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A very fast route to transition through the generation of hairpin vortices is unraveled
using non-linear optimisation of initial perturbations to plane Poiseuille flow. Non-linear
optimisations are performed for subcritical values of the Reynolds number, large initial
energies and short target times, aiming at quickly trigger non-linear effects and gener-
ate self-sustained coherent structures. The obtained non-linear optimal solution is fully
localized in space and constituted by large-amplitude thin vorticity tubes curved and
tilted against the streamwise direction, able to turn very rapidly into a hairpin vortex.
Analysing the perturbation shape along the principal axis of the localized vortical struc-
ture, we observe strong sweeps and ejections already at initial time. These alternating
sweeps and ejections create the potential for an inflection instability occurring in a lo-
calized region away from the wall, generating the head of the primary and secondary
hairpin structures, quickly inducing transition to turbulent flow.
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1. Introduction

Studying coherent structures in transitional and turbulent shear flows is fundamental
to understand the nature of such complex flows. In fact, due to their long lifetime,
coherent structures determine a large part of the mean properties of the flow, while
their generation, instability, and sustainment mechanisms may be useful to explain many
details of the dynamics of turbulent flows. Two main examples of coherent structures are
streaks and hairpin vortices, which have been observed experimentally and numerically
in channel flows, pipe flows, and boundary-layer flows (Matsubara & Alfredsson (2001);
Adrian (2007); Wu & Moin (2009); Singer (1996)).

Streaky structures are observed at different scales in transitional and turbulent shear
flows (Brandt.. Hwang & Cossu PRL..) and their origin seems now to be well under-
stood. As conjectured by Landahl (1980) some decades ago, elongated near-wall zones
of low or high momentum are created by a mechanism of transient growth of the per-
turbations known as lift-up effect. Such a mechanism is based on the transport of the
mean shear by rolls of streamwise vorticity. Due to linear transient growth mechanisms
such as the lift-up, an asymptotically stable shear flow can act as an amplifier of small-
amplitude disturbances, producing an output mainly composed by the most amplified
flow structures (Luchini (2000)). The quest for the origin of these coherent structures has
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stimulated the search for perturbations providing maximum amplification in a finite 'tar-
get time’, defined as ”optimal perturbations”. By optimizing the perturbation energy in
a linear framework, several authors have found initial optimal disturbances correspond-
ing to streamwise-elongated rolls inducing streamwise streaks at target time(Butler &
Farrell (1992); Luchini (2000)). The shape of these optimal perturbations correspond well
to coherent structures found in transitional turbulent turbulent flows (Luchini (2000)) in
a low-to-moderate disturbance environment. Thus, streaky structures can be explained
as the projection of flow disturbances onto the linear optimal flow structure.

Also the mechanism of formation of hairpin vortices has been extensively studied. Wu
& Moin (2009) have analyzed the generation of hairpin structures from Lambda shaped
vortex structures induced in a boundary layer by the receptivity process from large am-
plitude free stream turbulence; Acarlar & Smith (1987) and Wu & Moin (2009) studied
the formation of hairpin vortices by localized disturbances in boundary-layer and channel
flows, respectively. Suponitsky et al. (2005) have studied a simple model of interaction
between a localized vortical disturbance and an uniform unbounded shear flow, showing
that a small-amplitude initial disturbance always evolves into a streaky structure, whereas
a large-amplitude one evolves into a hairpin vortex under some conditions. Furthermore,
it is well established that hairpin vortices appear as the consequence of the secondary in-
stability and break-up of elongated streaks (Schmid & Henningson (2001)) These studies
indicate that, unlike streaky structures, hairpin vortices are generated through nonlin-
ear interactions (Eitel-Amor et al. (2015)). The fact that they naturally arise in many
transitional and turbulent shear flows, as the consequence of the instability of streaks or
induced by other causes (such as roughness elements or flow injection at wall) suggests
the existence of a strong energy growth mechanism triggered by non-linearity. Whether
the hairpin vortex might be recognized as an optimal flow structure in a nonlinear energy
growth process is the question we want to address in the present paper. At this purpose,
we will perform nonlinear optimizations in a simple parallel shear flow such as the plane
Poiseuille flow.

Nonlinear optimizations in parallel shear flows have been recently performed by Pringle
et al. (2012); Cherubini et al. (2011); Cherubini & De Palma (2013); Monokrousos et al.
(2011); Rabin et al. (2012) the pipe and the Couette flow. In both cases the nonlinear
optimal perturbations were found to induce strongly bent streaks, but hairpin vortices
have never been observed. However, in those works the optimizations were performed
for rather long target times, at which the lift-up mechanism dominate the dynamics.
In order to focus our optimization analysis on the phase of generation of the hairpin
structure, we need to choose finite amplitude initial perturbations and small target times
to rapidly trigger nonlinear effects. In particular, the chosen target time is typical of the
Orr mechanism, much smaller than the typical scale of the lift-up mechanism.

The paper is organized as follows: in the second section we define the problem; in the
third section we discuss the results; in the last section an outlook is provided.

2. Problem formulation

The plane Poiseuille flow in subcritical conditions is considered. Nondimensional vari-
ables are chosen such that half the distance between the plates is A = 1 and the cen-
terline velocity of the laminar flow is U, = 1. Dirichlet boundary conditions for the
three velocity components are imposed at the wall, whereas periodicity is prescribed in
the streamwise and spanwise directions (denoted = and z, respectively, whereas y denotes
the wall-normal direction). The streamwise, wall-normal, and spanwise dimensions of the
computional domain are 27, 2, and 7, respectively. It is discretized using a staggered grid
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FIGURE 1. Log-Log plot indicating the scaling law for the minimal energy density (a) and velocity
amplitude (b) of such an highly non-linear optimal perturbation able to suddenly provide hairpin
formation in subcritical transition.

with 300 x 100 x 120 points. The Navier—Stokes equations are solved by a fractional-step
method with second-order accuracy in space and time (Verzicco & Orlandi (1996)).
The optimization procedure aims at computing the velocity perturbation u = (u, v, w)?
at t = 0 providing the maximum value of a chosen objective function at a given target
time, T5,,:. The chosen objective function is the ratio between the energy density at 75,
and the initial (given) one, where the energy density is defined as:

E(t) = ‘1//‘/6(1&) dv = é/v %(uQ + 02 +w?) (t) dV. (2.1)

The optimization problem is subject to partial differential constraints, namely the
perturbative Navier-Stokes equations. Moreover, for the non-linear optimization, the ini-
tial value of the energy density must be imposed (E(0) = Ep). To optimize the chosen
objective function subject to these constraints, a Lagrange multiplier technique is used
coupled with an direct-adjoint iterative procedure using a gradient-based method. For
further details on the optimisation algorithm the reader is referred to Cherubini et al.
(2011).

3. Results

We perform non-linear optimizations of finite-amplitude three-dimensional perturba-
tions for the plane Poiseuille flow focusing on subcritical values of the Reynolds number,
namely, Re = 2000, 3000, 4000, 5000. In order to find optimal perturbations rapidly trig-
gering coherent structures sustained by non-linear effects, we focus on the time scale of
the Orr mechanism, which acts on time scales of order min(Re, =) (where ¥ represents
the streamwise vortices amplitude, see Waleffe (1995)). Performing several linear opti-
misations, we have found that the transient energy growth due to the Orr mechanism
peaks at t & 10 for all of the considered Reynolds numbers. It is noteworthy that such
a time interval is smaller than the characteristic lift-up time scale. Thus, T5,: = 10 has
been chosen for the following non-linear three-dimensional optimisations. Moreover, us-
ing this short target time, we must choose a sufficiently large initial energy density in
order to trigger non-linear mechanisms. Thus, several non-linear optimisations have been
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FIGURE 2. Isosurfaces of the Q-criterion for the non-linear optimal perturbation obtained with
Topt =10 and Fy =2 x 107%: (a) t =0, Q = 0.01 and (b) t = 10, Q = 0.2.

performed increasing the value of Fy until the energy gain at target time, E(T')/FEy,
achieves a value larger than the linear energy gain, indicating that non-linear effects are
non-negligible. This value of Ey has been successively bisected in order to determine this
non-linearity threshold with an accuracy of .. (X MIRKO: METTI ACCURATEZZA!!!)
The values of this energy threshold are shown in Figure 1 (a) for all of the considered
values of Re. These values appear well fitted by the scaling law FEp,; o< Re™22%. Cor-
responding thresholds on the rms velocity values are shown in figure 1 (b): the three
velocity components are found to follow slightly different scaling laws, all of them with
exponent close to —1. This fitting is consistent with different scaling laws of the form
A o« Re?Y proposed in the literature for fast subcritical transition induced by different

initial disturbances, namely: i) v = —2 for initial streamwise vortices (Chapman (2002));
i) y= 7% for initial oblique vortices; iii) v = —1 for the Waleffe & Wang (2005) model;
v = —3 for wall-normal flow injection inducing hairpin vortices (Cohen et al. (2009)).

Figure 2 (a) shows the non-linear optimal perturbation obtained for (Re, Ey) = (4000, 2 x
107%), which is composed by several thin tubes of counter-rotating vorticity alternated in
the spanwise direction and fully localized in space, both in the streamwise and spanwise
directions. The vortices are characterized by a large streamwise vorticity component and
are tilted against the base flow, confirming the presence of linear energy growth mecha-
nisms such as the lift-up (Landahl 1980) and the Orr (Orr 1907) mechanisms. However,
this optimal solution is strongly different from linear optimals found for the same flow
due to: 1) its strong localization; ii) its smaller wavelength in the spanwise direction;
iii) the presence of an inclination of the vortical structures in the spanwise direction. In
particular, figure 2 (a) shows three pairs of vortices, all of them having different spanwise
inclination and length, characterized by a streamwise vorticity of alternating sign. One
can observe that the two inner pairs of vortices at the center of the structure are very
close to each other. When such a structure evolves in time, a strong interaction of the
vortices occurs immediately after the tilting in the stream wise direction. Therefore, a
“hot spot” develops, which appears to be the seed of the hairpin vortex shown in figure
2 (b) at the target time. It is also noteworthy that, unlike other parallel shear flows,
such as the Couette flow Cherubini & De Palma (2013), this non-linear optimal struc-
ture is characterized by a symmetry which is maintained when ithe initial energy Ej is
increased. We have verified that the optimal perturbation is characterized by this sym-
metry only at small target times; for target times typical of the lift-up mechanism, the
optimal perturbation strongly resembles the one found in the Couette flow Cherubini &
De Palma (2013). Figure 3 (a) clearly shows the symmetry of the streamwise and wall-
normal velocity components, whereas the spanwise component is antisymmetric with
respect to a z—constant axis, recalling the structure of varicose perturbations (Schmid
& Henningson 2001). Moreover, it is worth noting that the streamwise and wall-normal
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FIGURE 3. Isosurfaces of the three velocity components (light grey for positive and black for
negative values, u,v,w = £0.01) of the non-linear optimal perturbation for T,,: = 10 for
different initial energy and Reynolds number: (top frames) Fo = 2 x 1075, Re = 4000, (middle
frames) Eo = 4 x 107°, Re = 3000, and (bottom frames (Ey = 1 x 107%, Re = 2000).
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FIGURE 4. Evolution in time of velocity and vorticity rms for non-linear optimal perturbation
with Eo = 2 x 107% and Tope = 10

components of the velocity clearly show a A structure oriented against the flow. This
structure, once tilted by the Orr mechanism, becomes a precursor of the hairpin vortex.
Very similar structures are found for different Reynolds numbers, as shown in figures 3
(d-i) for Re = 2000, 3000, although the latter perturbations are characterized by larger
amplitudes (see the scaling in figure 1).

Direct numerical simulation (DNS) has been employed to study the time evolution
of the initial optimal perturbations into a hairpin vortex and its subsequent transition
to turbulence. The non-linear optimal perturbation computed at Re = 4000 for Fy =
2 x 1079, has been used to initialize the computation. The results are shown in figure 4
(a) and (b) providing the rms values of velocity and vorticity (respectively) versus time.
It appears that all of the velocity and vorticity components grow together until reaching
transition in a relatively short time (at ¢ & 50). It is noteworthy that in other transition
scenarios, such as oblique and streaks instability (see Schmid & Henningson (2001)),
the streamwise velocity experiences a much larger growth than the other components.
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FIGURE 5. Evolution of non-linear optimal perturbation for T,,: = 10 and Ep = 2 X 1076, Iso-
surface of Q-criterion ( (a~e) @ = 0.02; (f) @ = 0.1, green) and streamwise velocity disturbance
(u = —0.03, black).

Snapshots of the time evolution of the vorticity (green) and of the negative streamwise
velocity (black) are provided in figure 5. The initial vortex tubes are alternated in z and
have opposite inclination with respect to the streamwise direction (see figure 5 (a)), so
that the downstream tilting due to the Orr mechanism induces already at ¢ = 4 the
merging of two of these vortices in a tube of spanwise vorticity resembling a hairpin
head (see frames (b)-(c)). Patches of positive and negative streamwise velocity can be
observed in the flow; for ¢ < T,,; they appear rather localized in the streamwise direction
(frame (c)) and they elongate in the streamwise direction, creating streaks, at times larger
than the target time (frames (d-e)). It appears that the hairpin head is originated by a
strong localized streamwise velocity defect (Adrian (2007)), which is rather large already
at ¢ = 0 (see the rms values in figure 1). This defect further increases its amplitude
due to the Orr mechanism and to a modified lift-up mechanism (see Cherubini et al.
(2011)) driven by the initial vortex filaments, until inducing local inflection points in the
instantaneous velocity profile. To analyze how those defects are created, we have studied
the evolution of the main vortical structures in time. Following Suponitsky et al. (2005),
the coordinates of the center of the vortical structure (CVS) are defined by the following
equation:

Sy 1wl 2dv
= W ;
where @ is the vorticity vector, W = [, [@]|? dV is the enstrophy integral, and the index
i = 1,2,3 indicates Cartesian components. To identify the spatial orientation of the

vortical structure centered at X;, we employ the tensor of enstrophy distribution (TED),
defined as follows:

X; (3.1)

Ty = /V ol (a2 — Xo)(a; — X;)dV., (3.2)

Since the TED is a symmetric tensor, all its eigenvalues are real. The eigenvector as-
sociated with the largest eigenvalue identifies the direction of the principal axis of the
vortex, along which the vortex has the largest extension. The insets in figures 6 (a) and
(b) show by red lines the principal axis of the vortical structures (represented in green
by the Q criterion surfaces) extracted from the DNS at ¢t = 5 and ¢t = 10, respectively.
Being the flow structures mainly aligned with this direction, we evaluate along this axis
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FIGURE 6. Velocity profile along the principal axis extracted at two different times from a
fully non linear (black) and a linearized (red) DNS initialized by the non-linear optimal at
(Re, Fo) = (4000,2 x 1079).
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FIGURE 7. Contours of the logarithm of the probability density function of the wall-normal and
streamwise velocity disturbance in a u—v plane (w = 0) for 0 < y < 1, extracted at t = 0, 1, 6, 10
from a DNS initialized with the non-linear optimal with T,,: = 10 and Ey = 2 X 107%. The values
of the logarithm of the PDF has been normalized over the number of point of the computational
domain.

the distribution of the streamwise and wall-normal velocity components. Figures 6 (a)
and (b) show such distributions versus the abscissa s along the principal axis (s = 0
at the CVS) for two different times. At ¢ = 5 (figure 6 (a)) we can observe that the
velocity components u and v mostly have opposite sign and are equal to zero for s = 0.
This behaviour recalls a fundamental feature of eddy motion in wall turbulence, namely,
fluctuations have higher probability of spending time in the second (Q2) and fourth (Q4)
quadrants of the v — v plane (Adrian (2007)), inducing two kind of events: i) ejections,
characterized by negative streamwise fluctuations lifted away from the wall by positive
wall-normal fluctuations; ii) sweeps, characterized by positive streamwise fluctuations
being moved toward the wall. To confirm such a similarity, we have computed the proba-
bility density function (PDF) of the perturbation velocity components at different times.
Figure 7 shows the PDF values (in a logarithmic scale) of the streamwise and wall-normal
components of the velocity perturbation, confirming the presence of ejections and sweeps
already at ¢ = 0, and up to the time of formation of the hairpin vortex. For instance,
in Figure 6 (a) a sweep is observed upstream of the CVS (s < 0) followed by a strong
ejection and a weak sweep downstream of the CVS (s > 0). At ¢ ~ 10, the hairpin
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FIGURE 8. Wall-normal and streamwise vector component of velocity disturbance on an
axis following the inclination of the main vortical structures for the non-linear optimal with
Ey=2x107% (a) t =0, (b) t = 14. Isosurface of the Q-criterion ((a) @ = 0.01, (b) Q = 4)

head is formed downstream of the CVS (s > 0), in correspondence with an ejection,
as shown in figure 6 (b). This is not surprising since, as found in wall turbulence for
a channel flow, the eddy associated to an ejection has a hairpin vortex shape (Adrian
2007). Comparing figure 6 (a) and (b), one can observe that when the hairpin head is
formed, the zone of ejection increases its intensity, while the sweep region enlarges in
the streamwise direction, reducing its intensity. When the evolution of the same initial
perturbation is computed by a linearized DNS, the velocity distribution for ¢t > 5 is char-
acterized by increasing values of v and much lower values of v, as provided by the red
lines in figure 6. Therefore, in the linearized case, larger streaks will be formed due to
the lift-up effect but they will not be associated with wall-normal velocities of opposite
signs, rapidly damping the ejection event that is responsible for the lifting of the hair-
pin head, thus preventing the creation of the hairpin structure. Figure 8 shows that the
alternation of strong sweeps and ejections found at ¢ = 0 is maintained at larger times,
thus representing a basic element for the rapid hairpin formation. Moreover, in figure
8 (b) one can observe that the hairpin head is placed right in the zone of interaction
of the stronger ejection with the stronger sweep, indicating that the formation of the
spanwise vortex connecting the initial quasi-streamwise vortices might be a consequence
of an inflectional instability taking place in this interaction zone. This observation is
in agreement with the minimal flow-element model proposed by Cohen et al. (2014), in
which a wavy spanwise vortex sheet was necessary to provide the inflection points for
creating hairpin vortices from streamwise counter-rotating vortex pairs. Figure 9 (a) and
(b) provide the instantaneous velocity and vorticity profiles at ¢ = 10, computed solving
the non-linear and the linearized Navier-Stokes equations, respectively, extracted along
a vertical axis passing through the hairpin head in the non-linear case. In figure 9 (a)
one can observe an inflection point, located at the point corresponding to the peak of
vorticity measured at the hairpin head (at y ~ 0.7), in the outer zone of the velocity
profile; whereas, in the near-wall region, at y = 0.15, one can observe the deformation of
the velocity profile induced by the formation of a negative streak. The inflection point is
observed in the linearized case as well (figure 9 (b)), but it is placed closer to the wall
(y = 0.4), consistent with a shear layer instability induced by a streak. Moreover, in the
non-linear case the vorticity peak moves in time towards to the center of the channel,
reaching an amplitude one order of magnitude larger than that of the linearized case.
Thus, the formation of the hairpin head appears essentially due to a local inflectional
point induced by aternance of sweeps and ejections already present at the initial time
and increasing in time. Non-linear effects appear necessary to sustain the coupling of
the stream wise velocity component with the wall-normal one inducing the lifting of the
hairpin head. When the head of the hairpin is pushed by the wall-normal perturbation
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FIGURE 9. Streamwise velocity and vorticity profiles at ¢ = 5 along a wall-normal line passing
through the hairpin head computed by the DNS (a) by the linearized DNS (b), initialized with
the optimal for Fy = 2 x 1076,

toward the center of the channel, it is advected by the base flow at a higher velocity with
respect to the part near the wall, stretching the whole vortical structure in the streamwise
direction. Then, due to conservation of circulation, stretching provides a further growth
of the vorticity, sustaining the hairpin vortex and allowing secondary hairpin structures
to be created (Adrian 2007). The time evolution of the hairpin structure is visualized
in figure 10, providing DNS snapshots showing isosurfaces of the Q-criterion (green),
isolines of the streamwise velocity disturbance (red positive and black negative), and iso-
contours of the wall-normal velocity (white positive and black negative). One can notice
the alternation of patches of u and v with different signs, spread all over the domain,
and their effect on the lifting and stretching of the hairpin structure.

4. Outlook

Rapidly growing non-linear optimal perturbations have been computed for the plane
Poiseuille flow, using small target times and finite initial energies. Such optimal pertur-
bations are fully localized in space and characterized by spanwise-alternated thin tubes
of counter-rotating vorticity inclined with respect to the streamwise direction. Transi-
tion is triggered suddenly and occurs in a very localized region, inducing very rapidly
the formation of a hairpin structure. The initial optimal perturbation is characterized by
localized sweeps and ejections inducing strong streamwise velocity defects which generate
an inflectional point in the velocity profile. Inflectional instability thus create a spanwise
vorticity tube that is lifted and stretched, generating the hairpin head.

The initial flow structure able to create a hairpin vortex in a very short time (¢ =~ 10)
and then rapidly lead the flow to turbulence may be seen as an hairpin precursor, char-
acterized by alternated sweeps and ejections of amplitude varying with Re~'. It appears
that, when non-linear effects are damped, the v components of the sweeps and ejections
is not maintained, while the u components largely increase due to the lift-up mechanism,
hampering the creation of the hairpin vortex and subsequent fast transition to turbu-
lence. Thus, we have shown that, for the plane Poiseuille flow, a suitable combination of
localized sweeps and ejections is capable of maximizing the energy growth in a short time
interval generating an hairpin structure and transition towards turbulence. This optimal
growth mechanism could be the reason why the final stage of transition to turbulence and
turbulent boundary layer flows are characterized by a high density of hairpin structures.
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FIGURE 10. Evolution of non-linear optimal perturbation for Top: = 10 and Ep = 2 x 1076,
Slice z = 2. Isosurface of Q-criterion (Q = 0.1, green), isoline of streamwise velocity disturbance
(red positive, black negative), and contours of wall-normal velocity disturbance (white positive,
black negative).

Future works will aim at extending these findings for different shear flows, as well as for
noisy or turbulent environments.
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