dates back to the sixties,
when Kline et al. (1967) run a series of experiments in a boundary-layer flow, observing
”surprisingly well-organized spatially and temporally dependent motions” in the form of
streaks. These streaks populate the region close to the wall, the buffer layer representing
the inner region, with an average spanwise spacing λ+z ≈ 100 (where the superscript +

indicates variables expressed in inner units, non-dimensionalized by the viscous length
scale δν = ν/uτ , ν being the kinematic viscosity and uτ the friction velocity).

Such streaky structures are continuously regenerated in a cycle based on the lift-up
mechanism that does not depend on the outer flow, making them a robust, long-living
feature of the inner layer (Hamilton et al. 1995; Waleffe 1997; Jiménez & Pinelli 1999).
Concerning this regeneration cycle, a strong consensus has been achieved in the last years
about the self-sustained process theorized by Hamilton et al. (1995) and Waleffe (1997).
Grounding on modal and non-modal instability analysis, these authors conjectured a
cyclic process composed of the following three steps: i) streamwise streaks originate from
weak streamwise vortices, due to the inherently non-modal lift-up process; ii) saturat-
ing nonlinearly, they become prone to secondary instability; iii) the consequent streaks
oscillations recreate streamwise vorticity by nonlinear interactions, leading back to the
first step. Such a self-sustained process can explain the robustness of oscillating streaky
structures observed in transitional and turbulent flows. The extension of this theory led
to the discovery of self-sustained exact coherent structures (Waleffe 1998; Faisst & Eck-
hardt 2003; Hof et al. 2004), which are steady, periodic or chaotic states of the phase
space with few unstable directions, that populate the chaotic saddle representing wall
turbulence at low Reynolds numbers (Waleffe 1998; Faisst & Eckhardt 2003; Hof et al.
2004).

Moreover, it has been also observed (Adrian 2007; Tomkins & Adrian 2003) that large-
scale coherent structures populate the outer region of wall-bounded turbulent flows, with
average spanwise length λz ≈ O(h) (h being the outer length scale, for instance the half
height of a channel flow or the boundary-layer thickness of the flow over a flat plate).
These large-scale structures have the form of packets of hairpin vortices (Adrian 2007)
or large-scale oscillating streaks (Tomkins & Adrian 2003). Hwang & Cossu (2010b) have
recently shown that large-scale streaky structures remain self-sustained even when small-
scale motion is artificially damped. This numerical observation has been supported by the
results of a linear transient growth analysis of perturbations of a mean turbulent velocity
profile, showing that large-scale streamwise streaks can be amplified by a coherent lift-up
effect, without the need of smaller scale structures to sustain this growth (Pujals et al.
2009; Cossu et al. 2009; Hwang & Cossu 2010a).

These results suggest a scenario based on self-sustained cycles acting at different spatial
scales from the inner to the outer scale. Nevertheless, this is only a part of the complex
dynamics of wall turbulence, in which inner and outer scale structures are found to
influence each other, as recently shown by Hwang et al. (2016), who observed a close
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interaction between large-scale coherent structures and near-wall small-scale streaks. In
fact, the coexistence of separate cycles at different scales does not explain the spatial and
temporal intermittency of large-scale velocity fluctuations and their possible interaction
with inner-scale structures (Jiménez 1999; Hwang et al. 2016), neither the existence of
the high-energy bursting events, inherently short-lived and intermittent (Jiménez et al.
2005), recurrently observed in wall-bounded turbulent flows.

Bursting events are dynamically very important since they carry about 80% of the
Reynolds stress production (Panton 2001), accounting for a large part of the energy
transported through the flow. To characterize these vigorous events, quadrant analysis
of time series data have been used, showing a sequence of Q2 (u < 0, v > 0) events called
ejections (i.e., slow fluid carried up by a positive wall-normal motion), suddenly followed
by rather longer Q4 (u > 0, v < 0) events known as sweeps (high-speed fluid pushed
down towards the wall) (Bogard & Tiederman 1986). Very recently, using a filtered and
over-damped large-eddy simulation, Hwang & Bengana (2016) observed the occurrence
of bursting event for isolated attached eddies of different size, the related spanwise length
scale ranging between λ+z ≈ 100 and λ ≈ 1.5h. Therefore, these energy oscillations are
inherently present in the coherent motion of a fully turbulent flow even when small-scale
fluctuations are damped out.

However, despite the robustness of bursts and their main features are now well rec-
ognized, their origin is still not clear. Some authors have linked them to the secondary
instability of streaks; others, to the appearance of hairpin-shaped vortical structures
(Moin & Kim 1985), which can regenerate into packets populating the outer region of
the flow (Robinson 1991), in the same way as streaks populate the buffer layer. Recently,
Jiménez has investigated by a linear analysis the role of the Orr mechanism in the burst-
ing phenomenon (Jiménez 2013, 2015), showing that large-scale modes of the wall-normal
velocity in a turbulent minimal channel are well described by transient Orr bursts only
at short times (order 0.15h/uτ ), whereas at longer times nonlinearity becomes relevant.

This work aims at providing a thorough view of energetic structures in wall-bounded
turbulent flow, explaining the recurrence of bursting events as an interaction between
streaky and vortical structures at different scales. The final goal is to investigate whether
the formation of transient coherent structures inducing bursting events in a wall-bounded
turbulent flow is governed by an energy maximization process on a suitable time scale.
Being bursts short-lived and highly energetic, we use a transient growth approach in
a nonlinear framework in order to unravel which kind of flow structures are able to
trigger rapid events with a strong energy growth in a canonic wall-bounded turbulent
flow such as the channel flow. In the same way as a linear transient growth analysis on a
mean turbulent profile could explain the linear growth of streaky structures in turbulent
flows (Butler & Farrell 1993; Pujals et al. 2009), a nonlinear approach is a suitable
way for studying the energetic transient events characterized by ejections and sweeps.
With respect to the recent linear analysis provided by Jiménez (2013, 2015), we take
into account nonlinear interactions since the time horizon of the optimization analysis is
larger than the linear time interval limit indicated by Jiménez (2015).

The paper is organized as follows: in the second section we define the problem and
describe the employed numerical methodology; in the third section the main features of
the nonlinear optimal coherent structures and their time evolution are discussed; in the
last section, some conclusions are provided. The details of the derivation of the governing
equations are provided in the appendix.
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2. Problem formulation

This work provides the analysis of turbulent channel flow at friction Reynolds num-
ber Reτ = uτh/ν = 180; uτ , h, and ν being the friction velocity, the half-height of the
channel, and the kinematic viscosity, respectively. Since two scalings of the variables are
employed, variables expressed in inner units (normalized using uτ and viscous length
scale, δν = ν/uτ ) are indicated with the superscript +, whereas variables without any
superscript are scaled in outer units (normalized using the centerline velocity Uc and h).
Incompressible flow is computed by solving the Navier–Stokes equations (NS) in a box
having streamwise, wall-normal, and spanwise dimensions equal to lx = 4π, ly = 2, lz =
2π, respectively. No-slip boundary conditions for the three velocity components are im-
posed at the walls, whereas periodicity is prescribed in the streamwise and spanwise
directions.
The nonlinear evolution of perturbations of the mean turbulent velocity profile is com-
puted by solving the following system of equations (ÑS):

∂ũ

∂t
= −ũ · ∇ũ− ũ · ∇U−U · ∇ũ−∇p̃ +

1

Re
∇2ũ +∇ · τ, (2.1)

∇ · ũ = 0,

where ũ = (ũ, ṽ, w̃)T and p̃ represent the velocity and pressure perturbations, respec-
tively, which are composed of a coherent and a fluctuating part; U is the mean turbulent
flow velocity profile; τ is the Reynolds stress tensor forcing the mean turbulent velocity
profile (see equation (6.2) in the Appendix); and Re = Uch/ν. The Reynolds stress tensor
is computed a-priori by Direct Numerical Simulation (DNS) of the fully turbulent flow.
Details of the derivation of equations (2.1) are provided in the Appendix.
Using equations (2.1), we look for perturbations capable of inducing a peak of kinetic
energy in a finite time T . Thus, we maximize the kinetic energy growth at time T ,
G(T ) = E(T )/E(0), where

E(t) = {ũ(t), ũ(t)} =

∫
V

(
ũ2 + ṽ2 + w̃2

)
(t)dV, (2.2)

and V is the volume of the computational domain. The energy gain G(T ) is maximized
using a Lagrange multiplier approach, the initial energy E0, equations (2.1), and the
incompressibility condition being imposed as constraints using the Lagrange multipliers
or adjoint variables (ũ†,p†, λ), as follows:

L =
E(T )

E(0)
−
∫ T

0

{
ũ†, ÑS

}
dt−

∫ T

0

{
p̃†, (∇ · ũ)

}
dt− λ

(
E(0)

E0
− 1

)
. (2.3)

Deriving the functional L with respect to the variables ũ, p̃, one obtains the following
adjoint equations:

∂ũ†

∂t
= ũ† · (∇U)

T −U · ∇ũ† −∇p† − 1

Re
∇2ũ† + ũ† · (∇ũ)

T − ũ · ∇ũ†, (2.4)

∇ · ũ† = 0,

as well as the gradient of L with respect to the initial perturbation, which has to be
nullified in order to maximize the given L. Following previous works focusing on non-
linear optimal perturbations of laminar base flows (see Pringle et al. (2012), Cherubini
et al. (2010), Duguet et al. (2013), Rabin et al. (2012), Cherubini & De Palma (2013),
Cherubini et al. (2015)), the optimisation problem is solved by direct-adjoint iterations
coupled with a gradient rotation algorithm (Foures et al. 2013; Farano et al. 2016). Com-



Optimal bursts in turbulent channel flow 5

(a) t+ = 0 (b) t+ = T+
in

Figure 1. Shape of the optimal perturbation for T+
in = 80 and E0 = 10−2 at (a) t+ = 0 and

(b) t+ = T+
in: isosurface of negative streamwise velocity (green, (a) ũ = −0.025, (b) ũ = −0.18)

and Q-criterion ((a) Q = 10−6, (b) (a) Q = 2 × 10−6) coloured by the value of the streamwise
vorticity (positive blue, negative red).

putations are performed using the spectral-element code NEK5000 (Fischer et al. 2008),
with Legendre polynomial reconstruction of degree 7 and second-order accurate Runge-
Kutta time integration (Deville et al. 2002). The iterative procedure is stopped when
the relative variation between two successive direct-adjoint loops, e = (Gn −Gn−1)/Gn

is smaller than 10−7, n being the iteration number. Depending on the selected target
time, 40 to 80 direct-adjoint iterations are needed for reaching convergence for one set of
parameters, each optimization needing 100.000 to 800.000 CPU hours on an IBM cluster
Intel ES 4650.

The flow parameters are chosen according to the DNS of turbulent channel flow per-
formed by Kim et al. (1987) for Reτ = 180. The computational domain is discretized by
24, 20, and 20 elements in the x, y, and z spatial directions, respectively, obtaining a total
number of grid points equal to 192×160×160. For this setting we obtain approximately
the values of ∆x+ ≈ 12, ∆z+ ≈ 7, ∆y+max ≈ 4.4 and ∆y+min ≈ 0.05, similar to those
used by Kim et al. (1987). DNS has been run for about 13 time units (tuτ/h) in order to
evaluate the mean flow and the Reynolds stress tensor. The fully turbulent flow obtained
by DNS has been validated by comparing the mean flow and the Reynolds shear stress
with the results of Kim et al. (1987), finding a very good agreement (see the Appendix for
details). Furthermore, the direct-adjoint routine has been validated by computing linear
optimal perturbations following the approach by Pujals et al. (2009), who performed a
local stability analysis by considering a monochromatic sinusoidal coherent perturbation
in x and z. Although we perform a global analysis, where ũ depends on the three spatial
coordinates without any constraint, in the linear limit we have been able to reproduce
the maximum energy amplification, the associated time, as well as the shape of the opti-
mal perturbations with their wavelength, found by a local linear optimization using the
approach of Pujals et al. (2009). This result validates our direct-adjoint procedure at
least in the linear limit. Finally, the nonlinear optimization approach has been validated
in the laminar case with the results of Farano et al. (2015).

3. Results

3.1. Optimal perturbations

Nonlinear optimal coherent structures have been computed for Reτ = 180 and for dif-
ferent target times, T, which is a crucial independent parameter for the optimization
procedure. For such a moderate value of the Reynolds number, there is not a clear spa-
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(a) t+ = 0 (b) t+ = T+
out

Figure 2. Shape of the optimal perturbation for T+
out = 305 and E0 = 10−2 at (a) t+ = 0 and

(b) t+ = T+
out: isosurface of negative streamwise velocity (green, (a) ũ = −0.016, (b) ũ = −0.3)

and Q-criterion ((a) Q = 0.045, (b) (a) Q = 0.15) coloured by the value of the streamwise
vorticity (positive blue, negative red).

tial scale separation among the flow structures. However, structures with different scales
and dynamics may be found in the inner and outer region (Chen et al. 2014). The lifetime
of coherent structures populating the flow can be employed as the target time to select
the scale of the structures to be optimized. Butler & Farrell (1993) have chosen as repre-
sentative of the time scale of coherent structures the eddy turnover time defined as the
ratio between the turbulent kinetic energy and the dissipation rate, k/ε. In particular,
they consider the value of the eddy turnover time at y+ ≈ 20 (resulting in T+ = 80 for
Reτ = 180), finding optimal small-amplitude disturbances having the shape of low- and
high-speed streaks with the inner typical spanwise spacing λ+z = 110. Here, we employ
the same criterion, choosing the inner optimization time T+

in = 80, (Tin = 8.16) roughly
corresponding to one eddy turnover time evaluated in the buffer layer at y+ = 19 (Butler
& Farrell 1993); and the outer optimization time T+

out = 305 (Tout = 31.12), correspond-
ing approximately to one eddy turnover time at the centerline of the channel, consistent
with that used by Pujals et al. (2009) for higher Reynolds numbers.

3.1.1. Optimal perturbations at the inner time scale

The resulting optimal finite-amplitude disturbance obtained for T+
in and E0 = 10−2 is

shown in figure 1 at t+ = 0 (a) and t+ = T+
in (b). The initial optimal perturbation con-

sists of alternated inclined streamwise vortices (red and blue), flanking localized regions
of streamwise-velocity strong defects (green). Whereas, at T+

in, the optimal disturbance
consists of highly modulated streaks having a typical spanwise spacing of λ+z ≈ 113,
surrounded by positive and negative streamwise vortices, with a spanwise spacing of
λ+z ≈ 56; this is a typical value recovered for vortex spacing in turbulent channel flow
(Panton 2001). These nonlinear optimal streaks and vortices appear much more similar
to the oscillating coherent streaky structures observed in turbulent flows than the ide-
alized linear optimal perturbations presenting a perfect streamwise alignement (Butler
& Farrell 1993; Pujals et al. 2009). Moreover, they are localized in space in a spot-like
fashion, instead of occupying homogeneously the whole computational domain like the
linear optimal ones. These nonlinear optimal structures well represent the self-sustained
turbulence wall cycle: linearly growing streaks saturate and oscillate due to secondary
instability, regenerating new localized quasi-streamwise vortices by nonlinear coupling.
Linear optimizations are able to describe only the first step of this cycle, whereas a non-
linear approach can capture all of the elements of the cycle. Notice that a very similar



Optimal bursts in turbulent channel flow 7

(a) (b)

Figure 3. Shape of the optimal perturbation for T+
out = 305 and E0 = 10−2 at t+ = T+

out:
isosurface of negative streamwise velocity (green) (a,b); isosurface of Q-criterion coloured by
contours of streamwise vorticity (positive blue, negative red) (b). The isosurface values are the
same as in figure 2 (b). Small solid circles indicate small hairpin vortices, big dashed circles
indicate big hairpin vortices.

Figure 4. Outer optimal perturbation obtained for T+
out = 305 and E0 = 10−2: isosurfaces of

the Q-criterion (green) and isocontours of streamwise velocity (blue negative, red positive) on
the planes z+ = 860 and z+ = 320. The isosurfaces values are the same as in figure 2 (b).

optimal structure has been recovered for smaller target times, made by oscillating coher-
ent streaks and vortices at the walls, having smaller wavelength (for instance, λ+z ≈ 65
for T+ = 21.94) but a very similar spot-like spatial localization. However, as already
known (Jiménez & Moin 1991), these streaks are not self-sustained. In fact, we have
verified that the time evolution of these optimal small structures beyond the target time
leads to their decay. Concerning the influence of E0, we have observed that the optimal
disturbances keep a similar structure as long as the initial energy is sufficiently high to
trigger nonlinear effects.

The results obtained for the inner time scale are in good agreement with the well
assessed streaky structures observed near the wall by several authors by experimental
and numerical techniques (Kline et al. 1967; Panton 2001); therefore, such results can be
considered a successful validation of the proposed approach.

3.1.2. Optimal perturbations at the outer time scale

Increasing the target time to the outer timescale T+
out, the optimization algorithm

provides a different flow structure, as shown in figure 2, at t+ = 0 (a) and t+ = T+
out

(b). The initial optimal perturbation is strongly localized in space and is characterized
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by alternated streamwise vortices (red and blue) near the wall and localized patches of
streamwise velocity perturbations in the outer region. At t+ = T+

out this initial perturba-
tion turns into a much more complex structure, mostly composed of packets of hairpin
vortices on top of highly oscillating streamwise streaks. In particular, strong vortical
structures are observed at two different scales. The small-scale structures are not sym-
metric and have spanwise length λ+z ≈ 100 (consistent with the observations of Zhou
et al. (1999)). They are placed on top of the low-speed streaks, apparently as a result
of their sinuous instability, as shown in the solid circles in figure 3. On the other hand,
the largest vortical structures in the dashed circles have a clear symmetric hairpin shape,
with typical wavelengths λz ≈ 2h and λx ≈ 2.5h, consistent with the observations of
turbulent bulges and packets of hairpin of length ≈ 2h (Adrian 2007) and with the di-
mensions of the largest attached eddy computed using large-eddy simulation by Hwang
& Bengana (2016). As one can observe in figure 3, these hairpin vortices originate from
the merging of the streamwise vortical structures flanking two distinct low-speed streaks
(Adrian 2007), which are modulated quasi-symmetrically with respect to a streamwise
axis passing between them. Large-scale low-speed streaks, with λz ≈ 2.2h and λx ≈ 5h
are also induced between the legs of these large hairpin structures; these streaks can be
observed in figure 4 in a z−constant plane passing through the head of two large hair-
pin vortices (blue contours in the plane at z+ = 860 for low-speed large-scale streaks).
However, the streaks with higher intensity are those close to the wall, as shown by the
blue contours in the z+ = 320 plane. These features recall those found for packets of
hairpin vortices described by Adrian (2007), who observed that the larger the packets,
the weaker the backward-induced flow, due to the larger distance of the side vortices
from the center of the hairpin loop. The same author also conjectured that the passage
of hairpin packets can explain the occurrence of multiple second- and fourth-quadrant
events typical of turbulent bursts.

3.1.3. Probability density function analysis

Thus, we wonder whether this optimal perturbation characterized by a very complex
shape, optimizing the energy at the outer spatial scale, might be a possible candidate
for explaning the onset of transient recurrent bursts on top of the long-living oscillating
streaks. To investigate whether ejections and sweeps could characterize the dynamics of
the nonlinear optimal structure, indicating a strong correlation with bursting events, we
have computed the probability density function (PDF) of the streamwise and wall-normal
velocity disturbance at different wall-normal positions for the optimal perturbation at
t+ = T+

out. Figure 5 shows, for y+ = 10, 50, 100 (from top to bottom, left column), that
the PDF is concentrated in the Q2 and Q4 quadrants of the ũ− ṽ plane, indicating the
prevalence of ejection and sweep events, exactly as in a strong bursting event. Going from
the buffer to the outer region, the strongest contribution to the Reynolds stress slightly
moves towards the sweeps region, suggesting a mechanism of energy redistribution from
the outer to the wall region by means of sweep events (Jiménez 1999). This PDF has
been compared with that extracted from the DNS of the turbulent flow, shown in the
right column of figure 5 for corresponding wall-normal positions. The two set of PDF
distributions are very similar, although the data in the left column are obtained by
using only the perturbation at a given time, whereas the results in the right column
are computed from the statistics of the DNS. On the other hand, the PDF of the inner
optimal perturbation (not shown) is quite similar to that extracted from the DNS only
at y+ = 10, ũ and ṽ rapidly fading away towards the center of the channel. This indicates
that, while the inner optimal disturbance is representative of the self-sustained wall cycle,
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ũ

ṽ
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ũ

ṽ
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Figure 5. Logarithm of the PDF of the streamwise and wall normal velocity for the outer
optimal structures at t = Tout (left) and for the fully turbulent flow (right) at different constant
y+−planes: y+ = 10, y+ = 50, y+ = 100, from top to bottom.

the outer nonlinear optimal disturbance is representative of bursting events populating
the fully turbulent channel flow.
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3.1.4. Topology analysis

The outer optimal disturbance has been found to show the same typical features of
a bursting event. However, one may wonder whether its complex structure is well rep-
resentative of the vortical disturbances observed in fully turbulent conditions. In order
to answer to this question, we have compared the main vorticity features of the optimal
structures with those of the fully turbulent flow (Blackburn et al. 1996). Chong et al.
(1990) proposed a topological analysis of vortical flow structures based on the first three
invariants of the velocity gradient tensor, here referred to as P , Q, and R, respectively.
Incompressible flows being restrained to the P = 0 space, the flow topologies that can
be found in the channel flow considered here can be classified depending on the values
of Q and R: flow structures which fall in the upper region of the Q−R plane are called
stable (left) or unstable (right) focus, representing a vortex stretching or compression,
respectively; whereas, in the lower region of the plane, stable (left) and unstable (right)
nodes/saddle/saddle are found. The shapes of the local flow field corresponding to these
topologies are sketched in figure 6. As described by Blackburn et al. (1996), for a tur-
bulent channel flow, moving from the wall to the centerline of the channel, the PDF
of Q and R will vary, indicating the different structures found at different wall-normal
positions in the flow. Figure 7 provides the PDF of Q and R for the outer optimal distur-
bance (left column) and for the DNS of the corresponding turbulent flow (right column)
at y+ = 10, 50, 100. One can notice that in both cases, close to the wall, the PDFs are
rather uniformly distributed among all quadrants of the Q−R plane. On the other hand,
towards the centerline of the channel, the dominant structures are tube-like shaped as
those sketched in figure 6 above the line D = 0. Moreover, the PDFs spread mostly in
the second and fourth quadrants, indicating a predominance of stable focus/stretching
and unstable node/saddle/saddle topologies. As discussed by Blackburn et al. (1996) for
the case of turbulent channel flow, stable focus/stretching topologies appear to provide
a link between the inner and outer regions of the flow, with structures originating in
the viscous sublayer and extending towards the outer region, mostly associated with
hairpin or horseshoe shapes. The presence of hairpin vortices in the outer optimal dis-
turbance and the fact that its Q-R topology distribution reproduces well that of the
corresponding fully turbulent flow may indicate the presence of those structures in fully
turbulent conditions, at least for the moderate value of the Reynolds number used here.
On the other hand, the inner optimal disturbance, which does not show hairpin vortices,
is characterized by a different topology distribution, without any clear preference for the
stable focus/stretching and the unstable node/saddle/saddle topologies, with the vortices
rapidly fading away far from the wall (not shown). Therefore, the similarity of the outer
optimal flow topology with that of the fully turbulent flow suggests that these structures
are well representative of the vortical dynamics of a turbulent channel flow from the wall
towards the centerline of the channel.

3.1.5. Spectrum analysis

We have found that the outer optimal disturbance reproduces well the vortical topology
of the corresponding turbulent channel flow; now, we want to investigate whether the size
of these vortices and their main wavelengths might be representative of the broadband
spectrum of wavelengths typical of turbulent flows. At this purpose, we have extracted the
streamwise and spanwise premultiplied energy density spectra from the nonlinear optimal
disturbances at T+

in and T+
out, and compared them with the same spectra extracted from

the DNS of the corresponding fully developed turbulent flow. Figure 8 provides the
premultiplied spectrum distributions along the wall-normal direction obtained from the
DNS (shaded contours) and from the optimal disturbances at T+

in (light blue isolines)
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Figure 6. Sketch of the flow topologies associated with different regions of the Q − R
plane, Q and R being the second and third invariant of the velocity gradient tensor, and
D = (27/4)R2 +Q3 (Blackburn et al. 1996).

and at T+
out (black isolines). The spanwise (left column) and streamwise (right column)

spectra have been obtained for energy densities computed on the basis of the streamwise
(top), wall-normal (middle), and spanwise (bottom) components of velocity, Êuu, Êvv,
and Êww, respectively. The X and the O symbols mark the peak value of the energy
density spectrum for the inner and the outer optimal structures, respectively. Such peak
values are also provided in table 1. For the inner optimal structure, the energy peak is
found for λ+z = 113.8, rather close to the wall (y+ ranging from 10 to 29 depending
on the considered energy density), providing the typical spanwise spacing of streaks
(Kline et al. 1967). Concerning the streamwise wavelength, the energy peak is at λ+x =
189.4, corresponding to the wavelength of the strong wiggling of the streaks due to the
presence of streamwise vortices flanking them. However, looking at all of the streamwise
spectra (right column), one can notice a secondary peak at k+x ≈ 0.0058, corresponding
to a secondary wavelength, λ+x ≈ 1082.7, close to the typical streamwise wavelength
of streaks in fully turbulent conditions (Kline et al. 1967), and roughly corresponding
to the wavelength of the spot-like localization of the optimal structures characterizing
the inner optimal perturbation. Nevertheless, for this inner optimal structure, both the
streamwise and spanwise spectra appear very narrow, including only a small portion of
the broadband range of wavenumbers found by the DNS (compare the light blue isolines
with the shaded isocontours). On the other hand, the spectra computed for the outer
optimal have energy peaks at larger wavelengths in x and z, with λ+x = 757.5 well
reproducing the peak value found by DNS in the Êuu spectrum, probably corresponding
to the streak streamwise spacing found in the outer optimal disturbance. Moreover, the
outer optimal-perturbation spectra are almost overlapped to those extracted from the
DNS (compare the black isolines with the shaded contours), indicating that the optimal
structure computed for T+

out is well representative of the turbulent motion in the same
flow condition.

Concerning the typical wavelength of the coherent structures in fully turbulent flow,
the attached eddy theory of Townsend (1980) suggests that the size of the typical eddies in
a turbulent shear flow scales with the wall normal direction, the smallest eddy dimension
scaling with inner units (l+), and the largest eddy dimension scaling with outer units,
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Figure 7. Logarithm of the PDF of the nondimensional second (Q∗) and third (R∗) invariant of
the velocity gradient tensor, for the outer optimal structures at t = Tout (left) and for the fully
turbulent flow (right) at different constant y+ − plane (from top to bottom: y+ = 10, 50, 100).

Notice that Q∗ = Q/Qw and R∗ = R/Q
3/2
w , Qw being the second invariant of the antisymmetric

part of the tensor A, averaged on each y+− constant plane.



Optimal bursts in turbulent channel flow 13

λ+
z y+ λ+

x y+

t+ = T+
in

Êuu 113.8 13.6 189.4 9.21

Êvv 113.8 29.1 189.4 16.5

Êww 113.8 10.2 189.4 13.6

t+ = T+
out

Êuu 189.6 14.9 757.5 74.2

Êvv 142.2 67.6 757.5 81.5

Êww 227.5 81.5 757.5 74.2

Table 1. Wave length and corresponding wall normal position of the peaks of the
premultiplied energy density spectrum shown in figure 8.

in both streamwise and spanwise directions. In order to verify whether this hypothesis is
valid also for the optimal structures found here, we have considered the energy peaks of
the premultiplied energy spectra, marked in figure 8 by X and O for the inner and outer
optimal disturbance, respectively. Tracing a straight line between these two peaks (green
dashed line), we can infer a scaling of the form y+ ∝ λ+x,z (y+ ∝ (k+x,z)

−1), as conjectured
by Townsend (1980). Concerning the scaling coefficients, provided in the caption of figure
8, we have obtained values very close to those available in the literature for all components
of the energy (Hoyas & Jiménez 2006; Hwang 2015). Thus, the scaling laws extracted on
the basis of the inner and outer energy peaks reproduce well the scalings found in fully
turbulent flows. However, we must remark that at the considered moderate Reynolds
number a well distinct scale separation in the streamwise direction is not established yet,
data at higher Reynolds numbers being needed for confirming the results (del Álamo &
Jiménez 2003).

3.2. Time evolution of the outer optimal perturbation

3.2.1. Production and dissipation analysis

The optimal structure arising at the outer time scale is structurally rather complex and
the mechanisms leading to a strong energy growth cannot be simply related to a large-
scale cycle similar to that characterizing the inner scale (Hwang & Cossu 2010b). Insight
into the energy growth mechanisms can be gained by considering the time evolution of
the energy density of the structures. Scalar multiplication of equation (2.1) by ũ provides
the following Reynolds-Orr equation (Schmid & Henningson 2012) for the disturbance:

1

2

∂E

∂t
=

∫
V

−ũ · (ũ · ∇U)︸ ︷︷ ︸
P

dV −
∫
V

1

Re
∇ũ : ∇ũ︸ ︷︷ ︸
D

dV +

∫
V

ũ · ∇ ·

τ︷ ︸︸ ︷(
ũũ
)︸ ︷︷ ︸

Pτ

dV, (3.1)

where P (x, y, z, t) is the energy production, D(x, y, z, t) is the energy dissipation, and
Pτ (x, y, z, t) is the contribution of the Reynolds stress to the production. Figure 9 (a)
shows the time evolution of these three terms integrated over the whole computational
domain, denoted hereafter as PV , DV , and Pτ V . First of all, the strong energy peak,
followed by an increase of the dissipation DV , confirms that the transient evolution of this
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Figure 8. Logarithm of the premultiplied power spectrum versus the wall normal distance
y+ for the DNS (shaded contours), inner optimal solution (blue isolines) and outer optimal
solution (black isolines) at target time. The symbols X and O indicate the maximum value for
the inner and outer peak, respectively. The green dotted line joining the inner and outer energy
peak provides the scaling laws y+ = c(k+x,z)

−1, with slopes (a) c = 0.0921, (b) c = 0.4608, (c)
c = 0.6970, (d) c = 0.1028, (e) c = 0.1439, (f) c = 0.1287.
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(a) (b)

Figure 9. (a) Time evolution of the energy E (red), production PV (blue), Reynolds stress
production Pτ V (cyan), and dissipation DV (green). (b) Trajectories in the plane DV − PV of
the production PV , Reynolds stress production Pτ V , and total production PTotV = PV + Pτ V .
The time interval between symbols is equal to ∆t+ = 24.5.

optimal structure can be interpreted as a strong energy burst, which is then dissipated in
time reaching a dissipation peak at t+ ≈ 3T+

out. Such a time interval is in agreement with
the large-scale temporal oscillation observed by Hwang & Bengana (2016) for the largest
attached eddy and recognized as a bursting event by Flores & Jimenez (2010). One can
notice the non-negligible contribution of the term Pτ V in the early time evolution of the
perturbation, except at very small times, when the main production mechanism is the Orr
mechanism (Orr 1907), as inferred analysing the time evolution of the optimal structures
provided in subsection 3.2.2. This points out the important role of the Reynolds stress in
the dynamics of the perturbation. It is noteworthy that this result is in agreement with
the analysis of Jiménez (2015) who estimates that the effect of the linear energy growth
due to the Orr mechanism is dominant for t = t+/Reτ < 0.15. In our case, tOrr ≈ 0.136
and T out = T+

out/Reτ = 1.694, therefore, the linear limit is less than one tenth of the
target time. Figure 9 (a) shows that in the first part of the bursting event a strong
linear growth can be observed followed by a larger nonlinear growth till t+ = 2T+

out. In
particular, the contribution of the Reynolds stresses increases till t+ ≈ T+

out and becomes
negligible for t+ > 2T+

out. In fact, the term Pτ V reaches its maximum approximately at
the target time, when the generation of the largest hairpin vortices is completed, and then
it decays in time, leading to the establishment of featureless turbulence. This behaviour
can be better observed in figure 9 (b) providing the projection of the time evolution of
the perturbation onto a production-dissipation plane. Starting close to the origin, the
trajectory reaches the peak of the total production PV + Pτ V due to the successive
increase of Pτ V and PV , before starting to oscillate around the point PV ≈ DV ≈ 0.35,
representing the turbulent self-sustained state.

In order to analyse the energy production and dissipation mechanisms, we evaluate the
energy exchange in the wall-normal direction by expressing the Reynolds-Orr equation
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(a) (b)

Figure 10. (a) Time evolution of the net local energy production, given by the difference
between the production and dissipation at each y+ (shaded contours), and of the wall-normal
energy flux (isolines for Φ+ = 1, 2, 3, 4, from the outermost to the innermost contour) for the
outer optimal structure. (b) Net local energy production (red dashed line) and wall-normal flux
(black solid line) versus y+, extracted at t+ = 2T+

out, showing a production peak in the inner
zone (y+ ≈ 20), whereas the outer region is characterized by a weak dissipation.

using the Cartesian notation (Jiménez 1999):(
∂t + Uj∂j −

1

Re
∇2

)
ũiũi

2
+ ∂j

(
ũj

(
p̃+

ũiũi
2

))
= −ũiũj∂jUi −

1

Re
(∂j ũi)

2 + ũi∂jτij .

(3.2)
Integrating this equation in the streamwise and spanwise direction, we obtain an equation
for the wall-normal transport of energy, allowing one to identify the last term on the left
hand side as the wall-normal energy flux, Φ = ṽ[p̃+ (ũ2 + ṽ2 + w̃2)/2], and the first two
terms on the right hand side as the production and dissipation terms (whose integral
counterparts are denoted as Px,z and Dx,z, respectively). The net energy production
at a given y+−constant plane, provided by the difference Px,z −Dx,z, is plotted versus
time in figure 10 (a) (shaded contours). As found for fully developed turbulent flows at
comparable values of Reτ (Jiménez 1999), the net production of turbulent energy (red
contours) is well localized at the inner scale (y+ ≈ 20) and extends to the outer layer
for times smaller than the target time indicating that both inner and outer structures
contribute to the perturbation energy increase. The isolines for positive wall-normal
energy flux (Φ+ = 1, 2, 3, 4) are provided in figure 10 (a), clearly indicating an outward
flux of energy towards the center of the channel for t+ ≈ T+

out, corresponding to the
formation of the hairpin vortex. Whereas, at the center of the channel, dissipation is found
to exceed production, and the flux continuously decreases becoming slightly negative, as
one can observe in figure 10 (b), showing the excess of local energy production and
the wall-normal flux extracted at t+ = 2T+

out. This indicates the presence of a coherent
inverse-cascade process (Jiménez 1999) typical of moderate values of Reτ , in which energy
is transferred from the inner scales at the wall, i.e., the streaks, to large-scale dissipating
structures in the outer layer, i.e., the hairpin vortices. Notice that at the considered value
of Reτ , when fully turbulent flow is achieved, no energy production is observed far from
the wall, whereas at larger values of Reτ a (weaker) production peak is observed also at
the outer scale (see Lee & Moser (2015)). The large-scale dissipating hairpin structures
will eventually breakdown, transferring the energy to incoherent small-scale fluctuations,
closing the loop. This wall-normal energy transfer occurring in a short time is thus linked
to the occurrence of a transient energy peak which appears in the form of a rapid ejection
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(positive wall-normal velocity ṽ) followed by a longer sweep (negative ṽ), similar to a
typical bursting event.

3.2.2. Analysis of the flow structures

To further characterize the dynamics of the outer nonlinear optimal perturbation,
we analyze its time evolution. Figure 11 provides 10 snapshots of the perturbation (Q-
criterion isosurfaces, coloured by the wall-normal distance), from t+ = 0 to t+ = 431.
The initial perturbation is localized in the three space directions and is composed of
two packets of thin counter rotating vortices showing a spanwise symmetry, placed at
y+ ≈ 20 (as indicated by the colours in figure 11 (a)). Even if the optimization is based
on the outer time scale, the core of the vortical structures at initial time appears to be
in the inner region, the main part of the energy of the spanwise and wall-normal velocity
being located at y+ ≈ 10 − 40 (whereas at t+ = T+

out the energy peak is at y+ > 36 or
y > 0.2, as provided in table 1). Whereas, the streamwise velocity perturbation is located
far away from the wall at y+ ≈ 60 (at t+ = 0). In figure 11 (b) one can observe the typ-
ical downstream tilting due to the Orr mechanism (Orr 1907). This initial phase of the
energy growth agrees with the linear analysis of Jiménez (2015) who demonstrates that
for very short times (t = t+/Reτ < 0.15) the energy growth due to the Orr mechanism
is dominant. Following the evolution of the perturbation, we can notice that the vortices
tend to be lifted up from the wall towards the center of the channel, developing struc-
tures of increasing size in an inverse cascade from small to large scales (Jiménez 1999).
Concerning the vortical dynamics, one can observe the formation of new vortices aligned
with the initial ones along modulated steamwise streaks (see figure 11 (c,d)). These vor-
tices are lifted in the wall-normal direction, creating symmetric or non symmetric arches
on top of the negative streaks at the wall (Wang et al. 2015), as one can observe in figure
11 (d,e). Once the small-scale hairpin and cane vortices have been created, some of them
further grow and lift in the outer region, merging with the nearest vortices in large-scale
symmetric hairpin vortices whose head is placed between two streamwise streaks at the
wall (Adrian et al. 2001), as shown in figure 11 (f,g), generating a new weaker large-scale
negative streak between the hairpin legs. Once the structures have reached their maxi-
mum spatial growth, corresponding approximately to the energy peak in figure 9 (a), the
structures begin to break down, starting an energy cascade from the large scales towards
the small ones, closing the loop (figures 11 (h,i,j)).

Figure 12 summarizes the main steps of the time evolution of the outer optimal pertur-
bation: we conjecture it is representative of a bursting event which transfers the energy
from small to large scale structures, and then back towards small-scale perturbations. The
left frame provides a sketch of the main steps of the evolution shown by seven successive
snapshots on the right frame, for t+ = 49, 123, 147.5, 172, 196.5, 221, 294, respectively.
An initial perturbation leading to a bursting event is originated by two flanking pairs
of small counter rotating vortices (red and blue isosurfaces at the bottom left angle of
both frames), which are the first elements of the wall self-sustained cycle (Waleffe 1997).
These vortices initially increase their energy by the Orr mechanism and then generate
low speed streaks by the lift-up mechanism (Landahl 1980) (green isosurfaces, step (b)).
These streaks increase their amplitude, and exhibit secondary sinuous or varicose in-
stability (Andersson et al. 2001). As a result, the initial streamwise vortices bend over
the streak at the point where the instability is triggered, forming arch-shaped structures
(Wang et al. 2015; Schoppa & Hussain 2002) (step c). Being very close to each other and
continuously lifting in the wall-normal direction, two of these non-symmetric arch-shaped
vortical structures merge together, generating a large symmetric hairpin structure (blue
and red isosurfaces, step d). This large-scale hairpin vortex increases in size up to the
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(a) t+ = 0 (b) t+ = 49

(c) t+ = 98 (d) t+ = 147

(e) t+ = 196 (f) t+ = 245

(g) t+ = 294 (h) t+ = 343

(i) t+ = 392 (j) t+ = 431

Figure 11. Snapshots of the time evolution of the outer optimal structures: isosurfaces of
Q-criterion coloured by the wall normal distance y+.
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Figure 12. (Left) Sketch of the main steps of the dynamics of the outer optimal perturbation
based on the snapshots (right) extracted at (a) t+ = 49, (b) t+ = 123, (c) t+ = 147.5, (d)
t+ = 294, (e) t+ = 172, 196.5, (f) t+ = 221. Isosurfaces of negative streamwise velocity (green)
and Q-criterion coloured by the values of streamwise vorticity (blue for positive, red for negative).

centerline of the channel and then begins to break down dissipating the energy; instead,
the non-symmetric small-scale vortices on top of the streaks may induce inflectional in-
stabilities on the instantaneous velocity profile. In particular, strong low-speed streaks
may induce an inflection point in the x − y plane, triggering a Kelvin-Helmholtz type
instability producing spanwise vorticity, such as the arch of the hairpin vortices, but also
inflection points in the x− z plane, producing wall-normal vorticity (Heist et al. 2000).
The tilting of the wall-normal vorticity by the mean velocity profile induces streamwise
vortices of opposite sign with respect to the initial one (step e), as discussed by Heist
et al. (2000). This new counter-rotating vortex flanks the initial one, being able to create
a new low-speed streak by the lift-up mechanism (step f), and the loop can restart again
from the small-scale structures towards the large-scale ones. Concerning the time scales
typical of this loop, the complete formation of the small arch vortices participating to
the self-sustained cycle takes about ∆t+ ≈ 150 time units (see figure 11 (c) to (i)) as in
Wang et al. (2015), whereas the complete formation of the train of large-scale hairpin
vortices takes about ∆t+ ≈ 300 time units, which corresponds approximately to the tar-
get time T+, similarly to the observations of Zhou et al. (1999) where the hairpin packets
have spacing about equal to λ+x ≈ 450 (see figure 3). Notice that the self-sustained cycle
mainly involves streaks and vortices close to the wall, but it transiently induces large-
scale hairpin vortices as a by-product of ther evolution. These large vortical structures
have the role of realizing an inverse energy cascade reaching the outer scale and dissipat-
ing the stored energy towards smaller scales, allowing a new wall cycle to be established.
It appears thus that the large-scale hairpin vortices observed in the nonlinear optimal
disturbance do not directly participate into the self-sustained cycle, but they are tran-
sient dynamical features which ensure the occurrence of energy peaks and subsequent
dissipation typical of bursting events.
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4. Conclusion

It is known that, behind its chaotic dynamics, turbulent flow is populated by coherent
structures, i.e., flow motions highly correlated over both space and time, carrying a large
part of the flow momentum. In the present study, for the first time, a recently developed
nonlinear optimization technique based on Lagrange multipliers is employed to unravel
the dynamics of such structures.

In particular, a nonlinear transient growth analysis has been performed to study which
kind of coherent structures are able to trigger rapid events with a strong energy growth,
similar to bursting events, in a canonic wall-bounded turbulent flow such as the channel
flow. The optimization procedure, focusing on the dynamics of finite-amplitude distur-
bances, provides different nonlinear optimal structures depending on the chosen time
scale for the energy growth.
For an inner time-scale, corresponding about to one eddy turnover time evaluated in
the buffer layer at y+ = 19 (the superscript + indicating variables expressed in inner
units), nonlinear optimal structures consist of highly modulated streaks having a typical
spanwise spacing λ+z ≈ 113, surrounded by positive and negative streamwise vortices,
with a spanwise spacing λ+z ≈ 56. These nonlinear optimal structures, localized in space
in a spot-like fashion, well represent the self-sustained cycle of turbulence at the wall:
linearly growing streaks saturate and oscillate due to secondary instability, regenerating
new localized quasi-streamwise vortices by nonlinear coupling.
For the outer time scale, corresponding about to one eddy turnover time at the centerline
of the channel, a much more complex optimal structure is observed, mostly composed of
packets of hairpin vortices on top of highly oscillating streamwise streaks. In particular,
strong vortical and streaky structures are observed at different spatial scales, ranging
from the wall to the outer layer. The probability density function (PDF) of the veloc-
ity disturbance characterizing such an outer optimal is concentrated in the second and
fourth quadrants of the streamwise versus wall-normal velocity plane. This indicates the
prevalence of ejection and sweep events, as it happens in a strong bursting event. More-
over, we show that the outer most energetic structure well describes the wavenumber
spectrum, the vortical topology, and the production-dissipation wall-normal distribution
typical of turbulent flows at moderate Reynolds numbers. Whereas, the inner optimal
structure includes only a small portion of the broadband range of wavenumbers and vor-
tical topologies found at different wall-normal positions by a direct numerical simulations
of the fully turbulent flow. The analysis of the distribution of the most energetic wave-
lengths in the wall-normal direction for the inner and outer optimal disturbances shows
that the optimal structures computed here scale in size accordingly to the attached eddy
theory of Townsend (1980). In particular, the spatial scaling laws extracted on the basis
of the inner and outer energy peaks reproduce well the scalings found in fully turbulent
flows.

Finally, a careful analysis of the time evolution of the optimal flow structures has been
performed, providing the dynamics of the initial perturbations leading to a bursting event.
An optimal bursting event is originated by two flanking pairs of small counter rotating
vortices at the wall, the basic elements of the wall self-sustained cycle; due to the Orr
and lift-up mechanisms, these vortices are able to generate strong low-speed streaks,
which exhibit secondary sinuous or varicose instability; as a result, the initial streamwise
vortices bend over the streak at the point where the instability is triggered, forming arch-
shaped structures which lift in the wall-normal direction and merge together, generating
large symmetric hairpin structures; the large-scale hairpin vortices increase in size up
to the centerline of the channel and then breakdown dissipating the energy; instead, the
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small-scale vortices on top of the wall streaks are bent and tilted by the mean flow, leading
back to the creation of a pair of streamwise vortices, restarting the cycle. Thus, the self-
sustained cycle at the wall appears to be the main source of energy of the bursting event,
which transiently induces large-scale hairpin vortices as a by-product; these large vortical
structures have the role of realizing an inverse energy cascade reaching the outer scale
and eventually dissipating the stored energy towards smaller scales, allowing a new wall
cycle to develop. This implies that hairpin vortices, even if inherently transient coherent
structures (see Eitel-Amor et al. (2015)), are robust features of turbulent channel flows,
at least at moderate friction Reynolds numbers, arising as a result of a strong nonlinear
instability that repeats in time as a by-product of the self-sustained wall cycle.
These results show that, despite the main source of turbulent energy being located close
to the wall and sustained by the wall cycle (Waleffe 1997), for moderate values of Reτ
the turbulent motion is characterized by a complex energy transfer which involves inner
and outer scales.
In conclusion, this study provides an explanation for the recurrence of energy bursts
revealing that they correspond to optimal-energy flow structures embedded in the fully-
turbulent flow. These optimal structures reproduce well the spatial spectra as well as
the probability density function of the velocity typically measured in turbulent flows,
recovering the mechanism of direct-inverse energy cascade. These results represent an
important step towards understanding the dynamics of turbulence and paves the way
to new nonlinear techniques to manipulate and control the self-sustained turbulence
dynamics. A further challenge will be to extend this analysis to larger values of Reτ ,
for which a clear scale separation is observed in the spatial spectra and a second peak
of energy production exists at the outer scale. This will allow to model the inner-outer
interaction under different operating conditions, aiming at understanding the universal
mechanisms underlying the turbulent coherent motion. Moreover, further work will aim
at exploring the optimal dynamics of coherent structures for other types of turbulent
flows such as the boundary-layer flow.
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6. Appendix

In order to derive the equations governing the dynamics of perturbations of the mean
turbulent velocity profile in a plane channel flow, we employ a Reynolds decomposition
approach similar to that used by Eitel-Amor et al. (2015).The instantaneous flow vector
q = [u, p]T , where u is the velocity vector and p is the pressure, is decomposed into a
mean flow component Q = [U, 0, 0, P ]T and a disturbance q̃ = [ũ, ṽ, w̃, p̃]T :

q(x, y, z, t) = Q(y) + q̃(x, y, z, t), (6.1)
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Figure 13. Left frame: mean velocity profile U+ versus the wall-normal coordinate y+ (blue
thick lines) obtained by the present DNS (solid) compared with the results of Kim et al. (1987)
(dashed). The black thin lines are the linear (solid) and logarithmic (dashed) profiles. Right
frame: root mean square of ũ (red), ṽ (blue), w̃ (green), and Reynolds shear stress ũṽ (black)
normalized by the wall shear velocity, versus y+ obtained by the present DNS (solid) compared
with the results of Kim et al. (1987) (dashed).

Injecting this decomposition in the Navier-Stokes (NS) equations and averaging over a
long time, the following Reynolds-averaged-NS equations are obtained:

U · ∇U = −∇P +
1

Re
∆U−∇ · ũũ, (6.2)

• denoting long-time averaging. Subtracting the time-averaged equations (6.2) from
the NS equations provides the following final formulation for the dynamics of the distur-
bances:

∂ũ

∂t
+ ũ · ∇ũ + U · ∇ũ + ũ · ∇U = −∇p̃ +

1

Re
∆ũ +∇ · ũũ,

∇ · ũ = 0,

where Re = Uch/ν, Uc indicating the steady centerline velocity magnitude in the plane
channel. The last term of the momentum equation is the divergence of the Reynolds
stress tensor τ = ũũ forcing the mean turbulent velocity profile (see equation 6.2).

This term appears when the perturbative formulation employs a base flow U which
is not a solution of the steady Navier–Stokes equations. Reynolds stresses need to be
known or modeled for closing the governing equations: in this work we compute them
a-priori by a direct numerical simulation (DNS) of the fully-developed turbulent flow.
At this purpose, firstly, the mean flow velocity U is computed by DNS averaging the
instantaneous velocity over a long time interval and over the two homogeneous directions,
obtaining the velocity profile shown in the left frame of figure 13 (solid thick line), which
is compared to the mean flow computed by Kim et al. (1987) (dashed thick line). Then,
subtracting the computed mean flow from the instantaneous velocity field, we obtain the
perturbation ũ, which contains both coherent and fluctuating parts of the disturbances.
The product ũũ is averaged in time and over the two homogeneous directions. The right
frame of figure 13 provides the root-mean-square of ũ, ṽ, w̃, as well as the Reynolds shear
stress ũṽ (solid lines) exctracted from the DNS, showing an excellent agreement with the
same quantities computed by Kim et al. (1987) (dashed line). Based on these data,
we achieve a direct evaluation of the Reynolds stress tensor τ = ũũ, whose divergence
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Figure 14. Left frame: streamwise (red), wall-normal (blue) and spanwise (green) components
of the divergence of the Reynolds stress tensor τ versus y+ obtained by the present DNS. Right
frame: energy of ∇ · [ũũ] (where [•] denotes the spatial average in the y = const planes) for
the outer (red line) and inner (green line) optimal perturbations versus time; the dashed line
indicates the energy of ∇ · τ .

is shown in the left frame of figure 14 (the three solid lines showing the x, y, and z
components of ∇ · τ versus the wall-normal coordinate y+). The computed Reynolds
stress tensor is employed as a forcing term in equations (2.1) for the optimization process,
providing the inner and outer optimal perturbations. As a consistency check, it is also
worth to verify that the computed optimal perturbations satisfy the long-time constraint
implicitely imposed by forcing the NS equations with the Reynolds stress tensor. In the
right frame of figure 14 one can observe the time evolution of the energy of ∇ · [ũũ], ũ
being the inner (green line) or the outer (red line) optimal perturbation, and [·] denoting
the spatial average in the y = const planes. It appears that, after a short transient, the
energy of this term oscillates around the energy of ∇ · τ , confirming the consistency of
the proposed approach.
It is noteworthy that these equations are not suitable for a linear stability analysis;
in fact, ũ cannot be considered infinitesimal, since it contains both the coherent (û)
and fluctuating (u′) part of the disturbances, the latter being non zero in a turbulent
flow. Whereas, previous linear instability approaches such as those used by Pujals et al.
(2009), Cossu et al. (2009) and Hwang & Cossu (2010a) used a triple decomposition
approach (see Reynolds & Hussain (1972)) where u = U + û + u′, optimising only the
coherent part of the perturbation. However, the model used in these works cannot be
easily extended to a nonlinear framework, since it neglects the long-time average of the
nonlinear coherent perturbation term ûû, an hypothesis that cannot be extended to the
case of finite-amplitude perturbations, where this term should be large (see also Viola
et al. (2014)).

Finally, it is worth to point out that, using a triple decomposition approach, an equa-
tion formally equivalent to equation (6.3) for the coherent part of the perturbation can
be derived under the assumption that the variance of the probability distribution of the
fluctuating part of the perturbation is small with respect to the Reynolds stress tensor τ ,
so that the phase average of the fluctuating nonlinear term < u′u′ > can be neglected.
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