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Abstract

This doctoral thesis presents the results of the three-years activities carried out during the
XXXIII cycle of the Ph.D. program in Electrical and Information Engineering of the Poly-
technic University of Bari, Bari, Italy. The topic of this thesis is the optimal control of complex
systems using Reinforcement Learning (RL) based techniques. Optimal control theory is aimed
at finding control policies that minimize a predefined closed-loop performance criterion, namely
the utility function. While optimal control for linear systems is a well-established framework,
several issues arise when nonlinearities come into the picture. Feedback optimal control poli-
cies for nonlinear systems are found by solving the Hamilton-Jacobi-Bellman (HJB) equation,
which is in general analytically intractable. Starting from the 1980s, considerable efforts have
been made by the research community to overcome such intractability. This resulted in the de-
velopment of new approaches based on RL that find approximated solutions of the HJB equation
using Neural Networks (NNs). RL is an important branch of the Machine Learning theory. It is
inspired by the animal world where living beings improve their behaviors by interacting with an
unknown environment, evaluating the effect of their actions and modifying them accordingly.
The combination of RL paradigms, NNs, and optimal control results in the Adaptive Dynamic
Programming (ADP) approach. ADP algorithms find optimal control laws by means of dif-
ferent learning strategies. Such approach demonstrates the increasing penetration of Artificial
Intelligence (AI) in the field of complex control systems.

The main purpose of this thesis is to show the effectiveness of ADP-based control systems
in real-world scenarios. In fact, although most of the ADP theory has been developed since
the second half of the 2000s, experimental tests of real-world ADP-based controllers have only
been published more recently. This thesis begins by over-viewing the main ADP algorithms that
solve optimal control problems for nonlinear systems, covering the two main learning strate-
gies: the Policy Iteration (PI) algorithm with on-policy learning and the PI algorithm with
off-policy learning. The mathematical details of such approaches are presented, discussing the
main properties along with pros and cons. Then, the powerful features of the ADP algorithm
with off-policy learning are exploited to provide novel control strategies according to two differ-
ent complex systems. It will be shown how the versatility and power of ADP-based techniques
allow to solve control problems with different contexts and objectives in an innovative way.

As first case study, the optimal control of mechatronic devices based on dielectric elastomer
membranes, namely the Dielectric Elastomer Actuators (DEAs), is considered. A DEA is typi-
cally constituted by a flexible polymeric membrane that undergoes a deformation when excited
with an electrical voltage. DEAs have recently received a significant interest due to their high
energy density, high deformation ranges, and low production costs. They have also showed to be
quite attractive in the context of several applications, ranging from micro-positioning systems
to soft-robotic structures. However, the interesting features of the DEAs are limited by their
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strong nonlinear behavior and sensitivity to environmental conditions, which limit their pene-
tration in the industrial sector. The strong nonlinearities due to the underlying physical behavior
encouraged the development of advanced control strategies. Nevertheless, energy-efficient con-
trollers have never been developed for such class of actuators. In this thesis, a novel minimum
energy control strategy for DEAs is developed. The objective is to minimize the electrical en-
ergy required during a positioning task. In principle, the DEA dynamics can be detailed by
an energy consistent model, which also describes the losses that occur in the actuator during
any positioning task. An optimal feedback control strategy can be employed to minimize those
losses, by formulating the energy-minimization problem as an optimal control problem. How-
ever, due to the involved nonlinearities, an analytic solution of the HJB equation does not exist.
In this thesis, an ADP algorithm with off-policy learning is employed to deal with the optimal
energy control problem. In particular, the ADP approach will be used as a tool to solve offline
the HJB equation, deriving energy-efficient control laws for a given set of target displacement
values. Finally, experimental tests will validate for the first time an energy consistent model
of the DEA as well as the energy-efficient controllers. Substantially improvements in terms of
energy saving will arise when comparing the proposed approach with other traditional control
methods, such as Proportional Integral or feed-forward schemes.

The second complex system where ADP is applied is a DC microgrid featuring power
buffers. Due to the increasing penetration of DC sources and loads, such as photo-voltaic gen-
erators or electrical vehicles, DC microgrids have recently gained significant attention. DC
distribution systems are more efficient and reliable than AC microgrids, where redundant con-
version stages are present. Moreover, DC microgrids do not suffer of many AC-related issues,
such as frequency synchronization or reactive power flows. However, due to a lack of damping
inertia, DC systems can face instability issues when volatile source and loads are considered.
A possible solution is represented by power buffers, which can be used as damping elements in
the DC microgrid. A power buffer is a power converter with a large storage element that can be
exploited to decouple the distribution grid from the final load. In fact, when abrupt load changes
occur, the energy stored in the buffer compensates the transient mismatch. The input impedance
seen by the network can be actively controlled by the power buffer during transients, so that the
stability properties of the DC system are improved. By introducing a communication network
on top of the physical grid, distributed control policies for such buffers are enabled. Their ef-
fective range of action is thus extended to the neighboring power buffers. In this way, power
buffers can assist each other during abrupt load changes. This thesis investigates the cooperative
distributed control of power buffers. The cooperative assistive control objective is formulated
as an optimal control objective, where the single utility function is shared among all the buffers.
In contrast with the existing literature, the nonlinear dynamics is considered. Thus, ADP will
represent the key tool in designing such optimal policies. Clearly, when dealing with distributed
control schemes, the communication topology plays a crucial role. Based on the configuration
of the communication network, in this thesis two different control approaches will be presented.

Firstly, the communication topology is fixed and inspired by the physical vicinity of the
buffers. A set of optimal control policies able to provide assistance during abrupt load changes
are learned offline, using the ADP with off-policy learning approach. Such policies are then
interpolated in a real-time control scheme. The proposed approach overcome the issues of the
existing distributed solutions for power buffers. For example, a feedback controller is directly
provided, instead of open-loop policies that require additional control loop to be implemented.
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By considering the fully nonlinear dynamics, the proposed approach does not rely on small-
signal approximations. Thus, performances and stability will be guaranteed also for large-signal
variations. Experimental validations conducted in a Controller/Hardware-in-the-Loop (CHIL)
environment will asses the effectiveness of the proposed approach.

A second approach considers the communication topology a free parameter subject to opti-
mization. In fact, there is no guarantee that a communication topology inspired by the physical
vicinity is optimal with regard to the control objectives. Moreover, the energy availability of
each power buffer is limited, thus the co-optimization of control performances and communi-
cation topologies is important when distributed solutions are considered. A sparsity-promoting
optimal controller optimizes a closed-loop utility function, while minimizing at the same time
the number of interactions between different control loops. Clearly, DC systems can bene-
fit from sparse communication structures, minimizing computational and communication costs
with a limited impact on the resulting closed-loop performances. However, the existing lin-
ear formulations for the sparsity-promoting optimal control are not practical for nonlinear sys-
tems as the DC microgrid with power buffers. This thesis presents the first attempt in solving
sparsity-promoting optimal control problems for nonlinear systems. The versatility properties
of the ADP algorithm with off-policy learning are exploited to provide such solution, without
requiring the exact knowledge of the system dynamics. In fact, a single set of learning data is
repetitively used to find optimal controllers for different communication topologies. The pro-
posed data-driven algorithm employs Domain-of-Attraction estimation methods to check the
stability of each distributed controller, while a Tabu Search procedure optimizes the combi-
natorial problem. The obtained sparsity-promoting controllers are then employed in the DC
microgrid. The validity of the proposed approach will be assessed through exhaustive CHIL ex-
periments. Quantitative and qualitative comparisons will show how the proposed methodology
significantly outperforms existing approaches.
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To my family.
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”If you torture the data long enough, it will confess.”
Ronald H. Coase
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Chapter 1

Introduction

1.1 Artificial Intelligence and Control Theory
The current society has been distinguished for the significant development of IT-related tech-
nologies. This has led many industries and businesses to experience substantial changes in
the adopted equipment and machinery, business systems, and labor models [1]. Advanced auto-
mated industrial systems played a very important role in determining and shaping such changes.
A proof of this is the notable increase in the use of industrial robots in the last 10 years in almost
all sectors of the world’s industry, as shown in Figure 1.1, where the recent trends in the indus-
trial robot installations by region (Fig. 1.1(a)) and by industries (Fig. 1.1(b)) are depicted [2].

However, the disruptive role of the automation comes to the price of a continuously grow-
ing complexity of industrial plants, production systems, and decision-making processes. In this
context, control algorithms are crucial to guarantee performances and objectives of such com-
plex systems. The design of efficient and reliable controllers is thus essential to achieve the
strategic goals of industries and businesses. In order to deal with modern complex systems,
guarantee performances, and satisfy strict specifications, advanced control design techniques
play a key role in the near future of engineered systems.

The IEEE Computer Society draws up every year a prediction of the top 12 technology
trends for the following year. The previsions for the 2020 see an increasing adoption of Arti-
ficial Intelligence (AI) technologies in several applications, such as cognitive robots, delivery
drones, cybersecurity, and critical systems [3]. Regarding the latter, within five years AI will
be significantly employed on various levels (e.g., control algorithms, communication infras-
tructures, etc.) of critical systems involved in the health and safety of the society. Any system
where a failure could lead to a serious personal injury, damage the natural environment, or a
loss of important assets or sensitive data is a critical system. Examples include medical devices
and equipment, power generation and distribution, banking and stock trading systems. AI will
enhance critical systems safety and reliability, while optimizing scarce resources [3].

The research community made several efforts in the last years to develop AI-based control
techniques, providing well established frameworks that deal with complex systems. The subject
of this thesis is the application of Reinforcement Learning (RL) based techniques, i.e., a class
of AI methods, for the Optimal Control of nonlinear systems. The following sections 1.2 and
1.3 briefly overview optimal control and RL methods, respectively. Motivation and goals of this
thesis are presented in Section 1.4. Finally, the structure of the thesis is reported in Section 1.5.
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Figure 1.1: Recent trends in industrial robot installations: (a) Annual installations by region;
(b) Annual installations by industries. Source: [2].

1.2 Optimal Control

Optimal control theory is one of the most used methods for designing feedback control systems.
The history of optimal control stretches back 360 years, when the first theories based on the cal-
culus of variations were developed. However, interest in optimal control consistently rose after
the advent of the computer, with the first applications in the optimal trajectory prediction for the
aerospace in the early 1960s [4]. Any optimal controller minimizes a given long-term perfor-
mance index defined according to the resulting closed-loop system dynamics. The performance
index includes both system states and control inputs, and reflects the desired transient response
behaviors [5]. Several optimal control techniques have been developed for both discrete and
continuous time systems, with infinite or finite optimization horizons. The work of this thesis
is focused on the infinite-horizon optimal control of nonlinear continuous time systems.
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Environment

Agent

State
Reward

Figure 1.2: Standard RL model.

For general nonlinear systems, optimal control policies can be found using two approaches:
the Pontryagin’s Minimum Principle (PMP) and the Dynamic Programming (DP) [6, 7]. The
PMP method is derived using the variational approach [8] and provides open loop controllers,
while the DP approach leads to the Hamilton-Jacobi-Bellman (HJB) equation, whose solution
provides a closed-loop controller with state-feedback. Moreover, the PMP method gives only a
necessary condition for the solution optimality, i.e., it provides candidate solutions to be tested
for optimality. By contrast, the HJB method provides both necessary and sufficient conditions,
at the price of an higher complexity. In fact, while the PMP method is generally easier to tackle,
the HJB partial differential equation is, in general, intractable. Due to better performances in
terms of noise and disturbance rejections, feedback policies are usually preferred to open-loop
controllers. In this thesis, Reinforcement Learning (RL) based techniques are employed to ap-
proximate the solution of the HJB equation, including the case of unknown system’s dynamics.

1.3 Reinforcement Learning for Optimal Control
Machine Learning (ML) techniques are based on several learning paradigms, such as supervised
learning, unsupervised learning, deep learning, etc. An important branch of the ML theory is
constituted by the RL approach. RL methods are inspired by the animal world, where species
survive and improve their behaviors by evaluating their actions on the external environment
[9]. In the standard RL model, as depicted in Fig. 1.2, an agent, or actor, interacts with the
environment by applying actions and receiving the current environment’s state and a scalar
value representing a reward or penalty, known as reinforcement signal. Based on the current
state and reinforcement signal, the objective of the agent is to determine a sequence of actions
that maximizes the rewards sum on the long term. Actions, or control policies, are modified
based on the corresponding rewards, achieving the so called action-based learning. The main
idea is that good actions, i.e., the ones resulting in high rewards, are remembered and reused.
Note that since only the current states and rewards are required to the agent, such methods
works also with unknown environments [9, 10]. The key concepts of the RL theory can be
found in [11–13].

Mathematically an RL problem is usually formulated as an optimization problem where
an optimal actions policy minimizes, or maximizes, a given objective function. Therefore, in
principle RL can be used to solve optimal control problems. In fact, RL represents a well
established approach in the control systems community to handle optimal control problems for
unknown nonlinear systems. The first attempts of using RL to solve such problems were made
initially for discrete time systems, where the DP approach is employed. A strict connection
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Figure 1.3: Actor-Critic structure.

between DP and RL was initially showed by Werbos in 1968 in [14]. After that, other RL-
based approaches aimed at overcoming the issues of traditional DP techniques were presented
in [15–18]. In particular, the traditional DP approach provides an exact solution of the discrete
optimal control problem given an exhaustive search in the policy space of the system. Clearly,
such approach is practical only for very small systems. Higher numbers of states could led
to the well-known curse-of-dimensionality problem of the DP. Based on a RL method known
as actor-critic structure [19], several methods that approximate the solution of the DP were
presented [16, 20–22].

1.3.1 Actor-Critic Structure
The actor-critic structure features two main components, as depicted in Fig. 1.3. By applying a
control policy, the actor component directly interacts with the environment, i.e., the system to
be controlled in the optimal way. Then, a critic component evaluates the value of that policy ac-
cording to a predefined performance index, i.e., the optimal control problem’s cost function [9].
This approach consists of two steps performed iteratively: the policy evaluation by the critic
and the policy improvement by the actor. The main idea is that the critic, based on the current
policy evaluation, adjusts and improves the control policy of the actor so that the resulting per-
formance index is improved with respect to the previous iteration. Clearly, the critic component
evaluates the policy by observing the results on the environment of the current policy.

The Bellman’s Principle provides the key equation in the optimal control theory, i.e., the
Bellman optimality condition or discrete-time HJB equation [6]. The solution of such equation
is the optimal control policy found by a backward-in-time process. Consequently, such method
provides an offline solution without any online learning procedure. As an example, the solution
of the discrete-time Linear Quadratic Regulator (LQR) problem is obtained by solving offline
the Riccati equation, given the full knowledge of the system dynamics. The first step required
to switch from an offline planning to an online learning problem is to provide a forward-in-time
solution to the optimal control problem.

A basic implementation of the actor-critic structure, namely the Policy Iteration (PI) al-
gorithm [22, 23], finds in an iterative way the optimal control policy using a forward-in-time
approach, without solving the HJB equation. For discrete-time and continuous-time linear sys-
tems, the PI algorithm coincides with the well-known Hewer’s algorithm [24] and Kleinman’s
algorithm [25], respectively.
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However, when dealing with nonlinear systems the PI approach requires the solution of
nonlinear Lyapunov equations, which are generally analytically intractable [9]. By making use
of the Weierstrass approximation Theorem the optimal controllers can be approximated using
Neural Networks (NN). The combination of actor-critic structures, e.g., the PI algorithm, with
NNs results in the Adaptive Dynamic Programming (ADP) approach [16, 26, 27].

1.3.2 Adaptive Dynamic Programming
ADP methods formulate the optimal control problem as an on-line RL problem where the opti-
mal controller is found using data measured along the system trajectories. The controller, i.e.,
the RL agent, approximates the optimal feedback policy without requiring a full knowledge
of the environment, i.e., the system to be controlled. ADP algorithms learn optimal control
policies by analyzing the online behavior of the system under non-optimal controllers. More
specifically, a performance index quantifies the optimality of the current closed-loop system and
drives the control policy updates. Such paradigm, where a control policy is modified according
to the system responses, is strictly related to adaptive control techniques [9, 22].

Briefly, ADP employs NNs to provide approximated solutions to optimal control problems,
i.e., approximated solutions of the HJB equation for continuous-time systems [28–32], and
approximated forward-in-time solutions to the DP approach for discrete-time systems [33–36].
ADP techniques are mainly divided into PI and Value Iteration (VI) algorithms. Starting from
an initial admissible stable control policy, PI algorithms iterate over two steps, i.e., a policy
evaluation step and a policy improvement step [11, 37]. Conversely, a VI approach does not
require an initial admissible stable control policy.

Based on the actor-critic structure, in the ADP framework a critic NN approximates the
optimal value function, i.e., the optimal cost-to-go function, and an actor NN approximates
the optimal control policy [38]. Furthermore, on-policy and off-policy learning methods can
be defined. The former updates the current control policy using data obtained by applying the
same control policy, while the latter permits the repeated use of the same set of data collected
using a single initial stable control policy [39]. Nonlinear optimal control of continuous-time
systems has been successfully tackled with several ADP-based algorithms. For instance, in [28]
and [29], two on-policy PI algorithms have been proposed. The former is based on sequential
updates of the actor and critic NNs, while in the latter the two NNs are synchronously updated.
ADP for constrained-input systems is studied in [30]. In [31] and [32] two ADP algorithms with
off-policy learning are proposed for systems with disturbances. For a comprehensive overview
refer to [9, 27, 40].

1.3.3 The Exploration-Exploitation Dilemma
Each RL agent investigates the environment by applying actions and evaluating the correspond-
ing rewards. In this context the agent can follow two different strategies. The first one makes
use of the actions that resulted in high rewards in the previous steps, and thus consists in the
exploitation of the knowledge gained by the RL agent so far. Alternatively, the agent applies
a different set of actions that may result in an improved reward, or, in other words, the agent
could explore the environment seeking a better set of actions. Therefore, ideally the agent
should exploit its experience, but simultaneously explore the environment to learn new ac-
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tions and improve future rewards. In the RL literature, this issue is commonly referred to as
exploration-exploitation dilemma [11, 41].

As in the adaptive control methods, in the ADP framework the notion of persistent excitation
(PE) is strictly related to the exploration-exploitation dilemma [42, 43]. If the PE conditions
are not verified, the adaptive controller parameters will not converge to the optimal values.
However, in order to satisfy the PE conditions, a probing noise is usually injected in the system,
making the states and control inputs oscillatory and potentially causing instability. Therefore,
from a control perspective, the dilemma consists in ensuring enough exploration (by satisfying
the PE conditions) and guarantee stability and performances (exploitation) [44].

Thanks to the exploration capabilities of the ADP algorithms, they can be applied to systems
with unknown dynamics and find optimal controllers with guaranteed convergence [44]. Note
that given the difficulty in treating the HJB equation, such methods apply also when the system
dynamics is known. In fact, by means of simulated models the ADP techniques can be used as
a tool to solve offline the HJB equation and find the optimal control policy to be deployed on
the real system.

1.4 Motivations and Goals of the Thesis
The focus of this thesis is the optimal control through ADP techniques of nonlinear continuous-
time systems. Although the ADP theory for continuous-time problems has been developed since
the second half of the 2000s [28, 45], still today most of the works focus on theoretical results
only. To the author’s best knowledge, the first experimental tests of ADP-based controllers to
real-world plants have been published more recently. In [46] an ADP method with kernel-based
function approximators is firstly proposed and then experimentally validated on single-link and
double-link inverted pendulum systems. An ADP optimal controller is trained offline in [47] and
used for the online torque control of a permanent magnet synchronous motor, achieving better
performances when compared with traditional control techniques. The concept of concurrent
learning is used in [48] to develop drop-free controllers for DC microgrids using ADP. In [49]
the tracking control problem for unknown nonlinear systems is tackled with an ADP actor-critic
structure featuring a NN identifier and then practically validated on an helicopter test-rig.

The aim of this thesis is to show the effectiveness of ADP-based control schemes in complex
real-world scenarios, better assessing the potentials and drawbacks of such techniques. In par-
ticular, two main topics are treated. The first considers the minimization of the actuation energy
of a Dielectric Elastomer Actuator, with the aim of developing and validating energy-efficient
control policies. The second application consists in the distributed control of power buffers in
DC microgrids. The goal is to develop assistive controllers where nearby power buffers share
their stored energy to support each other during load changes. The following two subsections
briefly cover these two applications.

1.4.1 Optimal Energy Control of Dielectric Elastomer Actuators
Dielectric elastomer (DE) transducers represent a possible solution to address the increasing
demand of lightweight, fast, and precise electro-mechanical actuators. A DE is obtained by
coating both sides of an elastomer film (e.g., silicone) with compliant electrodes (e.g., carbon
grease), forming a flexible capacitor. When a voltage is applied between the electrodes, it
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Figure 1.4: Cross section view of a DEA: (a) Unactuated (voltage off); (b) Actuated (voltage
on).

generates a pressure that squeezes the membrane. This thickness reduction produces an area
expansion which can be used for actuation purposes. An example of a DE Actuator (DEA) is
depicted in Fig. 1.4, with both unactuated (Fig. 1.4(a)) and actuated (Fig. 1.4(b)) configura-
tions. The DEA consists of a DE membrane placed in between an outer frame and a circular
plate. Usually, a mechanical biasing system is employed to significantly amplify the actuation
stroke [50]. For the DEA in Fig. 1.4 the biasing system consists of a combination of a bistable
buckled-beam and a linear spring. In general, DEAs have gained a notable attention in recent
years due to their unique combination of features, such as large deformations (> 100%), fast
response, and high energy density [51].

Despite these advantages, DE technology is currently limited by its highly nonlinear behav-
ior, high voltage requirements (order of kV), and sensitivity to environmental conditions. To
enhance the capabilities of DEAs, feedback control strategies have recently been developed,
e.g., [50, 52]. While most authors focused on accurate position regulation, a feedback control
scheme aimed at driving DEAs in an energy efficient way has not been tackled by the research
community. In fact, despite DEAs are intrinsically energy efficient devices, electro-mechanical
losses occur during actuation. The minimization of these losses can be addressed by means of
optimal control strategies. Since the strong nonlinearity of the DE response makes the use of
conventional optimal control theory not possible, ADP appears as a suitable tool to practically
address the problem.

In this context, the main goals achieved in this thesis are summarized as follows:

• The obtained controller asymptotically tracks a position set-point by ensuring optimality
with respect to a specific energy-related utility function, obtained via an accurate and
thermodynamically consistent description of the system;

• Experimental studies validate the effectiveness of the energy-based model, which predicts
with high accuracy the supplied electrical energy as well as the dissipation that occurs;

• The design of the optimal controller that minimizes the actuation energy is performed via
an ADP algorithm with off-policy learning;

• The effectiveness of the optimal controller is verified through experimental tests and is
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Figure 1.5: DC Microgrid with active loads: (a) DC microgrid as the interconnection of DC
sources and active loads. A communication network (red lines) implements distributed control
policies; (b) Active load as the series connection of a power buffer and a final load.

shown how the proposed approach outperforms, in terms of energy savings, other tradi-
tional control techniques.

1.4.2 Distributed Control of Power Buffers in DC Microgrids
A Direct Current (DC) microgrid consists of DC loads and sources spread on an electrical
distribution network, as shown in Fig. 1.5(a). A common approach considers DC loads as
active loads, i.e., the series connection of a controllable power buffer and a final load [53, 54],
as in Fig. 1.5(b). The power buffer, i.e., a power converter with a large capacitor, features a fast
voltage tracker that drives the final load, i.e., a power converter and a final resistive load. Placing
a power buffer between the distribution network and the final load allows to better compensate,
by means of the buffer’s stored energy, the transient mismatch between the power supplied by
the microgrid and the power delivered to the load (e.g. following an abrupt change in the load
resistance). This results in improved stability performances of the DC network [55, 56].

Power buffers indeed provide an additional degree of freedom that can be exploited to design
control laws that improve the overall network performances. In particular, the input impedance
of the power buffers can be controlled in such a way they can provide assistance to other nearby
active loads during transients, by sharing in some sense the stored energy. This results in a dis-
tributed controller deployed through a communication network spread among the active loads,
as shown in Fig. 1.5(a). Thanks to this network, each power buffer can ideally extend its effec-
tive range by actively assisting a given set of neighboring loads during their transients. Within
this perspective, a power buffer also reacts to load changes of its neighborhood, as well as to its
own changes.

Clearly, the communication network plays an important role in the resulting distributed
controller architecture. Two main cases are treated in the following thesis, as follows.

1. The communication network is fixed and inspired by the physical vicinity, and the fully
nonlinear dynamics is considered. The main goal achieved are:

• A distributed control law is designed, in the sense that each buffer’s control law
depends on its state and the one of its neighbors. By making use of limited infor-
mation, the power buffers minimize a given performance function. Each buffer’s
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control law is designed according to the optimal control theory, using a common
shared objective which changes according to the node that is requesting assistance.
Given the intrinsically nonlinear coupling between DC sources and loads, the result-
ing optimal control problem is nonlinear, and, thus, is solved by means of ADP.

• With respect to the solutions proposed in previous research works, this approach
provides an optimal control law without considering a small-signal analysis [53,54].
Thus, the resulting policy optimizes trajectories undergoing also large state devia-
tions. Moreover, the proposed approach provides directly a state-feedback control
law since it is derived by solving the HJB equation via ADP, instead of using the
Pontryagin minimum principle as presented in the recent literature [57].

2. The communication network is free and subject to optimization. In particular, a sparsity-
promoting objective is considered, i.e., the co-optimization of the closed loop optimal
control performance and the number of the active communication links [58]. In order
to provide better performances with respect to traditional approaches that consider first-
order approximation, a second-order linearization of the system dynamics is considered.
The main goals achieved are:

• The first attempt to solve nonlinear sparsity-promoting and structured optimal con-
trol problems is proposed. In particular, an algorithm based on ADP and heuristic
search methods (Tabu Search) handles arbitrary nonlinear utility functions and sys-
tem dynamics.

• When employed in DC networks, the optimal sparse controller has a limited impact
on the performance function when compared with fully-connected communication
topologies. In particular, the reciprocal assistance among power buffers is shown to
increase with a less sparse communication structure.

Finally, Controller/Hardware-In-the-Loop (CHIL) experiments validates the effectiveness
of the proposed solutions.

1.5 Structure of the Thesis
This doctoral thesis is organized as follows. Chapter 2 provides an overview of the ADP al-
gorithms for the optimal control of nonlinear systems. The general continuous-time optimal
control problem with infinite horizon is formulated. Then, the ADP with PI algorithms featur-
ing on-policy and off-policy learning methods are discussed. Convergence proofs, exhaustive
mathematical details, as well as pros and cons of the two learning approaches are reported. Nu-
merical examples are provided to better familiarize the reader with the topic. Finally, a first ap-
plication of ADP-based techniques for the structured optimal control of symmetrically-coupled
linear systems is developed to show the potential and versatility of the ADP approach. Chapter 3
develops optimal energy controllers for DEAs using ADP. An energy-consistent model for such
devices is first developed and experimentally validated. Then, the energy minimization prob-
lem is formulated according to the optimal control theory. An ADP algorithm with off-policy
learning is used to find energy optimal policies regarding several desired displacement scenar-
ios. Finally, the effectiveness of the proposed approach is verified through experimental tests.
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Chapter 2

Adaptive Dynamic Programming
Algorithms

In this chapter, a brief introduction on Adaptive Dynamics Programming (ADP) methods is
provided. First, the continuous-time nonlinear optimal control problem with infinite horizon
is defined. Then, ADP methods that solve the optimal control problem for unknown nonlinear
systems are summarized, covering the principles of Policy Iteration (PI) algorithms with on-
policy and off-policy learning. Numerical examples are provided. Finally, a first application of
Reinforcement Learning (RL) based techniques for the structured optimal control of unknown
symmetric linear systems is reported.

2.1 Problem Statement
Optimal control designs find feedback control policies that minimize a given closed-loop per-
formance index. Let’s consider a general nonlinear control-affine system, as follows

ẋ = f(x) + g(x)u, (2.1)

where x 2 X ✓ Rn is the system’s states vector, and u 2 U ✓ Rm is the control input vector,
with X and U as compact sets. The following assumptions are made

• f(x) is Lipschitz continuous on X,

• f(0) = 0,

• the origin is the unique equilibrium of the system in X,

• the system is feedback stabilizable, i.e., there exists at least one control feedback u(x)
such that the system is asymptotically stable on X.

For any initial state x(0) = x0, the infinite horizon integral cost, also known as cost-to-go
function or value function, is defined as

V (x0) =

Z 1

0

U(x, u)dt, (2.2)

13
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where U(x, u) is a scalar function, known as utility function, embedding some specifications
on system performances, e.g., minimum-fuel, minimum-energy, etc. For any stable control
policy, u, (2.2) provides the performance measure of the system trajectory when going from the
initial state to the equilibrium, i.e., the origin. Let’s consider utility functions expressed in the
following form

U(x, u) = Q(x) + u|R(x)u+ ↵|(x)u, (2.3)

where Q(x) : X ! R is a positive definite scalar function such that Q(0) = 0, R(x) : X !

Rm⇥m is an m-th dimensional symmetric positive definite matrix such that R(0) = 0, and
↵(x) : X ! Rm is defined such that ↵(0) = 0 and U(x, u) > 0, 8(x, u) 6= (0, 0), with
U(0, 0) = 0. This requirements are needed in order to well-define the utility function.
Definition 1 - Admissible Policy [59]. A feedback control policy (sometimes simply referred to
as control policy or policy), u(x), is admissible regarding (2.2) on set X if u(0) = 0, u(x) is a
continuous function on X, u(x) asymptotically stabilizes system (2.1) on X, and the associated
cost V (x0) is finite 8x0 2 X.

The nonlinear optimal control problem with an infinite horizon cost function can be now
defined as follows: Given the continuous-time system (2.1) and the infinite horizon cost function
(2.2), find an admissible feedback control policy u(x) that minimizes (2.2).

Regardless the optimality of a control policy u(x), the cost (2.2) obtained by applying u(x)
to system (2.1) can be evaluated a priori if the closed form of the function V (x) is known. To
this end, if the cost function V (x) in (2.2) associated to u(x) is continuous, its infinitesimal
version gives us the following nonlinear Lyapunov equation [29]

U(x, u(x)) +rV |(x)(f(x) + g(x)u(x)) = 0, V (0) = 0 (2.4)

where rV (x) 2 Rn is the value function’s derivative with respect to the system states x. Given
any admissible controller u(x), the nonlinear Lyapunov equation (2.4) can be solved for the
value function V (x), which represents a Lyapunov function for system (2.1) with policy u(x).

The Hamiltonian of the optimal control problem is defined as

H(x, u,rV ) = U(x, u(x)) +rV |(x)(f(x) + g(x)u(x)). (2.5)

Clearly, the optimal value function, V ⇤(x), satisfies the following equation

min
u

H(x, u,rV ⇤(x)) = 0, (2.6)

which is also known as the Hamilton-Jacobi-Bellman (HJB) equation. If it is assumed that the
minimum Hamiltonian in (2.6) exists and is unique, the corresponding optimal control policy,
u⇤(x), can be found as

u⇤(x) = �
1

2
R�1(x) (g|(x)rV ⇤(x) + ↵(x)) . (2.7)

By plugging (2.7) in (2.5) the formulation of the HJB equation in terms of the optimal cost
function is obtained [29],

Q(x)�
1

4
rV ⇤|(x)g(x)R�1(x)g|(x)rV ⇤(x)

+
1

4
↵|(x)R�1(x)↵(x) +rV ⇤|(x)f(x) = 0, V ⇤(0) = 0

(2.8)
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Note that V ⇤(x) constitutes a well-defined Lyapunov function for the closed-loop system made
of (2.1) and input (2.7), which globally asymptotically stabilizes the system at the origin.

The optimal control policy is found by solving the HJB equation (2.8) for the optimal value
function, V ⇤(x), and plugging it in (2.7). It can be easily proven that V ⇤(x) is the only positive-
definite solution of the HJB equation. When dealing with time invariant linear systems and
quadratic cost functionals, (2.8) becomes the Algebric Riccati Equation. However, when deal-
ing with general nonlinear systems, the HJB equation is generally intractable, thus, approxi-
mated solutions via the ADP framework can be found.

2.2 Policy Iteration
A RL-based iterative method that solves optimal control problems is the well-known PI algo-
rithm [11]. It consists of two steps: 1) Policy Evaluation and 2) Policy Improvement. Starting
from an initial admissible control policy, the PI algorithm evaluates the corresponding cost by
solving a nonlinear Lyapunov equation as in (2.4). Then, this cost is used to obtain a new
control policy by minimizing an Hamiltonian function, as in (2.6) and (2.7). The new control
policy is improved with respect to the previous one in the sense that the corresponding cost is
smaller. The two steps are iteratively executed until improvements are no longer obtained, i.e.,
the optimal control policy is found [29, 60].

The PI algorithm is reported in the following Algorithm 2.1,

Algorithm 2.1 Policy Iteration Algorithm

1. Initialization: Set k = 0, and u(0)(x) as the initial admissible controller for (2.1).
2. Iteration: Repeat until convergence

a. Policy Evaluation: Solve for V (k)(x), with V (k)(0) = 0, from the following:

U(x, u(k)(x)) +rV (k)|(x)(f(x) + g(x)u(k)(x)) = 0. (2.9)

b. Policy Improvement: Update u(k+1)(x) as:

u(k+1)(x) = �
1

2
R�1(x)

�
g|(x)rV (k)(x) + ↵(x)

�
. (2.10)

Proof of convergence of the PI algorithm to the optimal control policy is given in several refer-
ences, such as [59, 61, 62].

Note that for continuous time systems with quadratic utility functions the PI method reduces
to the Kleinman algorithm which iteratively solves the Algebraic Riccati Equation [25].

The Policy Evaluation step in the PI algorithm requires the solution of the nonlinear Lya-
punov equation (2.9), which is still an intractable problem for general nonlinear systems. Thus,
ADP algorithms seek approximated solutions for the Policy Evaluation step and find an approx-
imated optimal control policy. In particular, by employing two Neural Networks (NNs) the PI
algorithm can be implemented using an actor/critic structure (see Section 1.3.1). The critic NN
is trained to provide an approximated solution of (2.9), while an actor NN is trained to provide
the improved policy during the Policy Improvement step [29].
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System
Target and 
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Figure 2.1: On-policy and off-policy learning methods: (a) On-policy; (b) Off-policy.

The PI algorithm can be implemented using two classes of learning methods, namely on-
policy and off-policy. The on-policy method evaluates and improve the same control policy
applied to the system, i.e., the policy is continuously updated in an online manner, as it happens
in the adaptive control theory. In off-policy methods, instead, the policy being updated (namely
the target policy) and the policy applied to the system (namely the behavior policy) are dis-
tinct. In other words, off-policy methods learn the optimal control policy by using the system’s
response to another policy. Figure 2.1 schematizes the two learning methods [11, 63].

For every iteration in the PI procedure with off-policy learning, (2.9) is solved by reusing
the same data collected by executing a behavior policy. Thus, off-policy methods are in general
more efficient and fast if compared with on-policy methods. However, if some of the system
parameters change over time, the off-policy procedure must be re-executed, while an on-policy
method provides real-time adaptation. Finally, off-policy algorithms can solve optimal control
problems in case of completely unknown system dynamics [63].

On-policy and off-policy algorithms are presented in the following sections.

2.3 PI ADP with On-policy learning
In order to solve online (2.9), the critic component is implemented using a NN for the value
function approximation. In particular, the final goal is to approximate V ⇤(x) and its gradient.
By assuming that (2.4) has a smooth solution for any admissible controller, i.e., V (x) 2 C1, the
Weierstrass higher-order approximation theorem [59] ensures the existence of a independent
basis function set such that V (x) and its gradient are uniformly approximated on X. That is,
there exists a weights vector !⇤

2 RNV such that the value function V (x) and its gradient are
approximated as follows

V (x) =
NVX

l=1

!⇤
l �l(x) + ✏V (x) = !⇤|�(x) + ✏V (x), (2.11)

rV (x) =
NVX

l=1

!⇤
l r�l(x) +r✏V (x) = r�|(x)! +r✏V (x). (2.12)

The linearly independent functions �(x) = {�1(x), · · · , �NV
(x)}, with �l(x) : Rn

! R and
�l(0) = 0, can be seen as the activating functions of a NN with NV neurons on the hidden
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layer, while !⇤ represents the weight’s vector on the output layer, which has a linear activating
function. Moreover, the weights on the hidden layer are fixed to 1 and polynomial activating
functions are usually employed [29]. Clearly, as the number of the neurons in the hidden layer
tends to infinity, i.e., NV ! 1, the approximating errors tends to zero, i.e., ✏V (x) ! 0, and
r✏V (x) ! 0.

2.3.1 Critic’s Tuning Law
Given a nonlinear Lyapunov equation as in (2.4) with a fixed admissible control policy u(x),
the goal is to determine a tuning law for the critic NN in (2.11) so that the solution of (2.4) is
approximated. By plugging (2.12) into (2.4) the following expression is obtained

U(x, u(x)) + !⇤|
r�(x)(f(x) + g(x)u(x)) +r✏V (x)(f(x) + g(x)u(x)) = 0. (2.13)

By defining the residual error as ✏H(x) = �r✏V (x)(f(x)+g(x)u(x)), the following holds true

U(x, u(x)) + !⇤|
r�(x)(f(x) + g(x)u(x)) = ✏H . (2.14)

As in (2.11), !⇤ represents the unknown weight’s set providing the best approximation for the
value function V (x). Let ! be the current estimation of the ideal weights !⇤, thus, the current
output of the critic NN is

V̂ (x) = !|�(x). (2.15)

The current weights estimation error is defined as

!̃ = !⇤
� !. (2.16)

Thus, the current approximation error on the resulting Lyapunov equation, ✏L(x) 2 R, is com-
puted as

✏L(x) = U(x, u(x)) + !|
r�(x)(f(x) + g(x)u(x))

= U(x, u(x)) + !⇤|
r�(x)(f(x) + g(x)u(x))� !̃|

r�(x)(f(x) + g(x)u(x))

= �!̃|
r�(x)(f(x) + g(x)u(x)) + ✏H ,

(2.17)

where (2.14) has been used in the last step. The goal is to find a tuning law for the weights ! so
that the following error index is minimized

EV =
1

2
✏L(x)

2, (2.18)

then ! ! !⇤ and ✏L ! ✏H . The weights are tuned using a normalized gradient descent
algorithm, i.e.,

!̇ = ��V
@EV

@!
= ��V ✏L

@✏L
@!

, (2.19)

where the chain rule is used and �V 2 R represents the learning rate. By defining �V (x) 2 RNV

as
�V (x) = r�(x)(f(x) + g(x)u(x)), (2.20)

and the normalization factor as (�|
V (x)�V (x) + 1)2, the following tuning law is obtained

!̇ = ��V
�V (x)

(�|
V (x)�V (x) + 1)2

(�|
V (x)! + U(x, u(x))). (2.21)
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2.3.2 Convergence Analysis
To study the convergence of the critic’s weights, i.e., if the ideal weights !⇤ are obtained with
(2.21), the dynamics of the critic weights estimation error, !̃, has to be analyzed. From (2.14)
it follows that U(x, u(x)) = �!⇤|�V (x) + ✏H . The dynamics of !̃ can be expressed as

˙̃! = �!̇ = ��V �̄V (x)�̄V
|(x)!̃ + �V �̄V (x)

✏H
mV (x)

, (2.22)

where mV (x) = �|
V (x)�V (x) + 1, and �̄V (x) = �V (x)

mV (x) . For compactness, the dependency of
�V (x) and mV (x) on x is omitted in the subsequent.

In order to guarantee the convergence of the critic weights is necessary to assume that the
signal �̄V is Persistently Excited (PE). As in the adaptive control theory, where the PE condition
is used to ensure the convergence of the identified system parameters, here the PE condition
ensures proper identification of the critic parameters approximating the function V (x). The PE
condition states that if exist three constants �PE

1 > 0, �PE
2 > 0, and T > 0 so that the following

holds

�PE
1 I 

Z t+T

t

�̄V (⌧)�̄V
|(⌧)d⌧  �PE

2 I, 8t, (2.23)

where I is the identity matrix, then the signal �̄V is persistently excited over the time interval
[t, t+T ]. The inequality in (2.23) states that if �̄V (x) is PE, then the eigenvalues of the integral
are positive and, thus, the integral is invertible. This condition is equivalent to the uniform
complete observability [64] of the following linear time varying system

(
˙̃! = �V �̄V u

y = �̄V !̃
(2.24)

In fact, (2.23) represents the observablity gramiam of system (2.24), where u and y are the input
and output, respectively.

The following theorem [29] proves that the tuning law defined in (2.21) is effective under
the PE condition, so that the actual weights ! converge to the unknown ideal weights !⇤. Note
that !⇤ solve the general nonlinear Lypanuov equation (2.4) when the input u(x) is fixed and
admissible.

Theorem 1 - Convergence of the critic weights. Let u(x) be an admissible control policy
for system (2.1). Let us consider (2.21) as the tuning law for the critic’s weights. Assume that
�̄V is PE as in (2.23). Then the critic weights error converges exponentially to a residual set that
shrinks as ✏H tend to 0, i.e., if the number of the hidden neurons is sufficiently large [59].
Proof. See [29].

Therefore, Theorem 1 ensures that through (2.21) the solution of any Lyapunov equation
corresponding to the applied control policy can be found online. By setting the control policy
as in (2.10), a solution of the HJB equation is obtained, i.e.,

û(x) = �
1

2
R�1(x) (g|(x)r�|(x)! + ↵(x)) , (2.25)

and, thus, the optimal control problem is solved online. This last equation represents the actor
NN. The resulting actor/critic structure is depicted in Fig. 2.2. Note that a probing noise is
added to the actor NN’s output to guarantee the PE condition.
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Eq. (2.20)

Eq. (2.3)
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Eq. (2.25)

Critic

Actor

+

Probing
Noise

System

( ) ( )f x g x u!
u xˆ( )u xx

( )V x"

( , )U x u
#!( )t#

0

t

$

Figure 2.2: ADP with on-policy learning scheme.

A convergence proof with guaranteed stability of the closed loop system during the learning
stage is proposed in [29], where the actor’s weight are different from the critic’s ones and tuned
in a different way. However, the approach proposed in [29] does not consider the term ↵(x)u in
the utility function, as in (2.3). Both schemes in Fig. 2.2 and in [29] represent a synchronous PI
algorithm. In fact, by contrast with Algorithm 2.1, where the critic and actor NNs are updated
sequentially, the synchronous PI simultaneously tunes both NNs in real-time.

In general, on-policy PI algorithms involve real-time tuning laws with non-standard extra
terms employed to ensure closed-loop stability. However, such tuning laws are in general hard to
set and design [29]. The real-time implementation of the PI algorithm with on-policy learning
is computationally intensive and, as in (2.20), the full knowledge of the system dynamics is
required. A hybrid PI algorithm constituted by a continuous-time actor component updated by
a discrete-time critic structure is proposed in [60], where the knowledge of only g(x) is required.
The off-policy approach overcomes some limitations of the on-policy method.

2.4 PI ADP with Off-policy learning
The goal of the off-policy method is to implement a PI algorithm where (2.9) is easily solved by
means of a least square approach, using only collected system data with a fixed control policy.

To this end [65], let us consider system (2.1) with an admissible control policy, u(0)(x), and
a bounded exploration noise, eL(t) : R ! Rm, injected for learning purposes, as follows

ẋ = f(x) + g(x)(u(0)(x) + eL(t)). (2.26)

Clearly, the exploration noise must be chosen so that system (2.1) is input-to-state stable when
eL(t) is the input. For any iteration k � 0 in Algorithm 2.1, (2.26) can be rewritten as follows

ẋ = f(x) + g(x)(u(k)(x) + u(k)0(x)), (2.27)

where u(k)0(x) = u(0)(x)� u(k)(x) + eL(t). By considering the policy evaluation and improve-
ment steps, i.e., (2.9) and (2.10), respectively, the derivative with respect to the time of V (k)(x)
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Figure 2.3: LIP approximators scheme: (a) Critic NN, as in (2.29); (b) Actor NN, as in (2.30).

along the state trajectories of (2.27) is

V̇ (k)(x) = rV (k)|(x)(f(x) + g(x)u(k)(x) + g(x)u(k)0(x))

= �U(x, u(k)(x)) +rV (k)|(x)g(x)u(k)0(x) =

= �U(x, u(k)(x))�
�
2u(k+1)|(x)R(x) + ↵|(x)

�
u(k)0(x).

(2.28)

As in the ADP algorithm with on-policy learning, also when using off-policy learning two NNs
are employed. A critic NN approximates the value function at each step, i.e., V (k)(x), while
an actor NN approximates the control policy, i.e., u(k+1)(x). In particular, linear-in-parameters
(LIP) approximators are used, as follows

V̂ (k)(x) =
NVX

l=1

!(k)
l �l(x) = !(k)|�(x), (2.29)

û(k+1)(x) =
NUX

l=1

✓(k)l ⇠l(x) = ✓(k)
|
⌅(x), (2.30)

where �l(x) : Rn
! R, with l = 1, ..., NV , and ⇠l(x) : Rn

! Rm, with l = 1, ..., NU , are
two sequences of linearly independent basis functions vanishing in the origin. NV and NU

are two large integers representing the number of neurons, while !(k) and ✓(k) are two sets of
unknown weights of suitable dimensions to be determined. Figure 2.3 depicts a scheme of the
two considered NNs.

2.4.1 Integral Reinforcement Learning

The off-policy learning method is derived from the so-called integral reinforcement learning
(IRL) equation [32,44]. That is, by integrating (2.28) on both sides on any time interval [tn, tn+1]
and substituting V (k)(x) and u(k+1)(x) with their approximations in (2.29) and (2.30), the fol-
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lowing IRL equation is obtained

!(k)| [�(x(tn+1))� �(x(tn))] = �✓(k�1)|
✓Z tn+1

tn

⌅(x)R(x)⌅|(x)dt

◆
✓(k�1)

� 2✓(k)
|
Z tn+1

tn

⌅(x)R(x)
�
u(0)(x) + eL(t)

�
dt+ 2✓(k)

|
✓Z tn+1

tn

⌅(x)R(x)⌅|(x)dt

◆
✓(k�1)

�

Z tn+1

tn

Q(x)dt�

Z tn+1

tn

↵|(x)
�
u(0)(x) + eL(t)

�
dt+ ✏(k)n ,

(2.31)

where ✏(k)n is the error due to the approximation on the time interval [tn, tn+1] and iteration k.
Given the sequence of time intervals {tn}NL

n=0, (2.31) can be solved in a least-square sense
using the data collected when the fixed control policy u(0)(x) + eL(t) is applied to the system.
Then, two sequences {û(k+1)(x)}1k=0 and {V̂ (k)(x)}1k=0 can be generated. To guarantee the
convergence of the two sequences to u(k+1)(x) and V (k)(x) in (2.9) and (2.10), a PE condition
must be satisfied [65]. That is, the exploring noise eL(t) must be chosen so that there exist a N0

L

and a �PE > 0 such that for all NL � N0
L the following condition holds true

NLX

n=0

⇥(k)|
n ⇥(k)

n � �PEINV +NU
(2.32)

where INV +NU
is the identity matrix of dimension NV + NU . The row vector ⇥(k)

n 2 RNV +NV

is defined as

⇥(k)|
n =

2

666666664

�1(x(tn+1))� �1(x(tn))
...

�NV
(x(tn+1))� �NV

(x(tn))
2
R tn+1

tn
⇠|1(x)R(x)u(k)0(x)dt

...
2
R tn+1

tn
⇠|NU

(x)R(x)u(k)0(x)dt

3

777777775

(2.33)

Note that the PE condition requires the positive definiteness of the matrix
PNL

n=0⇥
(k)|
n ⇥(k)

n .

2.4.2 Convergence Analysis
The following theorem ensures the convergence of the two sequences {û(k+1)(x)}1k=0 and {V̂ (k)(x)}1k=0

to u(k+1)(x) and V (k)(x) in (2.9) and (2.10) when the number of neurons is sufficiency large
and the PE condition is satisfied.

Theorem 2 - Convergence of critic and actor weights [65]. When condition (2.32) is satis-
fied, for each k � 0 and for any given ✏ > 0 there exist N⇤

V > 0, N⇤
U > 0 such that

�����

NVX

l=1

!(k)
l �l(x)� V (k)(x)

����� < ✏ (2.34)

�����

NUX

l=1

✓(k)l ⇠l(x)� u(k+1)(x)

����� < ✏ (2.35)
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for all x 2 X if NV > N⇤
V and NU > N⇤

U .
Proof. The following proof, herein reported for completeness, is an extended version of the
proof presented in [65], where a less general utility function has been considered, i.e., ↵(x) = 0
in (2.3).

Given û(k)(x), let Ṽ (k)(x) be the solution of the following Lyapunov equation

rṼ (k)|(x)
�
f(x) + g(x)û(k)(x)

�
+ U(x, û(k)(x)) = 0, (2.36)

and let’s define ũ(k+1)(x) = �
1
2R

�1(x)
h
g|(x)rṼ (k)(x) + ↵(x)

i
. The first result to be proved

is that for each k � 0 and for all x 2 X, it results that

lim
NV ,NU!1

V̂ (k)(x) = Ṽ (k)(x)

lim
NV ,NU!1

û(k+1)(x) = ũ(k+1)(x),
(2.37)

when (2.31) is solved using the least square method. Note that (2.36) is the Lyapunov equation
in (2.9) when the actual estimate of the optimal control policy, i.e., û(k)(x) is plugged in.

By considering (2.36), the time derivative of Ṽ (k)(x) along the trajectories of (2.27) when
u(k)(x) is replaced by û(k)(x) is

˙̃V (k)(x) = rṼ (k)|(x)
⇣
f(x) + g(x)

⇣
û(k)(x) + û(k)0(x)

⌘⌘
=

= �U(x, û(k)(x)) + g|(x)rṼ (k)(x)û(k)0(x).
(2.38)

Therefore, by integrating both members of this last equation it follows that

Ṽ (k)(x(tn+1))� Ṽ (k)(x(tn)) =�

Z tn+1

tn

U(x, û(k)(x))dt

�

Z tn+1

tn

�
2ũ(k+1)|R(x) + ↵|(x)

�
û(k)0(x)dt.

(2.39)

By virtue of the Weierstrass higher order approximation theorem there exist some constant
weights !̃(k) and ✓̃(k) so that

Ṽ (k)(x) =
1X

l=1

!̃(k)
l �l(x) =

NVX

l=1

!̃(k)
l �l(x) +

1X

l=NV +1

!̃(k)
l �l(x)

ũ(k+1)(x) =
1X

l=1

✓̃(k)l ⇠l(x) =
NUX

l=1

✓̃(k)l ⇠l(x) +
1X

l=NV +1

✓̃(k)l ⇠l(x),

(2.40)

by substituting (2.20) into (2.39) the following expression is obtained
NVX

l=1

!̃(k)
l [�l(x(tn+1))� �l(x(tn))] +

1X

l=NV +1

!̃(k)
l [�l(x(tn+1))� �l(x(tn))] =

= �2

Z tn+1

tn

NUX

l=1

✓̃(k)l ⇠|l (x)R(x)û(k)0(x)dt� 2

Z tn+1

tn

1X

l=NU+1

✓̃(k)l ⇠|l (x)R(x)û(k)0(x)dt

�

Z tn+1

tn

Q(x)dt�

Z tn+1

tn

û(k)|(x)R(x)û(k)(x)dt� 2

Z tn+1

tn

↵|(x)
�
u0(x) + eL(t)

�
dt.

(2.41)
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Substituting the last three terms in (2.41) using (2.31) the following is derived

NVX

l=1

⇣
!̃(k)
l � !(k)

⌘
[�l(x(tn))� �l(x(tn+1))]

+ 2

Z tn+1

tn

NUX

l=1

⇣ ˜
✓(k)l � ✓(k)l

⌘
⇠|l (x)R(x)û(k)0(x)dt+ ✏̃(k)n = ✏(k)n ,

(2.42)

where ✏̃(k)n =
P1

l=NV +1 !̃
(k)
l [�l(x(tn+1))� �l(x(tn))]+2

R tn+1

tn

P1
l=NU+1 ✓̃

(k)
l ⇠|l (x)R(x)û(k)0(x)dt.

Now (2.42) can be rewritten as

✏(k)n = H(k)|⇥(k)|
n + ✏̃(k)n , (2.43)

where H(k)| =
⇣h

!̃(k)
1 · · · !̃(k)

NV
✓̃(k)1 · · · ✓̃(k)NU

i
�

h
!(k)
1 · · · !(k)

NV
✓(k)1 · · · ✓(k)NU

i⌘
and

⇥(k)
n is defined as in (2.33). The error ✏(k)n in (2.31) is minimized using a least square approach

on a sequence of time intervals {tn}NL

n=1, therefore it results that

NLX

n=1

✏(k)
2

n 

NLX

n=1

✏̃(k)
2

n . (2.44)

Note that by using (2.43) and the PE condition (2.32) the following holds true

NLX

n=1

�
✏(k)n � ✏̃(k)n

�2
= H(k)|

 
NLX

n=1

⇥(k)|
n ⇥(k)

n

!
H(k)

� �PE
��H(k)

��2 . (2.45)

Now using (2.44) the following expression is derived

��H(k)
��2  1

�PE

NLX

n=1

�
✏(k)n � ✏̃(k)n

�2
 2

NLX

n=1

�
1� ✏(k)n

�
✏̃(k)n . (2.46)

If NV , NU ! 1 then ✏̃(k)n ! 0 and
��H(k)

�� ! 0 from (2.46). Therefore, it can be concluded that
V̂ ! Ṽ and û ! ũ and, thus, (2.37) is proved.

As a consequence, it results also that given any ✏ > 0, two integers N0
V > 0 and N0

U > 0
can be found such that when NV > N0

V and NU > N0
U the following relations hold true

���V̂ (k)(x)� Ṽ k(x)
��� 

NVX

l=1

��!(k)
� !̃(k)

�� |�l(x)|+
1X

l=NV +1

��!̃(k)�l(x)
��  ✏,

��û(k+1)(x)� ũk+1(x)
�� 

NUX

l=1

���✓(k) � ✓̃(k)
��� |⇠l(x)|+

1X

l=NU+1

���✓̃(k)⇠l(x)
���  ✏.

(2.47)

Now Theorem 2 can be proved by induction, as follows.
(i) When k = 0, it results that û(0)(x) = u(0)(x) and from (2.36) that Ṽ (0)(x) = V (0)(x).

Therefore by means of (2.37) the convergence is proved.
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(ii) By assuming that the convergence is reached for k � 1 (induction assumption), i.e.,
limNV ,NU!1V̂ (k�1)(x) = V (k�1)(x) and limNV ,NU!1û(k)(x) = u(k)(x), the convergence has
to be proved for k. Let us consider the system’s trajectory in (2.27). Note that u(k)(x) +
u(k)0(x) = û(k)(x) + û(k)0(x) if û(k)0(x) = u(0)(x) + eL(t)� û(k)(x). Therefore it follows that

u(k)0(x) = û(k)(x) + û(k)0(x)� u(k)(x). (2.48)

By using this last equation, (2.28) can be rewritten as

V̇ (k)(x) = �U(x, u(k)(x))�
⇥
2u(k+1)|(x)R(x) + ↵|(x)

⇤
u(k)0(x)

= �Q(x)� u(k)|(x)R(x)u(k)(x)� 2u(k+1)|(x)R(x)
�
û(k)(x)� u(k)(x)

�

� 2u(k+1)|(x)R(x)û(k)0(x)� ↵|(x)
⇣
û(k)(x) + û(k)0(x)

⌘
,

(2.49)

and (2.38) can be rewritten as

˙̃V (k)(x) = �U(x, û(k)(x))�
⇥
2ũ(k+1)|(x)R(x) + ↵|(x)

⇤
û(k)0(x)

= �Q(x)� û(k)|(x)R(x)û(k)(x)� 2ũ(k+1)|(x)R(x)û(k)0(x)

� ↵|(x)
⇣
û(k)(x) + û(k)0(x)

⌘
.

(2.50)

Then, by considering that the state’s trajectory is derived from the same system, i.e., (2.26), it
results that

���V (k)(x)� Ṽ (k)(x)
��� 

����
Z 1

t

⇥
û(k)|(x)R(x)û(k)(x)� u(k)|(x)R(x)u(k)(x)

⇤
dt

����

+ 2

����
Z 1

t

u(k+1)|(x)R(x)
�
û(k)(x)� u(k)(x)

�
dt

����

+ 2

����
Z 1

t

⇥
ũ(k+1)|(x)� u(k+1)|(x)

⇤
R(x)û(k)0(x)dt

���� .

(2.51)

Note that for the induction assumption the first two terms on the right side of (2.51) tend to zero
when NV , NU ! 1. Also, the PE assumption ensures that limNV ,NU!1

��ũ(k+1)(x)� u(k+1)(x)
�� =

0. Therefore it can be concluded that

lim
NV ,NU!1

���V (k)(x)� Ṽ (k)(x)
��� = 0. (2.52)

However, to prove the convergence of V̂ (k)(x) to the solution of the (2.9), i.e., V (k)(x), note
that ���V̂ (k)(x)� V (k)(x)

��� 
���V (k)(x)� Ṽ (k)(x)

���+
���Ṽ (k)(x)� V̂ (k)(x)

��� . (2.53)

Therefore, by using (2.37) and (2.52) it follows that

lim
NV ,NU!1

���V̂ (k)(x)� V (k)(x)
��� = 0. (2.54)

It can be proved in a similar way that also limNV ,NU!1
��û(k+1)(x)� u(k+1)(x)

�� = 0, and, thus,
the proof of Theorem 2 is concluded.
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2.4.3 Implementation

The PI procedure in Algorithm 2.1 solves the HJB equation in an iterative way. Therefore, once
the convergence of V̂ (k) and û(k+1)(x) to V (k) and u(k+1)(x) has been ensured, an approximated
solution of the HJB equation can be found. Let’s consider the following quantities

��(tn+1) = �(x(tn+1))� �(x(tn)) 2 RNV ,

�(tn+1) =

Z tn+1

tn

⌅(x)R(x)⌅|(x)dt 2 RNU⇥NU ,

 (tn+1) =

Z tn+1

tn

⌅(x)R(x)
�
u(0)(x) + eL(t)

�
dt 2 RNU ,

QI(tn+1) =

Z tn+1

tn

Q(x)dt 2 R,

AI(tn+1) =

Z tn+1

tn

↵|(x)
�
u(0)(x) + eL(t)

�
dt 2 R.

(2.55)

The approximated IRL equation in (2.31) can be rewritten as

!(k)|��(tn+1) = �✓(k�1)|�(tn+1)✓
(k�1)

� 2✓(k)
| �
 (tn+1)� �(tn+1)✓

(k�1)
�

�QI(tn+1)� AI(tn+1).
(2.56)

The following algorithm implements the ADP PI procedure with off-policy learning, where the
unknown weights are found using the least-square approach.

Algorithm 2.2 shows the ADP with off-policy learning scheme. Once the convergence is
obtained, the probing noise is removed and the control policy switches to the approximated
optimal controller. Note that NNs approximate nonlinear functions only on compact sets and
not on the entire system’s state space. Therefore, the domain of attraction (DoA) of the re-
sulting closed-loop system with the newly learned control policy should be determined. The
approximated optimal policy is applied once the state’s trajectory goes inside the DoA. Several
methods can be used to estimate the DoA [65–68]. Nevertheless, by using an appropriate prob-
ing noise, the DoA can be made sufficiently large to include the state’s region practically used
by the system.

In general, the off-policy method benefits of an easier implementation with less computa-
tional requirements when compared with the on-policy procedure. Moreover, with an appro-
priate system representation and proper choice of the actor’s NN activating functions, the off-
policy method can be used as a tool to solve offline the HJB equation and then implement the
optimal policy using standard techniques, such as Proportional-Integral-Derivative (PID) con-
trollers. Finally, off-policy methods provide approximated optimal solutions when the system
dynamics is fully unknown.

25



CHAPTER 2. ADAPTIVE DYNAMIC PROGRAMMING ALGORITHMS

Actor

+

System

Data Collecting 
Phase

Iteration 
Phase

( )( )Tk xθ Ξ

(0) ( )u x

( )kθ

( )kω
( ) ( 1)k kω ω −− δ≤

( )Le t

Yes

No

x
xu

( ) ( )f x g x u+

Figure 2.4: ADP with off-policy learning scheme.

Algorithm 2.2 ADP PI Algorithm with off-policy learning

1. Initialization: Define the initial stable control policy, u(0)(x) = ✓(0)
|
⌅(x), the exploration

noise, eL(t), the initial weights, !(0), the number of learning time intervals NL, and a small
positive constant, �. Set k = 1.
2. Data Collecting Phase: Apply the input

�
u(0)(x) + eL(t)

�
to the system and record

��(tn), �(tn),  (tn), QI(tn), and AI(tn), for n = 1, ..., NL. Define the following matrices

X� =
⇥
��|(t1) · · ·��|(tNL

)
⇤|

2 RNL⇥NV

BQ = �
�⇥
QI(t1) · · ·QI(tNL

)
⇤
+
⇥
AI(t1) · · ·AI(tNL

)
⇤�|

2 RNL

(2.57)

3. Iteration Phase:
a. Data Evaluation: Evaluate the following matrices

X1 = 2

2

64
 |(t1)� ✓(k�1)|�|(t1)

...
 |(t1)� ✓(k�1)|�|(t1)

3

75 2 RNL⇥NU

B� = �
⇥
✓(k�1)|�(t1)✓(k�1)

· · · ✓(k�1)|�(tNL
)✓(k�1)

⇤|
2 RNL

(2.58)

b. Policy Improvement: Find !(k) and ✓(k) from the following least square problem

⇥
X� X1

⇤ !(k)

✓(k)

�
= BQ +B� (2.59)

4. Off-policy Iteration: If
����!(k)

� !(k�1)
���� � � set k = k+1 and repeat Step 3. Otherwise,

stop and return the approximated optimal value function and control policy, i.e., !(k) and ✓(k).
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2.5 Examples
The two following examples show how the ADP algorithm with both on-policy and off-policy
learning effectively solves the optimal control problem for linear and nonlinear systems.

2.5.1 Linear System
Let’s consider the following two-dimensional linear system

ẋ =


�1 �2
2 �4

�
x+


0
1

�
u, (2.60)

with the utility function defined as

U(x, u) = x|Qx+ u|Ru+ x|Nu, (2.61)

where Q =


4 0
0 3

�
, R = 2, and N =

⇥
1 2

⇤|.

The optimal controller is in the linear state-feedback form u⇤(x) = �K⇤x, where K⇤ is the
unknown optimal feedback matrix, while the optimal value function is in the form V ⇤(x) =
x|P ⇤x. By using the Riccati approach it results that

K⇤ =
⇥
0.2812 1.1357

⇤
,

P ⇤ =


1.0458 �0.4375
�0.4375 0.2713

�
.

(2.62)

The ADP with on-policy learning scheme depicted in Fig. 2.2 is applied to system (2.60).
The learning rate �V is set to 5, and the initial value of ! is

⇥
1 1 1

⇤|. A white probing noise
guarantees the PE condition. The critic NN activating functions vector and its gradient are

�(x) =
⇥
x2
1 x1x2 x2

2

⇤|
,

r�(x) =

2

4
2x1 0
x2 x1

0 2x2

3

5 ,
(2.63)

Figure 2.5 elaborates the results. The critic NN weights converge in about 70s, as in Fig.
2.5(b), to ! =

⇥
1.042 �0.871 0.273

⇤|, with a small error with respect to the optimal values
in (2.62). After 70s the probing noise is removed and the learned near-optimal policy is applied,
as in Fig. 2.5(a). The optimality of the learned solution can be quantified through the error on
the Hamiltonian, i.e., ✏H in (2.14).

As shown in Fig. 2.5(c), the Hamiltonian exhibits higher values when the critic weights
have not reached the convergence yet. Once the critic weights are close to the optimal ones,
the Hamiltonian tends to zero, i.e., the optimality is achieved. Figure 2.5(d) shows how the
PE condition in (2.23) is satisfied throughout the experiment, i.e., the eigenvalues of the matrixR t

0 �̄V (⌧)�̄V
|(⌧)d⌧ 2 R3⇥3 are always positive for any t 2 [0s, 70s]. Finally, Fig. 2.5(e)

and Fig. 2.5(f) depict the approximated optimal value function and its approximation error,
respectively.
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Figure 2.5: Results of the ADP with on-policy learning algorithm when applied to a linear
system: (a) States trajectory during the learning experiment; (b) Convergence of the critic NN
weights, !; (c) Error on the Hamiltonian, ✏H , throughout the experiment; (d) Eigenvalues of the
matrix in (2.23), i.e., the PE condition, during the experiment; (e) Approximated optimal value
function; (f) Approximation error for the value function.

The same optimal control problem is solved using the ADP with off-policy learning pro-
cedure in Algorithm 2.2. The optimal value function is approximated using the same �(x)
in (2.63), while the optimal control policy is approximated using the basis functions ⌅(x) =⇥
x1 x2

⇤|. Due to the open-loop stability of system (2.60), the initial control policy is set to
u0(x) = 0. The same white noise employed with the on-policy procedure is used as probing
input. The number of learning time intervals is NL = 1000, each of 0.1s.

Figure 2.6 shows the results of the off-policy algorithm. After performing the data col-
lecting phase, the actor and critic NN weights converge after 2 iterations, as in Fig. 2.6(a)
and Fig. 2.6(b), where 10 iterations are executed. The approximated optimal weights are
✓(10) =

⇥
�0.281 �1.136

⇤| for the actor, and !(10) =
⇥
1.046 �0.875 0.271

⇤| for the critic,
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Figure 2.6: Results of the ADP with off-policy learning algorithm when applied to a linear sys-
tem: (a) Convergence of the actor NN weights, ✓(k); (b) Convergence of the critic NN weights,
!(k); (c) Resulting Hamiltonian for the initial and obtained policy; (d) Eigenvalues of the matrix
in (2.32), i.e., the PE condition, during each iteration; (e) Approximated optimal value function;
(f) Approximation error for the value function.

with practically no error if compared with the optimal values in (2.62). The optimality of the
learned solution can be quantified through the Hamiltonian. As shown in Fig. 2.6(c), the Hamil-
tonian exhibits higher values when the initial controller, i.e., u(0)(x), is employed. The learned
approximated optimal policy, i.e., u(10)(x), makes the Hamiltonian equal to zero, i.e., the opti-
mality is achieved. Figure 2.6(d) shows how the PE condition in (2.32) is satisfied throughout
the experiment, i.e., the eigenvalues of the matrix 1

NL

PNL

n=0⇥
(k)|
n ⇥(k)

n 2 R5⇥5 are always posi-
tive for any iteration. Finally, Fig. 2.6(e) and Fig. 2.6(f) depict the approximated optimal value
function and the error with respect to the optimal one in (2.62), respectively.
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2.5.2 Nonlinear System
The two ADP algorithms deal also with nonlinear systems. Let’s consider the following non-
linear dynamics

ẋ =


�x1 + x2

�0.5x1 � 0.5x2 [1� (cos(2x1) + 2)]2

�
+


0

cos(2x1) + 2

�
u. (2.64)

The utility function is selected as

U(x, u) = x|Qx+ u|Ru, (2.65)

with Q =


1 0
0 1

�
and R = 1. For such system, the optimal value function is given in [29] as

V ⇤(x) =
1

2
x2
1 + x2

2. (2.66)

First, the ADP with on-policy learning algorithm is employed. The learning rate, the initial
value of !, and the probing noise are set as in the previous example. The critic NN activating
functions vector and its gradient are the same as in (2.63).

Figure 2.7 shows the results. As in the previous example, the critic NN weights converge in
about 70s, as depicted in Fig. 2.7(b), to ! =

⇥
0.49 0.02 0.98

⇤|, close to the optimal values in
(2.66). After 70s the probing noise is removed and the learned near-optimal policy is applied, as
in Fig. 2.7(a). The error on the Hamiltonian quantifies the optimality of the learned solution. In
fact, in Fig. 2.7(c), the Hamiltonian exhibits higher values when the critic weights are far from
converging. Once the critic weights are close to the optimal ones, the Hamiltonian tends to zero
and the optimality is reached. Figure 2.7(d) shows how the PE condition in (2.23) is satisfied
throughout the experiment, i.e., the eigenvalues of the matrix

R t

0 �̄V (⌧)�̄V
|(⌧)d⌧ 2 R3⇥3 are

always positive for any t 2 [0s, 70s]. Finally, Fig. 2.5(e) and Fig. 2.5(f) depict the approximated
optimal value function and the error with respect to the optimal one in (2.66), respectively.

The same optimal control problem is solved using the ADP with off-policy learning. Since
the utility function is quadratic, the same �(x) in (2.63) is chosen to approximate the optimal
value function. Due to the system’s nonlinearity, the optimal control input is expected to be
nonlinear, thus nonlinear polynomial terms are chosen to approximate the optimal control pol-
icy, i.e., ⌅(x) =

⇥
x1 x2 x2

1 x2
2 x1x2 x4

1 x4
2

⇤|. u0(x) = �x1 � 2x2 is used as the initial
stable feedback policy. The probing noise, the number and length of the learning time intervals
are set as in the previous example.

Figure 2.8 elaborates the results of the off-policy algorithm. After performing the data col-
lecting phase, the actor and critic NN weights converge in 6 iterations, as in Fig. 2.8(a) and
Fig. 2.8(b), where 10 iterations are executed. The optimal policy is approximated through the
weights ✓(10) =

⇥
�1.063 �3.235 1.677 0.204 1.250 �0.405 �0.013

⇤|, while !(10) =⇥
0.561 �0.025 1.015

⇤| approximates the optimal value function, with a small error if com-
pared with the optimal values in (2.66). The optimality of the learned solution can be quanti-
fied through the Hamiltonian. As shown in Fig. 2.8(c), the Hamiltonian exhibits higher val-
ues when the initial controller, i.e., u(0)(x), is employed. The learned approximated optimal
policy, i.e., u(10)(x), makes the Hamiltonian equal to zero. Figure 2.8(d) shows how the PE
condition in (2.32) is satisfied throughout the experiment, i.e., the eigenvalues of the matrix
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Figure 2.7: Results of the ADP with on-policy learning algorithm when applied to a nonlinear
system: (a) States trajectory during the learning experiment; (b) Convergence of the critic NN
weights, !; (c) Error on the Hamiltonian, ✏H , throughout the experiment; (d) Eigenvalues of the
matrix in (2.23), i.e., the PE condition, during the experiment; (e) Approximated optimal value
function; (f) Approximation error for the value function.

1
NL

PNL

n=0⇥
(k)|
n ⇥(k)

n 2 R10⇥10 are always positive for any iteration. Finally, Fig. 2.8(e) and Fig.
2.8(f) depict the approximated optimal value function and the error with respect to the optimal
one in (2.66), respectively. Note that the off-policy procedure does not assume the knowledge of
any system function. However, if g(x) is known (usually it can be easily identified), some of the
approximating functions in ⌅(x) can be inspired by g(x), improving the overall approximation
with a less computational expense.

The next section presents a more complex problem: the structured optimal control of sym-
metrically coupled linear systems. It is shown how the combination of traditional optimization
and ADP with off-policy learning provides an effective tool to solve such problems when the
dynamics is partially-unknown.
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weights, !(k); (c) Resulting Hamiltonian for the initial and obtained policy; (d) Eigenvalues
of the matrix in (2.32), i.e., the PE condition, during each iteration; (e) Approximated optimal
value function; (f) Approximation error for the value function.

2.6 Structured optimal control via ADP

2.6.1 Problem Statement
Let’s consider a set of N interconnected first-order systems, each described by the following
dynamics

ẋi = aixi +
NX

j=1

aijxj + biui i = 1, ..., N, (2.67)
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Figure 2.9: An interconnected system with cyber and physical layers.

where xi 2 R and ui 2 R are the state and the input of system i, respectively, while aij
represents the coupling gain between systems i and j. Let us assume symmetric couplings, i.e.,
aij = aji, 8i, j. The overall dynamics is given by

ẋ = Ax+Bu, (2.68)

where A = A|
2 RN⇥N , x = [x1 · · · xN ]

|
2 RN , u = [u1 · · · uN ]

|
2 RN , and B =

diag([b1 · · · bN ]) 2 RN⇥N . System (2.68) is assumed to be partially unknown, i.e., symmet-
ric matrix A is unknown while matrix B is available. Let the state x be fully accessible for
feedback purposes. No further assumptions are made on the open-loop stability.

Let L be the subspace embedding some structural constraints, i.e., some entries in specified
locations of every matrix K 2 L are zero. The goal is to find an LQR feedback controller of
the form

u = �Kx, K 2 L ⇢ RN⇥N , (2.69)

that minimizes a given performance function expressed as

J =

Z 1

0

(x|Qx+ u|Ru) dt, (2.70)

where Q = Q| is positive semi-definite and R = R| is positive definite. It is also assumed
that (

p
Q,A) is detectable and system (2.68) is stabilizable, i.e., there exists K 2 L such that

A� BK is a Hurwitz matrix.
As shown in Fig. 2.9, the physical layer of the N interconnected systems is defined ac-

cording to a weighted undirected graph with self loops, where A is the adjacency matrix. The
optimal K 2 L that minimizes (2.70) is structured according to a cyber layer over which com-
munication and control are carried out. This cyber configuration is represented by a directed
graph with the adjacency matrix AC 2 RN⇥N , where (AC)ij = 1 if ui depends on xj , i.e., (K)ij
is allowed to be nonzero, and the system j can send its state information to system i; Otherwise,
(AC)ij = 0. Once AC is defined, the subspace L can be easily expressed as

L =
�
M 2 RN⇥N

|M � (1N⇥N �AC) = 0N⇥N

 
, (2.71)

where � denotes the Hadamard product, and 1N⇥N ,0N⇥N are N ⇥ N matrices of 1 and 0,
respectively.

2.6.2 Necessary Conditions for Optimal Structured Feedback
Given any fixed feedback stabilizable controller K, and any initial state of system (2.68), x0,
the resulting cost (2.70) is given by J = x|

0Px0, where P = P |
� 0 is the solution of the
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following Lyapunov equation [6]

l = (A� BK)|P + P (A� BK) +Q+K|RK = 0. (2.72)

If the solution to (2.72) exists, and A � BK is Hurwitz, the cost J obtained by applying the
feedback controller u = �Kx can be computed without solving the closed-loop dynamics.
However, the dependency of the final cost on the initial state (i.e., J = x|

0Px0) makes the
objective function explicitly depend on x0, which may be unknown. To overcome this issue,
a common way [69] is to minimize the expected value of the performance index, denoted as
E{J}, as follows

E{J} = E{x|
0Px0} = Tr(PX0), (2.73)

where Tr(·) is the trace operator, and X0 = E{x|
0x0} is an N ⇥N symmetric matrix represent-

ing the initial auto-correlation of the initial state. X0 provides a description of the surface where
x0 is uniformly distributed, e.g., X0 is the identity matrix when the initial states are uniformly
distributed on a sphere with a unitary radius.

The structured feedback optimal control problem can now be defined as

minimize J = Tr(PX0)

s.t. A|
CP + PAC +Q+K|RK = 0

K 2 L

(2.74)

where AC = A � BK. The necessary conditions for the solution of (2.74) are derived by
using the Lagrange multiplier approach. Let us define the Hamiltonian H by adjoining the first
constraint to the objective function

H = Tr(PX0) + Tr(lS), (2.75)

where l is the Lyapunov equation (2.72), and S 2 RN⇥N is a symmetric matrix of Lagrange
multipliers to be determined. P , S, and K 2 L represent three unknown matrices. The first two
necessary conditions for optimality are easily derived as

@H

@S
= l = (A� BK)|P + P (A� BK) +Q+K|RK = 0, (2.76)

@H

@P
= (A� BK)S + S(A� BK)| +X0 = 0. (2.77)

As in [70, 71], the third necessary condition can be derived by defining the control matrix as
K = (KF � AC) 2 L, where KF 2 RN⇥N is an arbitrary free matrix. By defining the set
⌅ = {(i, j)|(AC)ij = 1}, the following equality holds

K = (KF �AC) =
X

(i,j)2⌅

⌦iKF⌦j, (2.78)

where ⌦k 2 RN⇥N is zero everywhere except for (⌦k)kk = 1. Optimizing with respect to
the free elements of K is now equivalent to optimizing with respect to KF . Thus, the third
necessary condition is derived as follow

@H

@KF
= 2

X

(i,j)2⌅

⌦i (RKS � B|PS)⌦j = 2 (RKS � B|PS) �AC = 0 (2.79)
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In summary, the three necessary conditions for optimality are given by the two Lyapunov equa-
tions (2.76) and (2.77), and by condition (2.79). To find the optimal K, these three coupled
equations need to be solved. Without the structured constraint, (2.74) results in the well-known
regular state-feedback LQR problem with fully centralized structure. In such case, the matrix S
is no longer required and the optimization problem is independent from the initial state.

2.6.3 Data-driven Solution of Lyapunov Equations
Inspired by the IRL approach in (2.31), the two Lyapunov equations (2.76), (2.77) can be solved
without the knowledge of the system matrix A. As in the ADP with off-policy learning proce-
dure, let us consider a control input u(0) = û(0)(x) + eL(t) composed by a feedback controller
û(0)(x) and an exogenous exploration noise eL(t). We assume that the resulting closed-loop
system given by (2.68) with u = u(0) is stable. For any fixed feedback matrix K, the following
relation holds

ẋ = Ax+Bu(0) = ACx+B(u(0) +Kx), (2.80)

The time-derivative of the term x|Px along the trajectories of (2.80) is

d

dt
(x|Px) = x|(A|

CP + PAC)x+ 2(u(0) +Kx)|B|Px

= �x| (Q+K|RK)| {z }
Q̃(K)

x+ 2(u(0) +Kx)|B|Px, (2.81)

where the Lyapunov equation (2.76) is used to replace the term x|(A|
cP+PAC)x with �x|(Q+

K|RK)x. In this way, (2.81) no longer depends on the unknown matrix A, and can be solved
by using collected measurements along the trajectories of (2.80) once matrices K and B are
given.

Integrating both sides of (2.81) over the time interval [tn, tn+1] leads to

x|(tn+1)Px(tn+1)� x|(tn)Px(tn) = �

Z tn+1

tn

x|Q̃(K)xdt+ 2

Z tn+1

tn

(u(0) +Kx)|B|Pxdt.

(2.82)
By employing the properties of the vector operator and Kronecker product [72] it results that

x|Px = (x|
⌦ x|)vec(P ),

x|Q̃(K)x = (x|
⌦ x|)vec(Q̃(K)),

(u(0) +Kx)|B|Px = (x|
⌦ (u(0)|B|))vec(P ) + (x|

⌦ x|)(IN ⌦ (K|B|))vec(P ),

(2.83)

where vec(·) is the vector operator, ⌦ denotes the Kronecker product, and IN is the N ⇥ N
identity matrix. Furthermore, we define the following matrices

��(n) = (x|
⌦ x|)|tntn�1

2 RN2

�(n) =

Z tn

tn�1

(x|
⌦ x|)dt 2 RN2

�(n) =

Z tn

tn�1

(x|
⌦ (u(0)|B|))dt 2 RN2

.

(2.84)
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Considering (2.83), (2.82) can be rewritten as follows

[��(n)� 2�(n)� 2�(n)(IN ⌦ (K|B|))]vec(P ) = ��(n)vec(Q̃(K)). (2.85)

By evaluating (2.85) on an increasing series of time intervals {tn}
NL

n=1, where NL > 0 is a
sufficiently large integer, the following relation is obtained

�P (K)vec(P ) = ��vec(Q̃(K)), (2.86)

in which �P (K) is defined as

�P (K) = �� � 2⇤� 2�(IN ⌦ (K|B|)), (2.87)

where

�� = [��(1)
|
· · · ��(NL)

|]| 2 RNL⇥N2

⇤ = [�(1)| · · ·�(NL)
|]| 2 RNL⇥N2

� = [�(1)| · · · �(NL)
|]| 2 RNL⇥N2

.

(2.88)

In order to solve for the unique P in (2.86),�P (K) has to be a full-rank matrix, i.e., rank(�P (K)) =
N2. To this end, the exploration noise eL(t) plays a crucial role since its right choice will affect
the rank condition.

Equation (2.86) finds P once the collected data and matrix K are given. One could solve
(2.77) with a similar approach by using the same collected data. Given the symmetry of A, it
can be easily verified that the time-derivative of x|Sx along the trajectories of (2.80) is

d

dt
(x|Sx) = �x|X0x+ 2(u(0)B| + x|BK)Sx, (2.89)

where (2.77) makes the derivative independent of the knowledge of A. By integrating both
members in (2.89) and using the Kronecker product properties, it holds that

[��(n)� 2�(n)� 2�(n)(IN ⌦ (BK))]vec(S) = ��(n)vec(X0), (2.90)

where the terms in the left member are defined as in (2.84). Note that (2.90) shares the same
structure of (2.85), except for the term (IN ⌦ (BK)) used in the place of (IN ⌦ (K|B|)).
Therefore, the following relationship holds true

�S(K)vec(S) = ��vec(X0), (2.91)

where �S(K) is defined as

�S(K) = �� � 2⇤� 2�(IN ⌦ (BK)), (2.92)

with the same definition of��,⇤, and � as in (2.88). As before, the rank condition rank(�S(K)) =
N2 needs to be verified. Equations (2.86) and (2.91) provide a data-driven solution for the two
Lyapunov equations (2.76) and (2.77), respectively.

Note that the proposed method does not require a data collecting phase for each Lyapunov
equation to be solved. In fact, as in Algorithm 2.2, the same collected data is used to find the
solution of (2.76) or (2.77), i.e., matrices P and S, respectively, according to a fixed matrix K
defined a priori. The only requirement is the knowledge of system matrix B.
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2.6.4 Proposed Algorithm

Several iterative approaches have been presented to optimize the problem (2.74) [70, 71]. The
algorithm proposed herein integrates the data-based solution of the two Lyapunov equations
with existing optimization approaches. In particular, the standard gradient descent algorithm is
used. Starting from an initial stable controller K0 2 L, a sequence {K(k)

2 L} of controllers
is obtained. For each pair of consecutive solutions K(k) and K(k+1), it is verified that J (k+1)



J (k) where J (j) is the cost associated with K(j), 8j 2 N. The sequence is generated by the
following

K(k+1) = K(k)
� ↵(k)

rJ (k)(K(k)), (2.93)

where ↵(k) and rJ (k)(K(k)) represent the step size and the gain update direction during the
kth iteration, respectively. The step size is determined according to the standard backtracking
line search method, in which ↵(k) is decreased until the closed-loop system is stable and the
objective function decreases. To determine the descent direction rJ (k)(K(k)), note that if P (k)

is the solution of (2.76) when K = K(k), then l = 0. This implies that J (k) = H
(k), thus

@J (k)/@K(k) = @H(k)/@K(k), where H
(k) is the Hamiltonian at the kth iteration. Therefore,

(2.79) gives the update direction, that is

rJ (k)(K(k)) = 2(RK(k)S(k)
� B|P (k)S(k)) �AC , (2.94)

where S(k) is the solutions of (2.77) when K = K(k). In summary, given K(k), the update
direction is obtained by (2.94) once the two Lyapunov equations are solved. Algorithm 2.3
implements the data-based Lyapunov equation solution with the search algorithm. Note that
parameter � < 1 is employed in the backtracking line search to decrease the step size ↵(k)

during the kth iteration.
If matrix B is also unknown, a preliminary Value Iteration algorithm [73] can be employed

to deal with fully unknown systems. After a preliminary data collection phase, such approach
provides a fully-connected feedback matrix Kf , and the solution of the associated Lyapunov
equation Pf . No assumptions are made on the stability of the system during the training phase.
Once matrices Kf , Pf , and R are known, one can find B as B = (RKfP

�1
f )|. Note that the

obtained matrix Kf can be used to define the initial stabilizing controller û(0)(x) in Algorithm
1. Finally, Kf can find an initial K(0)

2 L, e.g., K(0) = Kf �AC , once the closed loop stability
is checked through the positive definiteness of the corresponding matrix P (0).

2.6.5 Application Example

The proposed algorithm can be used to find optimal structured feedback controllers for any
system in form of (2.68) with A = A|. In this section, the algorithm performance are evaluated
on a numerical example. The case study consists of a multi tank system composed by the
interconnection of N identical tanks, as shown in Fig. 2.10. For each tank, let Vi be the volume
of the incompressible liquid, qini the amount of inflow liquid, and qouti the amount of outflow
liquid. Thus, the following holds
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Algorithm 2.3 Data-based algorithm to solve the structured optimal control problem
Inputs: Initial stabilizing and exploring control policy u(0) = û(0)(x) + eL(t); System matrix
B; Initial auto-correlation X0; Desired feedback structure AC ; Performance index parameters
Q, R; Any initial stable controller K(0)

2 L; Sequence of learning intervals {tn}NL

n=1; Stopping
threshold "; Parameter � < 1.
Outputs: Optimal feedback matrix K⇤

2 L;
1. Data Collecting Phase

Apply u(0) at system (2.68) and collect matrices ��, ⇤, �.
2. Initialization

Determine matrices �P (K(0)) and �S(K(0)); Obtain P (0) and S(0) from (2.86) and (2.91);
Set k = 0.

3. Cost and Direction Computation
Evaluate cost J (k) = Tr(P (k)X0) and direction rJ (k)(K(k)) as in (2.94); Set ↵(k) = 1.

4. Backtracking Line Search
a. Evaluate K(k+1) as in (2.93) and determine matrices �P (K(k+1)) and �S(K(k+1)).
b. if �P (K(k+1)) and �S(K(k+1)) are not full-rank, set ↵(k) = �↵(k) and go to Step 4a;
Otherwise, go to Step 4c.
c. Obtain P (k+1) and S(k+1) from (2.86) and (2.91); Evaluate new cost J (k+1) =
tr(P (k+1)X0).
d. if P (k+1) > 0 and J (k+1)

 J (k), go to Step 5; Otherwise, set ↵(k) = �↵(k) and go to
Step 4a.

5. Stopping Criterion
if |J (k+1)

� J (k)
|  ", stop and return K⇤ = K(k+1); Otherwise, set k = k + 1 and go to

Step 3.

qini � qouti = V̇i = atḣi, i = 1, ..., N (2.95)

where at is the base area of each tank, and hi is the level of liquid. The inflows qini represent
external inputs, while the outflows qouti can be expressed via the Torricelli law

qouti = kii
p

2g|hi|+
X

j2Ni

kijsign(hi � hj)
q

2g|hi � hj|, (2.96)

where Ni is the set of indices j such that tank i and tank j are connected, while sign(·) denotes
the sign function. Coefficients kii and kij are constant values that depend on the parameters
of corresponding pipes (e.g., orifice area, discharge coefficient). Clearly, kij = kji, 8i and
8j 2 Ni.

The control objective is to maintain each tank level to a specified value h⇤
i > 0. By solving

(2.95) for each i at the steady state, the corresponding target inflows qin
⇤

i , 8i = 1, ..., N , are
found. It can be shown [74] that linearizing system (2.95) around the target equilibrium point
gives

ẋi = � (ai +
X

j2Ni

aij)

| {z }
aii

xi +
X

j2Ni

aijxj + ui, (2.97)
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Figure 2.10: Interconnected tanks system.

where xi = hi�h⇤
i represents the fluid level errors, with ai =

kii
p
2g

2at
p

|h⇤
i
|
and aij =

kijsign2(h⇤
i
�h⇤

j
)
p
2g

2at
p

|h⇤
i
�h⇤

j
|

,

and ui = qin
i

�qin
⇤

i

at
are the control inputs. Clearly, the overall system is in form (2.68) with

A = A| and B = IN . As in Fig. 2.10, each tank is equipped with a communication module
that implements distributed control policies. Due to spatial constraints, a structured optimal
feedback is preferred (e.g., only tanks in physical proximity can communicate).

Consider a system with N = 6 interconnected tanks, described by the following state matrix

A =

2

6666664

�6.4 1.1 0 2.1 1.5 1.3
1.1 �7.2 1.7 3 0 1.2
0 1.7 �4.4 0 2.5 0
2.1 3 0 �5.7 0 0
1.5 0 2.5 0 �6.5 2.2
1.3 1.2 0 0 2.2 �4.9

3

7777775
. (2.98)

Note that (2.98) is Hurwitz. The corresponding physical graph is reported in Fig. 2.11(a). Algo-
rithm 2.3 finds the solution of the structured feedback with respect to four different structures,
i.e., AC1 , AC2 , AC3 , and AC4 depicted in Fig. 2.11(b), Fig. 2.11(c), Fig. 2.11(d), and Fig.
2.11(e), respectively. Structure AC1 implements a fully decentralized controller, i.e., no com-
munication is needed. AC2 considers the tanks 1,2, and 6 not accessible for control purposes.
In AC3 only nearby tanks are allowed to communicate, i.e., tanks 2,3, and 5, are not in the phys-
ically vicinity of tanks 1,4, and 6. Finally, AC4 consider a fault in the level sensor of tank 1,
i.e., its control does not depend on its own state but depends on the level errors of nearby tanks
2,4, and 6. The performance matrices are selected as Q = 10IN and R = IN . For simplicity,
X0 = IN . Within the data collecting phase, a sequence of NL = 100 time intervals of 0.01 s is
used. The open-loop stability of A allows us to use û(0) = 0 as a stabilizing controller; There-
fore, u(0) = eL(t). The learning noise eL(t) is given by 6 filtered white noises. Parameters �
and " are set to 0.5 and 10�6, respectively.

Once the data collecting phase is completed, the open-loop cost is found by solving (2.86)
with K = 06⇥6, providing the value of J (0) = 20.34. A preliminary value-iteration phase
finds the optimal fully connected feedback matrix Kf , and the corresponding matrix Pf . The
resulting fully-connected optimal cost is Jf = Tr(PfX0) = 6.77. Four different design based
on Algorithm 2.3 are obtained, one for each communication graph in Fig. 2.11. The initial
controller is obtained by truncating Kf according to the considered structure. Stability of initial

39



CHAPTER 2. ADAPTIVE DYNAMIC PROGRAMMING ALGORITHMS

1

2

4 6

53

1

2

4 6

53

1

2

4 6

53

1

2

4 6

53

1

2

4 6

53

(a)

(b) (c)

(d) (e)

Figure 2.11: Considered graph structures: (a) Physical interconnection graph; (b) AC1 ; (c) AC2;
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Figure 2.12: Closed-loop eigenvalues for each communication structure: (a) AC1; (b) AC2 ; (c)
AC3 ; and (d) AC4 .

Table 2.1: Performance comparison

Structure J 0 J variation
AC1 8.56 7.33 -6.78%
AC2 9.32 8.49 -8.94%
AC3 7.19 7.03 -2.22%
AC4 7.62 7.25 -4.75%

controllers is verified by the positive definiteness of the corresponding P matrices found by
solving (2.86). The optimal costs computed for each configuration are reported in Table 2.1,
where column J refers to the feedback gain obtained via Algorithm 2.3, and column J 0 refers
to the truncated optimal matrix Kf . In all configurations, the proposed approach outperforms
the cost corresponding to truncated matrices. Finally, the eigenvalues of the closed-loop system
obtained with both methods are shown in Fig. 2.12, for each communication graph. Note how
the proposed method always leads to a faster dominant eigenvalue.
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The results presented in Section 2.6 have been published by the author in [75].

41



Chapter 3

Energy Optimal Control of Dielectric
Elastomer Actuators

A first application of the Adaptive Dynamic Programming (ADP) for the control of complex
nonlinear systems is developed in this chapter, where the closed loop optimal control of mecha-
tronic devices based on dielectric elastomer membranes is considered. The goal is to minimize
the input electrical energy required to achieve a given position regulation task, i.e., an energy
optimal position control scheme for such actuators is developed. The actuator’s model is based
on a free-energy framework, which provides a thermodynamically consistent characterization
of the losses occurring during actuation. Due to the strongly nonlinear behavior of both sys-
tem model and dissipation function, traditional techniques based on analytical solution of the
Hamilton-Jacobi-Bellman (HJB) equation cannot be applied. Therefore, the ADP algorithm
with off-policy learning in Chapter 2 is employed as a tool to solve offline the HJB equation
related to the energy minimization problem. After discussing the theory, experimental results
are presented to validate the effectiveness of the proposed approach.

3.1 Overview and Objectives

3.1.1 Dielectric Elastomer Actuators
Dielectric elastomers (DEs) are an attractive class of mechatronic transducers which has re-
ceived a significant interest over the last two decades [76]. A DE membrane consists of an
elastic polymeric film coated on both sides with compliant electrodes. The resulting structure is
a flexible capacitor which can be used as an actuator, by converting an applied voltage into mo-
tion, as well as a sensor, since capacitance changes can be related to the membrane geometry.
Other interesting DE features include high energy density (0.4 J/g), large deformation ranges
(> 100%), high compliance (Young’s modulus between 0.1 and 10 MPa), and self-sensing ca-
pabilities which allow to implement closed-loop controllers without the need of displacement
sensors [51, 77]. Grippers [78, 79], wave energy harvesters [80], pumps [81, 82], valves [83],
prostheses [84], micro-positioning systems [85], and bio-inspired robots [86,87] represent only
some of the many DE-based devices presented in the recent literature.

Strong nonlinear behavior, sensitivity to environmental conditions, and high voltage require-
ments (order of kV ) currently represent the major limitations for DE actuators (DEAs) in indus-
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trial applications. The strong nonlinearities due to the physical behavior of a DE membrane mo-
tivates the need for developing advanced modeling and control techniques [88]. In fact, a num-
ber of research works dealing with dynamical modeling and analysis of the underlying physical
phenomena have been published over recent years [89–91]. In addition, most of the recent
control-related literature focuses on the position control of DEAs with several techniques, such
as sliding-mode control [52], feed-forward [92], adaptive gain-scheduling [93], Proportional-
Integral-Derivative (PID) based controllers [94], cerebellar-inspired controllers [95, 96], and
robust linear control based on linear matrix inequalities [50]. Other recent approaches include
compensation methods used to remove the nonlinearities of the DEA, such as inverse viscoelas-
tic hysteresis compensations [97, 98], and PID controllers combined with an identified inverse
model of the DEA [99].

3.1.2 Objectives and Procedure
The goal of this chapter is to develop a novel minimum energy control strategy for DEAs. Note
that despite several types of controllers have been presented for DEA systems, the development
of energy efficient control approaches has not received attention from the research commu-
nity so far. In [100], the authors proposed an energetically-consistent DEA model based on
the port-Hamiltonian framework. Since such model is structurally passive, it allows to consis-
tently quantify the amount of energy dissipated in each part of the system, i.e., due to electrical
(Joule effect) and mechanical (viscoelasticity) losses. Therefore, in order to enhance the energy-
efficiency capabilities of DEA devices during a positioning task, an optimal feedback control
strategy can be employed to minimize these losses, by formulating the energy-minimization
objective as an optimal control problem. However, due to the strongly nonlinear behavior of the
DEAs, the solution of the HJB equation is intractable. Thus, an ADP approach is employed.

The proposed approach can be summarized as follows. First, an energy consistent model of
the system is discussed. Such model effectively describes the losses that occur in the actuator.
Then, an identification procedure characterizes and validates such model. The energy losses
function is then used as utility function for an optimal control problem, which is solved by
means of an ADP algorithm with off-policy learning. The ADP approach is used as a tool to
solve offline the HJB equation, and derive energy-efficient control laws for a given set of target
displacement values. Finally, experimental tests show the effectiveness of the proposed method.

Main features and contributions of this work are summarized as follows.

• A general and accurate description of both DEA model and energy losses, by considering
a finite value of the elastomer leakage resistance, is provided. In this way, the presented
approach is valid for the more realistic class of DEAs in which the energy losses depend
also on the leakage resistance;

• The first experimental validation of a DEA energy consistent model is presented. It is
shown how the developed passive model properly predicts the coupled electro-mechanical
response of the DEA and, thus, is well-suited for the design of energy efficient controllers;

• The optimal energy controller is experimentally validated, highlighting substantial im-
provements in terms of energy saving when compared with other traditional position con-
trol techniques, such as PID or feed-forward controllers;
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DE Membrane

Circular Plate

High Voltage Connections

Outer Frame

Figure 3.1: Picture of the DE actuator considered in this work.

• A robustness analysis aimed at evaluating the sensitivity of the closed loop performances
with respect to changes in constitutive DE parameters is developed.

3.1.3 Chapter’s Outline
This chapter is organized as follows. Section 3.2 provides the DEA physical model, by dis-
cussing the model development and analyzing the passivity of such model. The results of the
experimental identification procedure are reported in Section 3.3. The energy optimal control
problem is formulated and solved via ADP in Section 3.4. Section 3.5 presents the experimental
results along with the robustness analysis for varying parameters. Finally, concluding remarks
are reported in Section 3.6.

3.2 Dynamic Model of the DEA
The DEA considered in this work is shown in Fig. 3.1. A schematic representation of the overall
system is given in Fig. 3.2(a) and (b) for both unactuated and actuated conditions, respectively.
It consists of ring-shaped, pre-stretched silicone membranes placed in between an outer frame
and an inner circular plate, both made of rigid plastic. The membrane actuator is made of
several silicone layers, mechanically connected in parallel. Each polymeric layer is sandwiched
between two carbon-based compliant electrodes, connected to two high-voltage connectors.

When a voltage is applied to the electrodes, the resulting deformable capacitor is subject
to a pressure known as Maxwell Stress that squeezes the material along the thickness direction
[101]. The consequent area expansion results in an actuation. The amount of stroke depends
on the type of mechanical biasing system connected to the membrane. As shown in Fig. 3.2,
the biasing system considered in this work is made of a linear spring and a nonlinear bi-stable
buckled beam coupled with the membrane through a rigid spacer. This solution permits to
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Figure 3.2: Actuating configurations: (a) Unactuated; (b) Actuated.

significantly magnify the stroke compared to simple linear springs, at the expense of increasing
the actuator nonlinearity [94].

In this section, a dynamic model of the considered actuator is first provided. The constitutive
differential equations are based on the work previously presented in [50,94,100]. The energetic
consistency of such model is analyzed, and the energy minimization problem is subsequently
expressed in terms of an optimal control problem.

3.2.1 Model Development
A state-space representation of the actuator model is developed in this section. The control
input of the actuator is the applied voltage v, while the states are chosen as the out-of-plane
displacement y, the circular plate momentum p in the out-of-plane direction, the M internal
states of the material viscoelastic dynamics "kj , j = 1, ...,M , and the electric charge stored on
the electrodes q. The complete state vector is defined as

z = [y p "k1 · · · "kM q]| . (3.1)

Let m be the mass of the circular plate. By definition it results that

ẏ =
p

m
. (3.2)

The time derivative of the momentum p is given by the summation of the applied forces, that is

ṗ = �mg � FLS(y)� FBB(y)�NlFDE(z), (3.3)

where g is the gravitational acceleration, Nl is the number of DE layers, while FLS(z), FBB(y)
and FDE(y) represent the forces produced by the linear spring, the buckled-beam, and the single
DE layer, respectively.

The forces provided by the linear spring and buckled-beam are given as follows

FLS(y) = �kbl(y � y0l),

FBB(y) = kbn1(y � y0n)� kbn7(y � y0n)
7.

(3.4)
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Coefficients kbl and y0l represent the stiffness and the initial displacement of the linear spring,
respectively. The buckled-beam, modeled as a bi-stable nonlinear spring, is defined by stiffness
coefficients kbn1 and kbn7 and initial displacement y0n.

The DE layer force FDE(z) can be expressed as a function of the DE Helmholtz free-energy
 (z), i.e.,

FDE(z) =
@ (z)

@"1(y)

d"1(y)

dy
+

MX

j=1

@ (z)

@"kj

d"1(y)

dy
+

⌘v0VDE

"1(y) + 1

✓
d"1(y)

dy

◆2 p

m
, (3.5)

where

"1(y) =

s

1 +

✓
y

l0

◆2

� 1 (3.6)

represents the radial strain of the membrane with respect to the undeformed radial length l0.
The volume of each layer is defined as VDE = ⇡ (2r + l0) l0h0, with r and h0 representing the
radius of the inner circular plate and the thickness of the undeformed and unactuated membrane
(flat configuration). Due to incompressibility of the elastomer, VDE remains constant during
actuation. The Helmholtz free-energy for a single DE membrane is defined as follows

 (z) = VDE

NOX

i=1

⇢
�i

↵i
[(1 + "1(y))

↵i
� 1] +

�i
↵i

⇥
(1 + "1(y))

�↵i
� 1

⇤�
+

1

2C(y)
q2

+ VDE

MX

j=1

kvj


"kj � aj(y, "kj) log

✓
"1(y) + 1

"1(y)� "kj + 1

◆� (3.7)

with aj(y, "kj) = "1(y)�"kj+1, j = 1, . . . ,M . Function (z) is always non-negative for every
admissible operating state of the actuator, and vanishes to zero for z = 0. The first term in (3.7)
represents the hyperelastic energy contribution due to material deformation, described via a
modified Ogden model of order NO with coefficients ↵i, �i, and �i, i = 1, . . . , NO. The second
term in (3.7) describes the electrostatic energy stored in the flexible capacitor. The capacitance
C(y) can be expressed as a function of displacement via the well-known parallel-plate capacitor
formula, which results into

C(y) = ✏0✏r
VDE

h2
0

(1 + "1(y))
2 , (3.8)

where ✏0 and ✏r represent vacuum and material relative permittivity, respectively. The third and
final term represents an additional energy storage contribution due to viscoelastic relaxation.
In particular, the internal viscoelasticity of the material is modeled as a parallel connection
of a damper with damping coefficient ⌘v0 and M serial spring-damper systems, each one of
them characterized by spring stiffness kvj and damping ⌘vj . In this way, each state "kj and the
corresponding j � th term in the last summation appearing in (3.7) can be interpreted as the
strain and the energy stored in the viscoelastic spring kvj , respectively (see [100] for details).
The viscoelastic internal states are related to the parameters kvj and ⌘vj as in the following

"̇kj = �
kvj
⌘vj

"kj +
d"1(y)

dy

p

m
, j = 1, . . . ,M. (3.9)
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Figure 3.3: Equivalent electro-mechanical scheme representing the overall actuator model.

By plugging (3.6) and (3.7) into (3.5), the complete expression of the DE force is derived

FDE(z) = �VDE
y

l20 + y2
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(3.10)

with F v
DE(z), F e

DE(z), and F h
DE(z) representing the contributions due to the viscoelasticity

of the material, the electro-mechanical coupling, and the hyperelasticity of the material, re-
spectively. For the ease of presentation, a conceptual sketch containing an equivalent electro-
mechanical model representing the overall actuator system is depicted in Fig. 3.3. It is remarked
how the depicted diagram represents only a conceptual equivalence, since most of the actuator
nonlinearities and coordinate transformation are not included.

Finally, the electrical dynamics is modeled as in [100], where an equivalent nonlinear RC
circuit is constructed by connecting a capacitive element (representing the DE) to both a serial
and a parallel resistor, as in Fig. 3.3. A model for the equivalent RC circuit is given in the
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following expression

q̇ = �

✓
1

ReC(y)
+

1

Rl(y)C(y)

◆
q +

1

Re
v,

i = �
Nl

ReC(y)
q +

Nl

Re
v.

(3.11)

In (3.11), Re is the equivalent electrode resistance of each membrane, and Rl(y) represents the
leakage resistance of the variable capacitor, i.e.,

Rl(y) = ⇢
h2
0

VDE
(1 + "1(y))

�2 , (3.12)

with ⇢ describing the resistivity of the dielectric. The total current flowing in the stacked mem-
branes is represented by i.

By collecting equations (3.2), (3.3), (3.9), and (3.11), the nonlinear state-space model of the
DEA can be defined as follows

ż = f(z) + Bv, (3.13)

where B = [0 0 ... 1/Re]|, and f(z) is expressed as

f(z) =
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666666664
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where FDE(z) is as in (3.10), C(y) as in (3.8), and Rl(y) as in (3.12).

3.2.2 Passivity Analysis
Let be  b(y, p) the total energy associated with the biasing system, given by the sum of the
potential and kinetic energies of the mass m, linear spring, and buckled-beam, i.e.,

 b(y, p) = mgy +
1

2m
p2 +

1

2
kbl(y � y0l)

2
�

1

2
kbn1(y � y0n)

2 +
1

8
kbn7(y � y0n)

8. (3.15)

The total energy of the actuator system  a(z) can then be computed as the sum between the
total Helmholtz free-energy related to all the stacked membranes and the mechanical energy of
the biasing system, as follows

 a(z) = Nl (z) + b(y, p). (3.16)

The derivative with respect to the time of  a(z) is

 ̇a(z) =
@ a(z)

@y
ẏ +

@ a(z)

@p
ṗ+

@ a(z)

@q
q̇ +

MX

j=1

@ a(z)

@"kj
"̇kj. (3.17)
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By developing the partial derivatives and replacing the time derivatives of the state as in (3.13),
it follows that

 ̇a(z) = vi� s(z, u), (3.18)

where
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(3.19)

Note the explicit dependency of s(z, v) on input voltage v, due to the dependency of the current i
on v. As proven in [100], each term appearing in the summation in (3.19) is always non-negative
in the useful operating range of the actuator, and vanishes to zero if "kj = 0. Therefore, it can
be concluded that function s(z, v) is always non-negative and vanishes in the equilibrium for
v = 0. This result implies that

 ̇a(z)  vi (3.20)

holds true for every admissible trajectory of (3.13). Hence, system (3.13) is passive with re-
spect to storage function  a(z), supply rate vi, and dissipation function s(z, v) [102]. Clearly,
storage function  a(z) and supply rate vi can be interpreted as the total electro-mechanical
energy stored in the system and the input electric power supplied to the actuator, respectively.
Consequently, the dissipation function in (3.19) can be naturally interpreted as the total energy
loss due to the dissipative nature of the DE. In particular, the first two terms on the right-hand
side of (3.19) describe the Ohmic losses in the electrode and leakage resistances, respectively
(resistive elements in Fig. 3.3). The third and fourth terms, instead, describe the mechanical
losses due to the viscoelasticity of the material (damping elements in Fig. 3.3). By integrating
both sides of (3.18) over an arbitrary time interval [t0, t1] and rearranging the terms it results
that

 a(z(t1))� a(z(t0)) +

Z t1

t0

s(z, v)dt =

Z t1

t0

vidt. (3.21)

This last relationship permits to express the energy supplied over any time interval as the sum
between the change in energy between initial and final state and the (non-negative) energy loss
due to internal dissipation. Since  a(z) is a state function, the change in energy is uniquely
determined once a positioning task is given in terms of initial (z(t0)) and final (z(t1)) states.
Conversely, energy supply and energy dissipation explicitly depend on the trajectory taken by
the system between t0 and t1. Therefore, the minimization of the input energy required to drive
the actuator between two given equilibrium states can be equivalently stated as the minimization
of the energy dissipated during the process.

3.3 Parameter Identification
The sketch of the experimental bench used to test and validate the developed model is shown in
Fig. 3.4. Data acquisition, signal processing, and control routines are implemented on a STM32
Nucleo-144 board, operating at a sampling rate of 1 ms. Displacement values y are acquired
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Figure 3.4: Sketch of the experimental test bench.

Table 3.1: Known DEA Parameters

Symbol Unit Value Symbol Unit Value

Nl 4 m g 5

r mm 10 kbl N/mm 1.2

l0 mm 12.5 kbn1 N/mm 1.36

h0 µm 51 kbn7 N/mm 4 · 1015

g m/s2 9.81 y0l mm 9.69

✏0 F/m 8.85 · 10�12 y0n mm 7.58

through a Keyence LK-G157 laser sensor (0.15 µm of resolution), while current values i are
acquired through a current sensor (range of ± 2 mA). The microcontroller provides the input
voltage v, translated from (0-3.3) V to (0-10) V by an appropriate conditioning circuit that
drives a TREK 610E voltage amplifier connected to the DEA. Maximum current and voltage
limits are set to 3 kV and 2 mA, respectively, compatibly with DE breakdown voltage and
hardware limitations.

Some DEA parameters are known in advance, as reported in Table 3.1. Moreover, the ac-
tuator displacement y can range from ymin = 6.37 mm to ymax = 7.89 mm. An experimental
identification is required for the remaining unknown parameters, i.e., order of viscoelastic dy-
namics M and its parameters ⌘v0, ⌘vj , and kvj , with j = 1, . . . ,M ; order of Ogden model NO

and its parameters ↵i, �i, and �i, with i = 1, . . . , NO; material relative permittivity ✏r; series
resistance Re; dielectric resistivity ⇢. Based on earlier works, as well as to limit the compu-
tational requirements of the identification algorithm, some parameters are set a priori, namely
order of the internal viscoelastic model M = 1, order of the Ogden model NO = 3, and Ogden
coefficients ↵1 = 2, ↵2 = 4, and ↵3 = 6. The value M = 1 is motivated by the fact that higher
values of this parameter do not lead to substantial improvements in the FIT values, and have
the only effect of increasing the model complexity. This fact is observed by means of numeri-
cal studies which are not shown here for conciseness. However, the generalized approach here
presented is still valid when higher values of M are considered. Higher values of M could be
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Table 3.2: Identified DEA Parameters

Symbol Unit Value Symbol Unit Value

kv1 kPa 315.5 �1 MPa 53.69

⌘v1 kPa·s 82.31 �2 MPa �57.32

⌘v0 kPa·s 74.53 �3 MPa 19.12

�1 MPa 29.67 ✏r - 2.32

�2 MPa �17.28 Re M⌦ 1.14

�3 MPa 3.19 ⇢ ⌦· m 6.5 · 1010

preferred, for instance, in case of DEAs operating in a broader frequency range, see, e.g., [103].
The identification procedure is implemented through a MATLAB routine based on the

Nelder-Mead simplex method. Given an input voltage waveform, once the corresponding dis-
placement and current values are recorded, the algorithm finds the best parameters set that
maximizes a weighted sum of the displacement FIT, the current FIT, and the input energy FIT.
The experimental input energies are evaluated by integrating the product between measured
voltages and currents. Herein the FIT is defined as follows

FIT = 100

✓
1�

kxmeas � xmodelk

kxmeas � mean(xmeas)k

◆
, (3.22)

where xmeas and xmodel represent a generic measured and model-predicted quantity, e.g., dis-
placement y or current i, and ||x|| represents the Euclidean norm of vector x.

Three different experimental tests, shown in Fig. 3.5(a), Fig. 3.5(e), and Fig. 3.5(i), are
used to calibrate and validate the model. The identified parameters are reported in Table 3.2.
Figures 3.5(b), 3.5(c) and 3.5(d) show the comparison between the experimental and predicted
displacement, current, and input energy, respectively, when the signal is chosen as a sum of sine
waves having different amplitudes, frequencies, and phases. Figures 3.5(f), 3.5(g) and 3.5(h)
show the same comparison according to an amplitude-modulated pseudo random binary signal
(APRBS) chosen as input. Finally, figures 3.5(l), 3.5(m), and 3.5(n) report the comparison
according to an increasing sequence of steps. Model validation’s has been carried out both with
the whole third signal and with portions of the APRBS and sum of sines not used during the
training phase. The identified model parameters, with a viscoelastic model of order M = 1,
permit to reproduce the experimental results with satisfactory accuracy. The FIT values on
both training and validation data are reported in Table 3.3. Note that the current FIT shows
lower values if compared with displacement and energy FITs. This is a consequence of the
adopted FIT measure, since it penalizes signals which are often time close to zero (this is,
indeed, more common for the current rather than for the other two quantities). Moreover, the
current measurement is affected by a higher signal-to-noise ration with respect to the other
two measurements. This fact unavoidably affects the corresponding value of the current FIT.
Nevertheless, the overall accuracy is still satisfactory for the application under investigation.
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Figure 3.5: Experimental identification results: (a) Sum of sine waves signal; (b) Experimental
and predicted displacements with sum of sine waves signal; (c) Experimental and predicted
currents with sum of sine waves signal; (d) Experimental and predicted input energies with sum
of sine waves signal; (e) APRBS signal; (f) Experimental and predicted displacements with
APRBS signal; (g) Experimental and predicted currents with APRBS signal; (h) Experimental
and predicted input energies with APRBS signal; (i) Steps signal; (j) Experimental and predicted
displacements with validation signal; (k) Experimental and predicted currents with validation
signal; (l) Experimental and predicted input energies with validation signal.

Table 3.3: FIT Values

Input Signal Displacement FIT Current FIT Energy FIT

Sine waves sum 91.10 80.96 92.75
APRBS 93.51 75.99 93.47
Step wave 95.20 74.62 94.18
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3.4 Energy Minimization via Adaptive Dynamic Program-
ming

The design of an energy optimal control law for the DEA is addresses in this Section. The
energy-related utility function of the corresponding energy optimal control problem is firstly
defined. Then, and ADP with off-policy learning algorithm solves the intractable HJB equation.

3.4.1 Optimal Control Problem Formulation
Let’s consider the following control problem: given an arbitrary initial condition z0 and a target
equilibrium point (z⇤, v⇤) for model (3.13), find a state feedback controller v(z) which steers
the state z(t) from z0 at t = 0 to z⇤ for t ! 1 and, at the same time, minimizes the input
energy consumption. As stated in Section 3.2.2, this problem can be tackled by minimizing
the losses that occur during the actuation. Note that the target equilibrium point (z⇤, v⇤) can
be uniquely specified once a desired displacement y⇤ is known. In fact, for any equilibrium
state the corresponding equilibrium momentum p⇤ and viscoelastic states "⇤kj are always zero.
Additionally, once y⇤ is known the target charge q⇤ can be found by solving (3.3) at steady state.
By plugging q⇤ and y⇤ into (3.11) the required voltage v⇤ can be finally found. The obtained
values of y⇤, q⇤, and v⇤ allow then to uniquely determine any arbitrary equilibrium state.

Once the target configuration is known, it is convenient to introduce the state and input
deviations as x = z � z⇤ and u = v � v⇤, respectively. By substituting x and u in (3.13), the
following system is obtained

ẋ = fe(x) + Bu, (3.23)

where fe(x) = f(x + z⇤) + Bv⇤. In this way, the problem of reaching the target equilibrium
point (z⇤, v⇤) for the original model to can be converted in controlling (3.13) to the origin. This
will simplify the formulation of the optimal control problem in the subsequent section. The
energy loss function (3.19) can now be expressed with respect to the new set of coordinates in
the following way

se(x, u) = s(x+ z⇤, u+ v⇤). (3.24)

Analytically, (3.24) can be computed as follows

se(x, u) =
Nl

Rl(y⇤ + x1)C2(y⇤ + x1)
(q⇤ + xM+3)

2 +
Nl
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✓
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⌘v0NlVDE
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1

m
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⌘vj
log
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◆
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(3.25)

where x1 = y � y⇤, x2 = p, xj+2 = "kj , and xM+3 = q � q⇤.
The problem of position regulation with energy minimization can be now defined according

to the optimal control theory. Given system (3.23) properly defined in such a way its origin
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corresponds to a given target displacement y⇤, find a stable closed loop control policy u(x) that
minimizes for any initial state x0 the following performance function

V (x0) =

Z 1

0

�
Q(x) + ↵(x)u+Ru2

�
| {z }

U(x,u)

dt, (3.26)

where Q(x), ↵(x) and R are defined in such a way U(x, u) = se(x, u). Function U(x, u) is the
utility function, as in (2.3).

Although formally correct, the optimal control problem formulation discussed above has
some issues which restrict its usefulness for the given applications. First, it can readily be
verified that the selected utility function does not satisfy the condition U(0, 0) = 0, thus making
integral (3.26) diverge to infinity at steady-state. This fact makes sense from the physical point
of view, since at steady-state the applied DC voltage v⇤ results in a non-zero current i⇤ flowing
on resistors Re and Rl which, in turn, produce a continuous Joule heating dissipation (cf. Fig.
3.3). Since this loss is unavoidable, the ideal function se(x, u) is replaced with the following
auxiliary dissipation function sa(x, u)

sa(x, u) =
Nl

Rl(y⇤ + x1)C2(y⇤ + x1)
x2
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✓
u�

1

C (y⇤ + x1)
(xM+3 + q⇤) +

1

C (y⇤)
q⇤
◆2

+
⌘v0NlVDE

("1(y⇤ + x1) + 1)

 
1

m

d"1(y)

dy

����
y=y⇤+x1

!2

x2
2

+Nl

MX

j=1

k2
vjVDE

⌘vj
log

✓
"1(y⇤ + x1) + 1

"1(y⇤ + x1)� xj+2 + 1

◆
xj+2.

(3.27)

Note that functions (3.25) and (3.27) only differ for the first two terms. It can be easily verified
that sa(x, u) shares the same convexity property of se(x, u) with respect to states x2, . . . , xM+3.
Therefore, sa(x, u) � 0 8x, u in the operating range and, additionally, sa(0, 0) = 0. Note
also that sa(x, u) and se(x, u) coincide in the limit case in which the DE behaves as a perfect
dielectric, i.e., ⇢ ! 1 so that i⇤ = 0. Since such parameter is commonly very large, it is
reasonable to assume that sa(x, u) will only slightly differ from the ideal se(x, u) for typical
application scenarios.

The second issue concerns the type of dynamic specification imposed for the optimal control
design. In particular, if the control goal is solely expressed in terms of energy consumption, it
is expected that the resulting settling time would be unacceptably slow (ideally, in the limit
case ⇢ ! 1 an infinitely slow actuation would result in no dissipation). To properly address
the trade-off between energy minimization and transient speed, the overall utility function is
modified as follows

U(x, u) = sa(x, u) + �
Nl

Re
u2, (3.28)

where � � 0 is a tuning parameter. Note that (3.28) still has a structure compatible with (3.26).
The larger �, the bigger the penalty on large values of u in the resulting closed loop law. Since
the total control input for the real system is expressed in terms of v = v⇤ + u, penalizing u
implies that the closed loop system will respond similarly to the uncontrolled system subject to
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a steady input voltage v⇤. This results into a fast response, but also into a high dissipation. Note
that the choice of adding a penalty term proportional to u2, instead than some squared norm
of the states, is motivated by the fact that the former cost function exhibits better numerical
convergence properties during the controller design phase.

3.4.2 ADP Solves the Energy-Optimal Control Problem
The energy-optimal control problem defined as the minimization of (3.26), under the system
dynamics in (3.23), cannot be solved via traditional methods due to the involved nonlinearities.
Thus, the ADP procedure with off-policy learning in Algorithm 2.2 is employed as a tool to
solve offline the energy-optimal control problem. Note that the utility function (3.28) can be
rewritten in the form of (3.26) as follows

U(x, u) =
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(3.29)

Therefore, the same procedure in Section 2.4.3 can be employed. The result is a set of
weights approximating the optimal value function, i.e., the critic weights, and control policy,
i.e., the actor weights, as in (2.29) and (2.30).

3.5 Experimental results
The experimental validation of the energy-optimal control strategy discussed in the previous
section is presented in the following.

3.5.1 Learning Phase
Prior to evaluating the effectiveness of the optimal controller on the experimental DEA system,
the ADP algorithm is first employed in a preliminary learning procedure conducted offline.
In particular, the model validated in Section 3.3 and the ADP procedure in Algorithm 2.2 are
implemented in the MATLAB/Simulink environment. The ADP approach is used as a tool to
solve offline the HJB equation and obtain a nonlinear control policy for a given set of target
displacement values. The optimal control policies are then implemented in the microcontroller
used to drive the DEA, as discussed in Section 3.3. In order to conduct the data collecting phase
in a proper way, a sufficient rich exploratory signal is required. To prevent damaging the real-life
system due to intensive training experiments, the ADP algorithm uses the data obtained from
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Figure 3.6: Weights convergence for the examined actuator when y⇤ = 7.73 mm and � = 0.05:
(a) Actor weights convergence; (b) Critic weights convergence.

offline simulations of the validated model instead of physically apply the exploration signal to
the DEA.

Given a steady-state value of the input voltage v⇤, the design of the mechanical biasing sys-
tem ensures that the considered DEA exhibits a unique equilibrium displacement y⇤. Since the
relationship between v⇤ and y⇤ is one-to-one, we can alternatively specify y⇤ and compute the
corresponding feedforward control input v⇤. Once equilibrium input and output are known, the
corresponding equilibrium state can be uniquely determined by exploiting the model equations.
By using a passivity argument, we can conclude that this unique equilibrium state is always sta-
ble, provided that the initial conditions are chosen in a physically meaningful range. This can
be proved by defining a new storage function given by  a � v⇤qi, with q̇i = i, and exploiting
equation (3.20) for the case in which v = v⇤ holds. Based on the above discussion, it can be
concluded that, given a target displacement value y⇤, the origin of system (3.23) is stable when
u = 0. This allows to employ u0 = 0 as the initial stabilizing policy in each learning phase
conducted on (3.23). The learning noise, eL(t), is selected as a sum of sine waves with different
amplitudes and frequencies. The number of learning steps is NL = 10000, each one of them
having a duration of 1 ms. A total of 65 polynomial terms from the second to the fourth degree
in the four states are considered as basis function for the critic network, while 34 polynomial
terms from the first to the third degree are considered as basis functions for the actor network.
As an example, the actor and critic weights convergence is shown in Fig. 3.6(a) and 3.6(b),
respectively, for a value of y⇤ = 7.73 mm and � = 0.05. Note that the large values of both actor
and critic weights are due to the involved physical quantities, since each one of them is char-
acterized by a different unit and range on a different scale of values. For instance, the electric
charge error, x4 = q� q⇤, and displacement error, x1 = y�y⇤, are on the order of µC and mm,
respectively, while the applied voltage is in the order of kV .
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Figure 3.7: Graphical representation of the observer equations.

3.5.2 Results
As stated in Section 3.3, the experimental bench provides displacement, voltage, and current
measurements. In order to implement a full state feedback control law, an observer is imple-
mented in the microcontroller. The displacement error, x1, is measured given the value of y⇤.
Estimated state variable x̂2, i.e., p̂, is easily obtained by exploiting the definition of momentum,
through a numerical differentiation. Observed viscoelastic state x̂3, i.e., ✏̂k1, is obtained by in-
tegrating (3.9) once the position feedback and x̂2 are plugged in. Finally, the observed state x̂4

is reconstructed by plugging the measured displacement y, and input voltage v, into the current
relation shown in (3.11) and subtracting the resulting observed charge, q̂, from the reference
value q⇤. The observer equations are reported in Fig. 3.7. Convergence of the estimated states
to the real values can be easily proven.

In the following, the displacement values y are express as absolute values or as normalized
values with respect to the maximum and minimum displacement of the DEA. Let ymin and ymax

be the equilibrium displacement values obtained when applying constant input voltages vmin =
0 kV and vmax = 3 kV, respectively. Then, for any displacement value y 2 [ymin, ymax], the
following normalized displacement is defined

� :=
y � ymin

ymax � ymin
2 [0, 1] . (3.30)

Experiments are conducted to validate the energy minimization capabilities of the proposed
approach. Each optimal control policy is compared to both the open loop behavior and with
a Proportional-Integral, hand-tuned in such a way the resulting displacement trajectory has
settling time comparable with the other experiments. In particular, the Proportional-Integral
controller is combined with a simple nonlinear term which compensates the quadratic non-
linearity of the DEA transduction principle. This allows improved performances if compared
with traditional PID controllers, as reported in earlier studies [50, 94]. In order to compensate
model uncertainties at steady-state, the actuated control law is smoothly switched from ADP to
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Figure 3.8: Experimental results comparison of open loop, ADP, and Proportional-Integral con-
trollers when �0 = 0.2 and �⇤ = 0.8: (a) Measured displacements when � = 0.05; (b) Measured
input energies when � = 0.05; (c) Measured displacements when � = 0.12; (d) Measured in-
put energies when � = 0.12; (e) Measured displacements when � = 0.35; (f) Measured input
energies when � = 0.35.

the Proportional-Integral once the position error x1 gets in a predefined band around the target
point, i.e., |x1|/y⇤  0.01. As shown in the experimental tests, the switch between the two con-
trol policies doesn’t affect the energetic performances since they mainly occur during transients.
Figure 3.8 shows the results according to an initial displacement y0 = 6.67 mm (�0 = 0.2) and a
target displacement y⇤ = 7.74 mm (�⇤ = 0.8), with three different values of � = 0.05, � = 0.12,
and � = 0.35. As expected, bigger values of � imply faster responses (Fig. 3.8(a), 3.8(c), and
3.8(e)) but, at the same time, higher energy consumption evaluated by integrating the product
of measured voltages and currents (Fig. 3.8(b), 3.8(d), and 3.8(f)). The measured input energy
values are reported in Table 3.4 along with the parameters of each Proportional-Integral con-
troller used for the comparison. In the first two examined cases of Fig. 3.8 (� = 0.05, and � =
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Figure 3.9: Experimental results comparison of open loop, ADP, and Proportional-Integral con-
trollers when �0 = 0.8 and �⇤ = 0.2: (a) Measured displacements when � = 0.05; (b) Measured
input energies when � = 0.05; (c) Measured displacements when � = 0.12; (d) Measured in-
put energies when � = 0.12; (e) Measured displacements when � = 0.35; (f) Measured input
energies when � = 0.35.

0.12), the open loop controller provides the fastest settling times with the corresponding highest
energy consumption values, if compared with both Proportional-Integral and ADP controllers.
Proportional-Integral controllers show lower energy consumption values due to their slower dy-
namics and filtering features. Note also that the shape of the Proportional-Integral closed loop
response is significantly different from the one of ADP, due to the strong nonlinearities of the
investigated system. For � = 0.35, the Proportional-Integral controller shows the highest input
energy despite its slower dynamics, if compared with both ADP and open loop. This is mainly
due to the higher values of Kp and Ki (see Table 3.4, third row) that result in more aggressive
responses. Therefore, despite Proportional-Integral controllers provide feedback policies easy
to implement with good performances in steady-state compensations, their energy consumption
are unpredictable. Due to the nonlinearities of the DEA, the trade-off between response time
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and energy consumption is hard to tune in case of Proportional-Integral controllers. This justify
the employment of the proposed ADP approach that provides energy minimization capabilities
as well as easy response time tuning through the single parameter �. Finally, note that ADP
controllers show best performances in terms of energy consumption, with settling times always
higher than open-loop control.

Figure 3.9 presents the results with inverted values of initial and target displacement, i.e.
�0 = 0.8 and �⇤ = 0.2. The same values of � are used. In this case, since the target displacement
is below the initial one, the equivalent capacitor will discharge with a corresponding negative
input energy that can be recovered. As in Fig. 3.8, bigger values of � imply faster responses
(Fig. 3.9(a), 3.9(c), and 3.9(e)) and lower energy recovering evaluated by integrating the product
of measured voltages and currents (Fig. 3.9(b), 3.9(d), and 3.9(f)). The same considerations of
the previous case are still valid, except for � = 0.12. In fact, in this case while the settling time
is slower than the response obtained with � = 0.35, the resulting restored energy is lower than
the value obtained with the same value of � = 0.35. This is due to the nonlinear behavior of the
DEA during discharging phases. However, as in the previous experiments, ADP policies show
the best performances in term of recovered energy. For these experiments, the settling times
provided by ADP are always higher than the ones obtained in open loop. Note that, in all of the
considered scenarios, the experimental tests for both identification and control are performed
in a lab environment under repeatable conditions. For this reason, the open loop controllers
succeed in reaching the set-point with a remarkably small steady error.

Table 3.4: Experimental Results

Input Energy [mJ]
�0 �⇤ � Kp Ki ADP Prop. Integr. OL ADP/OL%

0.2 0.8
0.05 0.1 1.5 20.4 24 27 �24.44
0.12 1 10 22.9 25.5 27 �15.19
0.35 2 20 26.7 32.5 27 �1.11

0.8 0.2
0.05 2 50 �9.8 �3.9 �2.1 +366.67
0.12 3 90 �6.5 �2.5 �2.1 +209.52
0.35 3 75 �7.55 �5.21 �2.1 +259.52

3.5.3 Robustness Analysis
The approximated energy-optimal control policy is found through offline simulations based on
the identified model. Clearly, the learning model depends on the identified parameters shown in
Table 3.2. In real-life conditions, some of those parameters may not be exactly known, or may
change over time due to several reasons, e.g., changes in environmental conditions, material
aging process. To ensure the correct functioning of ADP in real-life settings, a robustness
analysis is required to evaluate the performances of the obtained approximated policy when the
system parameters are varying.

Simulation studies are conducted to evaluate the performances variation in terms of resulting
energy consumption and settling time when identified parameters, i.e., kv1, ⌘v1, ⌘0, �1, �2, �3,
�1, �2, �3, ✏r, Re, and ⇢ vary from the values reported in Table 3.2. All these parameters are
intrinsically related to the constitutive behavior of the DE material, and therefore it is reasonable

60



3.5. EXPERIMENTAL RESULTS

 E
n
er

g
y
 S

av
in

g
  
(%

)

-26

-24

-22

-20

-23.75

-23.8

-23.7

(a) (b)

(c)

S
et

tl
in

g
 T

im
e 

(s
)

0

5

10

15

2.3

2

1.7

(d)

-20 -10 0 10 20

2.6

-20 -10 0 10 20

Parameter Variation (%) Parameter Variation (%)

and

Figure 3.10: Robustness analysis results: (a) Energy saving percentage with respect to open
loop control when �i, �i, with i = 1, 2, 3, ✏r, and ⇢ are varying; (b) Energy saving percentage
with respect to the open loop when kv1, ⌘v1, ⌘0, and Re are varying; (c) Resulting settling times
when �i, �i, with i = 1, 2, 3, ✏r, and ⇢ are varying; (d) Resulting settling times when kv1, ⌘v1,
⌘0, and Re are varying.

to assume that they may slightly change over time. Each parameter is changed within the
range [�20%,+20%] of the identified value, while all the other parameters are kept constant
to their nominal values. Parameters �i and �i, with i = 1, 2, 3, are all increased or decreased
together, since they can be interpreted as a stiffness value (see (3.10)). Resulting performances
are evaluated using the same approximated optimal policy used in the previous subsection with
�0 = 0.2, �⇤ = 0.8, and � = 0.05. Figures 3.10(a) and 3.10(b) show on the horizontal axis the
parameter percentage variation, while on the vertical axis the energy saving percentages with
respect to the open loop control. The energy savings are computed considering as input energy
the integral of the product between simulated current and simulated input voltage. When no
parameters are changing the simulated energy saving is �23.76%, in line with the experimental
value in Table 3.4, i.e., �24.44%. Changes in the settling time (within 2%) according to each
parameter variation are shown in Fig. 3.10(c) and Fig. 3.10(d).

Figures 3.10(a) and 3.10(c) show how performances are mainly affected both in terms of
energy saving and settling time by variations in �i, �i, with i = 1, 2, 3, ✏r, and ⇢ parameters.
In particular, the linear dependency of the energy saving with respect to changes in ⇢ (Fig.
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3.10(a)) highlights the major source of dissipated energy for the considered actuator, i.e., the
leakage resistance Rl(y) in (3.12). Clearly, as in (3.19), for increasing (decreasing) values of
⇢ the losses on the leakage resistance decrease (increase) resulting in increased (decreased)
energy savings. When ⇢ varies, the settling time is not affected (Fig. 3.10(c)) since it mainly
depends on the mechanical dynamics. Major changes in both energy saving and settling time
are observed when �i, �i, with i = 1, 2, 3, and ✏r are varying, implying that the approximated
optimal policy highly depends on the corresponding values used in the learning stage. Note
the increasing value of energy saving when ✏r varies more than +10%, as a consequence of
the increased settling time. Therefore, it can be stated that the strongest nonlinearities depend
on �i, �i, with i = 1, 2, 3, and ✏r, and, thus, a wider exploration of the system states when
those parameters are changing might be necessary in the learning phase. Finally, as shown in
Fig. 3.10(b) and Fig. 3.10(d), ADP provides good robustness performances when kv1, ⌘v1, ⌘0,
and Re are changing, with no substantial variations in both the energy saving and settling time
values. Note that when kv1 increases (decreases) or ⌘v1 decreases (increases), a faster (slower)
time response is obtained. This is easily explained since kv1/⌘v1 can be seen as the time constant
of the viscoelastic state (see (3.9)).

3.6 Conclusions
This work investigated the minimum energy position control of DEAs. A free-energy model
properly describes the energy dissipation in a thermodynamically consistent way. After satis-
factory experimental identifications, the energy losses are used as utility function in an optimal
control problem. To address nonlinearities in the actuator’s model and utility function, an ADP
algorithm with off-policy learning solves offline the HJB equation. Experimental validations
verified the effectiveness of the proposed approach for different target displacement scenar-
ios. When compared with traditional control techniques, our method provides optimal charging
policies, with energy savings up to 20 %, as well as optimal discharging policies, with energy
restoring over 300 %. The trade-off between energy consumption and settling time is easier
to predict and tune using the proposed approach instead of traditional Proportional-Integral
controllers. Finally, a robustness analysis shows how the optimal controller performances are
mainly affected by changes in only the Ogden model’s stiffness, the material relative permittiv-
ity, and the elastomer resistivity.

3.7 Publications
The results presented in this chapter have been published by the author in [104], [105], and
[106].
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Chapter 4

Distributed Assistive Control of Power
Buffers in DC Microgrids

This chapter presents the second application of the Adaptive Dynamic Programming (ADP)
approach for the optimal control of complex systems. The distributed control of power buffers
in a direct current (DC) microgrids is considered. Modern-day renewable energy sources and
loads, such as photo-voltaic generators and electric vehicles find their natural surroundings in
DC microgrids. The stability of such distribution systems may result weak due to the absence
of damping elements. Power buffers are power electronic converters with large storage devices
(e.g. capacitor) used to decouple volatile loads and distribution system, enhancing stability
and performances. Normally, the input impedance and the stored energy of power buffers are
adjusted in a localized fashion. By letting the power buffers communicate, the effective range of
action of each power buffer can be extended to its neighboring loads. In this way, neighboring
nodes can assist each other during abrupt load changes.

In this chapter, distributed assistive control policies are developed according to the optimal
control theory, with a common objective shared among the network. Such approach enables
power buffers to reciprocally assist each other during abrupt load changes in a cooperative
fashion. Adaptive dynamic programming (ADP) algorithms with off-policy learning deal with
the nonlinear dynamics dictated by the distribution grid.

Based on the configuration of the communication network deployed on top of the physical
distribution grid, two different studies are conducted in this chapter. First, the communica-
tion topology is fixed and inspired by the physical vicinity of the buffers. The fully nonlinear
dynamics is considered and a set of optimal control policies are learned offline and then inter-
polated in a real-time control scheme according to the the desired network’s operating point.
Alternatively, a second study considers the communication topology a free parameter subject
to optimization. In particular, it is desired to reduce the interactions between different control
loops of power buffers while minimizing a closed-loop performance function. In both cases,
ADP with off-policy learning algorithms will represent the key tool to solve such problems.
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Figure 4.1: Power buffer operating principle.

4.1 Overview and Objectives

4.1.1 Power Buffers for Load Decoupling
The increasing penetration of DC sources and loads, such as photo-voltaic, electrical vehicles,
data-centers, and batteries, is naturally integrated within DC microgrids [107], [108]. When
compared with their AC counterpart, DC microgrids provide a more reliable and efficient distri-
bution paradigm by avoiding unnecessary conversion stages [109–112]. Furthermore, DC distri-
bution systems are not subject to common ac-related issues such as frequency synchronization,
reactive power flows, and transformer inrush currents [113]. Nevertheless, DC microgrids face
a compound challenge of handling potentially volatile source and load profiles while having a
resistive grid with low damping/generational inertia, leading to stability issues [114], [115]. To
tackle these issues, both hardware and control approaches have been studied. While the former
require costly central energy storage elements to decouple loads and network [116], [117], the
latter make use of both average and hybrid models for the switching converters involved in the
network [118], [119].

Power buffers can be used as a damping element to enhance the stability properties of a DC
microgrid. Firstly introduced in [120] and [121], power buffers are power converters with large
storage elements (e.g. capacitors) able to decouple the load from the distribution grid. During
transients, power buffers can shape the input power profile by modifying the load impedance
seen by the distribution network. The stored energy is used to compensate the transient mis-
match, hence shielding the distribution network from abrupt load changes [55], [122].

Figure 4.1 summarizes the operating principle of a boost converter used as a power buffer.
At t = t1 the final load, typically constituted by the series connection of a power converter
and a final resistive load, changes the demanded power pout. The power buffer supplies the extra
power demand using its stored energy e, smoothing the input power pin drawn from the network.
At t = t2, the input power matches the demanded one and the converter switches mode from
buffering to energy recovering. In this phase, i.e. t2 < t < t3, the buffer slightly draws extra
power from the network to recover lost energy. The recovering phase ends in t = t3, and for
t > t3 the input power equals the demanded one. The stored energy, e, remains at its original
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level until the next load change occurs.
Since power buffers are placed at load terminals, they exhibit more efficient behaviors as

well as faster responses when compared with central energy storage devices. Moreover, power
buffers provide an additional degree of freedom that can be exploited to design control laws that
improve the overall network performances.

4.1.2 Existing Control Techniques
The majority of existing control solutions use a game-theoretic control framework with power
buffers as players, using different control objectives and solution approaches [123–129]. Con-
trol objectives include to meet power or voltage drop requirements in [123], to achieve a con-
stant power characteristics while minimizing network losses in [125], to find optimal controllers
with respect to quadratic functionals at each sample time in [126], to conserve as much energy
as possible while preventing system collapse in [128], or to simply conserve the buffer’s stored
energy in [129]. In the absence of a closed-form solution to the game-theoretic problem, a turn-
based approach is employed in [123,128] that could adversely affect the controller performance
and stability as the system size increases. Alternatively, the game-theoretic solutions are found
in [125, 129] using Pontryagin’s minimum principle, with sliding-mode controllers used to ac-
tuate the resulting open-loop optimal trajectories. In [126], the solution is found by the means
of linear optimal control approaches.

Some of these solutions are implemented in a decentralized fashion, relying on individual
objectives with non-cooperative strategies [123, 125, 126, 128, 129]. Communication-based co-
operative methods are presented in [124, 127] as an alternative to non-cooperative solutions.
In particular, in [124] a Policy Iteration algorithm solves the linear coupled Riccati equations,
where the individual objectives are defined with regards to team-aligned and selfish compo-
nents. In [127], a turn-based approach implements the solution of a leader-follower Stackleberg
game to prioritize leader’s objective, and finds an optimum set of information to be transmitted.

An assistive control strategy, based on linear distributed approaches, is presented in [130]
where, as in [124], the coupling effects of the power distribution grid are considered. However,
both [124] and [130] rely on small-signal approximations of power buffers. Although such
approach allows to easily obtain a control law, optimality, robustness, and stability are not
guaranteed for high load variations. Hence, the controller performances are limited to small
load variation ranges. Alternatively, the proposed approach considers the nonlinear dynamics
of both loads and distribution network to design distributed closed-loop controllers based on
optimal control theory.

4.1.3 Distributed Controllers with Fixed Communication Topology
The communication topology plays a fundamental role in designing and implementing a dis-
tributed control policy for the power buffers. The first study is conducted by considering an a
priori fixed communication topology, inspired by the physical vicinity. The objective is to de-
sign a distributed assistive control scheme for power buffers that considers the fully nonlinear
dynamics. The control scheme is distributed as buffers exchange information through the com-
munication network, cooperative as buffers share a common objective, and assistive as buffers
reciprocally assist each other during abrupt load changes, improving overall network perfor-
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mance and stability. Cooperative control techniques are already applied to other domains, e.g.,
unmanned aerial vehicles [131,132], robot manipulators [133], and spacecrafts [134], and have
recently been extended to DC microgrids (e.g., distributed primary/secondary control [135]).

In the proposed approach, the assistive control problem is formulated using the optimal
control theory. Since the fully nonlinear dynamics is considered, an ADP algorithm with off-
policy learning is employed to solve the corresponding Hamilton-Jacobi-Bellman equation, as
discussed in Chapter 2. ADP has also provided optimal energy management policies in smart
grids, e.g., see [136, 137]. In [138] and [139], a discrete-time ADP algorithm solves the op-
timal energy management problem for microgrids with energy storage elements. In [140],
the fair energy scheduling problem for a vehicle-to-grid network is solved via ADP. A self-
learning ADP algorithm in [141] considers the real-time electricity price, load demand, and
solar energy. Continuous-time on-policy ADP approaches provide reactive power control in
wind farms [142] and improve unmatched disturbance rejection in multi-machine power sys-
tems [143]. Continuous-time ADP algorithms, based on concurrent-learning, develop droop-
free control for DC microgrids [144]. The game-theoretic solution for power buffers in [124]
are provided via a policy iteration algorithm.

In the work reported in this chapter, the HJB equation is solved by employing a continuous-
time ADP approach with off-policy learning for the purpose of feedback design instead of op-
erational scheduling. A set of distributed optimal control policies able to provide assistance
during abrupt load changes is derived. The communication network augments the assisting
range of power buffers to nearby loads. Salient features and contributions of this work are

• The control law’s weights sets are calculated based on a mesh of reference loads for each
power buffer.

• To further reduce both computational requirements and communicated data, the controller
is triggered only when a load change occurs, making it suitable for Internet-of-Things
(IoT) devices.

• The distributed controller minimizes a shared objective among power buffers in a coop-
erative fashion, as opposed to non-cooperative strategies in [123, 125, 126, 128, 129].

• The feedback strategy is designed according to the optimal control theory, providing a
real-time controller that is known a priori and does not need a turn-based approach as
in [123, 127, 128].

• Compared to the work that rely on a small-signal approximation of power buffers [124,
126, 130], the proposed nonlinear optimal control law takes into account the nonlinear
dynamics of the power buffers and the coupling power grid, and is valid for large-signal
variations.

• It does not solve linear-quadratic regulator (LQR) problems at each sampling instant as
in [126].

• The optimal control problem is solved by approximating the solution to HJB equation,
instead of employing the Pontryagin’s minimum principle as in [125] and [129]. This
provides both necessary and sufficient conditions for optimality instead of only the nec-
essary condition. Moreover, it provides a closed-loop control law directly implemented
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without the need of other control techniques (e.g., sliding mode), offering simpler designs
as well as better performances with small parameter variations or model uncertainty [5,6].

4.1.4 Optimizing the Communication Topology - The Sparsity Promoting
Problem

An alternative approach considers the communication topology, i.e., the configuration of the ac-
tive communication links, as a free parameter subject to optimization. When the communication
topology is inspired by physical vicinity [53, 54, 129], the underlying physical interconnection
reflects the fixed communication topology with no guarantees that these structures (physical
and communication) are optimal with regard to control objectives. Given the limited energy
available, co-optimization of control solutions and communication topologies, considering the
distribution grid, is important.

Sparsity-promoting algorithms guarantee stability and performance without any a priori de-
fined communication topology, i.e., few but crucial communication links are found [145, 146].
Similar to AC systems [58,147], power buffers can benefit from reducing the interactions among
feedback loops, minimizing communication costs with a limited impact on the closed-loop per-
formance. Existing sparsity-promoting methods for microgrids mostly rely on linear approaches
in AC systems. Based on the linear formulation in [145], decentralized controllers for AC
networks with voltage-source converters are designed in [148], while sparse and block-sparse
wide-control architectures for AC systems are designed in [58] and [149], respectively. By
extending [145] to discrete-time systems, the sparsity-promoting controller in [150] regulates
the active power flows and frequency. In [147], decentralized and sparse wide-area controllers
are designed to damp inter-area oscillations in AC systems using the convex relaxation of a
linear H1 problem. Constrained Linear Quadratic Regulator (LQR) formulation finds an opti-
mal controller for predefined communication structures to damp inter-area oscillators in [151].
In [152], a sparsity-promoting linear optimal controller is applied to an AC power system with
synchronous machines. However, such formulations are not practical for nonlinear systems as
in the case of DC microgrids with power buffers.

In this chapter, the ADP with off-policy learning method is exploited to develop a sparsity-
promoting optimal design algorithm for nonlinear systems. The approximated solution of the
HJB equation is learned using only system collected data and without the need for the exact
knowledge of the system dynamics.In particular, the same set of collected data is repetitively
used to find optimal controllers for different communication topologies. Note that stability
of optimal designs with sparsity-promoting or structural constraint is not guaranteed even for
linear systems [58]. the proposed approach employs Domain-of-Attraction (DoA) estimation
methods [66–68] to check the stability of each distributed controller. To deal with the resulting
combinatorial problem, a Tabu Search (TS) approach that avoids local minima is used [153,
154]. The main contributions of this work are

• The first attempt to solve nonlinear sparsity-promoting and structured optimal control
problems using a data-driven algorithm based on RL and TS methods is developed.

• The obtained controllers are employed in DC microgrids, with a limited impact when
comparing incrementally-sparse and fully-connected communication topologies. This
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impact is shown to increase if existing techniques used for AC systems, e.g., [58], are
applied.

• In contrast to [53, 54], the underling physical interconnection structure dictated by the
distribution grid is considered. The communication topology is a free parameter subject
to optimization, where the number of active communication links and a closed-loop cost
function are simultaneously minimized.

• Sparsity-promoting and communication topology-related studies for power buffers are
conducted. The reciprocal assistance among power buffers is shown to increase with a
less sparse communication structure.

Finally, Controller/Hardware-In-the-Loop (CHIL) studies validate the effectiveness of the
two proposed approaches.

4.1.5 Chapter’s Outline
This chapter is organized as follows. Section 4.2 presents the nonlinear model of a DC mi-
crogrid with power buffers. Section 4.3 presents the design procedure of distributed assistive
controllers based on ADP, when the communication topology is defined a priori and considering
the fully nonlinear dynamics. CHIL studies are presented to validate the proposed approach.
The sparsity-promoting algorithm and its application to the DC microgrid with power buffers is
presented in Section 4.4. As in the case of predefined communication structure, CHIL studies
are conducted to verify the effectiveness of the proposed sparsity-promoting approach. Finally,
concluding remarks are reported in Section 4.5.

4.2 Nonlinear Dynamic Model of a DC Microgrid
Distribution lines, active loads, and DC sources constitute the DC microgrid, as depicted in Fig.
4.2(a). ri,j denotes the resistance between buses i and j. A power buffer connected with a final
load, i.e., a point-of-load converter (POLC) and a resistive load (Fig. 4.2(b)), constitutes an
active load [54]. A localized control approach limits the assistance capabilities of a buffer to its
final load. Introducing a communication network among nearby active loads, as shown in Fig.
4.2, allows them to collectively respond to transients. A resistor, rsi, in series with a voltage
source, vsi (Fig. 4.2(c)), model a DC source.

Let the number of active loads and sources be N and M , respectively, and the set of active
loads be L = {M + 1, ...,M + N}. For the ith active load, ri, vi, ei, and pi are the input
impedance, input voltage, stored energy, and power supplied to the final load, respectively.
Thus, the energy-balance equation for the generic power buffer i is given as

ėi =
v2i
ri

� pi, i 2 L. (4.1)

For the power buffer i, the energy-voltage relation can be expressed as follow

ei =
1

2
Cv2bi, i 2 L, (4.2)
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Figure 4.2: DC microgrid and its elements: (a) DC microgrid; (b) Active load consisting of a
power buffer and a final load; (c) Model of a DC source.

where C is the capacitance of the power buffer, and vbi is the buffer’s output voltage. By defining
ui as the control input that regulates the input impedance of the buffer, ri, the following state-
space model for the ith active load is obtained

(
ėi =

v2
i

ri
�

2ei
C

1
Ri

ṙi = ui

, i 2 L. (4.3)

Ri is the equivalent resistance of the buffer’s output. Given a POLC (e.g., buck converter), in
the steady state, Ri can be obtained from the load’s resistance, RLi

.
Sources are modeled as a series connection of a voltage source, vsi, and a resistor, rsi. The

admittance matrix of a distribution grid relates its injected nodal currents and the bus voltages.
Likewise, the active loads and sources can be related

i =

2

6666666664

vs1/rs1
...

vsM/rsM

0
...
0

3

7777777775

= Y

2

6666666664

v1
...

vM

vM+1
...

vM+N

3

7777777775

, (4.4)

where i is the vector of injected currents, and Y is the reduced-order admittance matrix [155].
From (4.4), the input voltage of an active load can be related to the input impedances of all
active loads:

vi = ⇣i(rM+1, ..., ri, ..., rM+N), i 2 L. (4.5)
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The resulting dynamic model for an active load becomes
(
ėi =

⇣i(rM+1,··· ,rM+N )2

ri
�

2ei
C

1
Ri

ṙi = ui

, i 2 L. (4.6)

Given a set of output loads
⇥
RLM+1 · · ·RLM+N

⇤
, the corresponding steady-state values of the

buffer’s output resistances
⇥
R⇤

M+1 · · ·R
⇤
M+N

⇤
can be obtained. Once a set of desired output

resistances, R⇤
i , is given, corresponding steady-state energy, input resistance, and control input

are e⇤i , r⇤i , and u⇤
i = 0, respectively. r⇤i is found by solving (4.6) at the steady state, while

e⇤i is fixed a priori based on the desired steady-state output voltage, v⇤bi. By defining the state
deviations as xi1 = ei � e⇤i and xi2 = ri � r⇤i , (4.6) can be rewritten as

(
ẋi1 =

⇣i(x(M+1)2+r⇤
M+1,...,xi2+r⇤

i
,...,x(M+N)2+r⇤

N
)2

xi2+r⇤
i

�
2(xi1+e⇤

i )
C

1
R⇤

i

ẋi2 = ui

, i 2 L. (4.7)

The last equation represents the state-space model of the DC microgrid with power buffers
considering the nonlinear dynamics dictated by the distribution grid. The state variables are
defined as the deviations with respect to a given steady-state equilibrium point. Such model is
used in the subsequent to design distributed optimal control policies via ADP.

4.3 Distributed Assistive Control with Fixed Communication
Topology

As in (4.5), each active load’s input voltage is affected by its own input impedance, ri, and
by the impedances of all the other active loads. Let’s define Ni as the set of all the indexes
k 2 L such that active load k is in the neighborhood of the ith active load. In this section,
the neighbors set is inspired by the physical vicinity, i.e., for any value of the input resistances
(rM+1, ..., ri, ..., rM+N)

����
@⇣i(rM+1, ..., rM+N)

@rj

���� ⌧
����
@⇣i(rM+1, ..., rM+N)

@rk

���� (4.8)

for any j 2 L \ Ni and for any k 2 Ni. The communication topology used in the distributed
optimal controller will reflect such physical vicinity, and, thus, is fixed a priori. The dependency
of (4.5) on the non-neighbors can be neglected by setting the resistances of the non-neighbor
loads to infinity, allowing the following approximated relation

vi = ⇣̂i(ri, {rj}j2Ni
), i 2 L. (4.9)

The dynamics in (4.7) can be thus expressed as follows
(
ẋi1 =

⇣̂i(xi2+r⇤
i
,{xj2+r⇤

j
}j2Ni

)2

xi2+r⇤
i

�
2(xi1+e⇤

i )
C

1
R⇤

i

ẋi2 = ui

, i 2 L. (4.10)

This can be written as
ẋi = fi(x̄i) + bui, i 2 L, (4.11)
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with b = [0 1]|, xi = [xi1 xi2]
|, x̄i = (x|

i , {xj}
|
j2Ni

), and fi(x̄i) defined as

fi(x̄i) =
⇣̂i(xi2 + r⇤i , {xj2 + r⇤j}j2Ni

)2

xi2 + r⇤i
�

2 (xi1 + e⇤i )

C

1

R⇤
i

i 2 L. (4.12)

The dynamics of the entire DC microgrid then becomes
2
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ẋM+N

3

75

| {z }
ẋ
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(4.13)

with the origin as an equilibrium, and f(0) = 0.

4.3.1 Assistive Control Problem as an Optimal Control Problem
The assistive control problem can be treated as finding an optimal feedback control law for
(4.13) that minimizes a cost functional during the transient toward a given setpoint for any
initial state. Suppose that the ith active load needs assistance; The cost functional is

Ji(x, u) =

Z 1

0

Ui(x, u)dt i 2 L, (4.14)

where x0 is the initial state at t = 0. Ui(·, ·) is the corresponding utility function, defined as

Ui(x, u) = x|
iQiixi + ⇢iu

2
i +

X

j2Ni

⇣
x|
iQijxj + x|

jQ
(i)
jj xj + ⇢(i)j u2

j

⌘
, (4.15)

where Qii 2 R2⇥2, Q(i)
jj 2 R2⇥2, and Qij 2 R2⇥2 are performance matrices weighting the state

of active load i, the state of its neighbors, and their product, respectively. ⇢(i)i and ⇢(i)j are scalars
weighting the active load’s control input and that of its neighbors, respectively. The weighting
terms ensure Ui(x, u) � 08(x, u) and Ui(0, 0) = 0. Note that (4.15) can also be written as

Ui(x, u) = Qi(x) + u|R(i)
⇢ u, (4.16)

with R(i)
⇢ = diag

⇣
⇢(i)M+1, · · · , ⇢i, · · · , ⇢

(i)
M+N

⌘
, and Qi(x) = x|

iQiixi+
P
j2Ni

⇣
x|
iQijxj + x|

jQ
(i)
jj xj

⌘
.

Intuitively, once the utility function is defined as in (4.16), optimization of (4.14) minimizes
the states deviations, xi and xj , as well as the control effort ui of each node involved in the
assisting task. In order to guarantee assistance the weights are chosen appropriately: if node i
requires more power on the load, the associated utility function, Ui, exhibits greater values of
⇢j than ⇢i, as well as greater weights in the matrix Qii than those in Qij and Q(i)

jj . Note that
this last matrix is introduced for converge purposes. By choosing the weights in such a way,
the node’s individual action is penalized, in favour of a collective action in which neighboring
nodes provide support during transients. (4.14) represents a common sub-network objective,
shared among the node i and its neighbors. This common objective switches based on the node
subject to the load variation, thus, once each optimal control problem is solved, each node’s
control law switches based on the node that requires assistance.
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4.3.2 ADP with Off-policy Learning Solves the Optimal Control Problem
The optimal control problem defined by the cost functional (4.14) and dynamics (4.13) can be
solved via the ADP with off-policy learning algorithm discussed in Section 2.4.

In particular, let’s consider the following system

ẋ = f(x) + B(u(0) + eL(t)), (4.17)

where u(0) is a feedback policy that asymptotically stabilizes the system at the origin with a
finite associated cost, and eL(t) : R ! RN is a bounded exploration noise for the learning
purposes, as seen in (2.26). For each iteration k � 0, let u(k)0 = u(0)

� u(k) + eL. Then, (4.17)
can become

ẋ = f(x) + Bu(k) +Bu(k)0 . (4.18)
The time-derivative of the function V (k)(x), i.e., the value function at iteration k of the Policy
Iteration algorithm 2.1, computed along the state trajectory of (4.18), is

V̇ (k)(x) = rV (k)|(x)
h
f(x) + B(u(k) + u(k)0)

i
= �Ui(x, u

(k))� 2
X

j2Ni[{i}

u(k+1)
j ⇢(i)j u(k)0

j , (4.19)

where u(k)
j and u(k)0

j are the jth elements of u(k) and u(k)0 vectors, respectively, while ⇢(i)i = ⇢i.
By following the procedure in Section 2.4, for each k � 0, the value function V (k)(x) and
the control policies u(k+1)

j , j 2 Ni [ {i}, can be approximated in a linear-in-parameters (LIP)
fashion, i.e.,

V̂ (k)(x) =
NVX

l=1

!(k)
l �l(x) = !(k)|�(x), (4.20)

û(k+1)
j (x̄j) =

Nj

UX

l=1

✓(k)jl
⇠jl(x̄j) = ✓(k)

|
j ⌅j(x̄j). (4.21)

Where �l(x) : R2N
! R, with l = 1, ..., NV , and ⇠jl(x̄j) : R2(|Ni|+1)

! R, with l = 1, ..., N j
U

and j 2 L, are the sequences of linearly-independent smooth functions vanishing at the origin,
while !(k) and ✓(k)j are the constant row vectors of weights to be determined. Note that the
approximating functions in (4.21) depend only on the current state and that of the neighbors. In
this way, it is possible to find an approximated optimal control policy that stabilizes the system
and, at the same time, is distributed according to the physical vicinity. Replacing V (k) and
u(k+1)
j in (4.19) with their approximations, and by integrating both sides over any time interval

[tn, tn+1], the following integral reinforcement learning equation (see (2.31)) is obtained,
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dt

| {z }
 j(tn+1)

�

Z tn+1

tn

Qi(x)dt

| {z }
QI(tn+1)
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X

j2Ni[{i}

✓(k)
|

j

✓Z tn+1

tn

⌅j(x̄j)⇢
(i)
j ⌅

|
j (x̄j)dt
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j + ✏(k)n

(4.22)
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where ✏(k)n is the approximation error and {tn}
NL

n=1 is the increasing series of time intervals.
As discussed in Chapter 2, starting from an initial stabilizable control policy u0, sequences
{V̂ (k)

}
1
k=0 and {û(k+1)

}
1
k=0 converge to the optimal values. The weights !(k) and ✓(k)j are ob-

tained by minimizing
PNL

n=0 ✏
(k)2
n using a least-squares method.

The following algorithm implements the ADP procedure with off-policy learning, once the
approximating functions, learning data, and utility function are given. Note that thanks to the
properties of the LIP approximators, the data collecting phase is decoupled from the evaluation
of (4.22). The computational efforts are reduced since the same collected data solves several
optimal control problems with different utility functions.

Algorithm 4.1 ADP PI Algorithm with off-policy learning
Inputs:

• Utility function parameters, i.e., Qii, Qij , Q
(i)
jj , ⇢i, ⇢

(i)
j , with j 2 Ni;

• Approximating functions �(x) and ⌅j(x̄j), with j 2 Ni [ {i};

• Initial stable controller weights ✓(0)j for any power buffer;

• System’s collected data, i.e., x, u(0) + eL(t), and ��(tn), n = 1, ..., NL, recorded from
(4.17);

• A stopping threshold �.

Outputs: approximated optimal weights !̂ and ✓̂j, j 2 Ni [ {i}.
1. Initialization: Set the initial iteration number as k = 1.
2. Data Evaluation: By using the previously collected data, evaluate QI(tn),  j(tn), and
�j(tn), with j 2 Ni [ {i}, and n = 1, ..., NL.

3. Policy Improvement: Evaluate the following matrices

X =

2

6664

��(t1) 2
⇣
 j1(t1)� �j1(t1)✓

(k�1)
j1

⌘|
· · · 2

⇣
 jz(t1)� �jz(t1)✓

(k�1)
jz

⌘|

...
...

...
��(tNL

) 2
⇣
 j1(tNL

)� �j1(tNL
)✓(k�1)

j1

⌘|
· · · 2

⇣
 jz(tNL

)� �jz(tNL
)✓(k�1)

jz

⌘|

3

7775

B� = �

2

66664

QI(t1) +
P

j2Ni[{i}
✓(k�1)|
j �j(t1)✓

(k�1)
j

...
QI(tNL

) +
P

j2Ni[{i}
✓(k�1)|
j �j(tNL

)✓(k�1)
j

3

77775

with j1, ..., jz 2 Ni [ {i}. Then find unknown weights by solving the following

X
h
!(k)| ✓(k)

|
j1 · · · ✓(k)

|
jz

i|
= B�.

4. Off Policy Iteration: If
����!(k)

� !(k�1)
���� � � set k = k + 1 and repeat Step 3. Otherwise,

stop and return the approximated optimal value function and control policy, i.e., !̂ = !(k)

and ✓̂j = ✓(k)j , with j 2 Ni [ {i}.
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4.3.3 Learning Phase
Algorithm 4.1 is exploited to obtain a set of near-optimal policies with respect to all the active
loads, considering several desired setpoints. The obtained weight sets are then aggregated into
look-up tables to compose a control scheme able to provide a near-optimal policy working in all
scenarios. Algorithm 4.2 summarizes the learning procedure. For a set of loads for the ith active
load, PRLi

= {R⇤(1)
Li

, .., R⇤(Si)

Li
}, the corresponding set PRi

= {R⇤(1)
i , .., R⇤(Si)

i } can be found. A
learning grid of different loads is defined as PRM+1 ⇥ ... ⇥ PRM+N

. For each element of this
learning grid, a set of optimal control problems is defined corresponding to each active load that
needs assistance for that specific setpoint. Then, given an N -tuple (R̄⇤

M+1, ..., R̄
⇤
M+N) 2 PRM+1 ,

corresponding input impedances (r̄⇤M+1, ..., r̄
⇤
M+N) are found by solving (4.10) in the steady

state. The input impedances are stored in a map, Mr(R̄⇤
M+1, ..., R̄

⇤
M+N), to compute the states of

each active load fed to the controller. Once all the reference values are given, the data collection
phase can be performed. For each setpoint, N corresponding optimal control problems are
solved by means of Algorithm 4.1. The obtained control weights for the ith problem are stored
in a map, M i

✓j
(R̄⇤

M+1, ..., R̄
⇤
M+N), for each j 2 Ni [ {i}. This map defines the control policy of

active load j that is triggered through a load change in the active load i.

Algorithm 4.2 Assistive Control Learning Procedure
Inputs:

• Buffer’s output resistances set for each active load PRi
= {R⇤(1)

i , .., R⇤(Si)

i };

• Utility function parameters, i.e., Qii, Qij , Q
(i)
jj , ⇢i, ⇢

(i)
j , for any i 2 L and j 2 Ni;

• Approximating functions and initial stable controller weights ✓(0)j for any power buffer,
as in Algorithm 4.1.

Outputs:

• Input impedance references map Mr(RM+1, ..., RM+N);

• Near-optimal control policies map M i
✓j
(RM+1, ..., RM+N), with i 2 L and j 2 Ni [ {i}.

1. for each (R̄⇤
M+1, ..., R̄

⇤
M+N) 2 PRM+1 ⇥ ...⇥ PRM+N

do
2. Find corresponding (r̄⇤M+1, ..., r̄

⇤
M+N) by solving (4.10) in the steady state, with R⇤

i =
R̄⇤

i , and set
Mr(R̄

⇤
M+1, ..., R̄

⇤
M+N) = (r̄⇤M+1, ..., r̄

⇤
M+N).

3. Define system (4.13) by setting reference values found in Step 2, and collect correspond-
ing learning data using the initial controller.

4. for each active load i do
5. Solve the optimal control problem using Algorithm 4.1 with learning data from Step 3

and terms Qii, ⇢
(i)
i , Qij , Q

(i)
jj and ⇢(i)j , with j 2 Ni [ {i}, and set

M i
✓j(R̄

⇤
M+1, ..., R̄

⇤
M+N) = ✓̂j.

6. end for
7. end for
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Figure 4.3: Proposed control scheme. Green, blue, and red lines refer to local data, incom-
ing/outgoing real-time data, and incoming/outgoing high-latency data.

4.3.4 Assistive Control Scheme

As the first control objective, the buffer’s output voltage should be fixed, in the steady state,
on the rated value of v⇤bi, which corresponds to e⇤i as in (4.2). As the second objective, the
input impedance profile varies during transients according to the assistive control policy. The
proposed scheme employs the voltage tracker embedded into the power buffer to handle both
objectives. The assistive policy acts on the software implementation of system (4.3), defined as
the virtual system in Fig. 4.3, and is connected to the physical buffer through the input voltage,
vi. evi and rvi in Fig. 4.3 denote the states of the virtual system synced with the physical one
through the input voltage, vi. The real-time controller uses the states of the virtual system in its
feedback policy. In particular, the real-time value of rvi is obtained by integrating the control
input, ui. The controller drives the input impedance of the virtual system, providing a desired
energy profile translated into the reference of the voltage tracker of the power buffer.

Each power buffer sends to its neighbors its own state and output resistance, i.e., xi and Ri,
respectively. The distributed assistive control policy is triggered when an active load detects a
change in its neighborhood. Otherwise, it uses a default local stabilizing controller udi(xi) =
✓di⌅i(x̄i); Where ✓di is chosen such that udi depends only on local states. After each transient,
i.e., when

P
j2Ni

(x2
j1 + x2

j2) is lower than a defined threshold ✏T , the control weights switch
to the default ones. Thus, the communication module is used only during the assistive task.
This makes the proposed method suitable for energy-constrained devices (e.g., IoT devices),
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Figure 4.4: Considered DC microgrid structure.

and keeps the system stable in case of communication fails.
The reference and weights map in Algorithm 4.2 are queried by the complete N -tuple

(R⇤
M+1, ..., R

⇤
M+N). To correctly query the maps, active load i has to know its resistance,

the set of neighbors, and the set of non-neighbors resistances, i.e., Ri, RNi
= {Rj}j2Ni

, and
RN\Ni

= {Rj}j2N\Ni
, respectively. Thus, the control mechanism is enhanced with a commu-

nication protocol to broadcast each routing active load’s vector RS
N = (Ri, RNi

, RN\Ni
) to its

neighbors. This protocol ensures consensus among active loads if the communication graph
features a spanning tree [156]. Once a load change occurs, the neighbors state data is sent in
real time, while the information RS

N is sent with a higher latency. The maximum latency has
to be lower than the minimum rate of load change for each active load. Once the ith active
load detects a change in RNi

, the non-neighbors resistances are selected from RR
N , which is the

received counterpart of RS
N . Hence, the active load can correctly query both the weights and

reference maps.
Assuming that the learning procedure has been properly conducted, and given the stabilizing

properties of the default policy, a switch between asymptotically-stable controllers occurs once
the transient effects are dissipated. The output of the reference map is filtered to avoid states
jump and preserve system stability during the switching phase [157]. This filter’s time constant,
⌧RM , is chosen faster than the communication sampling time.

4.3.5 CHIL Validation
a. System Setup

The proposed control scheme is verified on a 48V DC microgrid, with its structure shown in
Fig. 4.4. Line resistances are set as follows

r4,8 = 0.2⌦, r1,8 = 0.35⌦, r6,7 = 0.6⌦,

r5,8 = r5,9 = r6,9 = 0.3⌦,

r4,7 = r2,7 = r3,9 = 0.5⌦,

(4.23)
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Table 4.1: Power Buffer and Final Load Parameters

Power Buffer Final Load
Parameter Value Parameter Value
Converter input inductor 4.00mH LC filter inductor 300µH
Converter output capacitor 4.4mF LC filter capacitor 2.2mF
Converter input inductor ESR 520m⌦ Converter output inductor 2.65mH
Converter output capacitor ESR 25m⌦ Converter output capacitor 2.2mF
Switching frequency 60kHz LC filter inductor ESR 100m⌦
Proportional gain (voltage controller) 1 LC filter capacitor ESR 50m⌦
Integral gain (voltage controller) 3.5 Converter output inductor ESR 520m⌦
Rated output voltage 100V Converter output capacitor ESR 50m⌦

Switching frequency 60kHz
Proportional gain 0.09
Integral gain 1.08
Output voltage set point 48V

while every DC source is modeled as a series connection of a 50V ideal voltage source and
a 0.1⌦ resistor. Each active load consists of a power buffer (boost converter) and a final load
composed of a buck converter with an LC filter interposed in between, as shown in Fig. 4.5.
Power buffer and final load parameters are reported in Table 4.1. The boost converter features a
fast voltage tracker to follow the voltage profile defined by the assistive control scheme in Fig.
4.3. Its rated output voltage is v⇤bi = 100V . The fast voltage regulator of the buck converter is
regulated at 48V. Both voltage trackers employ Proportional-Integral (PI) controllers.

The relationship between the control input, ui, and the switching state of the solid-state
switch of the boost converter can be derived as follows. Given the initial value of the stored
energy, ei0, input impedance ri0, and load value Ri, the control input profile, ui, is translated
into the energy profile, evi, by integrating the equations of the virtual system as in Fig. 4.3

evi(t) = e�
2
C

1
Ri

 
ei0 +

Z t

0

e
2
C

1
Ri

⌧vi(⌧)2

ri0 +
R ⌧

0 ui(⇣)d⇣
d⌧

!
, (4.24)

where vi is the measured input voltage of power buffer i. Using (4.2), evi is translated into the
reference of the fast voltage tracker for the boost converter, i.e., v⇤bi(t) =

p
(2/C)evi(t). The

output of the Proportional-Integral controller of the i-th boost converter is denoted by yPI
i , while

its input is the error between the reference voltage, v⇤bi(t), and the measured output voltage,
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vbi. yPI
i is used along with the measured input current, ii, in an hysteresis-band controller to

determine the switching state of the solid-state device,

di(t) =

(
1 if yPI

i � ii > hbi
0 if yPI

i � ii < �hbi
, (4.25)

where hbi is the hysteresis band herein set as 0.2. The switch status is kept constant for values
between the thresholds.

The physical microgrid is emulated on a Typhoon HIL 604, and the communication network
and the control scheme run on a dSPACE MicroLabBox controller board, as shown in Fig.
4.6. The sampling times of the controller and the communication module are 0.1ms and 1ms,
respectively. The time constant of the filter placed after the resistances map is ⌧RM = 0.2ms.

b. Learning Stage

The assistive control scheme requires a learning phase via Algorithm 4.2. According to Fig.
4.4, neighborhood sets are N4 = {5, 6}, N5 = 4, and N6 = 4. The output load for each
active load varies from 10⌦ to 100⌦, in steps of 10⌦. Mixed linear-independent polynomial
terms, up to 4th degree, are used as approximating functions, with a corresponding NV = 166,
N4

U = 83, and N5
U = N6

U = 34. The structure of approximating functions, for both critic and
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X

l=1,...,166
i1,...,i6�0

2i1+...+i64

clx
i1
41x

i2
42x

i3
51x

i4
52x

i5
61x

i6
62
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(4.26)

The learning sequence {tn}, with NL = 10000 intervals of 10ms and 3 filtered white noises,
are used as exploration signals. For each active load, the initial stabilizing controller is û(0)

j =
2xj1, j = 4, 5, 6. A trial and error approach finds the initial controller whose stability has been
checked through simulations conducted over several loading scenarios. The same steady-state
stored energy were considered for all the buffers. The weighting terms are set as

8
>>>>>>>><

>>>>>>>>:

Q44 = Q55 = Q66 = diag(8, 8),

Q(5)
44 = Q(6)

44 = Q(4)
55 = Q(6)

55 = diag(1, 1),

Q45 = diag(�2, 0),

Q46 = diag(�1, 0),

Q54 = Q64 = diag(�5, 0),

⇢4 = ⇢5 = ⇢6 = 1, ⇢(4)5 = ⇢(4)6 = ⇢(5)4 = ⇢(6)4 = 0.1.

(4.27)

Once the learning phase is complete, the near-optimal control policy maps are interpolated to
obtain different control weights surfaces for each active load with respect to each neighbor in
need. As an example, Fig. 4.7 shows two surfaces actuated by the active load 5 and triggered
when the active load 4 needs assistance. Note that the weights depend on the desired setpoint
(here, RL6 = 70⌦).
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Figure 4.8: Learning results when power buffer 5 is in need: (a) stored energies for initial and
near-optimal controllers; (b) Input resistances for initial and near optimal controllers; (c) initial
and near-optimal control inputs.

Example studies from Algorithm 4.1 in Fig. 4.8 show how the near-optimal control policy
provides assistance among neighboring power buffers. Using formulation (4.13) for the under-
lying DC microgrid, a single control policy, û, was obtained to assist power buffer 5 during
transients with the same weighting terms described above. In this example, R5 changes from
80⌦ to 10⌦ at t = 0, while R4 and R6 are set as 40⌦ and 30⌦, respectively. Figures 4.8(a)
and 4.8(b), respectively, show the trajectories of e4, e5 and r4, r5 both with the initial control
policies u(0)

4 , u(0)
5 , and with the near-optimal control policies û4, û5. These control policies are

compared in Fig. 4.8(c). The initial control policy of power buffer 4 did not provide assistance
to the power buffer 5, while the near-optimal control policy of power buffer 4 uses its stored
energy to help power buffer 5 during transients, reducing both the energy and input impedance
variations for power buffer 5.

The controller stability depends on the approximation domain of the employed neural net-
works in the learning stage [65]. The exploration signal allows the system states to span the
region for the considered loading scenarios. Thus, the near-optimal control policy becomes
stable, providing an approximated optimal value function V̂ , that acts as a Lyapunov function,
as shown in the left and central parts of Fig. 4.9(a). The performances of the two control poli-
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buffer 4 (center), and actor network of power buffer 5 (right); (f) Energy-impedance trajectories
for the initial and near-optimal control policies.

cies, in minimizing the cost function, is shown in the right part of Fig. 4.9(a). Clearly, the
near-optimal controller, û, provides a lower value for the shared objective function, J5. The
weights convergence for this scenario is depicted in Fig. 4.9(b). Finally, Fig. 4.9(c) shows the
energy-impedance trajectories for the two power buffers, with both the initial controller and the
near-optimal one. As seen, the initial control policy for power buffer 4 doesn’t change its stored
energy, while its approximated optimal policy assists power buffer 5, by using the buffering
capabilities of power buffer 4.

c. Deactivated Power Buffers

Figures 4.10 and 4.11 show the system performance when power buffers are inactive. The initial
loads of active loads 4, 5 and 6 are 80⌦, 100⌦ and 70⌦, respectively. The load attached to the
power buffer 5 changes to 20⌦ at t = 2s. The load attached to the power buffer 4 goes to 15⌦
at t = 9s. Loads 4 and 5 regain their original values at t = 15s and t = 25s, respectively.
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Bus voltages and source currents exhibit step-change behaviors in Figs. 4.10(a) and 4.10(d),
respectively. Note that when slow or stochastic (renewable) sources are present, such abrupt
demands on the source currents are highly undesired. The energy-impedance trajectories of
active loads are shown in Fig. 4.11(d). The trajectories corresponding to the first, second, third,
and fourth load changes are represented by red, green, orange, and violet lines, respectively.
The operating points of buffers 4 and 5 form an almost straight line, while buffer 6 doesn’t
show any change.

d. Activated Power Buffers with Communication Delays

The proposed control scheme is activated, and the communication network links the neighbor-
ing active loads. Some studies report IEEE 802.11 (WiFi) or Bluetooth Low Energy (BLE) as
communication protocols mostly suited for low-power IoT devices [158]. During the assistive
task, a data packet with 3 doubles (RLi

, xi1, and xi2) is communicated, which would require
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Figure 4.11: Microgrid performance in response to two load changes at terminal 5 and terminal
6 with deactivated power buffers: (a) Stored energy in power buffers; (b) Input impedance of the
power buffers; (c) Output of the active loads; (d) Energy-impedance trajectories of the power
buffers.

a single link capacity of 192 kbps. Maximum data rates for WiFi and BLE are 54Mbps and 1
Mbps, respectively [159]. Thus, BLE is suitable for microgrids with up to 5 neighbors for each
active load; Otherwise, WiFi is preferred. For both protocols, the maximum transport delay is
less than 100ms [160, 161]. Communication delays of 125ms, 120ms, and 130ms are intro-
duced in the links between active loads 4 and 5, active loads 5 and 4, and active loads 4 and 6,
respectively.

For 0 < t < 2s, all the power buffers run a default control law, the same as the u(0)
i in Section

b.. At t = 2s, the active load 5 changes from 100⌦ to 20⌦, while active loads 4 and 6 stay at
80⌦ and 70⌦, respectively. The active load 4 receives the load-change signal after 120ms,
triggering the assistive control law by querying the references map and the weight surfaces.
Once the transient is over, active load 4 switches to the default control law and updates the
active load 6. Thus, the active load 6 can correctly query the references map at the next event.
At t = 9s, the active load 4 changes to 15⌦, triggering its own near-optimal policy. After
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Figure 4.12: Microgrid performance in response to two load changes at terminal 5 and terminal
6 with activated power buffers: (a) Distribution bus voltages observed at the load terminals; (b)
Output voltage of the power buffers; (c) Output voltage across the resistive loads; (d) Source
currents.

125ms and 130ms, respectively, active loads 5 and 6 receive the information and trigger their
control policies to assist the active load 4. At t = 15s and t = 25s, active loads 4 and 5 are
changed back to their initial values, respectively.

Validation results are showed in Fig. 4.12 and Fig. 4.13. After the first load change event,
the active load 4 is only supporting the active load 5. The second event requires that both
active loads 5 and 6 help smooth the transients. As shown in Fig. 4.13(a), once active load
5 abruptly changes, the stored energy of the active load 4 changes according to the assistive
control law. The same happens to the stored energies of active loads 5 and 6, after the active
load 4 changes. Red curves in Fig. 4.13(d) show impedance-energy trajectories during the first
event, the green curves show those trajectories after the second event. In both cases, assistance is
provided by dropping the stored energy and increasing the input impedance of the corresponding
buffer. Orange and violet curves in Fig. 4.13(d) refer to the third and fourth load change events,
respectively. Energy-impedance trajectories of buffers 4 and 5 go back to their initial points.
Violet trajectory of buffer 4, and orange trajectories of buffers 5 and 6, denote how the stored
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Figure 4.13: Microgrid performance in response to two load changes at terminal 5 and terminal
6 with activated power buffers: (a) Stored energy in power buffers; (b) Input impedance of the
power buffers; (c) Output of the active loads; (d) Energy-impedance trajectories of the power
buffers.

energy and impedance exhibit smaller variations. This asymmetric behavior is due to the non-
linearity of the control law as well as the choice of weighting terms. As shown in Fig. 4.12(a),
Fig. 4.12(d), and Fig. 4.13(c), the group action of power buffers smooth, respectively, the input
bus voltages, source currents, and power demands.

A comparison with the distributed algorithm presented in [130] is shown in Fig. 4.14. At
t = 0.7s, buffer 4 observes an abrupt change of its load from 80⌦ to 15⌦. Using ADP, the
energy stored in the buffer 4 recovers faster, as seen in Fig. 4.14(a). The energies stored
in buffers 5 and 6 show higher deviation with comparable (active load 6) or slower (active
load 5) settling times. This shows how the proposed method penalizes the individual action
of the active load 4, enhancing the collective assistance provided by the active loads 5 and 6.
Power demands are kept smooth, with a smaller initial derivative, as seen in Fig. 4.14(b). A
faster dynamic response could be attained by adjusting the control gains in [130]. Therein,
the controller design was based on a small-signal approximation of power buffers, making the
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Figure 4.14: Proposed controller performances against the linear controller in [130].

controller valid only for a single operating point without guaranteeing its performance for larger
load variations. By contrast, the method proposed here is based on a nonlinear formulation of
the microgrid in (4.13). So long as the learning phase spans a sufficiently-large loading space,
and the PE condition is valid, controller stability is guaranteed for higher deviations. Finally,
individual controllers are designed through Algorithm 3 for each load variation. The optimal
control formulation guarantees semi-optimal performance in every learned scenario.

4.4 Distributed Assistive Control with Sparsity Promoting
Section 4.3 considered a communication graph defined a priori and dictated by the physical
vicinity of the power buffers, i.e., a communication structure reflecting the underlying depen-
dency between each active load’s input voltage and the other active loads input impedances, as
in (4.8). However, there is no guarantee that these structures, i.e., the configuration of the un-
derlying physical dependency and the topology of the communication graph, are optimal with
regards to the defined control objectives.

Alternatively, the communication topology can be considered a free parameter subject to
optimization. In particular, it is desired to minimize the number of active communication links
with a limited impact on the closed loop cost functional defined according to the optimal control
theory. The co-optimization of the two quantities provides a good trade-off between closed
loop performances and computational costs associated to the communication. Clearly, if the
nonlinear dynamics is considered, better performances are obtained, as seen in the Section 4.3.

However, the approach developed in Section 4.3 strictly depends on the knowledge of the
desired overall target operating point. In fact, different optimal control problems are solved
in Algorithm 4.2 according to a defined mesh of desired loads, for any power buffer. This is
necessary since each different operating point defines a different nonlinear system, and, thus,
a different optimal controller. Therefore, such approach is clearly not suitable when the com-
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munication topology is considered as a free parameter: it would be necessary to solve a co-
optimization problem for each set-point obtaining different communication topologies for each
problem. Therefore, in this section a second-order linearization around the half-load operations
of the DC microgrid with power buffers is considered. In this way, the communication topol-
ogy no longer depends on the target set-point, and, at the same time, a good trade-off between
linear and fully nonlinear formulations is obtained. Experimental results show the effectiveness
of the obtained control structure on loading scenarios different from the one employed for the
second-order linearization.

To start with, let’s derive the second order linearization of the DC microgrid with power
buffers. Let’s consider the dynamics in (4.6), and, as done in 4.3, once a set of desired output
resistances, R⇤

i , is given, corresponding steady-state energy, input resistance, and control input
are e⇤i , r⇤i , and u⇤

i = 0, respectively. r⇤i is found by solving (4.6) at the steady state. The
second-order approximation of (4.6), for each i 2 L, around an equilibrium point is

8
><

>:

ẋi1 =
M+NP
j=M+1

✓
@
@rj

⇣i(r)2

ri

����
r⇤
xj2 +

1
2

@2

@r2
j

⇣i(r)2

ri

����
r⇤
x2
j2

◆
�

2
CR⇤

i

xi1

ẋi2 = ui,

(4.28)

where r = [rM+1 · · · rM+N ]
|, and xi1 = ei � e⇤i , xi2 = ri � r⇤i .

Note that both (4.6) and (4.28) are nonlinear systems. As shown in [130] and [124], first-
order linearization around the half-load loading scenario provides a satisfactory performance.
Better performances are obtained with the nonlinear switching control policies developed in
Section 4.3. The second-order approximation in (4.28) provides a good trade-off between those
two approaches, as will be shown through the experimental results. Moreover, note that in
(4.28) no further assumptions are made on the dependency of the input voltage of each power
buffers, as in (4.9).

Each active load in (4.28) can be generally expressed as

ẋi = fi(x) + gi(x)ui, i 2 L. (4.29)

xi 2 Rni is the state vector of active load i. Note that the sparsity-promoting approach proposed
in the subsequent is valid for any nonlinear system in form (4.29), thus general expressions for
ni and gi(x) are used. In case of the DC microgrid with power buffers it results that, for each
i 2 L, ni = 2, xi = [xi1 xi2 ]

|, and gi(x) = [0 1]|. The overall system’s state is x =⇥
x|
M+1, ..., x

|
M+N

⇤|
2 RN̄ , where N̄ =

PM+N
i=M+1 ni. The interconnection of the N subsystems

in (4.29) gives the overall microgrid dynamics,

ẋ = f(x) + g(x)u, (4.30)

where f(x) = [fM+1(x)|, ..., fM+N(x)|]
|
2 RN̄ , g(x) = diag(gM+1(x), ..., gM+N(x)) 2

RN̄⇥N , and u = [uM+1, ..., uM+N ] 2 RN .
The goal is to minimize, at the same time, the number of the communication links (sparsity-

promoting objective) and a closed-loop performance index (optimal control objective). To de-
fine the overall objective function, the first step is to solve the optimal control problem, whose
cost function is

J(x, u) =

Z 1

0

U(x, u)dt, (4.31)
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where U(x, u) is the utility function defined as

U(x, u) = Q(x) +
X

i2L

⇢i(x)u
2
i . (4.32)

with Q(x) and ⇢i(x), i 2 L, being positive definite functions weighting the convergence dy-
namics. Note that unlike (4.14), (4.31) represents an objective shared among all the subsystems.
The optimal sparsity-promoting objective function and an algorithmic procedure that optimizes
it are provided in the next Section.

4.4.1 Proposed Optimal Sparsity Promoting Methodology
a. Structured Controllers with ADP and Off-policy Learning

The features of the ADP algorithm with off-policy learning (Algorithm 2.2) are exploited in
order to obtain a structured optimal controller, i.e., with a communication structure defined a
priori, for system (4.30).

As in (4.17), let’s start by considering the following system

ẋ = f(x) + g(x)(u(0)(x) + en(t)) =

= f(x) + g(x)(u(k)(x) + u(k)0(x)), 8k � 0,
(4.33)

where u(0) is an asymptotically-stable control policy, en(t) : R ! RN is the bounded noise
injected for learning and exploration purposes, while u(k)0 = u(0)

� u(k) + en.
The time-derivative of the function V (k)(x), i.e., the value function at iteration k of the

Policy Iteration algorithm 2.1, computed along the state trajectory of (4.33), is

V̇ (k)(x) = �U(x, u(k))� 2
X

i2L

u(k+1)
i ⇢i(x)u

(k)0

i . (4.34)

The value function, V (k), and the policies, u(k+1)
i , are approximated using LIP approximators,

V̂ (k)(x) =
NVX

l=1

!(k)
l �l(x) = !(k)|�(x), (4.35)

û(k+1)
i (x) =

NUX

l=1

✓(k)il
⇠l(x

⇠
l ) = ✓(k)

|
i ⌅(x), (4.36)

where �l(x), with l = 1, ..., NV , and ⇠l(x
⇠
l ), with l = 1, ..., NU , are the set of smooth linearly-

independent functions returning zero at the origin, with NV and NU as integers. The lth basis
function ⇠l(x

⇠
l ) depends on a subset of the overall system state, e.g., if ⇠l̄(x

⇠
l̄
) = ⇠l̄(xM+1, xM+2, xM+4),

then x⇠
l̄
= {xM+1, xM+2, xM+4}. For each ⇠l(x

⇠
l ) 2 ⌅(x), the set N ⇠

l = {j|xj 2 x⇠
l } is defined.

The basis functions set ⌅(x) is the same for each buffer. !(k)
2 RNV and ✓(k)i 2 RNU , i 2 L,

are the usual constant weights to be determined, as in (4.20) and (4.21). Now integrating (4.34)
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over any time interval, and replacing V (k) and u(k+1)
i with their approximations, the following

integral reinforcement learning equation is obtained

!(k)| [�(x(tn+1))� �(x(tn))]| {z }
��(tn+1)2RNV

= �

X

i2L

✓(k�1)|
i

✓Z tn+1

tn

⌅(x)⇢i(x)⌅
|(x)dt

◆
✓(k�1)
i

�

Z tn+1

tn

Q(x)dt

| {z }
QI(tn+1)2R

�2
X

i2L

✓(k)
|

i

Z tn+1

tn

⌅(x)⇢i(x)(u
(0)
i + eni

)dt

| {z }
 i(tn+1)2RNU

+ 2
X

i2L

✓(k)
|

i

✓Z tn+1

tn

⌅(x)⇢i(x)⌅
|(x)dt

◆

| {z }
�i(tn+1)2RNU⇥NU

✓(k�1)
i + ✏kn .

(4.37)

where ✏kn is the approximation error and {tn}
NL

n=1 is an increasing series of time intervals, with
NL > 0 as a sufficiently-large number. By collecting system data for the NL intervals, the
weights !(k) and ✓(k)i are found by minimizing

PNL

n=0 ✏
2
kn using least squares. Starting from u(0),

sequences {V̂ (k)
}
1
k=0 and {û(k+1)

}
1
k=0 converge to the optimal values. With a finite number of

iterations, near optimal cost function, V̂ (x), and control policies, ûi(x), i 2 L, are obtained.
The distributed near optimal feedback policies, ûi(x), that minimize (4.31) depend on the

whole system’s state, x, i.e., with a fully-connected communication topology. The objective is
to minimize the communication links, thus finding a sparse control law that keeps the system
stable and minimize (4.31). Let’s define a binary decision matrix, Ad 2 RN⇥N , such that
(Ad)ij = 1 if system j is allowed to send its own state to subsystem i, otherwise, (Ad)ij = 0.
Given a fixed Ad, the matrix Pi(Ad) 2 RNU⇥NU , for each i 2 L, is defined as

Pi(Ad) = diag

0

B@
Y

j2N⇠

1

(Ad)ij ...
Y

j2N⇠

NU

(Ad)ij

1

CA . (4.38)

Therefore, for (Ad)ij = 0, the l � th diagonal element of Pi(Ad) is zero if the l � th approx-
imating function ⇠l(x

⇠
l ) depends on xj . Given an arbitrary Ad, by constraining the appropriate

corresponding weights, ✓(k)il
, a near optimal control policy, û, with the corresponding underling

connectivity pattern can be obtained. To this end Algorithm 4.3 is proposed, the same data
collected for the fully-connected communication topology is used to find, if there exists, ap-
proximated optimal control policies in line with the communication topology defined by Ad.
By exploiting the LIP approximators properties, Algorithm 4.3 makes use of the same training
data recorded by applying the input (u(0) + en(t)) to system (4.30).

The main advantages introduced by using the ADP with off-policy learning approach can
be summarized as follows. An approximated optimal feedback controller, that does not require
the explicit solution of the HJB equation, is obtained. Using collected system data, the full
knowledge of the system dynamics is not required. Finally, the same collected data can be
repeatedly used to find the approximated optimal control policies for different communication
topologies, hence significantly reducing the computational requirements.
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Algorithm 4.3 Off-Policy IRL Algorithm for an Arbitrary Ad

Inputs:

• Initial weights !(0), ✓(0)i ,

• Recorded system data ��(tn),  i(tn), �i(tn), and QI(tn), with n = 1, ..., NL

• Matrices Pi(Ad), with i 2 L;

• A stopping threshold �.

Outputs: Near-optimal cost function and policies !̂Ad
and ✓̂iAd

, with i 2 L.

1. Initialization: Set k = 1; Evaluate X� = [��|(t1) ... ��|(tNL
)]| 2 RNL⇥NV , and BQ =

� [QI(t1) ... QI(tNL
)]| 2 RNL .

2. Data Evaluation: Compute the following matrices

Xi =
h
2
⇣
 |

i (t1)� ✓(k�1)|
i �|

i (t1)
⌘
Pi(Ad) · · · 2

⇣
 |

i (tNL
)� ✓(k�1)|

i �|
i (tNL

)
⌘
Pi(Ad)]

i

B� = �

hP
i2L ✓

(k�1)|
i �i(t1)✓

(k�1)
i · · ·

P
i2L ✓

(k�1)|
i �i(tNL

)✓(k�1)
i

i
.

3. Policy Improvement: Find !(k) and ✓(k)i , i 2 L from the following least square problem

[X� XM+1 ... XM+N ]
h
!(k)| ✓(k)

|
M+1 ... ✓(k)

|
M+N

i|
= BQ +B�.

4. Off-policy Iteration: If ||!(k)
� !(k�1)

|| � �, then set k = k + 1 and repeat Step 2.
Otherwise, stop and return !̂Ad

= !(k), ✓̂iAd
= ✓(k)i , with i 2 L.

b. Domain of Attraction Estimation

The stability of the approximated optimal policies depends on the given structure of Ad, as well
as on a compact set ⌦L ⇢ RN̄ where the data collecting phase has been done. In fact, NNs
approximate nonlinear functions on compact sets, and not on the entire RN̄ [65].The stability is
verified by quantifying the DoA of the origin in the resulting closed-loop system, i.e.,

H = {x0 2 RN̄
| lim
t!1

x(t, x0) = 0}. (4.39)

Once approximated policies are obtained, the function V̂Ad
(x) = !̂|

Ad
�(x) is employed as a

candidate Lyapunov function, whose sub-level set is defined, for any l 2 R, as

HV̂ (l) = {x 2 RN̄
|V̂Ad

(x)  l}. (4.40)

Given the difficulty in finding closed forms of the DoA, an estimation is found using data-
driven methods. Any sublevel set provides an estimation of the DoA if V̂Ad

(x) is positive
definite and ˙̂VAd

(x) is negative definite within the sub-level set [102]. The goal is to find the
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largest invariant set, HV̂ (l
⇤), representing the largest estimate for the DoA. In the work, the

memory-based algorithm presented in [66], adapted to our needs and reported in Algorithm 4.4,
is employed. It relies on the evaluation of the candidate Lyapunov function and its derivative
on randomly selected data during the learning phase.

Algorithm 4.4 DoA Estimation Algorithm modified from [66]
Inputs:

• Approximated optimal cost function and control policies, V̂Ad
(x) = !̂|

Ad
�(x), ûiAd

(x) =

✓̂|iAd

⌅(x), i 2 L;

• Sampled data Sue, Sx, and Sdx;

• Function g(x).

Outputs:

• DoA estimation dL;

• Maximum/estimated ratio ⌘V ;

• Failed ratio ⌘F ;

• Average cost V̄ .

1. Initialization: Set dL = 0, dU = 1, NF = 0, ME = {0}.
2. for k = 1, ..., NRs do
3. Compute ⌧k = V̂Ad

(x(tRk
)), and ⌧̇k =

˙̂VAd
(x(tRk

)) as in (4.41).
4. if ⌧̇k < 0 and ⌧k � 0 then
5. store V̂Ad

(x(tRk
)) in ME; else NF = NF + 1

6. end if
7. if ⌧̇k < 0 and 0  dL < ⌧k < dU then
8. dL = V̂Ad

(x(tRk
))

9. else if ⌧̇k � 0 and 0  ⌧k < dU then
10. dU = V̂Ad

(x(tRk
))

11. if dL � dU then dL = argmax{e 2 ME|e < dU}
12. end if
13. end for
14. Compute Vmax and V̄ as the maximum and the average value of ME , respectively.
15. return dL, ⌘V = dL/Vmax, ⌘F = NF/NRs, and V̄ .

Let TRs = {tRi
, i = 1, ..., NRs} be the set of randomly-selected sampling times. The

following sets of sampled data are collected during the learning phase: Sx = {x(tRi
), i =

1, ..., NRs}, Sdx = {ẋ(tRi
), i = 1, ..., NRs}, and Sue = {sue(tRi

), i = 1, ..., NRs}, where
sue(tRi

) =
�
u(0)(x(tRi

)) + en(tRi
)
�
. For each sampled state, x(tRk

), and any weights set, !Ad
,
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✓iAd
, the following holds

˙̂VAd
(x(tRk

)) = !|
Ad
r�(x(tRk

))


f̂(x(tRk

)) + g(x(tRk
))
h
✓|M+1Ad

· · · ✓|M+NAd

i|
⌅(x(tRk

))

�
,

(4.41)

where f̂(x(tRk
)) = ẋ(tRk

)� g(x(tRk
))sue(tRk

) is the estimated value of f(x(tRk
)). Algorithm

4.4 requires the knowledge of g(x) to compute (4.41) and f̂(x(tRk
)). The number of failed

trials among the sampled data is NF . Algorithm 4.4 updates the upper and lower bounds of l⇤,
i.e., dU and dL, respectively, starting from the initial values of dL = 0, dU = 1.

For each sampled state, x(tRk
), the potential estimate for the DoA, i.e., V̂Ad

(x(tRk
)), is

stored in the memory ME if stability conditions are verified. Then, if it results that dL <
V̂Ad

(x(tRk
)) < dU then dL is updated with the current value of V̂Ad

(i.e., the DoA is increasing
its radius). Otherwise, if ˙̂Vk(x(tRi

)) � 0 then the upper estimate dU is replaced with the current
V̂Ad

(i.e., the DoA is decreasing its radius). Then, if dL � dU , the new (lower) estimation
is updated as the maximum value among the previously evaluated values stored in ME such
that dL < dU . After a large number of samples, the estimation dL increases and provides a
conservative estimation of the DoA.

Algorithm 4.4 returns the parameters dL, ⌘V , ⌘F , and V̄ . ⌘V is the ratio between dL and
the maximum evaluated cost function. It provides a measure of how small the resulting DoA is
compared to the state space spanned during the training phase; E.g., if ⌘V = 1, then the DoA is
the whole training space. ⌘F is the ratio between the failed and total trials. Finally, the average
cost, V̄ , provides a performance measure of the resulting controllers in terms of (4.31).

c. Tabu Search

The sparsity-promoting problem can now be defined as

minimize
Ad

�||Ac � Ad||
2
F + ↵(Ad) (4.42)

where Ac 2 RN⇥N , (Ac)ij > 0 is the cost of the communication link between buffers i and j, �
denotes the Hadamard product, || · ||F is the Frobenius norm, � is a weighting factor, and ↵(Ad)
is defined in Algorithm 4.5. Due to possible numerical errors in (4.41), the DoA obtained
by Algorithm 4.3 may be still valid if ⌘F is below a given threshold, �F , which is a design
parameter. If ⌘F > �F or Algorithm 4.3 does not converge, the control policy is considered
unstable, with the penalty set to 1. Otherwise, ↵(Ad) provides a penalty term proportional to
the average performance, V̄ , and to the reduction of the DoA regarding its maximum span, i.e.,
↵(Ad) = V̄ /⌘V . Thus, the compromise between the resulting averaged performances and the
number of active communication links is minimized. Clearly, dense communication structures
lead to better performances in term of V̄ . Note that ↵(Ad) is computed for every Ad using the
data collected for the fully-connected structure.

Each solution to problem (4.42) is constituted by the decision variable set, i.e., the commu-
nication links status, and the resulting cost. Structural constraints are embedded in the decision
variables by defining four different structures as follows. The decision variables are: 1) The
diagonal and upper diagonal elements of Ad, i.e., only symmetric links are considered and self
loops are optional (elements (Ad)ii can be zero). 2) All the elements of Ad, i.e., non symmetric
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communication links are allowed as well as neglected self loops. 3) Only the upper diagonal
elements of Ad, with the diagonal elements fixed at 1, i.e., symmetric links and self loops al-
ways present. 4) The extra-diagonal elements of Ad, i.e., self loops always present and non
symmetric structures allowed.

The TS algorithm reported in Algorithm 4.6 solves the combinatorial optimization problem
in (4.42). TS uses a flexible search history to avoid local minimum entrapment [153, 154].
The main features of TS are the moves and the tabu list. Each move m in the moves set, M,
generates a new solution when applied to the current one. Implemented moves include: 1)
Swap moves where two different decision variables are swapped; 2) Reversion moves where
consecutive decision variables are reversed; 3) Insertion moves where each decision variable is
changed from 0 to 1 and viceversa.

Algorithm 4.5 ↵(Ad) Function
Inputs: Matrix Ad; Threshold parameter �F .
Outputs: Cost ↵(Ad).

1. Off-Policy IRL Convergence Check: Run Algorithm 4.3 and, if converges, obtain ap-
proximated optimal weights and go to Step 2; Otherwise, return ↵(Ad) = 1.

2. DoA Estimation: Run Algorithm 4.4 and obtain ⌘F , ⌘V , and V̄ parameters. If ⌘F < �F , go
to Step 3; Otherwise, return ↵(Ad) = 1.

3. Cost Evaluation: Return ↵(Ad) = V̄ /⌘V .

Algorithm 4.6 Tabu Search Algorithm
Inputs: Initial solution S0; Tabu length TL; Set of moves M.
Outputs: Best solution S⇤

B.
1. Initialization: For every move m 2 M, initialize the corresponding tabu counter, TC(m),

to zero; Set the initial best solution S⇤
B = S0; Set the best candidate solution SB = S0.

2. Best candidate solution evaluation:
a. for each m 2 M do
b. if TC(m) = 0 then
c. Apply move m to SB and obtain solution SB,m

d. if SB,m is better than SB then Set SB,m = SB and set the best move, mB, to m.
e. end if
f. end for

3. Best solution evaluation:
if SB is better than S⇤

B then update S⇤
B = SB.

4. Tabu list update: Add mB to the tabu list by setting TC(mB) = TL. For each m 2 M,
m 6= mB, decrease TC(m) by 1 if greater than 0.

5. Stopping criterion: Go to Step 2 until the maximum number of iteration is reached.

In summary, the best solution is initialized with a fully-connected feedback. Each TS iteration
seeks the best non-tabu move that improves the current best solution. Then, the best move
is inserted in the tabu list whose length provides the number of TS iterations in which the
move is forbidden, allowing better exploration and escaping the local minimum. Finally, the
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Figure 4.15: Information flow between algorithmic components in the proposed sparsity-
promoting approach.

relationships between the algorithmic components of the proposed approach are graphically
represented in Fig. 4.15.

4.4.2 CHIL Validation
a. System Setup

Verification studies are conducted on the 48V DC microgrid depicted in Fig. 4.16, where M = 5
and N = 6, with vsi = 50V and rsi = 0.1⌦. Line resistances are set as follows

r11,12 = r14,15 = r20,4 = r15,16 = r16,7 = r17,5 = 0.5⌦,

r12,13 = r8,18 = r9,20 = r16,21 = r21,10 = 0.6⌦,

r13,6 = r6,14 = r19,3 = r20,21 = 0.3⌦,

r12,1 = r11,8 = r15,2 = r7,17 = 0.4⌦,

r19,9 = r14,9 = r10,17 = 0.7⌦,

r18,19 = 0.2⌦,

r1318 = 0.9⌦.

(4.43)

The architecture of each active load is as in Fig. 4.5 with th same parameters reported in 4.1.
CHIL validations are conducted using a setup similar to Fig. 4.6, where the communication
network and control schemes are emulated on a dSpace MicroLabBox system, while the phys-
ical microgrid is emulated on a Typhoon HIL604 hardware. Communication and controller
sampling times are 1ms and 0.1ms, respectively.

The control objectives are two fold: 1) Regulate the output voltage of each buffer in the
steady state at v⇤bi = 100V , with a corresponding e⇤i = 22J ; 2) Vary the input impedance, ri,
according to the sparse distributed policy. Both objectives are addressed using the fast voltage
tracker of each boost converter. The resulting scheme is shown in Fig. 4.17. The ith active load
receives the states {xj}j2Ni

, where herein Ni denotes the set of other buffers that communicate
with the buffer i, i.e., Ni = {j|(Ad)ij = 1}. Note that in Fig. 4.17, x = {xi [ {xj}j2Ni

}. As
in the previous control scheme in Fig. 4.3, the near-optimal control policy ui is applied to the
software implementation of (4.6) whose integral provides ēi and r̄i. Then, by translating ēi into
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the reference of the voltage tracker, using (4.2), the two control objectives mentioned above are
attained.

A control policy designed around the half-load operating condition is used and validated for
other operating points, as done in [130] and [124]. The resulting feedback controller requires
the knowledge of local states, xi1 and xi2 , which represent the deviations with respect to the
target operating point. The target stored energy is fixed at e⇤i , thus, the local state xi1 is easily
obtained as xi1 = ēi � e⇤i . Instead, to obtain xi2 , the unknown value of r⇤i , that depends on the
overall operating point, is required. In [124] a low-frequency filter extrapolates the quiescent
part of the input resistance, i.e., r⇤i to determines the corresponding actual deviation. However,
this filter could introduce delays, distortions, and computational demand. Alternatively, in the
proposed approach the following approximation is adopted

xi2 ⇡ r̄i �
C

2

R⇤
i v

2
i

e⇤i
, (4.44)

wherevi is the measured input voltage and ēi represents the energy profile to be tracked by
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Figure 4.18: Comparison of actual states and approximated ones using (4.44).

the power buffer. The knowledge of the target load, R⇤
i , is needed in (4.44). Assuming an

ideal buck converter, R⇤
i is easily related to the desired load RLi

as R⇤
i = (v⇤bi/v

⇤
oi)

2RLi
, where

v⇤oi is the fixed output voltage of the buck converter. The comparison between the actual and
approximated states xi2 in Fig. 4.18 shows the effectiveness of (4.44). The depicted scenario
uses the local feedback policy ui = 2xi1 , i = 6, ..., 11, and varies the final resistive loads of
buffers 6 and 10 from 20⌦ to 10⌦ in t = 0.5s and from 10⌦ to 16⌦ in t = 2s, respectively.

b. Optimizing the Communication Topology

Algorithm 4.6 is employed to solve problem (4.42) for different values of �. Starting from a
fully-connected controller, the TS procedure modifies the current communication topology by
applying a set of moves and defining the solutions to visit. For each visited solution, charac-
terized by a specific communication topology, the ADP with off policy procedure in Algorithm
4.3 finds the corresponding optimal controller. A set of learning data, i.e., ��(tn),  i(tn),
�i(tn), QI(tn), with i 2 L and n = 1, ..., NL, is previously collected and used in every run
of Algorithm 4.3. Such data collecting phase is conducted in the Simulink environment on the
interconnection of the N subsystems (4.29) with half-loads values, i.e. R⇤

i = 50⌦, i = 6, ..., 11.
Second-order polynomial terms in the 12 states are considered as approximating functions in
�(x), while ⌅(x) = x. The learning time intervals are NL = 5000 of 0.01s length. The initial
controller is u(0)

i = 2xi1 , i = 6, ..., 11, the stopping threshold is � = 10�4, and filtered white
noises are used as exploration signals.

The stability and performance, i.e., the average value function, of each visited solution are
evaluated using Algorithm 4.4. In particular, each visited solution could be: 1) Unstable if
Algorithm 4.3 does not converge or if the ratio of the failed stability checks, ⌘F , is higher than
the �F threshold, herein set to 0.01; 2) Stable with a DOA smaller than the training space,
i.e., ⌘V < 1; 3) Stable on the full training space, i.e., ⌘V = 1. The DoA is estimated using
NRs = 6000 randomly-sampled data during the learning stage. Finally, the utility function is

96



4.4. DISTRIBUTED ASSISTIVE CONTROL WITH SPARSITY PROMOTING

0.01 0.120.06 0.25 0.5 21
220

240

280

300
A

v
er

ag
e 

V
al

u
e 

F
u
n

ct
io

n

4

260

!

6

16

25

36

d
A

Figure 4.19: Optimal average value function and cardinality of Ad for several �.

defined with ⇢i(x) = 2, i = 6, ..., 11, and Q(x) = x|QUx, where

QU =

2

6666664

Qd Q2 Q6 Q6 Q2 Q4

Q2 Qd Q2 Q3 Q6 Q2

Q6 Q2 Qd Q4 Q2 Q6

Q6 Q3 Q4 Qd Q4 Q2

Q2 Q6 Q2 Q4 Qd Q2

Q4 Q2 Q6 Q2 Q2 Qd

3

7777775
, (4.45)

with Qd = diag(30, 15) and Qk = diag(�k, 0). All entries of matrix Ac are 1. The decision
variables are the extra-diagonal elements of Ad, i.e., non-symmetric communication links are
allowed while self-loops are present. Each trial of Algorithm 4.6 uses a tabu length of 15 and a
maximum number of iterations of 100.

The average-value function, i.e., V̄ in Algorithm 4.4, and the resulting cardinality, |Ad|, of
the optimal solutions obtained by eight different trials of Algorithm 4.6 for increasing values
of the weight � in (4.42), are reported in Fig. 4.19. Greater values of � promote sparsity with
a decreasing number of active communication links. For � = 0.01, a fully-connected pattern
is obtained, i.e., |Ad| = 36. For � = 4, only local controllers are obtained, i.e., |Ad| = 6.
As expected, increasing sparsity leads to a lower performance evaluated within the randomly-
sampled data during the learning phase.

Figure 4.20 elaborates the results for � = 0.5 and � = 2. Figures 4.20(a), 4.20(b), and
4.20(c) show the visited solutions during the optimization procedure. Figure 4.20(a) presents
the visited unstable solutions. The objective function has an infinite value for both � = 0.5 and
� = 2 despite the gap depicted for presentation purposes only. Figure 4.20(b) shows the visited
stable solutions with ⌘V < 1, which implies higher values of the objective function, especially
when the corresponding DOA is significantly smaller than the training space. The optimal and
visited solutions when ⌘V = 1 are depicted in Fig. 4.20(c). Due to its greater value, � = 2
has higher values of both optimal and visited solutions compared with those of � = 0.5 in Fig.
4.20(c). In both cases, proper operation of TS is exhibited through intensified, i.e., more dense,
searches around optima. Figure 4.20(d) shows the trend of best solutions during TS iterations.
For � = 0.5 and � = 2, the optimum is reached in 38 and 34 iterations, respectively. Finally,
Fig. 4.20(e) shows the optimal communication topologies. Cardinalities of |Ad| for � = 0.5
and � = 2 are 20 and 10, respectively.
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Figure 4.20: Results of the optimization stage: (a) Visited unstable solutions for � = 0.5 and
� = 2; (b) Visited stable solutions with ⌘V < 1 for � = 0.5 and � = 2; (c) Visited and optimal
solutions with ⌘V = 1 for � = 0.5 and � = 2; (d) Best solution for each tabu-search iteration;
(e) Optimal communication topologies when � = 0.5 (left) and � = 2 (right).

c. CHIL Studies

CHIL studies for two optimal control policies, with � = 0.5 and � = 2, are reported in Fig. 4.21
and Fig. 4.22, respectively. Final load resistances are RL6 = 24⌦, RL7 = 18⌦, RL8 = 35⌦,
RL9 = 7⌦, RL10 = 9⌦, and RL11 = 28⌦. As seen in Fig. 4.21(c) and Fig. 4.22(c), both
scenarios consider the step change in load at t = 1s when load 6 doubles its power demand,
i.e., RL6 = 12⌦, at t = 5s when load 7 halves its power demand, i.e., RL7 = 36⌦, at t = 9s
when load 8 doubles its power demand, i.e., RL8 = 17.5⌦, at t = 12s when load 10 halves its
power demand, i.e., RL10 = 18⌦, and at t = 15s when load 11 doubles its power demand, i.e.,
RL11 = 14⌦.

Different communication topologies, as in Fig. 4.20(e), imply different control behaviors
during transients, as highlighted in Fig. 4.21(a) and Fig. 4.22(a). The buffer voltages, vbi,
i = 6, ..., 11, reflect changes in the stored energy according to the distributed control policies
actuated by the scheme in Fig. 4.17.
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Figure 4.21: CHIL validation when � = 0.5: (a) Output voltage of power buffer; (b) Output
voltage at terminal load resistances; (c) Output power of power buffers; (d) Energy-impedance
trajectories.

During the first load change, the topology obtained with � = 0.5 allows power buffers 9 and 10
to change their stored energies and actively assist load 6. With a more sparse communication
topology, i.e., � = 2, the power buffer 6 is assisted only by the power buffer 11. This results
in the increased usage for buffer 6 if compared with the previous topology, see Fig. 4.21(a)
and Fig. 4.22(a) during the first transient. Similar considerations are made for the second load
change, where assistance is provided for the case of � = 2 where buffer 10 assists buffer 7.
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Figure 4.22: CHIL validation when � = 2: (a) Output voltage of power buffer; (b) Output
voltage at terminal load resistances; (c) Output power of power buffers; (d) Energy-impedance
trajectories.

For � = 0.5, buffer 7 does not communicate its states, with no changes in other buffer energies.
For � = 0.5, power buffers 6, 10, and 9, reduce the energy usage of buffer 8 during the third
transient, when compared with the case of � = 2, where buffer 8 is assisted only by buffer
10. Better performances are obtained with � = 0.5 during the fourth and fifth load changes.
Figures 4.21(b) and 4.22(b) show how the load voltages do not substantially change during the
transients due to the buffering capabilities of the power buffers.

Energy-impedance trajectories are reported in Fig. 4.21(d) and Fig. 4.22(d), for the two
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topologies, respectively. Trajectories during the first, second, third, fourth, and fifth load
changes are depicted in blue, orange, red, green, and light blue, respectively. Input impedances
and stored energies are modified to provide assistance according to the optimized communica-
tion topology. For instance, power buffer 9 reacts to changes in buffers 6, 8, 10, and 11, for
� = 0.5. For � = 2, where only a local controller is active, the stored energy remains constant
at its rated value. Less sparse topologies imply more assistance in terms of faster transient re-
sponses with lower energy usage. Note that utility functions, i.e., Q(x) and ⇢i(x), can enhance
the performances of specified buffers, e.g., by increasing the corresponding diagonal weighting
terms in (4.45).

The effectiveness of the proposed method is demonstrated through a comparison with two
other approaches. The first comparison is made with the linear sparsity-promoting algorithm
in [145] and used in [58] and [149] for AC microgrid applications. This algorithm is applied
to the first-order linearization of (4.3). The algorithm is tuned such that the resulting optimal
topology has the same number of active links as the one obtained by the proposed method. The
second comparison is made with an optimal LQR obtained on the first-order linearization of
(4.3) and truncated such that the communication topology coincides with that of the proposed
approach. Comparisons are made for the scenario in Fig. 4.21 and Fig. 4.22, and for various �
parameters, i.e., � = 0.5, � = 1, � = 2, and � = 4 (fully-decentralized controller). While the
computational requirements of the proposed method are higher when compared with [145], the
proposed approach could handle nonlinear systems. In both cases, the optimization procedure is
conducted offline. Since the basis function set ⌅(x) = x provides a linear feedback controller,
the implementation of the proposed real-time controller requires the same computational re-
sources as other controllers obtained via [145] and the truncated LQR.

Figure 4.23 compares the buffer voltages obtained with the proposed approach (continuous
line), [145] (dotted line), and truncated LQR (dashed line), when � = 0.5 (Fig. 4.23(a)), � = 1
(Fig. 4.23(b)), � = 2 (Fig. 4.23(c)), and � = 4 (Fig. 4.23(d)). Note that the communication
topology obtained with [145] differs from the one obtained by the proposed approach. Thus,
when comparing the same load changes, the set of assistive power buffers is different. Com-
pared with both the truncated LQR approach and [145], the proposed method provides faster
recovering times for each buffer subject to the load change, i.e., the time needed to restore
its initial energy level corresponding to vbi = 100V , with a lower maximum energy utilized.
The proposed approach shows higher energy drawn from the assisting buffers, to help with the
faster restoration of the buffer subject to the load change, e.g., during the first load change in
Fig. 4.23(a), during the last load change in Fig. 4.23(b), and during the third load change
in Fig. 4.23(c), see corresponding zoomed parts. The proposed method always shows better
performance compared with the truncated LQR method. On the other hand, due to different
optimized communication topologies, [145] could sometimes show better behaviors, e.g., the
second load change in Fig. 4.23(a), and the third load change in Fig. 4.23(b), where the cor-
responding optimized topologies obtained with the proposed method do not provide assistance
for buffers 7 and 8, respectively. However, the proposed approach shows better overall perfor-
mances on the majority of the loading events, with a smaller overall utility function, as shown
next. It also provides better responses with fully decentralized controllers, as in Fig. 4.23(d).

Finally, Table 4.2 compares the proposed method against the two other approaches in terms
of the resulting utility functions. The base value used to evaluate the percentage variation in the
fifth column is the one obtained by applying the fully-connected optimal controller with
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Figure 4.23: Comparison of the buffer voltages using the proposed approach, [145], and the
truncated LQR: (a) � = 0.5; (b) � = 1; (c) � = 2; (d) � = 4.

� = 0.01. As shown in Fig. 4.19, greater � implies more sparsity with higher performance
values. The proposed approach finds a better compromise between the resulting performance
and the number of active communication links, i.e., by comparing topologies for � = 0.5 and
� = 2, some communication links are activated, and other deactivated, to minimize the impact
on the performance index. The proposed method outperforms other approaches, even with more
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sparse communication topologies (e.g., compare row 6 with rows 4 and 5 in Table 4.2).

Table 4.2: Closed-loop performance comparison between proposed approach, [145], and trun-
cated LQR

� |Ad| Utility Variation %

Proposed 0.01 36 7702.6 0
LQR 36 7910.3 1.4

Proposed 0.5 18 7883.5 2.3
[145] 18 8150.8 5.8
Truncated LQR 18 8187.4 6.3

Proposed 1 16 7964.7 3.4
[145] 16 8158.8 5.9
Truncated LQR 16 8128.8 5.5

Proposed 2 10 8096.5 5.1
[145] 10 8194.8 6.4
Truncated LQR 10 8227.5 6.8

Proposed 4 6 8137.6 5.7
[145] 6 8193.3 6.4
Truncated LQR 6 8292.5 7.7

4.5 Conclusions
In this chapter another application of the ADP approach for the optimal control of complex
nonlinear systems has been presented. The DC microgrid with power buffers for load decou-
pling has been considered as case study. In particular, ADP provided a set of optimal distributed
control policies regarding two different approaches.

The first approach considered the fully nonlinear dynamics of the DC microgrid with power
buffers and a predefined communication topology where the distributed controllers operate.
ADP solves a set of optimal control problems, for each subgroup of power buffers and for a
mesh of loading scenarios, providing a set of optimal assistive control policies. With such poli-
cies, each power buffer helps the neighboring buffers to smooth the transients during abrupt load
changes, improving the performances and stability properties of the DC microgrid. In contrast
with the existing literature, the proposed design is based on optimal cooperative strategies, and
provides direct feedback controllers by solving the HJB equation via ADP. Moreover, it does not
need a turn-based approach, and does not consider a small-signal approximation. Finally, the
effectiveness of the proposed approach has been validated through experimental CHIL studies.

The second approach developed the sparsity-promoting optimal control of power buffers.
Existing distributed solutions for power buffers in DC microgrids do not consider the effects
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of the communication network topologies on the controller performances. Optimal sparse con-
trollers find the best trade-off between the number of the activated communication links and
the minimization of a defined closed-loop performance index. While sparsity promoting op-
timal controllers have been developed for linear systems, a solution for nonlinear system has
not been presented yet. Based on ADP and TS methods, the first attempt in developing spar-
sity promoting optimal control approaches for general nonlinear systems has been proposed in
this chapter. In particular, TS seeks the best solution by applying some moves on the decision
variables matrix, i.e., the communication topology. Controller performance and stability, cor-
responding to each topology, are evaluated using the ADP with off-policy learning algorithm
and a DoA estimation algorithm. While appearing intuitive, showing that less sparse commu-
nication topologies provide better performances is not trivial for nonlinear systems such as DC
microgrids. Through CHIL studies, performance improvement following the use of a less sparse
communication topology is reflected in a better mutual assistance among the buffers, i.e., faster
transient responses with less stored energy utilized. Finally, quantitative comparisons showed
that the proposed approach outperforms existing methods.

4.6 Publications
The results presented in this chapter have been published by the author in [162] and [163].
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Chapter 5

Conclusions and Future Work

In this doctoral thesis, the application of Reinforcement-Learning (RL) techniques for the op-
timal control of complex systems has been discussed. The main goal has been to evaluate the
potential of such methodologies when dealing with different applications, namely the optimal
control aimed at minimizing the actuation energy of a Dielectric Elastomer Actuator (DEA),
and the distributed optimal control of power buffers in DC microgrids.

First, RL-based algorithms that solve optimal control problems for nonlinear systems have
been over-viewed. Based on a framework typically encountered in the RL theory, i.e., the actor-
critic structure, the Adaptive Dynamic Programming (ADP) approach provides approximated
solutions of the Hamilton-Jacobi-Bellman (HJB) equation using neural networks. Different
learning strategies overcome the mathematical intractability of the HJB equation. In particular,
two main solutions have been discussed and compared in Chapter 2: the Policy Iteration (PI)
algorithm with on-policy learning, and the PI algorithm with off-policy learning. Pros and cons
of those two methods have been highlighted. An on-policy method tunes the approximated op-
timal policy during normal system’s operation, overcoming parameters variations. However, its
real-time implementation is computationally intensive, closed-loop stability during the learning
stage is hard to design, and a full or partial knowledge of the system dynamics is required. On
the other hand, the off-policy approach is conducted off-line, i.e., the optimal policy is learned
once a defined batch of information have been previously collected using a stable exploring
policy. Full or partial dynamics knowledge is not required, and the real-time computation of the
resulting policy is reduced. Clearly, an off-policy approach does not take into account parameter
variations, i.e., if some of the system parameters change over time, the off-line learning proce-
dure has to be re-executed. The author suggests that an off-policy method is better suited for
real-world applications, where computational burdens and optimization efficiency are crucial
elements for a successful feedback control system. Real-world applications in Chapter 3 and
Chapter 4 prove such argument. Examples of on-policy and off-policy approaches have been
also presented in Chapter 2. In particular, the last example dealt with the optimal structured
control of symmetrically-coupled systems with partially unknown dynamics. Such example
demonstrated how the off-policy method offers a powerful and versatile mean to tackle optimal
control problems where the system dynamics is unknown, even with complex constraints such
as the structural one.

The objective of the doctoral research has been to develop optimal controllers, using ADP,
able to overcome limits and performances of existing approaches when dealing with two real-
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world applications. Procedures and obtained results have been presented and discussed in the
main body of this thesis, i.e., Chapter 3 and Chapter 4.

The closed loop optimal control of DEAs has been considered in Chapter 3. The objective
has been the minimization of the electric energy required to actuate the device in a position
control scheme. Such goal has never been addressed by the existing literature. The first step
consisted in an accurate physical modeling procedure aimed at predicting the highly nonlinear
behavior of the actuator. In particular, based on thermodynamic considerations, a free-energy
model has been developed to describe the system dynamics. The passivity of such model en-
abled to define and quantify the energy dissipated during the actuation. An experimental iden-
tification procedure validated the effectiveness of both system and energy loss models. After-
wards, the energy minimization task has been formulated according to the optimal control the-
ory, considering the energy loss expression as utility function. Due to the involved nonliearities,
the resulting optimal control problem has been solved via ADP. The off-policy approach has
been employed as a tool to solve off-line several optimal control problems defined according to
different target displacement values. Experimental validations assessed the performances of the
obtained optimal policies as well as other traditional approaches, i.e., Proportional-Integral and
feed-forward controllers. The proposed approach showed significant improvements in terms
of energy savings during both charging and discharging tasks. Furthermore, the experiments
highlighted how the trade-off between speed of response and energy saving is easier to tune
and predict using the proposed approach instead of Proportional-Integral controllers. Finally, a
robustness analysis determined the main parameters affecting the controller performances.

Future developments include the integration of the energy-efficient approach with self-
sensing control schemes, and the application of the proposed method to complex soft robots
structures. Additional studies could also arise when comparing the proposed approach with
discrete-time finite-horizon ADP methods, accounting for the true losses occurring during a
specific finite-time positioning task.

Chapter 4 designed distributed optimal control policies for power buffers in DC microgrids,
using ADP. The objective was to develop distributed assistive control policies, so that each
buffer can benefit from the energy stored in the neighboring buffers when abrupt load changes
occur during normal operations. Power buffers represent a meaningful way to overcome the
stability issues of DC microgrids with no damping elements. Therefore, proper control of such
devices is crucial for the performances of the network. Although distributed and decentralized
control strategies have been presented in the recent literature, in this thesis cooperative control
policies that consider the nonlinear dynamics of the entire microgrid have been developed.
Clearly, the communication network enabling distributed controllers plays an important role.
Regarding to this, two different control approaches, both based on ADP, have been presented.

The first approach considered a fixed communication graph dictated by the physical vicinity
of the buffers. A fully nonlinear model describing the dynamics of each power buffer as well
as their coupling relationships has been developed. The cooperative assistive control task has
been formulated according to the optimal control theory, with a single utility function shared
among all the buffers. The utility function has been designed so that its minimization implies a
better reciprocal assistance. Due to the system’s nonlinearity, ADP is employed to solve a set of
optimal control problems for a mesh of loading scenarios, providing a set of optimal assistive
control policies. Controller/Hardware-In-the-Loop (CHIL) studies showed how such policies
effectively provide assistance to the neighboring buffers, helping to smooth the transients during
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abrupt load changes, and finally improving both performances and stability properties.
The second approach investigated the sparsity-promoting optimal control of power buffers.

Generally speaking, when dealing with distributed control systems, it is desired to make the
adjacency matrix of the communication graph as sparse as possible without jeopardizing con-
trol performances. Sparsity-promoting optimal control problems have been successfully solved
for linear systems using traditional optimization methods. However, the sparsity-promoting
optimal control of nonlinear systems has never been investigated by the existing literature.
The purpose of the presented work has been twofold: 1) To provide an effective tool to solve
the sparsity-promoting optimal control for general nonlinear systems; 2) To develop sparsity-
promoting optimal controllers for power buffers. Note that the existing distributed solutions
for power buffers do not consider the effects of the communication network topology on the
controller performances. The proposed sparsity-promoting algorithm makes use of ADP with
off-policy learning, Tabu Search (TS) optimization, and Domain of Attraction (DoA) estima-
tion methods. In particular, the TS algorithm defines the different communication topologies to
asses, ADP finds optimal controllers according to each of those topologies, while the DoA es-
timation algorithm evaluates their stability. The proposed approach has been applied to the DC
microgrid with power buffers, showing how less-sparse topologies encourage reciprocal assis-
tance. CHIL studies proved the effectiveness of the proposed approach, which outperforms both
in a quantitative and qualitative way the existing linear methods. Finally, this work highlighted
once again the versatile and powerful capabilities of the off-policy method. In fact, the ver-
satility of such strategy allowed an easy integration with TS optimization and DoA estimation
techniques. Moreover, since the off-policy method makes a repeated use of the same collected
data, the computational complexity has been sensibly reduced: a single batch of information
is used to find optimal controllers according to different incrementally-sparse communication
topologies.

Future studies can enhance the proposed strategies by including the development of self-
learning algorithms with plug-and-play features for power buffers. Also, cooperative optimal
control strategies can be developed for DC sources as well. Finally, sparsity-promoting objec-
tives can also be included in finite-time ADP techniques, providing new tools to solve sparsity-
promoting finite-time and discrete-time optimal control problems for nonlinear systems.
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feedback controllers for interconnected systems,” Internation Journal of Control, vol. 84,
no. 12, pp. 2081–2091, Dec. 2011.
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