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Abstract 

Signal-based acoustic emission data is analysed in this research work for identifying 

the damage modes in Carbon Fiber Reinforced Plastic (CFRP) composites. The research 

work is divided into three parts: analysis of the shifting in the spectral density of acoustic 

waveforms, use of Waveform Entropy for selecting the best wavelet and implementation 

of Wavelet Packet Transform (WPT) for identifying the damage process. The first two 

methodologies introduced in this research work are novel. Shifting in the spectral density 

is introduced in analogous to ‘flicker noise’ which is popular in the field of waveform 

processing. The entropy based wavelet selection is refined by using quadratic Renyi’s 

entropy and comparing the spectral energy of the dominating frequency band of the 

acoustic waveforms. The methodologies introduced in this research work are promising. 

They serve the purpose of identifying the damage process effectively in the CFRP 

composites. 

Keywords: Acoustic emission; Mode I delamination; Flicker noise; Wavelet entropy; 

Wavelet Packet Transform  

1. Introduction 

Since the beginning of the 21st century, the usage of Acoustic Emission (AE) testing 

for structures has increased exponentially [1]. This incredible growth can be attributed 

to the development of more liberal tools and methodologies for monitoring and 

processing acoustic data. Consequently, a variety of new methodologies have been 

introduced for extracting information from the recorded acoustic data. One of the areas 

which has used AE techniques more commonly over the last few years is the damage 

process monitoring in composite structures [2].   



The processing of the acoustic data can be generalized into two categories, albeit 

not strictly: parameter-based data processing and signal-based data processing. The 

parameter-based data processing involves extracting the descriptors which can define 

the characteristics of each recorded AE event and analysing them. The descriptors 

include peak amplitude in decibels, acoustic energy, number of counts crossing the 

detection threshold in an acoustic event, duration of the AE signal, absolute energy in aJ, 

signal strength, rise angle, decay angle, etc [3, 4].  

The signal-based data processing involves analysing the recorded AE signals in their 

frequency domain or time-frequency domain. This also includes the denoising of the AE 

signals and the decomposition of the signals to extract the required information. Various 

wavelet and waveform analysis techniques have been explored over the years in the field 

of AE for assessing the damage process in composite structures. Some of the most 

abundantly used techniques include Fast Fourier Transform (FFT), Continuous Wavelet 

Transform (CWT), Discrete Wavelet Transform (DWT) and Wavelet Packet Transform 

(WPT) [5 – 7]. Apart from this waveform and wavelet transforms, some other Adaptive 

Wavelet Transform (AWT) or Hilbert-Huang Transform (HHT) has also been used by 

some researchers. The FFT and HHT provide information about the AE signal in its 

frequency domain, while CWT and DWT provide a detailed time-frequency analysis. 

Both the parameter-based and signal-based analysis of an AE signal have their 

advantages and limitations. The debate on which is more suited for analysing an AE signal 

for damage process monitoring in composite structures is still open and can lead to 

different answers in the context of the problem.  

In this research work, the signal-based analysis is considered for processing the 

acoustic data to monitor the damage process in composite materials. The research work 

comprises of three parts: a) analysis of the shifting in the spectral density of AE signal 

during damage process b) Selection of the best wavelet for Wavelet Transform (WT) 

using entropy c) implementation of WPT using the selected wavelet for damage process 

identification.  

The novelty of this research work lies in the usage of these methodologies 

innovatively and efficiently for the damage process monitoring of composite materials. 

The material used for this study is Carbon Fiber Reinforced Plastic (CFRP) composite in 



Mode I delamination configuration. The acoustic data recorded during the Mode I 

delamination test has been used for validating the aforementioned methodologies.  

Section 2 of this paper presents the introduction and detailed explanations of the 

methodologies used in this research work. Section 3 details the information about the 

material used and the test procedure followed for Mode I delamination and the 

acquisition of AE data during the testing. Section 4 explains the selection of the acoustic 

waveforms from the large dataset for processing. Section 5 is dedicated to explaining the 

results obtained and also the summary of the results obtained using the three 

methodologies. An attempt has been made to string together the results obtained from 

the three methodologies.  

2. Proposed Methodology for Processing Acoustic Emission data 

2.1 Shifting of the Acoustic Signal 

MacDonald quoted in 1962 that many researchers considered fluctuations or noise 

as rather esoteric or perhaps even pointless. Besides, spontaneous fluctuations were 

considered as an unnecessary evil [8, 9]. Although these quotes are referred to the 

fluctuations or electrical noise in solids (for instance, a simple resistor), they can be 

stretched also to the acoustic signals. These shiftings in the acoustic signal are ignored 

consistently by most of the researchers. For instance, the most traditional and frequently 

used method of analysing an acoustic waveform in its frequency domain is the FFT 

analysis. It provides the spectral density of the recorded waveform in different frequency 

domains. Most researchers normally consider only the frequency with the largest 

spectral density (peak frequency) for analysis and ignore the fluctuations or shifting in 

the spectral density [10]. While some researchers have used other frequency components 

such as Frequency Centroid or Weighted Peak Frequency, the significance of the shifting 

is rather ignored [4, 11].  

The characteristics of the flicker noise observed across the voltage drop in a resistor 

can be explained by the phenomenological equation by Hooge [12]: 

𝑆(𝑓) =  𝛾
𝑉𝐷𝐶

2+𝛽

𝑁𝑐𝑓𝛼
 (1) 



where, 𝑆(𝑓) is the spectral density, 𝑉𝐷𝐶 is the average voltage drop across the solid 

resistor, 𝑁𝑐 is the number of charge carriers in the solid, 𝑓 is the frequency, 𝛼, 𝛽 and 𝛾 are 

constants (𝛽 ≈ 0).  

Equation (1) has been simplified for the general understanding of the shifting as 

follows [11]: 

𝑆(𝑓) =  𝛾𝑓−𝛼 (2) 

Applying logarithm on both sides of Equation (2) yields,  

log[𝑆(𝑓)] = log 𝛾 − 𝛼 log(𝑓) (3) 

The signal characteristics and its shifting can be categorized based on the slope 

coefficient 𝛼. In the various fields of science, based on the values of the scalar coefficient 

𝛼, the signal characteristics can be categorized into white noise, pink noise and brown 

noise [13]. The white noise, which has constant spectral energy is observed when 𝛼 = 0. 

The terms pink noise and brown noise are used to identify the fluctuations when 𝛼 is 1 

and 2, respectively.  

The shifting of the spectral density and the characteristics of the signals based on 

the different types of noises (according to Equation (3)) have been used in many fields 

including geological, bioengineering, pedagogical, physiological and musical phenomena. 

Nonetheless, the fluctuations used in these fields are based on the low-frequency signals 

[13, 14, 15]. The term ‘1/f noise’ or flicker noise is commonly used to refer to these 

fluctuations or the shifting, which is common in the field of signal processing.  

Although the term flicker noise is referred to the low-frequency fluctuations, this 

phenomenon can be extended to medium to high frequency signals. This has been 

explained theoretically by Dutta and Horn. Recently, Carpinteri et. al. [16] and Freidrich 

et. al. [17] have used the flicker noise for damage process monitoring in concrete 

structures and Glass Fiber Reinforced Polymers (GFRP), respectively. Carpinteri et. al. 

[16] studied the flicker noise of the acoustic signals released from the concrete structures 

for identifying the critical conditions of the structure. The AE signals generated during a 

damage process in quasi-brittle materials such as concrete vary largely from the unstable 

transient signals generated in Fiber Reinforced Polymer (FRP) composites. Freidrich et. 

al. [17] have studied the flicker noise or fluctuations of acoustic signals ranging from 5 Hz 

to 60 kHz in GFRP. The acoustic signals emitted from a damage process in a composite 



material normally range from a few kHz to MHz. Acoustic signals released from different 

damage modes in CFRP normally have peak frequency ranges from 150 kHz to 500 kHz. 

For instance, the fiber breakage event in a CFRP can release acoustic signals with a peak 

frequency of 450 kHz to 500 kHz. So, in this research work, the concept of flicker noise is 

extended to the shifting in the signal. Instead of analysing the noise in the low frequency 

content, the shifting in the signal is analysed. In this study, the term shifting is introduced 

in the sense that different slopes with which the spectral density fluctuates are used. The 

details are explained in detail in Section 5.3. 

Since the shifting of the spectral density is studied for high frequency signals, 

without strictly bound by the values of 𝛼 in Equation (2) to represent the different noise 

types, the term ‘flicker noise’ or ‘1/f noise’ has not been used from this instance. Rather, 

the term “shifting of the spectral density” will be used throughout this article.  

2.2 Selecting the best Wavelet using Entropy 

The entropy of the waveform is used as the main identifier for selecting the suitable 

wavelet for analysis. Thus, this section is started with a brief introduction about it and is 

followed by the procedure for using it. In the field of physics and mathematics, entropy is 

defined as the measure of information contained in a waveform [18 – 20]. Theoretically, 

entropy is the measure of randomness or the instability contained in a probability 

distribution. Many entropy definitions exist in different fields and they are not suitable 

for all applications. A review of the different definitions of entropy and the generalized 

form of entropy is provided by Amigό et. al. [21] With respect to this research work, the 

entropy of a waveform can be defined as the measure of information in it [22].  

For a waveform having a random distribution of amplitude as {𝑠1, 𝑠2, 𝑠3, … , 𝑠𝑛}, the 

generalized form of entropy 𝐻𝑎(𝑠) can be given as [23],  

𝐻𝑎(𝑠) =  
1

1 − 𝑎
log (∑[𝑃(𝑠𝑘)]𝑎

𝑛

𝑘=1

) (4) 

where, 𝑃(𝑠𝑘) is the discrete probability distribution of the amplitude. 

The generalized form of entropy defined in Equation (4) can be described as Renyi’s 

entropy [23, 24]. The choice in the selection of the constant 𝑎 in Renyi’s entropy is its 

most interesting property. However, the choice in the selection of 𝑎 is bound to some 



constraints based on the probability of the distribution of data. Considering the waveform 

as an example, when 𝑎 > 1, more weightage is given to the amplitude with high 

probability. Conversely, when 𝑎 <  1, more weightage is given to the amplitude in the 

distribution with low probability [25, 26]. Based on the value of 𝑎, Renyi’s entropy can 

take different forms.  

When the value of 𝑎 approaches close to ‘0’, Equation 4 is transformed to give 

Maximum entropy or Hartley’s entropy [27].  

𝐻0(𝑠) = log 𝑛 (5) 

When the value of a reaches 1, the limiting value of the entropy can be defined as 

Shannon’s entropy, which is provided in Equation (6). In fact, Shannon extended Hartley’s 

theory of entropy in Equation (5) by introducing the weightage function to present 

Shannon’s entropy [28]. Shannon’s entropy is by far the most used form of entropy in 

many fields, including information theory and cryptography [29, 30].  

𝐻1(𝑠) =  ∑ 𝑃(𝑠𝑘) log[𝑃(𝑠𝑘)]

𝑛

𝑘=1

 (6) 

The quadratic Renyi’s entropy, which is used in this research work is derived when 

the value of a reaches 2 [23, 24]. The quadratic Renyi’s entropy presented in Equation (7) 

is used in this research work.  

𝐻(𝑠) =  − log (∑[𝑃(𝑠𝑘)]2

𝑛

𝑘=1

) (7) 

Many researchers have generalized the applications of Renyi’s entropy and its 

advantages over using Shannon’s entropy in different fields [21, 24, 31, 32]. The 

consensus is that Renyi’s entropy is more applicable for a random search and statistical 

waveform processing. Based on these observations, Renyi’s entropy is selected for this 

study.  

Several researchers have used Shannon’s entropy in processing acoustic waveforms 

but Renyi’s entropy is seldom used. Tanvir et. al. has used Renyi’s entropy of the acoustic 

waveform in defining the characteristics of the fatigue damage evolution [24]. But the 

application in which they used Renyi’s entropy is debatable. Tanvir et. al. used cumulative 

Renyi’s entropy, which is necessarily the sum of the measures of randomness, as an 

acoustic descriptor for damage evolution [24].  



In this research work, however, Renyi’s entropy is used for the selection of optimum 

wavelet for processing the acoustic waveforms. Selecting a wavelet for the WT processing 

is very essential. The maximum information of the waveforms in their time-frequency 

domain and the distribution of spectral energy in the different frequency bands is based 

on the selection of the best wavelet. In the field of damage process monitoring using 

acoustic waveforms, no definite procedures for selecting the best wavelet have been 

studied extensively. In other similar fields, where acoustic waveforms are used, the 

Energy-to-Shannon Entropy ratio is used [31, 32].  

On one hand, since waveform entropy is the measure of the randomness or 

instability in a waveform, it is safe to assume that the lower value of entropy defines the 

stability in an acoustic waveform. On the other hand, measuring the energy coefficients 

of an acoustic waveform using some WT methods should yield the largest energy 

possible. Combining these two necessities, a ratio called 𝜂 has been established.  

𝜂 =  
𝐸𝑊𝑇

𝐻(𝑠)
 (8) 

𝐸𝑊𝑇 is the energy coefficient of the waveform measured using WT.  

Basically, the 𝜂 value is based on selecting the waveforms which yields high energy 

coefficient with low instabilities. The procedure for calculating the quadratic Renyi’s 

entropy, 𝐸𝑊𝑇, 𝜂 value and the selection of the best wavelet is explained below.  

Discrete Wavelet Transform (DWT) is used for the calculation of both 𝐻(𝑠) and 𝐸𝑊𝑇. 

The DWT decomposition of the acoustic waveforms is performed in the programming 

module of MATLAB® [33, 34]. MATLAB® provides the possibility of selecting different 

wavelets for the DWT.  

Let us consider an acoustic waveform 𝑓(𝑡), which can be expressed as, 

𝑓(𝑡) =  {𝑠1, 𝑠2, 𝑠3, … , 𝑠𝑛}𝑇 (9) 

where, 𝑛 is the length of the waveform. If the waveform 𝑓(𝑡) is decomposed using a 

wavelet Ѱ(𝑡), the DWT of the waveform can be given as, 

𝑊𝑇𝑗 =  〈𝑓(𝑡), Ѱ𝑗(𝑡)〉 (10) 

where, 𝑗 is the number of the selected wavelet. The DWT results will be in the form, 

𝑊𝑇𝑗 =  {𝑤𝑡1, 𝑤𝑡2, 𝑤𝑡3, … , 𝑤𝑡𝑛}𝑇 (11) 



The energy coefficient 𝐸𝑊𝑇 is calculated as,  

𝐸𝑊𝑇 =  ∑|𝑤𝑡𝑗,𝑘|
2

𝑛

𝑘=1

 (12) 

The discrete probability in Equation (7) for calculating the quadratic Renyi’s 

entropy is calculated as follows [29]: 

𝑝(𝑥𝑘) =  
|𝑤𝑡𝑘|2

∑ |𝑊𝑇𝑗,𝑖|
2𝑛

𝑖=1

 (13) 

Now by using 𝑝(𝑥𝑖), from Equation (7), the quadratic Renyi’s entropy 𝐻(𝑥) can be 

calculated. From 𝐸𝑊𝑇 calculated using Equation (12) and 𝐻(𝑥) calculated using Equation 

(7), the 𝜂 value can be calculated using Equation (8).  

The same procedure is repeated for different mother wavelets Ѱ(𝑡). In this research 

work, 24 wavelets are used for comparison. Theoretically, the wavelet which produces 

the highest value of 𝜂 is selected as the best wavelet for further analysis.  

However, the 𝜂 value cannot be considered carelessly because it represents the 

entropy and energy coefficient measured from a very transient and instable acoustic 

waveform. The possibility of 𝜂 value to be very close between different wavelets cannot 

be ignored either. For this reason, another new approach has been introduced in this 

research work.  

Which wavelet can recover the maximum spectral energy from an acoustic 

waveform after processing, especially in the dominating frequency band? Answering this 

question is possibly the best way to choose the optimal wavelet by overcoming the 

suspicions of using the 𝜂 value. 

In this research work, 𝜂 value is primarily used for selecting the 3 most suitable 

wavelets. Following that, the recovery of maximum spectral energy in the dominating 

frequency band of the acoustic signal is used for selecting the best wavelet among the 

previously selected 3. For recovering the spectral energies of the waveform in different 

frequency domains, Wavelet Packet Transform (WPT) is used [6, 35, 36]. The procedure 

followed for selecting the best wavelet using the WPT is explained below. 



WPT using the selected 3 wavelets are used for decomposing the acoustic signal 

into 3 different levels 𝑁. Decomposing using WPT in 3 levels will give the spectral energy 

of 2𝑁 = 8 components 𝐶. For example, 

𝑊𝑃𝑇𝑗 =  〈𝑓(𝑡), Ѱ𝑗(𝑡)〉 (14) 

𝑊𝑃𝑇𝑗 for the wavelet Ѱ𝑗(𝑡) will be in the form,  

𝑊𝑃𝑇𝑗 =  |𝑊𝑗,1, 𝑊𝑗,2, 𝑊𝑗,3, … , 𝑊𝑗,8| (15) 

where, 𝑊𝑗,𝐶 is the spectral energy of the waveform distributed in the component 𝐶. 

If the same process is repeated for the 3 wavelets selected using 𝜂 value, a comparison 

between the spectral energy recovered in different components using the 3 different 

wavelets can be made. The wavelet which has recovered the maximum spectral energy 

in the dominating frequency band, max 𝑊𝑗,𝐶 {𝑓𝑜𝑟 𝐶 = 1,2,3, … 8} can be selected as the 

best wavelet for further analysis.  

2.3 Wavelet Packet Transform for damage process monitoring 

In our previous research works, the wavelet packet transform has been used 

successfully in identifying the damage process [6]. Nonetheless, the wavelet used in that 

research work was ‘sym8’. No selection procedure was followed in that research work. In 

this present research work, the best wavelet is selected from a list of 24 wavelets using 

the procedures explained in Section 2.2 and the selected wavelet is used for decomposing 

the acoustic waveforms into 8 components. Each of these components comprises the 

spectral energy of the waveform distributed in the time domain of a specific frequency 

band. By analysing the spectral energy of the waveforms in their time-frequency domain, 

the damage process can be monitored.  

Typically, in a CFRP material, which is used in this research work, the macroscopic 

damage modes can be generalized into matrix cracking, delamination, debonding 

between the matrix and the fibers, fiber breakage, fiber pullout and through-thickness 

(interlaminar) crack growth [3, 4, 37, 38]. Over the years, several researchers 

experimentally validated the frequency band of the acoustic signal associated with the 

different damage processes. For example, an acoustic event generated as a consequence 

of matrix cracking or delamination will have the characteristic frequency range of 150 

kHz to 200 kHz. At the same time, the acoustic event generated due to fiber breakage will 

be above 300 kHz or 350 kHz [37 – 42]. Although most of these results are provided 



through the FFT analysis and the peak amplitude values, several researchers have used 

CWT and WPT for proving the same. The reason for choosing CWT or WPT over the 

conventional FFT is because they can provide information on the acoustic waveforms in 

their time domain. Events such as matrix cracking or delamination release acoustic 

signals with longer duration [6]. On the other hand, the fiber breakage or crack growth 

releases very transient signals with shorter duration and high frequency. Thus, it is 

essential to understand the characteristics of the signals also in their time domain.  

These observations, indeed, are not without debates. Some researchers have argued 

that the acoustic events with frequency above 350 kHz does not necessarily represent 

fiber breakage at all the time and it could also represent the acoustic events released from 

the interlaminar crack growth [11, 42]. The experimental evidence has also been 

provided for the same. This is the reason why the WPT becomes more essential in the 

damage process monitoring. Because the WPT provides the characteristics of the 

different frequency bands associated with the recorded acoustic waveforms in their time-

frequency domain. So, overall characteristics of the acoustic signal can be obtained. Using 

this, the damage process associated with the composite material, to an extent also with 

the structure can be analysed. As indicated in Section 1, the damage process 

characteristics in CFRP specimen subjected to mode I delamination is studied in this 

research work.  

3. Experimental Procedure 

The material used for testing in this research work is CFRP prepared using the Resin 

Film Infusion (RFI) process. The CFRP system has 35% resin content with high strength 

carbon fibers reinforced unidirectionally in the matrix. The unidirectional specimens are 

prepared by inserting a non-adhesive insert of thickness 13 µm (approx.) and a length of 

45 mm to create the precrack [43]. The specimen has an even number of plies with each 

unidirectional ply having a thickness of 0.152 mm. The CFRP slab is cut into DCB 

configuration according to ASTM D5528 - Standard Test Method for Mode I Interlaminar 

Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites [44]. 

The length, breadth and thickness of each specimen are 125 mm, 25 mm and 3 mm, 

respectively.  A pair of piano hinges are attached to the mouth of the specimen where the 

adhesive insert is placed. The piano hinges are attached through a strong epoxy adhesive. 

The configuration of the specimen is presented in Figure 1.  



The Double Cantilever Beam (DCB) is carried out on INSTRON servo-hydraulic 

testing machine at a constant displacement rate of 1 𝑚𝑚/𝑚𝑖𝑛. A total of 3 specimens 

named A, B and C are tested for this study.  

Figure 1. Configuration of DCB specimen 

For recording the acoustic signals released during the damage process, a 

piezoelectric sensor was attached to the surface of the specimen. Silica gel is used as a 

coupling agent between the surface of the specimen and the sensor to provide good 

acoustic coupling and to avoid recording the reverberating signals. The sensor used in 

this study is R30α – general purpose sensor with an operating frequency of 150 kHz to 

400 kHz and a peak sensitivity of 54 dB. The threshold for the acquisition of the AE signals 

is set as 35 dB. The recorded acoustic signals are pre-amplified by 40 dB using 2/4/6 AE 

preamplifier. The signals are further filtered through low-pass and high-pass filters 

between 1 kHz and 3MHz, respectively. The signals are processed at PAC PCI 2 data 

acquisition system. The length of the waveform recorded is set as 1K and the waveforms 

are recorded at a sampling rate of 1 mega sample per second (1 MSps). 

4. Selection of Acoustic Emission data 

During the DCB tests in all three specimens, a large number of acoustic hits are 

recorded. The total number of acoustic hits recorded and the duration of the DCB test for 

all three specimens are presented in Table 1. Besides, the distribution of the number of 

acoustic hits throughout the test is presented in Figure 2.  

Table 1. Duration of the DCB test and the total number of Acoustic Hits 

recorded for all specimens 

From Table 1, it can be observed that approximately 20000 AE hits are recorded 

during each test. For selecting the best wavelet using entropy, 𝐻(𝑥), 𝐸𝑊𝑇 and 𝑅 values for 

all the acoustic hits are calculated and their mean values are taken for comparison. 

However, for WPT, analysing 20000 acoustic waveforms has some perennial problems. 

First, analysing all the waveforms is time-consuming and it also consumes a large amount 

of storage space. (For the sake of simplicity, the number of acoustic waveforms recorded 

in all the specimens will be indicated as 20000 from herein) 



As shown in Figure 2, the distribution of the acoustic hits is not uniform throughout 

the test. Considering this, a set of representative waveforms can be selected from the 

distributed waveforms for further analysis. Again, there is no definite set of rules of 

selecting the waveforms from a representative group. For this reason, the waveforms are 

selected based on the load response of the DCB specimens under the delamination.  

Figure 3 shows the load responses of the specimens plotted over the duration of the 

test along with the cumulative number of hits. Specimens A and B have 3 load peaks while 

specimen C has only one load peak, which occurs before the specimen starts losing its 

load bearing property. Based on the load peaks, the cumulative number of hits, the load 

regions are separated into 3. For each specimen, 3 waveforms from each region, so a total 

of 9 specimens are taken for this study. The details about the load responses, the reasons 

for the multiple peaks and other details about the mechanical performances of the three 

specimens can be found in our previous research work.  

Figure 2. Distribution of the acoustic hits recorded during the entire 

duration of the test for specimens (a) A, (b) B and (c) C 

Figure 3. Load responses of the DCB specimens plotted over the duration 

of the test along with the cumulative hits for specimens (a) A, (b) B and (c) 

C 

5. Results and Discussions 

5.1 Selection of Wavelet using Entropy 

In this research work, 5 different wavelet families and a total of 24 wavelets are 

compared and the best wavelet is selected for the WPT analysis. The wavelet families and 

the list of wavelets used in this study are presented in Table 2. The wavelet families and 

wavelets are selected based on the literature survey made on the application of these 

wavelets in acoustic emission waveforms and similar transient signals.  

Table 2. Wavelet Families and Wavelet selected for the analysis 

The quadratic Renyi’s entropy 𝐻(𝑠), the energy coefficient of the wavelet 𝐸𝑊𝑇 and 

the 𝜂 values calculated using Equations (7), (12) and (8) for all the acoustic waveforms 

as presented in Table 3 for all the 3 specimens. The average value of 𝐻(𝑠), 𝐸𝑊𝑇 and 𝜂 



value are calculated for the 24 wavelets. They are ranked based on the largest value of 𝜂 

and are presented in Table 3.  

Table 3. Average quadratic Renyi’s Entropy, Average Wavelet Energy, 𝜂 

Value and Rank based on 𝜂 Value for specimens A, B and C 

From Table 3, it is very clear that the wavelets dmey, coif5 and coif4 secures the 

maximum values of 𝜂 for all 3 specimens and consequently secures the best ranks. While 

looking at the 𝜂 values in the Rank 1, 2 and 3 and also between Rank 3 and Rank 4 

wavelets, there is not a great difference between them. This is the reason why the 𝜂 value 

is not taken very casually and considered ‘dmey’ as the best wavelet without further 

scrutinizing.  

Using WPT with the wavelets dmey, coif5 and coif4, the acoustic waveforms are 

decomposed into 8 components. The spectral energy of the waveforms recorded in 

specimens A, B and C in each of the components are presented in Table 4, Table 5 and 

Table 6, respectively.  

Naturally, the spectral energy of the 20000 waveforms must be decomposed and 

analysed for comparison. But presenting 20000 waveforms results is redundant and thus 

the selected 9 acoustic waveforms from each specimen, as indicated in Section 4 are 

presented in Table 4, Table 5 and Table 6. 

Table 4. WPT components for the selected waveforms from Specimen A 

calculated using selected wavelets coif4, coif5 and dmey 

Table 5. WPT components for the selected waveforms from Specimen B 

calculated using selected wavelets coif4, coif5 and dmey 

Table 6. WPT components for the selected waveforms from Specimen C 

calculated using selected wavelets coif4, coif5 and dmey 

The dominating frequency of each waveform differs from one another. Because 

each of these dominating frequency bands represents the different types of damage 

modes from which the acoustic signals are released. The discussion about the different 

damage modes will be presented in the next section.  



In Table 4, the results of specimen A are presented. It can be clearly seen that the 

dominating frequency is either in the frequency band 125 kHz to 187.5 kHz or 187.5 kHz 

to 250 kHz. The wavelet ‘dmey’ has recovered most of the spectral energy in all the 

selected waveforms. However, in Table 5, the results of specimen B shows that in some 

waveforms, the ‘coif5’ has recovered most of the spectral energy, albeit it is not observed 

among all the selected 9 waveforms. Table 6 shows the spectral energy of the waveforms 

from specimen C. Specimen C shows similar results to Specimen A; the wavelet ‘dmey’ 

has recovered most of the spectral energy. While also comparing the spectral energy of 

20000 waveforms, a significantly large number of waveforms that have recovered the 

most spectral energy is when they are decomposed using ‘dmey’ wavelet. Therefore, 

‘dmey’ wavelet is selected as the best wavelet for processing the acoustic signals in this 

study.  

It must be understood that the ‘dmey’ wavelet is selected for the acoustic 

waveforms generated during the mode I delamination of CFRP specimens. This cannot be 

nonchalantly selected for processing all the acoustic waveforms generated from CFRP 

specimens. The generation and propagation of acoustic waveforms are strictly based on 

the material properties and their configuration. This has been experimentally observed 

in our previous research works [6]. Besides, different wavelets have been used for 

different applications by various researchers. A word of indication to show the novelty in 

this research work that those research works only uses the Energy-to-Shannon entropy 

ratio and the dominating frequency using WPT has not been used.  

5.2 Identification of Damage Process using WPT 

‘dmey’ wavelet has been selected as the most optimal wavelet for processing the 

acoustic waveforms in this study. The 9 acoustic waveforms selected from each specimen 

are decomposed using WPT with the dmey wavelet and their results are discussed in this 

section. The results are presented in two ways: a) table showing the percentage of 

spectral energy distributed in each frequency band b) figure showing the distribution of 

the spectral energy distributed in each frequency band. The figures are provided in 

addition to the table with the spectral energy percentages is because the frequency 

distribution in the time domain can be explained only through the figures.  



The results of the acoustic waveforms recorded from specimen A are presented in 

Table 7 and Figure 4.  

Table 7. Spectral Energy Percentage of the Waveforms recorded from 

Specimen A 

From Table 7, it can be observed that the waveforms taken from the Region 1 of the 

load response in Specimen A, about 50% of spectral energy is distributed in 125 kHz to 

187.5 kHz frequency band and about 20% of spectral energy is distributed in 62.5 kHz to 

125 kHz frequency band. Typically, the acoustic signals with the frequency range 

between 100 kHz and 150 kHz correspond to the matrix cracking or micro-cracking 

events. This has been evidently supported by many researchers [6, 10, 11, 45]. Besides, 

Region 1 lies within the first 30 seconds of the duration of the test, which has a maximum 

load of about 40 N (refer to Figure 3(a)). Since the delamination proceeds only after the 

occurrence of micro-cracking due to the stiffness of the DCB specimens in the mode I 

delamination test, it is safe to assume that these waveforms represent the signals 

generated from the matrix cracking or micro-cracking events.  

Figure 4. Spectral Energy Distribution in each frequency band for the 

waveforms recorded from Specimen A 

In Region 2 of Specimen A, more than 84% of the spectral energy is distributed in 

125 kHz to 187.5 kHz frequency band in Waveforms 4 and 5. In Waveform 6, about 64% 

of the energy is distributed in 125 kHz to 187.5 kHz (Table 7). Comparing these results 

with Figure 4, it can be observed that Waveforms 4 and 5 are distributed for a longer 

duration, whereas Waveform 6 is shorter. Typically, the acoustic waveforms with lower 

energy, lower frequency and longer distribution in the time domain represent the 

delamination or fiber/matrix debonding. This has been observed in our previous studies 

as well when compared with the parameter-based acoustic data [6, 11, 45]. Waveforms 4 

and 5 possibly could represent the debonding and Waveform 6 due to its similarity with 

Waveforms 1-3 could indicate the occurrence of matrix cracking. It is nothing out of 

ordinary to observe the occurrences of matrix cracking during any instances of the 

loading stage. Because the matrix cracking also leads to the friction of microparticles 

within the specimen, which can also release acoustic events. Most of these acoustic events 

also correspond to the frequency band of 100 kHz to 200 kHz.  



In Region 3, in Waveforms 7 and 8, 25% of spectral energy distributed in 187.5 kHz 

to 250 kHz frequency band, while Waveform 8 has about 15%. These waveforms also 

have about 30% to 50% of the spectral energy distributed in the 125 kHz to 187.5 kHz 

frequency band. What is more interesting is that these waveforms also have a 

considerable amount of spectral energy distributed in higher frequency bands. Waveform 

7 has about 15% in 375 kHz to 437.5 kHz and 14% in 437.5 kHz to 500 kHz. Waveform 8 

and 9 have respectively 11% and 9% of spectral energy distributed in 437.5 kHz to 500 

kHz frequency band. Comparing these results with Figure 4, the energy distributed are 

shorter in duration. Normally, acoustic signals with a frequency above 350 kHz or 400 

kHz represents fiber breakage. Recently, Oz et. al has evidently shown that these higher 

frequencies can also represent the interlaminar crack growth [11]. Considering the 

geometrical configuration of the specimen, which is 0ᵒ unidirectional and the nature of 

loading, mode I delamination, the chances for fiber breakage are very slim. Besides, no 

visible fiber breakages were observed in the ruptured specimens. Considering these 

possibilities, these waveforms can be attributed to the acoustic events due to the 

interlaminar crack (or through thickness) crack growth.  

The spectral energy distribution of Specimen B is presented in Table 8 and Figure 

5. The waveforms taken from Region 1 are not similar to the waveforms taken from the 

same region of Specimen A. In fact, Waveform 1 has about 29% of spectral energy 

distributed in the 437.5 kHz to 500 kHz frequency band, which is a phenomenon 

observed in Region 3 of Specimen A. This indicates that there is an interlaminar crack 

growth occurred in the early stages of loading in Specimen B. In fact, a small load peak at 

about 40 N is observed in Specimen B in Region 1 (Refer Figure 3(b)). This is followed by 

another load drop around the end of Region 1 at 60 N. These load drops could possibly 

be the indicators of the interlaminar crack growth occurring at the early stages of loading. 

In addition to that, Waveform 2 and 3 have spectral energy distributed in both 125 kHz 

to 187.5 kHz and 187.5 kHz to 250 kHz. Comparing with the distribution of these 

waveforms in the time domain from Figure 5, these possibly could represent the 

delamination. Apparently, specimen B has suffered both interlaminar crack growth and 

delamination at a very early stage. This could potentially be the reason for the two load 

drops in Region 1 before the end of 40 s of loading (Refer Figure 3(b)).  



Table 8. Spectral Energy Percentage of the Waveforms recorded from 

Specimen B 

The waveforms in Region 2 are also not comparable with the Region 2 of Specimen 

A. Waveform 4 has characteristics similar to that of acoustic events originating from 

matrix cracking with 71% of energy distributed in 125 kHz to 187.5 kHz and 25% in 62.5 

kHz and 125 kHz frequency bands. Waveform 5 has the characteristics of interlaminar 

crack growth with 45% of the energy distributed in 125 kHz to 187.5 kHz and 27% of 

energy distributed in 437.5 kHz to 500 kHz frequency band. The same can be said also for 

Waveform 6 since it has the spectral energy distributed in 125 to 187.5 kHz, 187.5 kHz to 

250 kHz and 375 kHz to 437.5 kHz frequency bands.  

Waveform 7 from Region 3 is very much similar to the waveforms with the 

characteristics of the interlaminar crack growth. However, Waveforms 8 and 9 have 

about 60% of the spectral energy distributed in 62.5 kHz and 125 kHz frequency band 

and 30% of energy in 125 kHz to 187.5 kHz frequency band. These are the characteristics 

of acoustic events released from matrix cracking. It can be alluded similar to the previous 

occurrences of matrix cracking in any stage of the loading.  

Figure 5. Spectral Energy Distribution in each frequency band for the 

waveforms recorded from Specimen B 

The spectral energy results of Specimen C are presented in Table 9 and Figure 6. 

Waveforms 2 and 3 in Region 1 have about 80% of their spectral energy distributed in 

the frequency band 125 kHz to 187.5 kHz. This the indication of the acoustic events 

generated from matrix cracking, as it can also be compared with their shorter duration in 

Figure 6. Waveform 1 has a unique characteristic of 55% of the spectral energy 

distributed in 187.5 kHz to 250 kHz and 20% in 125 kHz to 187.5 kHz frequency band. 

Besides, the duration of Waveform 1 is very short so it cannot be correlated to the 

delamination [46]. At this moment, there are less significant evidence to correlate this 

waveform to any damage characteristics.  

All the waveforms from Region 2 also have about 60% to 63% of their energy 

distributed in 125 kHz to 187.5 kHz and about 25% of the spectral energy in 187.5 kHz 

to 250 kHz. However, comparing these results with Figure 6, these waveforms are 



distributed longer in the time domain. Thus, these waveforms may represent the acoustic 

signals generated from the delamination. The absence of interlaminar crack growth 

events in Specimen C in Regions 1 and 2 are in fact not surprising. If the load responses 

of Specimen A, B and C in Figure 3 are compared, it can be seen that Specimen 3 had 

carried load without any drop or bridging until it reaches the peak load of 115 N. The 

entire load response is very smooth indicating there are no other events than 

delamination occurred during the loading of Specimen C. Another argument can be 

placed to support this observation. The peak load of Specimen C is significantly larger 

than Specimen A and B and the specimen also carried load for a longer duration before 

final rupture (Refer Figure 3).  

Table 9. Spectral Energy Percentage of the Waveforms recorded from 

Specimen C 

Waveform 7 in Region 3 of Specimen C shows the characteristics of delamination 

with the spectral energies only distributed in 125 kHz to 187.5 kHz. Waveforms 8 and 9, 

however, has spectral energies distributed in 375 kHz to 437.5 kHz and 437.5 kHz to 500 

kHz frequency bands. These waveforms represent interlaminar crack growth and they 

are taken from the final stages of the loading in Specimen C. This again proves the 

previous observation that Specimen C progressed through delamination smoothly until 

the final stage where the interlaminar crack growth occurs before the final rupture. 

Figure 6. Spectral Energy Distribution in each frequency band for the 

waveforms recorded from Specimen C 

From the above observations, it is safe to say that the WPT has the potential to 

identify the damage process in CFRP specimens since it can distinguish the acoustic 

signals based on the frequency and time domain characteristics. Nonetheless, it should 

be underlined that these waveforms are representatives of the loading stages. Extracting 

the dominating frequency band using WPT using the best wavelet can still distinguish the 

damage process in CFRP.  

5.3 Shifting during damage process 

Although the results of the WPT can identify the damage modes, there are some 

instances where the shifting is observed more frequently than the others. For instance, in 



Figure 6, Waveforms 8 and 9 have two frequency bands sharing spectral energy at the 

same time duration. Thus, the occurrences of shifting must also be considered for an 

empirical study of waveforms. The aim of this section is not to identify the damage 

process using shifting. Rather, it is to use the damage process identified in the previous 

section for discussing shifting in the spectral density components of the frequency.  

The shifting in the spectral density is calculated from the slopes between the 

logarithms of spectral density measured from FFT and the frequency. An example 

waveform for each specimen A, B and C, respectively, are presented in Figures 7, 8 and 9.  

Figure 7. FFT results and Shifting in the spectral density of Waveform 1 

from Specimen A 

Figure 8. FFT results and Shifting in the spectral density of Waveform 1 

from Specimen B 

Figure 9. FFT results and Shifting in the spectral density of Waveform 1 

from Specimen C 

As shown in Figures 7, 8 and 9, the shifting in the spectral densities of the acoustic 

waveforms are characterized by three stages and each stage is represented by its slope 

and intercept. To avoid redundancy in displaying all the 27 waveforms analysed for this 

study, the slopes and intercept values of each stage in all the waveforms are presented in 

a tabular form. Table 10 summarizes the shifting in the waveforms taken from the testing 

of Specimen A and similarly Table 11 and Table 12, respectively are the results of 

Specimen B and C.  

Table 10. Shifting in the Spectral Density of the Waveforms recorded from 

testing Specimen A 

Before discussing the results of the shifting in the acoustic waveforms, it must be 

underlined that the delamination damage process could not be compared between the 

acoustic waveforms recorded in different specimens. Nonetheless, the shifting in the 

acoustic waveforms corresponding to the matrix cracking and interlaminar crack growth 

are comparable. The reason being that during the delamination process, the spectral 

energy is distributed between two close frequency bands, 125 kHz to 187.5 kHz and 187.5 



kHz to 250 kHz. And the spectral energies sometimes are distributed more in the former 

and less in the latter frequency band and vice versa. This has been explained in Section 

5.2. Because of this reason, the shifting of the spectral density also varies due to this 

variation in the energy distribution. Consequently, the acoustic waveforms generated 

from the delamination modes are not comparable in this section.  

Table 11. Shifting in the Spectral Density of the Waveforms recorded from 

testing Specimen B 

The acoustic waveforms that correspond to the interlaminar crack growth events 

from Specimen A are Waveforms 7, 8 and 9 (Table 10). Specimen B has Waveforms 1, 5, 

6 and 7 corresponds to the interlaminar crack growth (Table 11). In the case of Specimen 

C, Waveforms 8 and 9 corresponds to the interlaminar crack growth event (Table 12). All 

these waveforms follow a very similar trend. The slope of the shift in Stage I is greater 

than -0.7 and it increases steeply with a positive slope in Stage II, which is followed by a 

negative slope that is above -3 in Stage  III. The positive slope at Stage II of the crack 

growth events more or less lies around 3. There are few cases where there are outliers: 

Waveform 5 of Specimen B has a slope value of 6.0837 (Table 11) in Stage II and 

Waveform 8 of Specimen C with a slope value of 7.1647 (Table 12). Regardless of these 

outlying values, the trend in Stage I and Stage III are the same for all the waveforms 

recorded from the interlaminar crack growth events considered for this study.  

Table 12. Shifting in the Spectral Density of the Waveforms recorded from 

testing Specimen C 

Similarly, for the waveforms corresponding to the matrix cracking event, there is a 

strong relationship between the waveforms recorded in Specimen B and C. Waveforms 4, 

8 and 9 of Specimen B (Table 11) and Waveforms 2 and 3 of Specimen C (Table 12) 

corresponds to the matrix cracking events. All these waveforms have the slope value 

between -0.75 and -0.7 in Stage I, which is followed by a steep increase with a positive 

slope in Stage II. In Stage III, the variation in the slope shifts steeply with a negative slope 

of less than -3. The important difference between the slope shifts in matrix cracking and 

crack growth event with respect to Stage III is that the negative slope is greater than -3 

in waveforms corresponding to the interlaminar crack growth events, while it is less than 

-3 in the waveforms corresponding to the matrix cracking events.  



Although the waveforms which correspond to the matrix cracking event in 

Specimen A (Waveforms 1, 2, 3 and 6 from Table 10) follows a similar trend in Stage I, II 

and III, the slope value in Stage I is not between -0.75 and -0.7, unlike the waveforms from 

Specimen B and C. Nonetheless, the trend of a steep increase in Stage II and a steep 

decrease in Stage III with the slope less than -3 is observed in these waveforms.  

Although the delamination events cannot be strictly correlated to the slope values 

in either of the stages of shifting, the acoustic signals recorded from those events do not 

overlap the slope values representing the matrix cracking or crack growth. To summarize 

the slope values and trends of the shifts in the acoustic events, matrix cracking events 

normally have a negative slope between -0.75 and -0.7 in Stage I, followed by a steep 

increase with a positive slope in Stage II. In Stage III, it once again exhibits a negative 

slope of less than -3. The interlaminar crack growth events, on the other hand, have a 

negative slope of greater than -0.7 in Stage I, followed by a steep increase with a positive 

slope around 3 in Stage II. In Stage III, it exhibits a negative slope of greater than -3.  

Since these shifting in the spectral density are introduced for the very first time in 

this research field, the results cannot be compared with any similar works. Although, the 

strong relationship between the shifting in the spectral density, particularly in the 

acoustic events corresponding to the matrix cracking and the interlaminar crack growth 

events can be observed. The necessity of an additional tool in processing acoustic 

waveforms is always necessary because these waveforms are very transient in nature 

and some waveform processing techniques are not suitable for analysing them under 

certain circumstances. For instance, in our previous research work, while studying the 

acoustic waveforms generated during a static testing of metallic specimens, CWT, DWT 

and WPT proved to be ineffective in studying these waveforms [47]. This is one of the 

main reasons why the shifting in the spectral density are explored in this research work, 

despite the damage modes are effectively identified using WPT.  

Nevertheless, the shifting in the spectral density proves to be a promising 

methodology in processing the acoustic waveforms for assessing the damage process. It 

is essential to develop this further with a dedicated experimental campaign for analysing 

the acoustic signals generated from different damage processes in different materials.  

6. Conclusion 



In this research work, the signal-based acoustic data are processed for identifying 

the damage process in CFRP composites. Two new methodologies are introduced in this 

research work for this purpose. An entropy based method is introduced for selecting the 

most appropriate wavelet for processing the acoustic waveforms generated from the 

CFRP composites under mode I delamination. Using this technique, the ‘dmey’ wavelet is 

selected as the most appropriate wavelet for this study. Then this wavelet is used for 

decomposing the acoustic waveforms using Wavelet Packet Transform (WPT). The 

spectral energy distributed in different frequency bands from the WPT results is used to 

assess the damage process in the CFRP composites. The second methodology introduced 

in this research work is the shifting of spectral density. The shifting in the spectral density 

has been categorized into three stages with different slope values. By analysing the values 

of slopes in these three stages, the damage processes of matrix cracking and interlaminar 

crack growth have been identified.  
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Table 1. Duration of the DCB test and the total number of Acoustic Hits recorded for all 

specimens 

Specimen Name 
Duration of the test Number of Acoustic Hits 

recorded (s) 
A 404.48 19863 
B 391.68 19491 
C 437.76 20797 
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Table 2. Wavelet Families and Wavelet selected for the analysis 

S. No. Wavelet 
Wavelet 
Family 

S. No. Wavelet 
Wavelet 
Family 

1.  haar Haar 13. sym2 

Symlet 

2.  db1 

Daubechies 

14. sym3 
3.  db2 15. sym4 
4.  db3 16. sym5 
5.  db4 17. sym6 
6.  db5 18. sym7 
7.  db6 19. sym8 
8.  db7 20. coif1 

Coiflet 
9.  db8 21. coif2 
10.  db9 22. coif3 
11.  db10 23. coif4 
12.  dmey Dmeyers 24. coif5 
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Table 3. Average quadratic Renyi’s Entropy, Average Wavelet Energy, 𝜂 Value and Rank 

based on 𝜂 Value for specimens A, B and C  

Wavelet 
Average Entropy Average Energy 𝜂 Value Rank 

A B C A B C A B C A B C 

haar 1.5701 1.6915 1.6237 0.0031 0.0041 0.0042 0.002 0.00242 0.0026 23 23 23 

db1 1.5701 1.6915 1.6237 0.0031 0.0041 0.0042 0.002 0.00242 0.0026 23 23 23 

db2 1.4407 1.5809 1.4977 0.0034 0.0043 0.0045 0.00237 0.00272 0.00305 19 19 20 

db3 1.4844 1.6257 1.5432 0.0035 0.0045 0.0047 0.00239 0.00273 0.00308 17 17 17 

db4 1.5699 1.6915 1.6230 0.0036 0.0045 0.0048 0.0023 0.00268 0.003 22 22 22 

db5 1.5251 1.6587 1.5809 0.0037 0.0046 0.0049 0.00241 0.00277 0.00314 15 14 14 

db6 1.5172 1.6549 1.5802 0.0037 0.0046 0.0050 0.00245 0.0028 0.00319 9 7 7 

db7 1.5590 1.6836 1.6164 0.0037 0.0047 0.0050 0.0024 0.00275 0.00313 16 16 15 

db8 1.5570 1.6842 1.6124 0.0038 0.0047 0.0050 0.00242 0.00276 0.00315 13 15 13 

db9 1.5356 1.6700 1.5979 0.0038 0.0047 0.0051 0.00247 0.00279 0.00319 4 10 6 

db10 1.5479 1.6766 1.6080 0.0038 0.0047 0.0051 0.00246 0.0028 0.00317 7 9 10 

sym2 1.4407 1.5809 1.4977 0.0034 0.0043 0.0045 0.00237 0.00272 0.00305 19 19 20 

sym3 1.4844 1.6257 1.5432 0.0035 0.0045 0.0047 0.00239 0.00273 0.00308 17 17 17 

sym4 1.4945 1.6332 1.5552 0.0036 0.0045 0.0048 0.00243 0.00277 0.00316 12 13 11 

sym5 1.5659 1.6894 1.6217 0.0037 0.0046 0.0049 0.00235 0.0027 0.00306 21 21 19 

sym6 1.5198 1.6547 1.5821 0.0037 0.0046 0.0050 0.00246 0.0028 0.00318 8 8 9 

sym7 1.5338 1.6674 1.5950 0.0038 0.0047 0.0050 0.00245 0.00278 0.00316 11 12 12 

sym8 1.5325 1.6649 1.5954 0.0038 0.0047 0.0050 0.00247 0.0028 0.0032 5 5 5 

coif1 1.4179 1.5615 1.4764 0.0034 0.0044 0.0045 0.00242 0.00279 0.00313 14 11 16 

coif2 1.4848 1.6263 1.5468 0.0036 0.0046 0.0049 0.00245 0.0028 0.00319 10 6 8 

coif3 1.5141 1.6517 1.5780 0.0037 0.0047 0.0050 0.00247 0.00281 0.0032 6 4 4 

coif4 1.5288 1.6635 1.5933 0.0038 0.0047 0.0051 0.00248 0.00282 0.0032 3 3 3 

coif5 1.5373 1.6698 1.6012 0.0038 0.0047 0.0051 0.00248 0.00283 0.00321 2 2 2 

dmey 1.5542 1.6833 1.6154 0.0039 0.0048 0.0052 0.00251 0.00285 0.00323 1 1 1 
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Table 4. WPT components for the selected waveforms from Specimen A calculated 

using selected wavelets coif4, coif5 and dmey 

Components 

1 2 3 4 5 6 7 8 

Frequency Range (kHz) 

0-62.5 62.5-125 125-187.5 187.5-250 250-312.5 312.5-375 375-437.5 437.5-500 

 coif4 

Waveform 1 0.0011 0.8126 1.3033 0.3268 0.0808 0.0242 0.0699 0.0328 

Waveform 2 0.0003 0.1198 0.1384 0.0063 0.0012 0.0011 0.0007 0.0012 

Waveform 3 0.0137 0.0100 0.0112 0.0011 0.0002 0.0001 0.0000 0.0000 

Waveform 4 0.0005 0.0020 0.0239 0.0031 0.0004 0.0008 0.0003 0.0008 

Waveform 5 0.0009 0.0162 0.2638 0.0176 0.0074 0.0070 0.0014 0.0010 

Waveform 6 0.0121 4.9908 11.1268 0.9565 0.3307 0.1761 0.4993 0.6104 

Waveform 7 0.0006 0.0321 0.0615 0.0709 0.0129 0.0131 0.0635 0.0203 

Waveform 8 0.0004 0.0425 0.1969 0.0838 0.0076 0.0053 0.0145 0.0411 

Waveform 9 0.0004 0.2295 0.4102 0.0979 0.0720 0.0142 0.0523 0.0687 

 coif5 

Waveform 1 0.0007 0.7968 1.3085 0.3498 0.0656 0.0286 0.0622 0.0369 

Waveform 2 0.0003 0.1138 0.1447 0.0066 0.0008 0.0007 0.0010 0.0010 

Waveform 3 0.0107 0.0111 0.0088 0.0011 0.0002 0.0000 0.0001 0.0000 

Waveform 4 0.0005 0.0019 0.0248 0.0026 0.0004 0.0006 0.0004 0.0007 

Waveform 5 0.0008 0.0151 0.2716 0.0140 0.0070 0.0046 0.0013 0.0009 

Waveform 6 0.0119 4.7893 11.3300 1.0321 0.3498 0.1151 0.1620 0.9123 

Waveform 7 0.0005 0.0303 0.0647 0.0729 0.0163 0.0080 0.0506 0.0318 

Waveform 8 0.0004 0.0415 0.1978 0.0863 0.0085 0.0033 0.0093 0.0450 

Waveform 9 0.0005 0.2225 0.4184 0.1075 0.0433 0.0338 0.0320 0.0871 

 dmey 

Waveform 1 0.0008 0.7050 1.3288 0.4550 0.0323 0.0240 0.0685 0.0324 

Waveform 2 0.0003 0.0787 0.1797 0.0078 0.0003 0.0003 0.0009 0.0010 

Waveform 3 0.0085 0.0099 0.0246 0.0011 0.0001 0.0000 0.0000 0.0000 

Waveform 4 0.0004 0.0018 0.0268 0.0011 0.0003 0.0003 0.0003 0.0008 

Waveform 5 0.0007 0.0131 0.2844 0.0074 0.0064 0.0010 0.0015 0.0008 

Waveform 6 0.0090 3.8303 12.0554 1.4629 0.1714 0.0867 0.1980 0.8891 

Waveform 7 0.0005 0.0205 0.0813 0.0774 0.0061 0.0061 0.0425 0.0405 

Waveform 8 0.0004 0.0368 0.1973 0.0963 0.0028 0.0037 0.0079 0.0469 

Waveform 9 0.0005 0.1788 0.4524 0.1508 0.0184 0.0232 0.0356 0.0856 
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Table 5. WPT components for the selected waveforms from Specimen B calculated 

using selected wavelets coif4, coif5 and dmey 

Components 

1 2 3 4 5 6 7 8 

Frequency (kHz) 

0-62.5 62.5-125 125-187.5 187.5-250 250-312.5 312.5-375 375-437.5 437.5-500 

  coif4 

Waveform 1 0.0100 1.2638 4.5890 2.6518 3.7288 4.0272 6.0455 11.6300 

Waveform 2 0.0003 0.0767 0.0955 0.0517 0.0085 0.0025 0.0052 0.0014 

Waveform 3 0.0003 0.0603 0.3122 0.0651 0.0316 0.0056 0.0385 0.0077 

Waveform 4 0.0010 0.2206 0.4965 0.0168 0.0052 0.0034 0.0040 0.0030 

Waveform 5 0.0003 0.0255 0.0957 0.0119 0.0116 0.0089 0.0360 0.0395 

Waveform 6 0.0003 0.0617 0.1926 0.0613 0.0240 0.0087 0.0604 0.0268 

Waveform 7 0.0007 0.0637 0.2881 0.0236 0.0333 0.0231 0.0621 0.1462 

Waveform 8 0.0412 112.2750 42.2921 9.2358 6.8401 2.3913 4.6629 5.8199 

Waveform 9 0.0813 187.7207 62.9372 12.0722 6.1573 2.1790 0.9247 1.2256 

  coif5 

Waveform 1 0.0249 1.2082 4.6087 2.7739 4.2295 1.5373 10.8631 8.7005 

Waveform 2 0.0003 0.0747 0.0973 0.0537 0.0069 0.0043 0.0045 0.0003 

Waveform 3 0.0003 0.0572 0.3143 0.0694 0.0275 0.0148 0.0276 0.0101 

Waveform 4 0.0009 0.2158 0.5034 0.0163 0.0052 0.0029 0.0032 0.0029 

Waveform 5 0.0003 0.0238 0.0972 0.0124 0.0101 0.0065 0.0212 0.0579 

Waveform 6 0.0004 0.0586 0.1961 0.0628 0.0186 0.0245 0.0524 0.0225 

Waveform 7 0.0008 0.0637 0.2889 0.0242 0.0313 0.0248 0.0334 0.1738 

Waveform 8 0.0253 110.6963 44.1473 9.4265 6.5663 2.4050 5.7781 4.5133 

Waveform 9 0.1098 185.7518 65.2298 12.3971 6.2414 1.2615 0.8674 1.4391 

  dmey 

Waveform 1 0.0181 1.0502 4.8722 3.1186 3.9154 1.4586 9.4853 10.0276 

Waveform 2 0.0003 0.0669 0.1030 0.0597 0.0039 0.0028 0.0049 0.0005 

Waveform 3 0.0003 0.0439 0.3154 0.0926 0.0164 0.0117 0.0311 0.0099 

Waveform 4 0.0009 0.1878 0.5350 0.0150 0.0036 0.0021 0.0033 0.0030 

Waveform 5 0.0003 0.0154 0.1042 0.0142 0.0097 0.0067 0.0170 0.0619 

Waveform 6 0.0004 0.0417 0.2173 0.0654 0.0174 0.0122 0.0603 0.0213 

Waveform 7 0.0007 0.0667 0.2865 0.0286 0.0279 0.0225 0.0415 0.1663 

Waveform 8 0.0221 102.9391 51.9988 10.7906 5.5359 2.0438 5.6804 4.5484 

Waveform 9 0.0836 169.9488 81.1800 13.5344 5.7209 0.5893 0.8890 1.3532 
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Table 6. WPT components for the selected waveforms from Specimen C calculated 

using selected wavelets coif4, coif5 and dmey 

Components 

1 2 3 4 5 6 7 8 

Frequency (kHz) 

0-62.5 62.5-125 125-187.5 187.5-250 250-312.5 312.5-375 375-437.5 437.5-500 

  coif4 

Waveform 1 0.0004 0.0250 0.2436 0.4084 0.1619 0.0131 0.0496 0.0445 

Waveform 2 0.0003 0.0569 0.1695 0.0093 0.0017 0.0029 0.0098 0.0048 

Waveform 3 0.0475 55.5520 352.2950 53.4341 12.4369 3.7574 0.3939 0.4109 

Waveform 4 0.0100 2.2053 22.0602 10.6188 1.1518 2.0988 0.4384 0.5529 

Waveform 5 0.1005 86.1163 232.7857 150.8409 5.3079 3.7312 2.3556 2.8181 

Waveform 6 0.1079 495.3054 827.9057 185.6956 22.3903 7.3477 1.5056 2.6723 

Waveform 7 0.0330 23.2480 108.0183 55.5821 2.0926 2.6129 1.8316 3.3009 

Waveform 8 0.0004 0.2730 0.2200 0.1022 0.0297 0.0212 0.1488 0.0592 

Waveform 9 0.0009 0.2068 0.4726 0.1782 0.0334 0.0290 0.2579 0.1964 

  coif5 

Waveform 1 0.0005 0.0214 0.2382 0.4310 0.1539 0.0030 0.0526 0.0460 

Waveform 2 0.0003 0.0529 0.1749 0.0088 0.0015 0.0016 0.0119 0.0031 

Waveform 3 0.0486 50.5132 360.8346 52.6634 11.2019 2.4818 0.2039 0.3818 

Waveform 4 0.0063 2.0418 22.7027 10.6738 1.4802 1.2969 0.4771 0.4579 

Waveform 5 0.1042 81.7200 243.7455 146.8233 3.1458 3.4278 2.2421 2.8489 

Waveform 6 0.0594 477.3133 853.4198 185.4775 17.0469 5.3147 1.6842 2.6150 

Waveform 7 0.0140 21.6454 111.6079 54.4280 1.9643 1.7938 3.0485 2.2176 

Waveform 8 0.0004 0.2685 0.2280 0.1014 0.0326 0.0052 0.1582 0.0603 

Waveform 9 0.0007 0.1999 0.4844 0.1797 0.0364 0.0111 0.1752 0.2878 

  dmey 

Waveform 1 0.0004 0.0095 0.1976 0.5266 0.1121 0.0013 0.0511 0.0480 

Waveform 2 0.0003 0.0319 0.1993 0.0064 0.0012 0.0011 0.0108 0.0040 

Waveform 3 0.0348 30.3107 391.5161 49.1360 6.5337 0.2048 0.1742 0.4185 

Waveform 4 0.0035 1.3234 24.1031 11.3214 0.7512 0.6673 0.5271 0.4390 

Waveform 5 0.0523 62.9700 292.8911 118.8699 2.3699 1.7043 2.0175 3.1828 

Waveform 6 0.0615 389.1842 977.9529 164.6860 5.9834 0.9105 1.5637 2.5961 

Waveform 7 0.0119 14.1017 124.8928 48.2363 2.5962 1.5289 2.9626 2.3889 

Waveform 8 0.0004 0.2382 0.2671 0.0955 0.0310 0.0022 0.1399 0.0803 

Waveform 9 0.0007 0.1642 0.5332 0.1802 0.0222 0.0096 0.1638 0.3013 
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Table 7. Spectral Energy Percentage of the Waveforms recorded from Specimen A 
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Region 1 

Waveform 1 0.0286 26.6387 50.2044 17.1903 1.2211 0.9068 2.5865 1.2237 

Waveform 2 0.1093 29.2578 66.7988 2.8966 0.1173 0.0954 0.3525 0.3723 

Waveform 3 19.2562 22.3977 55.3756 2.4838 0.2275 0.0892 0.0947 0.0754 

Region 2 

Waveform 4 1.3806 5.5336 84.3540 3.4569 0.9904 0.8755 0.9717 2.4373 

Waveform 5 0.2279 4.1530 90.1919 2.3611 2.0320 0.3141 0.4723 0.2478 

Waveform 6 0.0481 20.4797 64.4579 7.8216 0.9164 0.4635 1.0588 4.7540 

Region 3 

Waveform 7 0.1870 7.4568 29.5793 28.1473 2.2242 2.2307 15.4372 14.7375 

Waveform 8 0.0920 9.3943 50.3151 24.5695 0.7224 0.9394 2.0164 11.9508 

Waveform 9 0.0511 18.9115 47.8564 15.9574 1.9465 2.4507 3.7713 9.0552 
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Table 8. Spectral Energy Percentage of the Waveforms recorded from Specimen B 
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Region 1 

Waveform 1 0.0534 3.0937 14.3527 9.1870 11.5343 4.2969 27.9423 29.5398 

Waveform 2 0.1052 27.6671 42.5712 24.6765 1.6174 1.1644 2.0119 0.1862 

Waveform 3 0.0503 8.4261 60.5168 17.7594 3.1385 2.2472 5.9714 1.8901 

Region 2 

Waveform 4 0.1239 25.0138 71.2757 1.9960 0.4732 0.2771 0.4443 0.3961 

Waveform 5 0.1220 6.6935 45.4366 6.1914 4.2376 2.9234 7.4025 26.9929 

Waveform 6 0.0879 9.5629 49.8374 14.9925 3.9906 2.8048 13.8277 4.8962 

Region 3 

Waveform 7 0.1123 10.4151 44.7058 4.4696 4.3571 3.5135 6.4793 25.9473 

Waveform 8 0.0121 56.0795 28.3281 5.8785 3.0158 1.1134 3.0946 2.4779 

Waveform 9 0.0306 62.1842 29.7037 4.9522 2.0933 0.2156 0.3253 0.4951 
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Table 9. Spectral Energy Percentage of the Waveforms recorded from Specimen C 

C
o

m
p

o
n

e
n

ts
 1 2 3 4 5 6 7 8 

Frequency (kHz)/ % of Spectral Energy  

0
-6

2
.5

 

6
2

.5
-1

2
5

 

1
2

5
-

1
8

7
.5

 

1
8

7
.5

-
2

5
0

 

2
5

0
-

3
1

2
.5

 

3
1

2
.5

-
3

7
5

 

3
7

5
-

4
3

7
.5

 

4
3

7
.5

-
5

0
0

 

Region 1 

Waveform 1 0.0439 1.0081 20.8770 55.6257 11.8393 0.1355 5.3958 5.0747 

Waveform 2 0.0989 12.5215 78.1532 2.5261 0.4547 0.4290 4.2398 1.5768 

Waveform 3 0.0073 6.3368 81.8508 10.2724 1.3660 0.0428 0.0364 0.0875 

Region 2 

Waveform 4 0.0091 3.3816 61.5881 28.9283 1.9195 1.7050 1.3467 1.1216 

Waveform 5 0.0108 13.0088 60.5075 24.5570 0.4896 0.3521 0.4168 0.6575 

Waveform 6 0.0040 25.2236 63.3825 10.6735 0.3878 0.0590 0.1013 0.1683 

Region 3 

Waveform 7 0.0061 7.1684 63.4878 24.5204 1.3197 0.7772 1.5060 1.2144 

Waveform 8 0.0449 27.8760 31.2586 11.1723 3.6319 0.2533 16.3685 9.3945 

Waveform 9 0.0514 11.9430 38.7748 13.1012 1.6150 0.6964 11.9126 21.9055 
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Table 10. Shifting in the Spectral Density of the Waveforms recorded from testing 

Specimen A 

Waveform 
Stage I Stage II Stage III Apparent 

Damage Mode Slope Intercept Slope Intercept Slope Intercept 

Region 1 

1 -0.6640 -4.4237 3.6878 -10.6125 -3.9015 5.8645 

Matrix Cracking 2 -0.5968 -4.2201 4.3961 -12.3821 -5.6514 9.0136 

3 -0.4940 -3.9640 2.0150 -7.7331 -3.4640 3.9058 

Region 2 

4 -0.3496 -4.3836 1.7525 -7.9480 -4.2454 5.6306 
Delamination 

5 -0.0254 -4.6773 2.6653 -9.3787 -1.8230 0.3031 

6 -0.6370 -4.3267 3.7380 -10.1668 -2.6676 3.4281 Matrix Cracking 

Region 3 

7 -0.4097 -4.1436 4.0405 -11.8661 0.1617 -3.7295 

Crack Growth 8 -0.3930 -4.1502 3.9727 -11.4893 -0.7370 -1.9060 

9 -0.2389 -4.3428 4.7180 -12.9693 -0.8401 -1.3191 
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Table 11. Shifting in the Spectral Density of the Waveforms recorded from testing 

Specimen B 

Waveform 
Stage I Stage II Stage III Apparent 

Damage Mode Slope Intercept Slope Intercept Slope Intercept 

Region 1 

1 -0.7418 -3.3487 1.9685 -6.8162 -0.5640 -3.9791 Crack Growth 

2 -0.3499 -4.4746 3.7007 -11.2724 -1.8608 0.6889 
Delamination 

3 -0.4918 -4.3752 4.5484 -12.7920 -1.4157 -0.1247 

Region 2 

4 -0.7803 -4.0928 3.6909 -10.6266 -1.9981 0.9767 Matrix Cracking 

5 -0.5026 -4.2865 6.0837 -6.0567 -1.7740 0.5130 
Crack Growth 

6 -0.4776 -4.2704 3.0698 9.9496 -0.2144 -3.0559 

Region 3 

7 -0.6068 -4.0984 3.2416 -9.8888 -0.1288 -3.2361 Crack Growth 

8 -0.7555 -2.9042 3.3907 -9.1268 -1.1488 0.3988 
Matrix Cracking 

9 -0.7026 -2.8965 3.3960 -8.6428 -2.5325 3.6833 
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Table 12. Shifting in the Spectral Density of the Waveforms recorded from testing 

Specimen C 

Waveform 
Stage I Stage II Stage III Apparent 

Damage Mode Slope Intercept Slope Intercept Slope Intercept 

Region 1 

1 0.1114 -4.9199 4.2762 -12.5873 -2.4064 2.3827 Not assigned 

2 -0.5876 -4.2878 7.0606 -18.3390 -4.0625 5.5607 
Matrix Cracking 

3 -0.7489 -2.8907 5.2763 -12.7830 -3.7119 6.5239 

Region 2 

4 -0.1251 -3.7998 3.8120 -10.5922 -2.7713 4.1559 

Delamination 5 -0.8573 -2.8139 4.5481 -11.1480 -6.6142 13.1717 

6 -0.9483 -2.6536 4.5334 -11.2057 -3.8895 7.0770 

Region 3 

7 -0.7559 -3.0025 4.4631 -11.4727 -2.2553 3.2176 Delamination 

8 -0.4279 -4.3031 7.1647 -18.0282 -0.6344 -1.9603 
Crack Growth 

9 -0.2417 -4.4425 3.9734 -11.5034 -0.4394 -2.3279 
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