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Abstract

The paper introduces a new class of consensus protocols to reach an agreement in networks of agents with discrete time
dynamics. In order to guarantee the convergence of the proposed algorithms, some general results are proved in the framework
of non-negative matrix theory. Moreover, we characterize the set of the consensus protocols and we specify the algorithm that
each agent has to employ. Furthermore, we show that in the case of balanced graphs, the agents can apply the consensus
protocols by a decentralized and scalable computation. The convergence properties are studied by a set of tests that show the
good performance of the proposed algorithm for different network topologies, even in the cases in which the standard protocols
do not exhibit satisfying performances. In particular, a rigorous theoretical analysis of the proposed protocol convergence for
networks with ring topology is provided and compared with the standard algorithm.
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1 Introduction

In recent years the study of the consensus problem has
received a great effort by the scientific community involv-
ing several fields and many applications. More precisely,
in networks of autonomous agents, consensus means to
reach an agreement regarding a certain quantity of in-
terest that depends on the state of all the agents. A con-
sensus algorithm (or protocol) is an interaction rule that
specifies the information exchange between an agent and
all of its neighbors on the network.
In a pioneering contribution, Jadbabaie et al.[7] pro-
vided the theoretical framework for the problem of reach-
ing an agreement on network systems with topology de-
scribed by undirected graphs. Olfati-Saber and Murray
in [10] and [11] show that the discrete time model of the
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consensus network is described by a directed or undi-
rected graph and the associated graph Laplacian matrix
L plays an important role in the convergence and align-
ment analysis. Indeed, the nominal state evolution of the
agents is governed by a discrete time consensus equation
defined as x(k+1) = (I−εL)x(k), where I is the identity
matrix and ε > 0 is a stepsize parameter. However, such
standard protocols exhibit two drawbacks: the conver-
gence is affected by the choice of the step-size parameter
and has a low speed of reaching a consensus for particu-
lar graph topologies (i.e., graphs constituted by periodic
strong components [3]). An alternative form of the stan-
dard Laplacian matrix is presented in [5], but the pro-
posed algorithm does not converge for periodic graphs.
The convergence speed of consensus protocols is an im-
portant topic that has received significant attention in
recent years [4]. In [16] the authors find the general con-
ditions to determine the weight to be associated to each
node for the linear iteration to converge to the average
and to make the convergence as fast as possible. How-
ever, an optimization problem has to be solved in a cen-
tralized approach and the solution can be applied to
a particular graph topology. In addition, some authors
demonstrated that predictive consensus algorithms can

Preprint submitted to Automatica 7 January 2015

CONFIDENTIAL. Limited circulation. For review only

Preprint submitted to Automatica
Received January 7, 2015 08:51:19 PST

 Publisher version with DOI: http://dx.doi.org/10.1016/j.automatica.2015.01.025



converge much faster [1], [9], [12]. In particular, Ore-
shkin et al. [12] provide a theoretical demonstration that
adding a local prediction component to the update rule
can significantly improve the convergence rate of the dis-
tributed average algorithm. However, the computation
of the prediction component needs an overhead in or-
der to evaluate some parameters requiring the spectrum
knowledge of the original iteration matrix.
For fast consensus seeking, Jin and Murray [8] propose
protocols that enlarge the algebraic connectivity with-
out physically changing the network topology. Moreover,
network communication delays that may occur while ex-
changing data among multiple agents can degrade the
system performances. In this context, Fang et al. [4] in-
troduce the weighted average prediction into existing
consensus protocol to simultaneously impose the robust-
ness to communication delay and the convergence speed
achieving the consensus. In addition, the technical note
[14] addresses the consensus problem of discrete-time
networked multi-agent systems with network transmis-
sion delays, based on a networked predictive control
scheme.
In order to investigate consensus protocols with fast
asymptotic convergence, we proposed new consensus al-
gorithms in [2]. In particular, we consider the linear sys-
tem x = (I − εL)x and, according to the approach of
the Point Jacobi and Gauss-Seidel iterative methods to
solve large systems of linear equations [15], we presented
some consensus algorithms that are based on a positive
splitting of matrix Pε = (I − εL). However, such proto-
cols did not converge for any network topology.
In this paper, we relax the condition of the positive split-
ting of matrix Pε and we propose a new class of proto-
cols that are based on a triangular splitting of Pε. The
nonnegative matrices theory [15] provides the frame-
work for analyzing the convergence properties of the pro-
posed consensus algorithms. Furthermore, we determine
in closed form the protocol that exhibits the following
main properties: i) for each agent network with topology
described by a strongly connected graph there exists a
triangular splitting that guarantees the convergence at
the group decision value; ii) the consensus algorithm is
independent from the value of ε ; iii) in each step the
agents update the state in a fixed sequence in order to
employ the updated state values of the upstream nodes.
The convergence properties are studied and compared
with the algorithms proposed in the related literature by
means of a number of tests. The results show the good
performances of the presented algorithm, even in the
cases in which the standard consensus protocol exhibits
low convergence speed, i.e., for network topologies de-
scribed by periodic graphs. In particular, a rigorous the-
oretical analysis of the proposed protocol convergence
is provided for networks with ring topology (a common
type of periodic graphs), and compared with the stan-
dard algorithm.
The paper is organized as follows. Section 2 describes the
problem and Section 3 introduces the new class of con-
sensus algorithms and proves its convergence. Then Sec-

tion 4 characterizes the triangular splitting that guar-
antees the convergence. Moreover, Section 5 provides a
rigorous comparison for ring topologies between the con-
vergence of the proposed protocol and the standard pro-
tocols. Finally, Section 6 summarizes the conclusions.

2 Problem Statement

Consider a network of n autonomous agents labelled by
an index i ∈ V with V = {1, 2, .., n}. Let xi ∈ < denote
the state of the agent i that can represent a physical
quantity, such as altitude, position, temperature, volt-
age, and so on. The interaction topology of the network
of agents is represented by a directed graph G = (V,E)
where V is the set of nodes and E ⊆ V × V is the set of
edges. Moreover, matrix A = [aij ], with aij ∈ {0, 1}, de-
notes the adjacency matrix of G, Ni = {j ∈ V : aij = 1}
is the set of neighbours of agent i and |Ni| is its cardi-
nality. More precisely, in the accepted assumption of the
related literature, setting aij = 1 denotes the fact that
node i can receive information from node j [13], [11],
[10]. We say that the nodes of a network have reached
a consensus if and only if (iff) xi = xj for all i, j ∈ V .
Furthermore, we define the degree matrix D as the diag-
onal matrix whose diagonal entries are Dii = |Ni|, i.e.,
the valence of vertex i within the graph. Whenever the
agents of a network are all in agreement, the common
value of all nodes is called the agreement state and can
be expressed as x∗ = α1, where 1 = [1, . . . , 1]T and α is a
collective decision of the group of the agents. A standard
consensus algorithm that solves the agreement problem
in a network of agents with discrete-time model is [11]:

x(k + 1) = Pε x(k) (1)

where matrix Pε = (I − εL) = [pεij ] is the iteration
matrix, ε is the step-size parameter, I is the identity
matrix and L = (D − A) = [lij ] is the graph Lapla-
cian induced by the graph G. The convergence analy-
sis of the discrete-time consensus algorithm heavily re-
lies on the nonnegative matrix theory [15]. Denoting by
∆ = maxi lii the maximum node out-degree of G, if G
is strongly connected, then Pε is a stochastic and irre-
ducible matrix for all ε ∈ (0, 1/∆). Moreover, the deci-
sion value is x∗ = limk→∞x(k) = vwTx(0), where v = 1
and w > 0 are respectively the right and left eigenvec-
tors of Pε associated with the eigenvalue λ = 1.

3 The New Class of Consensus Algorithms

This section introduces new consensus algorithms that
solve an agreement in networks with fixed or switching
topology and zero-communication time delay.
Consider the consensus algorithm (1) and define the fol-
lowing splitting of Pε.

Definition 1 We denote as the triangular splitting of
matrixPε a pair of matrices belonging to the following set:
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Q(ε) = {R ∈ <n×n, S ∈ <n×n|R is a lower triangular
matrix with rii 6= 1 and rii 6= 0 for i = 1, . . . n, S is an
upper non-negative triangular matrix and R+ S = Pε}.

The following lemma allows us to prove a property of
the triangular splitting of Pε.

Lemma 2 Let Pε be a stochastic and irreducible matrix
and (R,S) ∈ Q(ε). Then the matrix (I−R)−1 exists and
is non-negative.

PROOF. By definition it holds rii 6= 1 and rii 6= 0
for i = 1, . . . , n. Moreover, since Pε is irreducible and
stochastic, then 0 ≤ sii + rii < 1. Since by Definition 1
sii ≥ 0 and R is a lower triangular matrix, then rii < 1
and (I −R) is non-singular.
Now, in order to prove that (I−R)−1 is non-negative, we
have to show that ∀b ≥ 0 ∃x ≥ 0 such that (I−R)−1x =
b [6].
Consider b = [b1 . . . bn]T = b1e1 + . . . + bnen, where ei
for i = 1, . . . , n is the canonical basis of <n. Denoting by
xi = [x1

i . . . x
n
i ]T the solution of the iteration (I−R)xi =

biei, we obtain:

xji = 0 for j = 1, . . . i− 1 and i = 2, . . . n (2)

xji = (1− rii)−1bi for j = i and i = 1, . . . n (3)

xji = (1− rjj)−1

j−1∑
k=1

rjkx
k
i for j > i and i = 1, . . . n (4)

Since rii < 1 for i = 1, . . . , n, it is easy to infer by (2)-(4)
that xi ≥ 0 for i = 1, . . . , n and x = x1e1 + . . .+xnen ≥
0, then matrix (I −R)−1 is non-negative.

Let us consider the linear system x = Pεx. According to
the approach of the Point Jacobi and Gauss-Seidel iter-
ative methods to solve large systems of linear equations
[15], we can carry out the following iterative method de-
rived by each splitting (R,S) ∈ Q(ε):

(I −R)x(k + 1) = Sx(k) , k ≥ 0. (5)

By Lemma 2 the matrix (I −R) is non-singular and the
discrete-time collective dynamics of the network can be
written as follows:

x(k + 1) = (I −R)−1Sx(k) , k ≥ 0. (6)

Since each triangular splitting (R,S) ∈ Q(ε) induces an
iterative method that is characterized by the iteration
matrix Γ = (I−R)−1, we say that a class of new consen-
sus protocols is introduced: if Γ is irreducible and acyclic
(i.e., primitive) then the iteration scheme is convergent
[15].

3.1 Convergence of the consensus algorithms

The following results characterize the convergence prop-
erties of the obtained consensus algorithms. In particu-
lar, we show that under some conditions on the triangu-
lar splitting, algorithm (6) converges to the same group
decision value x∗ of protocol (1). To this aim we prove
the conditions to obtain a primitive iteration matrix Γ
that assures the convergence of the consensus algorithm.
The proofs show the following properties of matrix Γ:

P1) Γ is a stochastic matrix;
P2) λ = 1 is a simple eigenvalue of Γ;
P3) there exists a set of triangular splitting (R,S) ∈
Q(ε), such that Γ is irreducible and acyclic.

The following lemma proves property P1.

Lemma 3 Consider (R,S) ∈ Q(ε); if Pε is stochastic,
then matrix Γ = (I −R)−1S is stochastic too.

PROOF. By Lemma 2 it holds (I−R)−1 ≥ 0. Observ-
ing that S is a non-negative matrix, it immediately fol-
lows that Γ is non-negative too. Since Pε1 = (R+S)1 =
1, it holds (I − R)1 = S1 and (I − R)−1S1 = 1. Then
v = 1 is the right eigenvector associated with the eigen-
value λ = 1 and Γ is a stochastic matrix.

Now, the following theorem proves P2.

Theorem 4 Let Pε be a stochastic irreducible matrix
and w be the left eigenvector of Pε associated with the
eigenvalue λ = 1. Consider the triangular splitting
(R,S) ∈ Q(ε); then for matrix Γ = (I − R)−1S the
following statements hold true:

i) the spectral radius of Γ is ρ(Γ) = 1;
ii) λ = 1 is a simple eigenvalue of Γ;
iii) the left eigenvector of matrix Γ = (I −R)−1S asso-

ciated with the eigenvalue λ = 1 is w′T = wTS.

PROOF. Statement i) is a direct consequence of
Lemma 3. Statement ii) follows from the fact that there
is a unique right eigenvector v = 1 corresponding to the
simple eigenvalue λ = 1 of the irreducible matrix Pε.
On the other hand, Pεv = v implies and is implied by
(I − R)−1Sv = v. Hence, Pε and (I − R)−1S have the
same number of independent right eigenvectors associ-
ated with the eigenvalue λ = 1. Therefore, the geometric
multiplicity of λ = 1 is the same for both matrices and
it equals one: statement ii) is proved.
To prove iii) we assume that vector w is the left eigen-
vector of Pε associated with the eigenvalue λ=1, i.e.,
wT (R+ S)=wT . After some easy passages, we infer:

wTS(I −R)−1S = wTS. (7)
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Hence wTS is the left eigenvector of (I −R)−1S associ-
ated with the eigenvalue λ = 1.

Given a state set and a stochastic matrix, there exists
a Markov chain associated with them. Hence, let MC
be the Markov chain associated with the stochastic ma-
trix (I − R)−1S. By Theorem 4, Γ has only one eigen-
value equal to 1, consequently MC has only one recur-
rent class. The following proposition proves a sufficient
condition assuring Γ irreducible with |λ| < 1 for each
eigenvalue |λ| 6= 1 of Γ, i.e., Γ is primitive.

Proposition 5 Let Pε be a stochastic irreducible matrix
and (R,S) ∈ Q(ε). If S has no null column, then Γ=(I−
R)−1S is irreducible and acyclic.

PROOF. Consider the vector w′T=wTS and let MC
be the Markov chain associated with Γ. Since w′ is the
left eigenvector of Γ=(I − R)−1S associated with the
eigenvalue λ=1, w′ is proportional to the steady state
vector of MC. Now let us observe that w > 0 is the
steady-state probability vector of the recurrent states
of the Markov chain associated with the stochastic ir-
reducible matrix Pε: then the i-th entry of w′ is zero
if the i-th column of S has all zero entries. Remarking
that only states in recurrent classes can occur with posi-
tive steady state probability, since S has no null column,
w′ > 0 and Γ is irreducible.
Now, we prove by contradiction that Γ is acyclic. Let
us assume that Γ is cyclic, and therefore it has all zero
entries along the main diagonal. Recalling that R is a
lower triangular matrix, by Lemma 2 matrix (I −R)−1

is non-negative lower triangular. Hence, all the entries
along the main diagonal of (I −R)−1 are positive. Con-
sequently, the first element of matrix Γ is zero iff the first
column of S (that is upper triangular) is zero: this con-
tradicts the assumption and the proposition is proved.

The following theorem guarantees the convergence to
the group decision value x∗ = vwTx(0) of the algorithm
(6) that is induced by a triangular splitting.

Theorem 6 Let Pε be a stochastic irreducible matrix
and w the left eigenvector of Pε associated with the eigen-
value λ = 1. If there exist (R,S) ∈ Q(ε) and µ > 0 such
that S has no null column and wTS=µwT , then algo-
rithm (6) converges for all the initial states and the group
decision value is x∗ = vwTx(0) .

PROOF. Assume that (R,S) ∈ Q(ε) and Pε be a
stochastic irreducible matrix. If we select S with no null
column, then by Proposition 5, (I −R)−1S is primitive
with right and left eigenvectors v = 1 and w′T = wTS
respectively, associated with the eigenvalue λ = 1. Con-
sequently, the algorithm (6) converges and gives the

decision value limk→∞x(k) = vwTSx(0). Moreover, if
there exists µ > 0 such that wTS=µwT (i.e., wT is
the left eigenvector of S associated with the eigenvalue

µ > 0), then, choosing w such that 1T w
T

µ = 1, it holds

limk→∞x(k) = vwTx(0). This proves the theorem.

4 Consensus Protocols

In this section we find the set of the triangular splitting
of Pε that guarantees the convergence of the consensus
algorithm (6) to the group decision value. To this aim,
the following set of linear algebraic constraints ϕ(Pε, w)
allows obtaining S and µ that satisfy the hypothesis of
Theorem 6:

ϕ(Pε, w) =

=



µ > 0 (8.a)

sii ≥ 0 for i = 1, . . . , n (8.b)

sij = 0 for i > j, i, j = 1, . . . , n (8.c)

sij = −εlij for i < j, i, j = 1, . . . , n (8.d)∑i
j=1 wjsji − wiµ = 0 for i = 1, . . . , n (8.e)

1TS > 0 (8.f)

(8)

Hence, algorithm (6), with any triangular splitting
(R,S) ∈ Q(ε) that satisfies the linear algebraic con-
straints ϕ(Pε, w), gives a consensus protocol associated
with the network topology G. The following result
provides matrix S that satisfies the linear algebraic
constraints ϕ(Pε, w).

Proposition 7 Let Pε be a stochastic irreducible matrix
and w the left eigenvector of Pε associated with the eigen-
value λ = 1. Let S be defined as follows:

sij = 0 for i > j, sij = −εlij for i < j

with i, j = 1, . . . , n
(9)

s11 = ηmax
i

i−1∑
j=1

wj
wi
sji = η

i∗−1∑
j=1

wj
wi∗

sji∗ (10)

where η ∈ <+, η ≥ 1 and i∗ is the index of the i∗-th col-

umn corresponding to the maximum value of
∑i−1
j=1

wj
wi
sji,

sii = η

i∗−1∑
j=1

wj
wi∗

sji∗ −
i−1∑
j=1

wj
wi
sji for i = 2, . . . , n. (11)

Then S satisfies the linear algebraic constraints ϕ(Pε, w).
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PROOF. The constraints (8.c) and (8.d) are trivially
satisfied by (9). Now, we consider the constraints (8.e)
that can be written as follows:

s11 = µ (12)

sii = µ−
i−1∑
j=1

wj
wi
sji for i = 2, . . . , n (13)

In order to satisfy (8.a) and (8.b) by taking into ac-

count (12) and (13), we choose µ = ηmaxi
∑i−1
j=1

wj
wi
sji =

η
∑i∗−1
j=1

wj
wi∗

sji∗ with η ≥ 1.
If η > 1, then sii > 0 for i = 1, . . . , n and the constraints
(8.f) are satisfied too.
On the other hand, if η = 1, then it holds si∗i∗ = 0.
Assume by contradiction that the i∗-th column of S is
equal to zero and (8.f) is not true. This implies that∑i∗−1
j=1

wj
wi∗

sji∗ = 0 and by (10) it holds
∑i−1
j=1

wj
wi
sji = 0

for i = 2, . . . , n. Now, since S is a lower triangular ma-
trix with sij = −εlij for i < j with i, j = 1, . . . , n, if
sij = 0 for i > j, then Pε is upper triangular: this con-
tradicts the assumption that Pε is irreducible.

The convergence of protocol (1) is affected by the choice
of ε and is guaranteed if ε ∈ (0, 1/∆) [10], [11]. We re-
mark that if the triangular splitting (R,S) ∈ Q(ε) is de-
termined by (9)-(11), then the iteration scheme is not
affected by the choice of the step-size parameter ε. In-
deed, let us denote:

Li = −
i−1∑
j=1

wj
wi
lji =

i−1∑
j=1

wj
wi
aji for i = 2, . . . , n (14)

Li∗ = max
i
Li. (15)

By definition it holds sij = −εlij = εaij for i < j,
rij = −εlij = εaij for i > j and with i, j = 1, . . . , n. Now
by (9)-(11) and taking into account (14)-(15), we write:

s11 = µ = ηεLi∗ (16)

sii = ε(ηLi∗ − Li) for i = 2, . . . , n (17)

1− r11 = ε(l11 + ηLi∗) (18)

1− rii = ε(lii + ηLi∗ − Li) for i = 2, . . . , n (19)

Therefore, it is easy to infer that Γ = (I − R)−1S is
independent from ε.

4.1 Consensus Discrete Time Dynamics

In this sub-section we specify how the consensus algo-
rithm can be applied by a set of autonomous agents.

Now we denote:

α1 = Li∗ = η

i∗−1∑
j=1

wj
wi∗

aji∗ (20)

αi = ηLi∗ − Li = η
∑i∗−1
j=1

wj
wi∗

aji∗ −
∑i−1
j=1

wj
wi
aji

for i = 2, . . . , n
(21)

β1 = l11 + ηLi∗ =

n∑
h=2

a1h + η

i∗−1∑
j=1

wj
wi∗

aji∗ (22)

βi = lii + ηLi∗ − Li =
∑n
h=1,h6=i aih+

+η
∑i∗−1
j=1

wj
wi∗

aji∗ −
∑i−1
j=1

wj
wi
aji for i = 2, . . . , n

(23)

ChoosingS according to (9)-(11), the consensus discrete-
time dynamics of the network described by (6) is ex-
pressed by the following consensus algorithm:

x1(k + 1) = 1
β1

(
α1x1(k) +

∑n
j=2 a1jxj(k)

)
xi(k + 1) = 1

βi

(∑i−1
j=1 aijxj(k + 1) + αixi(k)+

+
∑n
j=i+1 aijxj(k)

)
for i = 2, . . . , n and k ≥ 0

(24)

The algorithm (24) establishes an order to update the
values of each agent state. More precisely, to update the
state at the time k+1, the i-th agent uses the already de-
termined values of the states xj(k+1) for j = 1, . . . , i−1
for i > 1.
Hence, it is clear that each agent i needs to know two
elements to update his state by (24): i) the associated
order in the sequence; ii) the values of the parameters αi
and βi. Now, considering the agent order i = 1, 2, . . . , n,
we denote by USi = {j|j ∈ Ni and j < i} the set of
the upstream agents with which agent i communicates.
Moreover, in order to determine the parameters αi and
βi, the i-th agent has to know the values Li∗ , wi and
wj for each j ∈ USi. Hence, before applying the consen-
sus protocol, each agent has to perform a Start-up algo-
rithm that is composed of two phases. In the first phase
(Assignment phase) each node receives by a coordinator
agent an identification number i and the entries wi and
wj for each j ∈ USi. In the second phase (Communica-
tion phase) the agent finds out the values of Li∗ , αi and
βi by a communication protocol. In the following we list
the steps of the Start-up algorithm.

Start-up algorithm

Assignment phase

A1) Assign an order among the agents: each agent is
associated with an identification number id = i with
i ∈ {1, . . . , n}.

5
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A2) Assign to each agent i ∈ {1, . . . , n} the values wi
and wj ∀j ∈ USi.

Communication phase
Determining Li∗ , αi and βi

C1) If i > 1 then set Li =
∑i−1
j=1

wj
wi
aji else set L1 =

0.
C2) Set Lmaxi (0) = Li
C3) For k = 1, n
C4) Receive Lmaxj (k − 1) from each j ∈ Ni
C5) Set Lmaxi (k) = maxj∈Ni∪{i} L

max
j (k − 1)

C6) End for
C7) Set Li∗ = Lmaxi (n)
C8) Determine αi and βi according to (20)-(23)
C9) End

Note that the communication phase is simultaneously
performed by all the agents in the same time instant.
More precisely, at time k > 0, the i-th agent updates the
value Lmaxi (k) by comparing Lmaxi (k−1) with Lmaxj (k−
1) for each j ∈ Ni. Since the graph is strongly connected,
each agent reaches the same value Li∗ by at most n it-
erations. This procedure can exploit a meaningful and
convenient property, as specified by the following state-
ment.

Proposition 8 If graph G is balanced, then the value of
Li is equal to the cardinality of USi for i = 1, . . . , n.

PROOF. The proof is straightforward taking into ac-
count (14), and recalling that wi = 1 for i = 1, . . . , n for
balanced graphs.

Consequently, if graph G is balanced then the Start-
up algorithm skips step A2 and the i-th agent can au-
tonomously determine the parameters Li∗ , αi and βi by
the communication phase, without the intervention of
the coordinator agent.

5 Convergence Rate Analysis

In this section we first study and compare the conver-
gence properties of the proposed algorithm class consid-
ering network topologies described by generic and peri-
odic graphs. Then, a rigorous theoretical analysis of the
proposed protocol convergence is provided for networks
with ring topology (a common type of periodic graphs),
and compared with the standard algorithm.

5.1 Convergence Properties for Generic and Periodic
Graphs

We point out that the convergence rate of the proposed
algorithm can be affected by the selection of η in (10)

(and the consequent choice of µ and S). In order to eval-
uate the best choice of η, we consider 104 random gen-
erated topologies of networks with 10 and 100 agents.
More precisely, the adjacency matrices of the strongly
connected aperiodic graphs are randomly generated. For
each topology, we determine the iteration matrix Γ =
(I − R)−1S taking into account (16) - (19) with η =
1, 1.1, 1.3, 1.5, 1.7 and 2. The convergence properties of
algorithm (24) as function of η is eveluated by computing
the asymptotic convergence factor as the second largest
(subdominant) eigenvalue λ2Γ of Γ: the smaller λ2Γ is,
the faster the algorithm is [10], [11]. Hence, for each η
we calculate the value λ2Γ(η) averaged on the 104 gener-
ated topologies. The results of the convergence study are
reported in Table 1 confirming that in the 100% of the
considered cases η = 1 guarantees the minimum values
of λ2Γ. Such results authorize to conclude that the mini-
mum possible value of µ provides a good convergence in
any case.

Table 1
Subdominant Eigenvalue Analysis.

λ̄2Γ(η) η = 1 η = 1.1 η = 1.3 η = 1.5 η = 1.7 η = 2

n = 10 0.83 0.85 0.87 0.88 0.89 0.91

n = 100 0.63 0.65 0.69 0.72 0.75 0.78

Now we turn to compare protocol (24) with algorithm
(1). The case of non-periodic graphs is considered in [2]:
the results confirm that the proposed protocol improves
the convergence obtained by algorithm (1) with ε = 0.2

∆ ,

ε = 0.5
∆ and ε = 0.9

∆ . Here, we analyse a set of cases
where the network topologies are described by periodic
graphs of 24 nodes. More precisely, we consider 5 cases of
periodic graphs with period d=2, 4, 6, 12 and 24. Table
2 reports for each case the subdominant eigenvalue: the
results show that the standard protocol converges slowly.
On the other hand, the proposed protocol results in the
fastest convergence in any examined case.

Table 2
Subdominant Eigenvalues of Periodic Graphs.

Algorithm d = 2 d = 4 d = 6 d = 12 d = 24

Pε, ε = 0.2
∆

0.993 0.970 0.925 0.978 0.994

Pε, ε = 0.5
∆

0.983 0.926 0.866 0.966 0.991

Pε, ε = 0.9
∆

0.969 0.865 0.967 0.991 0.998

Γ 0.967 0.821 0.716 0.834 0.940

5.2 Convergence Analysis for Ring Topology

In this subsection we consider networks described by
ring topology of n nodes (i.e., periodic graphs of period
n). Then, we provide a theoretical analysis of the con-
vergence by determining the analytical expression of the
subdominant eigenvalues of Pε and Γ = (I −R)−1S, as
a function of the parameters ε and η, respectively.
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Theorem 9 The eigenvalues of matrix Pε associated
with a ring topology of n nodes are

λk = 1− ε+ εej
2πk
n for k = 0, . . . , n− 1. (25)

PROOF. The characteristic polynomial of matrix Pε
associated with a ring of n nodes is pPε(λ)=(1−ε−λ)n−
(−ε)n. Hence, its roots λk satisfy the following equation:

(
1− ε− λk
−ε

)n
= 1.

The result (25) easily follows by considering the roots of
units.

Proposition 10 Let us consider a ring topology of n
nodes. The minimum value of the subdominant eigen-
value of Pε as a function of parameter ε is:

λ2εmin =
1

2

(
1 + ej

2π
n

)
. (26)

PROOF. By (25) the subdominant eigenvalue of Pε is

λ2ε = 1− ε+ εej
2π
n . (27)

Considering that for a ring it holds 0 < ε < 1, it is easy
to infer that the minimum of (27) is obtained for ε = 0.5
and (26) follows.

Proposition 11 Let us consider a ring topology of n
nodes. The roots of the characteristic polynomial of Γ =
(I − R)−1S as a function of the parameter η satisfy the
following relation:(

−λ
η − (1 + η)λ

)n−1

= − 1− 2λ

η − (1 + η)λ
(η − 1− λη). (28)

PROOF. The characteristic polynomial of Γ is the de-
terminant of the matrix S + λR − λI. By taking in ac-
count (16)- (19), we obtain:

pΓ(λ) = (1− 2λ)(η − 1− ηλ)(η − λ(1 + η))n−2+

+(−λ)n−1,
(29)

from which the result follows.

By the analysis of the roots of equation (28), we infer
that the subdominant eigenvalue of Γ increases for η > 2.
Then, we determine an approximation of the subdomi-
nant eigenvalue of Γ for 1 ≤ η ≤ 2.

Proposition 12 Let us consider a ring topology of n
nodes. The modulus of the subdominant eigenvalue of
Γ = (I − R)−1S as a function of the parameter η with
1 ≤ η ≤ 2 and n > 2 can be approximated by:

|λ2Γ| ≈

∣∣∣∣∣ ηe
2πj
n−1

(1− η)e
2πj
n−1 − 1

∣∣∣∣∣ . (30)

PROOF. The roots of the polynomial pΓ(λ) satisfy

equation (28). For 1 ≤ η ≤ 2 both
∣∣∣ 1−2λ
η−(1+η)λ

∣∣∣ and

|(η−1−λη)| are equal or less than 1. Hence we compute
as an approximation of |λ2Γ| the modulus of the sub-
dominant solution of the following equation for n > 2:

(
−λ

η − (1 + η)λ

)n−1

= 1.

The result (30) follows by again considering the roots of
units.

We observe that for η = 1 and n = 2 the subdominant
eigenvalue of the matrix Γ is λ2Γ = 0. Moreover, deriv-
ing (30) with respect to η, the minimum value of the ap-
proximation of |λ2Γ| for 1 ≤ η ≤ 2 is obtained for η = 1:

|λ̂2Γmin| =

∣∣∣∣∣ e
2πj
n−1

2e
2πj
n−1 − 1

∣∣∣∣∣ . (31)

Now, Figure 1 depicts, as a function of n > 2, the dif-
ference between |λ2εmin| and the modulus of the sub-
dominant eigenvalue of Γ. Moreover, the figure depicts
the difference between |λ2εmin| and the approximation

|λ̂2Γmin|. Two basic results are enlightened: i) for each
value of n > 2, the modulus of the subdominant eigen-
value of Γ is minor than the corresponding value |λ2εmin|;
ii) the approximation |λ̂2Γmin| is very close to the mod-
ulus of the subdominant eigenvalue of Γ.

The following proposition analytically shows the relation

between λ2εmin and λ̂2Γmin as a function of n > 2.

Proposition 13 Let us consider a ring topology of n

nodes, then it holds |λ̂2Γmin| < |λ2εmin| ∀n > 2.

PROOF. By (26) and (31) we have to check the fol-
lowing inequality:∣∣∣∣∣ e

2πj
n−1

2e
2πj
n−1 − 1

∣∣∣∣∣ <
∣∣∣∣12 (1 + e

2πj
n

)∣∣∣∣ ,
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Fig. 1. Comparison between the modulus of the subdominant
eigenvalues.

which is equivalent to:

1

5− 4 cos 2π
n−1

<
1

2

(
1 + cos

2π

n

)
. (32)

It is easy to show that (32) is satisfied for n > 2.

Hence, the theoretical results confirm that in the case
of network with ring topology the proposed protocol ex-
hibits a faster convergence than the standard protocol
when η = 1.

6 Conclusions

This paper investigates new and fast alignment proto-
cols that can be applied to the discrete time model of
consensus networks. In particular, a class of consensus
algorithms that are based on the triangular splitting
of the standard iteration matrix is presented. The con-
vergence of the proposed discrete-time consensus algo-
rithms is proved in the framework of the non-negative
matrix theory.
Moreover, we determine a particular triangular splitting
that guarantees the following main properties.

• Any choice of η ≥ 1 (independently from the network
topology) guarantees the convergence of the presented
algorithm and, in particular, η = 1 gives good (and
optimal in some cases) convergence factors. On the
contrary, in the standard consensus algorithm if ε ≥
1/∆ then the convergence is not guaranteed.
• The proposed protocol has good convergence rate for

particular graph topologies, i.e. periodic graphs. We
observe that the standard consensus algorithm (1) has
low convergence speed for these graphs.
• A rigorous theoretical analysis of the convergence

speed is provided in the case of ring topology, the

results prove that the proposed algorithm exhibits
faster convergence than the standard protocol.

Future research will focus on the analytical study of the
performance analysis of the proposed consensus proto-
cols in relation with other network topologies.
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