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He took the paper and held it over the wastebasket and said, “what do you want me to do with 
it?” Then he dropped it in. That was 20 years ago, and ever since, Dr. Bissell and a few others 
have struggled for acceptance of what seemed a radical idea: Gene mutations are part of the 
process of cancer, but mutations alone are not enough. Cancer involves an interaction between 
rogue cells and surrounding tissue. The idea seemed messy and unduly complicated, and cancer 
genes seemed comparatively clear-cut. So it was often ignored or dismissed. Now, though, more 
and more researchers are plunging into those murky depths. Some researchers are taking a fresh 
look at ideas that were dismissed.

—International Herald Tribune (2009: 7)

Introduction

Management research on knowledge management and innovation has underscored the 
conditions that facilitate technological innovation and the factors that enable firms to appro-
priate value from it, such as firms’ complementary assets (e.g., James, Leiblein, & Lu, 2013; 
Teece, 1986). Whereas early research considered the implications for firms’ innovative out-
put (e.g., Henderson & Cockburn, 1994), more recent work has paid attention to the value of 
innovations (Hess & Rothaermel, 2011; Phene, Fladmoe-Lindquist, & Marsh, 2006). A dis-
tinction can be made between the financial returns that a firm can derive from its commer-
cialized innovations and the scientific value of these innovations, which relates to their 
impact on subsequent innovations. The scientific value of an innovation depends on industry 
conditions, such as the institutional environment (Mueller, Rosenbusch, & Bausch, 2013), 
the innovative efforts of competitors (Katila & Chen, 2008), and the geographic proximity of 
inventors (Audretsch & Feldman, 1996; Jaffe, Trajtenberg, & Henderson, 1993). This value 
is further driven by organizational characteristics, such as the firm’s absorptive capacity 
(Cohen & Levinthal, 1990) and combinative capability (Kogut & Zander, 1992), as well as 
by the behavior of individual inventors (Felin & Hesterly, 2007; Zucker, Darby, & Brewer, 
1998).

Besides environmental, organizational, and individual mechanisms, the value of an inno-
vation for the scientific community is associated with the attributes of knowledge elements 
that underlie the innovation. The knowledge management literature has underscored the 
organizational processes and capabilities that support the integration, transfer, and combina-
tion of knowledge elements (Grant, 1996), but has paid less attention to the properties of 
knowledge that drive the value of particular innovations. One exception has been research on 
the tacit versus explicit nature of knowledge (Kogut & Zander, 1992). Here we focus on the 
maturity of knowledge elements that can shape the scientific value of innovations.

Studying the knowledge elements incorporated in particular innovations calls for shifting 
the unit of analysis from the firm to the single innovation. In an effort to shed light on the 
association between the scientific value of an innovation and its underlying knowledge ele-
ments, we study how the maturity of the knowledge embedded in that innovation drives its 
scientific value. Nevertheless, because we study innovations in the context of commercial 
firms, we also account for relevant organizational aspects that can affect the innovations’ 
scientific value.

We advance management research that has underscored the importance of the temporal 
dimension in knowledge recombination (Katila, 2002; Liebowitz & Margolis, 1995; Nelson 
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& Winter, 1982). This research has debated the merits of relying on mature versus recent 
knowledge and has offered conflicting perspectives on the innovative implications of knowl-
edge maturity. More recent research calls for a contingency approach to uncover the circum-
stances under which knowledge maturity enhances the scientific value of innovations 
(Nerkar, 2003). We contribute to this stream of research by demonstrating that the complex 
implications of knowledge maturity are contingent on distinct types of knowledge distance 
and on the extent to which this knowledge has been adopted in the industry. In light of these 
contingencies, inventors can improve their approaches to incorporating prior knowledge ele-
ments in their innovations, and enhance the scientific value of those innovations.

An innovation can be defined as “a new idea, which may be a recombination of old ideas, 
a scheme that challenges the present order, a formula, or a unique approach” (Van de Ven, 
1986: 591). Accordingly, an innovation often embeds knowledge elements that have been 
developed in the past (Arthur, 2009; Kogut & Zander, 1992; Nelson & Winter, 1982). To 
capture knowledge maturity, we examine the time elapsed between the original discovery of 
knowledge and when it is incorporated in an innovation.

Scholars have debated the merits of relying on recent versus mature knowledge in devel-
oping innovations. Some have argued that building on recent knowledge enables a firm to 
adapt its innovations to changing requirements (Eisenhardt, 1989; Sørensen & Stuart, 2000) 
and introduce novel innovations. Thus, mature knowledge tends to become obsolete, since it 
is subject to core rigidities that limit adaptation (Leonard-Barton, 1992). Accordingly, this 
research suggests that the value of knowledge for the scientific community appreciates with 
its recency. Others have instead suggested that successful innovations often incorporate 
mature knowledge that has been already tested in use, which can eliminate some costly errors 
in the innovation process (Nerkar, 2003) and enhance the reliability of the firm’s new prod-
ucts (Katila, 2002). Mature knowledge can also support radical innovation, as demonstrated 
in Corning’s development of fiber optics, which is considered a new application for a mature 
technology (Cattani, 2006). Hence, an inventor can successfully employ mature knowledge 
in certain niches where that knowledge had not been used in the past (Abernathy & Clark, 
1985; Adner & Snow, 2010). In addition, the benefits of incorporating new knowledge can 
be offset by technological uncertainty and limited application experience (Heeley & Jacobson, 
2008). In sum, prior research has offered inconsistent arguments and evidence about the 
implications of knowledge maturity for the scientific value of innovations.

Few studies have attempted to reconcile these opposing views. Katila’s (2002) study of 
the robotics industry revealed that mature intraindustry knowledge undermines product 
development, whereas mature extraindustry knowledge promotes it. However, her study 
examined the effect of knowledge maturity on how many new products a firm produced, 
rather than on the scientific value of innovations. In addition, Nerkar (2003) reported that 
mature knowledge may be fruitful, especially if the inventor combines it with more recent 
knowledge, so that the value of an innovation increases in decreasing rates with knowledge 
maturity. But although his study contributes to the understanding of knowledge maturity, it 
did not consider contingencies that can shape its effects. Finally, Heeley and Jacobson (2008) 
revealed an S-shaped association between knowledge recency and a firm’s stock market 
performance. They concluded that intermediate levels of knowledge maturity can both 
improve and undermine performance. But because their study focused on firm-level perfor-
mance rather than on the value of particular innovations, it disregarded the heterogeneity of 
knowledge maturity across the firm’s various innovations. Studying the implications of 
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knowledge maturity for a firm’s productivity and economic return limits understanding of the 
mechanisms that drive the innovation process and the conditions under which knowledge 
maturity enhances the scientific value of innovations. In sum, prior research has offered 
mixed views and evidence on the implications of knowledge maturity, thus leaving open the 
question of how knowledge maturity affects the scientific value of a particular innovation. 
Such an effect may be nonlinear and contingent on various characteristics of the underlying 
knowledge elements.

To better understand the implications of knowledge maturity, we shift attention from the 
firm to the innovation as the unit of analysis. We seek to reconcile the conflicting perspec-
tives on knowledge maturity by studying its curvilinear effect on innovation value. We fur-
ther examine the interplay of knowledge maturity with contingencies relating to technological 
and geographical distances from the inventor’s knowledge base as well as to the extent to 
which this knowledge has been adopted in the industry. These domains of knowledge dis-
tance and the mechanism of knowledge adoption have been central to research on innovation 
(e.g., Phene et al., 2006; Rothaermel & Alexandre, 2009), yet their interplay with knowledge 
maturity has been thus far ignored.

We contribute to innovation research by revealing the curvilinear effect of knowledge 
maturity on innovation value and positing that it is contingent on different types of knowl-
edge distance. We contend that inventors can enhance the value of an innovation to the extent 
that they incorporate moderately recent knowledge. As knowledge begins to mature, it 
becomes more reliable and applicable, thus enhancing the scientific value of innovations. 
Yet, beyond a certain threshold, overly mature knowledge may become obsolete or at least 
more difficult to retrieve, understand, and apply, characteristics that undermine the value of 
innovations. We further advance management research by elucidating the contingent value of 
knowledge maturity. Specifically, we argue that technological distance attenuates the bene-
fits of knowledge maturity, since limited familiarity undermines the reliable use of mature 
knowledge while making it more difficult to retrieve and apply. In turn, geographical dis-
tance reinforces the benefits of mature knowledge by contributing to its novelty and delaying 
its obsolescence. Finally, we claim that the broader the adoption of mature knowledge in the 
firm’s industry the more its value contribution is undermined.

Our analysis of 5,575 patents issued to 283 biotechnology firms between 1985 and 2002 
grants support for the inverted U-shaped effect of knowledge maturity on innovation value as 
well as for the knowledge adoption contingency and the disparate effects of knowledge dis-
tance. By examining knowledge distance along temporal, technological, and geographical 
domains, and by studying the implications of knowledge adoption in the industry, we offer 
insights into the mechanisms underlying the scientific value of innovations. Hence, we con-
tribute to the literature on knowledge management and innovation by underscoring the tem-
poral dimension of knowledge search, revealing the contingent value of knowledge maturity, 
and shifting focus from the commercial to the scientific value of innovations.

Theory and Hypotheses

Knowledge Maturity and the Scientific Value of Innovations

Innovation often entails searching for and combining knowledge elements that have been 
developed in the past. Some innovations integrate knowledge elements that were developed 
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at different periods (Fleming, 2001). For instance, mechatronics emerged in the late 1970s 
from the fusion of mature mechanical technologies with the embryonic electronics technolo-
gies (Freddi, 2009). The maturity of knowledge refers to the time elapsed between the origi-
nal discovery of that knowledge and its incorporation in a new innovation. This time interval 
can affect the scientific value of the innovation. We focus on the value of an innovation with 
respect to its quality and its potential impact on subsequent innovation efforts of the scientific 
community (Phene et al., 2006; Sorenson, Rivkin, & Fleming, 2006) rather than on its com-
mercial value for the firm. This allows us to leave out considerations of value appropriation 
and commercialization. We conjecture an inverted U-shaped association between knowledge 
maturity and the scientific value of an innovation, so that moderately mature knowledge is 
expected to be the most valuable.

Although the most recent knowledge tends to be novel, embedding it in innovations may 
limit their scientific value because of inexperience in use and limited technological applica-
bility. As knowledge begins to mature, it enhances the scientific value of innovations that 
embed it by increasing their reliability and applicability.

First, an innovation relying on increasingly mature knowledge is more reliable, since that 
knowledge is likely to have already been put into practice. Even if an inventor is not familiar 
with that knowledge, greater information on its nature and usage is available in the industry, 
which makes it easier for the inventor to learn it. By incorporating sufficiently mature knowl-
edge, the inventor can generate temporally consistent patterns of innovation that enhance 
subsequent innovation ability (Turner, Mitchell, & Bettis, 2013). Since knowledge maturity 
initially facilitates the knowledge’s codification and experience in use, the inventor can bet-
ter understand it. Relying on relatively mature knowledge enables the inventor to more effec-
tively assess the merits of knowledge and thus produce useful and more reliable innovations 
that rely only on knowledge that has been tested and proved useful in the past. Furthermore, 
sufficiently mature knowledge can be subjected to validation over time, so incorporating it in 
an innovation enables the inventor to reduce the likelihood of errors and improper applica-
tion. For example, despite the numerous benefits arising from adopting the diesel engine in 
the rail industry, its use presented a number of technical problems in the first few years after 
its introduction; engines incorporating this technology experienced low power output den-
sity, reduced maximum rotating speed, and high combustion noise. The reliability of an inno-
vation is likely to increase with the maturity of knowledge in decreasing rates (Nerkar, 2003), 
since after inventors gain sufficient experience with particular knowledge, the innovation’s 
reliability can be only marginally improved.

Second, an innovation incorporating the most recent knowledge is likely to suffer from 
limited technological applicability, especially when the industry is nascent and users of the 
innovation need to be educated about the technology before they can apply it. As knowledge 
begins to mature, innovations that embed it are likely to have been applied in various ways. 
For example, the scientific value of the touch-screen technology used in the iPhone smart-
phone increases with the number of touch-screen applications that software firms develop 
over time. Therefore, as inventors retrieve increasingly mature knowledge, the more likely 
their innovations are to generate valuable applications (Nerkar, 2003). This is also typical 
when industry conditions have changed since the original knowledge was developed—for 
instance, if complementary assets or enabling technologies gradually become available and 
support the innovation. In the example of common rail technology, 60% of the performance 
of the diesel engine depends on the injection system, which reached maturity only in 1994 
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following the shift from mechanical to electronic components. This complementary technol-
ogy helped maintain a consistent injection pressure that reduces exhaust emissions, makes 
fuel cleaner, lessens engine combustion noise, and enables higher-power output density. 
Until that time, electronics were considered unsafe and unreliable. Furthermore, as knowl-
edge begins to mature, new applications may emerge that can enable firms to leverage an 
innovation in ways unknown before. Accordingly, a successful innovation may result from 
the redeployment of mature knowledge in different domains (Adner & Levinthal, 2002; 
Cattani, 2005). Hence, as knowledge begins to mature, it is likely to initially enhance the 
value of an innovation. Yet, eventually, as it continues to mature, its marginal contribution 
diminishes, because its reliability has been already established and most of its technological 
applications have been already explored, thus constraining the discovery of new applications 
for the innovation.

Beyond a certain threshold, relying on increasingly mature knowledge can be detrimental 
to the value of an innovation because of its possible obsolescence and impediments associ-
ated with its retrieval and application. Specifically, the novelty of knowledge is likely to 
diminish over time as new discoveries advance the knowledge frontier, so that overly mature 
knowledge can become obsolete (Tushman & Anderson, 1986). Thus, an innovation embed-
ding overly mature knowledge may fail to meet current user requirements if it incorporates 
knowledge that is no longer relevant or is subject to historical problems that transpire in new 
ways (Leonard-Barton, 1992). Consequently, as knowledge becomes overly mature, its obso-
lescence can limit an innovation’s scientific value.

Besides its obsolescence, overly mature knowledge may be difficult to retrieve and apply. 
As knowledge becomes overly mature, forgotten practices, lost records, and turnover of 
R&D personnel (Argote, 1999) may facilitate memory decay, which in turn reduces the 
inventor’s ability to correctly recall, retrieve, and apply overly mature knowledge in an inno-
vation. Consequently, the innovation may necessitate increasing effort to retrieve overly 
mature knowledge. Moreover, inventors are likely to lack the training and expertise needed 
to apply overly mature knowledge, since the personnel involved in the innovation process 
may be better trained with recent, more commonly used technologies than with outdated 
ones. Thus, memory decay may lead the inventor to misapply overly mature knowledge or to 
experience impediments with its application (Sørensen & Stuart, 2000). Incorporating overly 
mature knowledge can therefore result in less valuable innovation.

Overall, the reliability and applicability of knowledge are likely to enhance the value of 
an innovation at decreasing rates as the knowledge begins to mature. In turn, knowledge 
obsolescence and impediments associated with memory decay are likely to diminish the 
value of the innovation at increasing rates as knowledge further matures (Figure 1). 
Moderately mature knowledge is thus likely to contribute the most to the value of the innova-
tion. The scientific value of the innovation is likely to initially increase, but beyond a certain 
threshold, we expect it to decline as a result of the maturation of knowledge incorporated in 
that innovation.

Hypothesis 1: Knowledge maturity will exhibit an inverted U-shaped effect on the scientific value 
of the resulting innovation, so that this value first increases and then decreases as its underlying 
knowledge base matures.

The distance between the inventor’s knowledge base and the knowledge incorporated in 
the new innovation can shape the effect of knowledge maturity on the scientific value of that 
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innovation. According to prior research (e.g., Phene et al., 2006), an inventor can seek proxi-
mate versus distant knowledge in the technological and geographical domains. Together with 
knowledge maturity, these domains shape the outcome of the innovation process by influenc-
ing both the novelty of the acquired knowledge and its absorption. Previous studies have 
underscored some of the main effects of knowledge distance on innovation value along these 
dimensions (Rosenkopf & Nerkar, 2001; Rothaermel & Alexandre, 2009; Stuart & Podolny, 
1996), but we provide a more nuanced account of their implications by considering their 
interplay with knowledge maturity. We focus on the technological and geographical dis-
tances of knowledge (Phene et al., 2006) to study how they shape the value of an innovation 
that embeds mature knowledge. We consider knowledge to be technologically proximate if it 
originates from within the inventor’s industry, and distant if it originates from outside that 
industry (Katila, 2002). Geographical distance is defined as the distance between the home 
countries of the knowledge developers and the inventors using that knowledge.

Knowledge Distance and the Scientific Value of Innovations

An inventor that embeds technologically distant knowledge in an innovation is likely to 
limit the reliability of mature knowledge and facilitate its obsolescence, while exacerbating 
retrieval and application impediments associated with its use, which in turn reduce the matu-
rity level at which innovation value is maximized. First, when the inventor incorporates 
mature knowledge beyond its familiar technological domain, the necessary expertise for 
assessing such knowledge may be lacking (Cohen & Levinthal, 1990), thus making mature 
knowledge even less accessible. Distance from the technological domain reinforces the 
inventor’s inability to correctly assess the merits of mature knowledge, and that inability 
restricts the reliable use of the mature knowledge in the innovation. The reliability of knowl-
edge suffers when the inventor’s technological expertise is exceeded, because of limited 
familiarity and experience with mature knowledge. Thus, even though mature knowledge is 

Figure 1
Mechanisms Driving the Association Between Knowledge Maturity and Innovation 

Value

Knowledge Maturity

Innovation Value

- Reliability
- Applicability

- Obsolescence
- Memory decay
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typically reliable, the extension of technological distance makes it difficult to ensure the reli-
able use of that knowledge, thus further reducing the scientific value of the innovation that 
relies on it.

Second, embedding knowledge that rests beyond the current technological domain exac-
erbates the challenges of retrieving, interpreting, and applying mature knowledge in the inno-
vation, given that such knowledge becomes distant both temporally and technologically. As 
a result, it becomes more difficult, costly, and time-consuming for the inventor to recognize, 
evaluate, and retrieve mature knowledge that is also technologically distant (Cohen & 
Levinthal, 1990; Wang & Li, 2008). In addition, the complementary expertise needed to 
leverage such mature knowledge is likely to be lacking, which hinders its successful applica-
tion in the innovation. Acquiring unrelated knowledge elements may cause information over-
load, confusion, and diseconomies of scope (Ahuja & Lampert, 2001), since the innovation 
entails both noncurrent and heterogeneous knowledge. This lack of coherence may prevent 
the inventor from leveraging a restricted bundle of close-knit skills, thus undermining the use 
of mature knowledge in the innovation (Nesta & Saviotti, 2005; Perez & Soete, 1988). 
Developing such competencies entails restricting knowledge exploration so that it remains in 
proximity to the current knowledge base. Relying on technologically distant knowledge for 
which the inventor’s available knowledge base is insufficient may thus further limit experi-
ence and familiarity with mature knowledge. Limited expertise and possible misapplication 
of mature knowledge can in turn impair the scientific value of the innovation.

Finally, technological distance exacerbates the risk of obsolescence inherent in the use of 
mature knowledge in the innovation. Lack of familiarity with knowledge that is distant from 
the current technological domain makes it more difficult to identify possible alternative com-
binations and uses for mature knowledge in the innovation (Kogut & Zander, 1992). 
Consequently, it may be impossible to extend the productive lifespan of an innovation that 
relies on such knowledge. In sum, the technological distance of knowledge is expected to 
limit the scientific value of the innovation incorporating mature knowledge, so that maxi-
mum innovation value is reached for more recent knowledge elements.

Hypothesis 2: Reliance on more technologically distant knowledge will decrease the linear effect of 
knowledge maturity on the scientific value of the innovation resulting from that knowledge.

Technological distance can undermine the relevance and usefulness of mature knowledge 
because of limits to absorptive capacity and the need for technological compatibility or even 
complementarity with the current knowledge base. In contrast, geographical distance does 
not preclude successful recombination of knowledge and is less likely to impose impedi-
ments on knowledge transfer and internalization. In fact, whereas technological distance can 
limit the contribution of knowledge maturity to the value of an innovation, we expect geo-
graphical distance to improve that contribution, thus extending the maturity of knowledge at 
which innovation value is maximized. By incorporating geographically distant knowledge, 
the inventor can enhance the novelty of an innovation that relies on mature knowledge and 
reduce the likelihood of its obsolescence.

Because of the localized nature of knowledge and the ensuing geographically bounded 
nature of knowledge externalities that are reinforced by cross-national institutional and cul-
tural differences (Audretsch & Feldman, 1996; Jaffe et al., 1993; Mueller et al., 2013; Phene 
& Tallman, 2002), geographical distance can limit the accessibility of knowledge (Freel, 
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2003; Oerlemans & Meeus, 2005). Hence, knowledge that is common in its country of origin 
may be perceived as novel when applied in an innovation that is introduced in a distant coun-
try (Cantwell, 1989). Increasing geographical distance of embedded knowledge can thus 
enable the inventor to revitalize mature knowledge and enhance the scientific value of the 
innovation.

The fact that mature knowledge is newly applied in a certain geographical region contrib-
utes to its novelty in that region under the assumption that knowledge originating from a 
different country is likely to be distinctive. Indeed, research on national innovation systems 
has demonstrated that different nations develop distinctive technological competencies by 
leveraging unique knowledge bases. Consequently, the geographical distance of knowledge 
is often associated with its distinctiveness (Frost, 2001). Cross-national differences in knowl-
edge characteristics have been ascribed to distinctive national cultures (Hofstede, 1980), 
different regulatory systems, country-specific practices and rules, unique national resource 
endowments, and distinctive industry structures that direct innovation in unique paths (Porter, 
1990). Such cross-national differences can influence both the type of knowledge created and 
the process by which it is created. For instance, cross-national differences may explain a 
tendency to expand abroad in search of knowledge that is not available in the home country 
(Florida, 1997; Serapio & Dalton, 1999). Therefore, by seeking geographically distant 
knowledge, the inventor can enhance the perceived uniqueness of mature knowledge that is 
incorporated in the innovation.

Moreover, incorporating mature knowledge in an innovation that is developed in distant 
locations reduces the likelihood that it will become obsolete in its country of application even 
if it has already been overexploited in its country of origin. Therefore, seeking geographi-
cally distant knowledge reduces the hazard of mature knowledge becoming obsolete 
(Leonard-Barton, 1992). Overall, geographical distance is expected to enhance the value of 
an innovation incorporating mature knowledge, so that maximum innovation value is reached 
for more mature knowledge elements.

Hypothesis 3: Reliance on more geographically distant knowledge will increase the linear effect of 
knowledge maturity on the scientific value of the innovation resulting from that knowledge.

Industry Adoption of Knowledge and the Scientific Value of Innovations

The scientific value of an innovation relying on mature knowledge derives in part from 
the relative novelty of such knowledge, which in turn depends on the extent to which it has 
been adopted in the industry. Scholars have considered the prior use of knowledge (e.g., 
Katila & Ahuja, 2002), but have paid less attention to the extent to which such knowledge has 
been used in various innovations. We contend that the use of mature knowledge in multiple 
innovations can limit the prospects of new applications while facilitating knowledge obsoles-
cence and undermining the novelty of an innovation that relies on that knowledge.

Whereas knowledge maturity increases the applicability of innovations that leverage that 
knowledge, the adoption of mature knowledge in the industry counters this process by limit-
ing the number of remaining applications. An innovation that incorporates well-received 
industry knowledge can support related innovations (Marinova, 2004) and contribute to the 
emergence of industry standards (Gawer & Cusumano, 2002). However, the adoption of 
knowledge in the industry may limit the value of any innovation whose perceived value is 
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already reduced as a result of its reliance on mature knowledge. The availability of possible 
applications for an innovation is eventually exhausted not only because of the prolonged time 
that has passed since the corresponding knowledge was first introduced, but also because of 
the popular use of that knowledge by multiple firms, which limits the potential for discover-
ing novel applications that leverage that knowledge. Thus, the adoption of mature knowledge 
in the industry reduces the scientific value of the corresponding innovation.

As knowledge is adopted and becomes widely available in the industry, its distinctiveness 
is limited (Ahuja & Katila, 2004; Rothaermel & Boeker, 2008), and its potential contribution 
to the value of the innovation incorporating it is reduced (James et al., 2013). The value of a 
particular innovation may decline over time as the inventor faces greater challenges in gen-
erating novel combinations of adopted knowledge elements (Kogut & Zander, 1992; Messeni 
Petruzzelli & Savino, 2012). Assuming a limited number of possible knowledge recombina-
tions, the adoption of knowledge in the industry facilitates exploitation. Hence, the wide 
adoption of mature knowledge diminishes the value of an innovation relying on that knowl-
edge more rapidly as it becomes outdated. Moreover, because the knowledge dissemination 
is time-consuming, as mature knowledge is adopted by many firms in the industry it becomes 
susceptible to the hazard of leaking to competing innovations. To the extent that it is com-
monly used in a large number of innovations, over time, the adopted knowledge becomes 
more transparent and codified (Zander & Kogut, 1995), thus progressing on the learning 
cycle associated with established knowledge (Zollo & Winter, 2002). Specifically, the 
increased codification of mature knowledge that becomes widely adopted in the industry 
facilitates imitation, thus limiting the uniqueness of any innovation that incorporates mature 
knowledge. As the number of innovations using mature knowledge increases, the scientific 
value of an innovation that incorporates such knowledge diminishes because of potential 
substitution by related innovations. In sum, the adoption of mature knowledge in the industry 
limits its uniqueness while facilitating its obsolescence, so that maximum innovation value is 
reached for more recent knowledge elements.

Hypothesis 4: Reliance on widely adopted knowledge will decrease the linear effect of knowledge 
maturity on the scientific value of the innovation resulting from that knowledge.

Research Method

Research Setting and Data

The U.S. biotechnology industry serves as the setting for testing our hypotheses. This set-
ting is suitable for several reasons. First, biotechnology has revolutionized the process by 
which drugs are discovered and developed, so that it leverages a combination of mature and 
recent knowledge and expertise (Rothaermel & Boeker, 2008). Second, this industry relies 
on multiple technologies, involving molecular biology, immunology, genetics, combinatorial 
chemistry, and bioinformatics (Sørensen & Stuart, 2000), underscoring the need to search for 
knowledge across technological domains (Phene et al., 2006). Third, besides its technologi-
cal diversity, the biotechnology industry exhibits geographical diversity, as shown by differ-
ences across national systems of biotechnology innovation (Bartholomew, 1997). Fourth, 
because patents are an effective means for protecting intellectual property in the biotechnol-
ogy industry (Albert, Avery, Narin, & McAllister, 1991; Hoang & Rothaermel, 2010; Phene 
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et al., 2006; Rothaermel & Boeker, 2008), prior research supports our reliance on patent-
based measures for studying the scientific value of innovations in this setting (Somaya, 
2012). Finally, because the biotechnology industry originated in the United States and since 
U.S. firms typically file for domestic patents (Phene & Almeida, 2008), our focus on U.S. 
firms ensures the representativeness of our sample.

Our sample corresponds to the innovations of 283 U.S. firms, both public and private, 
listed in the BioScan database, that filed for at least one biotechnology patent with the U.S. 
Patent and Trademark Office (USPTO) between 1985 and 2002.1 The cited patents cover the 
full history of modern biotechnology since Cohen and Boyer’s invention involving recombi-
nant DNA in 1973. We focused on patents issued in the United States because it is almost 
compulsory to first patent there, in the largest market for biotechnology. The final sample 
included 5,575 patents (focal patents) filed by the 283 firms. For this set of focal patents, we 
identified 51,151 cited patents (previously issued patents cited by the focal patents) that 
served for assessing the knowledge incorporated in innovations. We also collected data on 
the 57,503 subsequent patents that cite the focal patents, to measure the value of the resulting 
innovation. We gathered firm-level data from multiple sources, including SEC filings for 
publicly traded firms, press releases, and corporate websites. Missing values (0.2% of the 
observations) were treated with listwise deletion (Allison, 2000).

Variables

Dependent variable. The scientific value of an innovation refers to its quality (Phene et 
al., 2006), impact (Nerkar, 2003), and potential contribution to further technology develop-
ment from the standpoint of the scientific community (e.g., Albert et al., 1991; Sorenson et 
al., 2006; Trajtenberg, 1990). Thus, the value of an innovation (InnovationValue) was mea-
sured by the number of forward citations received by a focal patent until 2009 (e.g., Cattani, 
2005; Singh, 2008). Forward citations to a patent serve as an appropriate proxy for the value 
of an innovation as captured by industry awards, as perceived by technology experts, and 
with respect to its social value (Trajtenberg, 1990). Patent citations are assumed to furnish 
essential technological and economic information. First, patented innovations are for the 
most part the result of costly R&D conducted by profit-seeking firms. Thus, when they invest 
in an innovation disclosed in a prior patent, the resulting (citing) patents signify that the cited 
innovation is valuable. Second, citations often occur over an extended period, which allows 
for dissipation of the uncertainty regarding the cited patent’s technological viability and com-
mercial use. Therefore, citations that are observed years after the cited patent was granted 
indicate the impact of the patented innovation (Nerkar, 2003).2 To capture the value of an 
innovation, we incorporated information on all citing patents, including non-biotechnology 
patent classes. Since patents from different years have different “windows of opportunity” 
to be cited in our data set, directly comparing patent citations across patents from different 
years would be inappropriate. To overcome this, we include year fixed effects and patent 
age in our models, so that systematic intertemporal differences are accounted for (Jaffe & 
Trajtenberg, 2002).

Independent variable. Following prior research (Katila, 2002; Rosenkopf & Nerkar, 
2001; Sørensen & Stuart, 2000), for each focal patent we measured the average maturity of 
patents cited by that patent. The maturity of knowledge (KnowMaturity) was measured as 
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the average number of years elapsed since the filing date of patents cited in the focal patent 
document. The maximum value of knowledge maturity observed for a single cited patent 
was 34 years. Backward citations to patents describe technical information relating to the 
knowledge upon which the focal patent is based (Walker, 1995). Prior research has validated 
the use of patent citations for capturing knowledge search activities (e.g., Albert et al., 1991; 
Trajtenberg, 1990). Hence, patent citations can serve for measuring the maturity of knowl-
edge elements incorporated by the focal patent.

Moderating variables. We operationalized moderating variables based on information 
on backward citations listed in each patent document. Information on patent classes served 
for determining technological distance. The assignee’s country of origin served for calculat-
ing geographical distance, and the number of cited patents served for calculating knowl-
edge adoption. Specifically, for each focal patent, the technological distance of knowledge 
(TechDist) was measured as the ratio of the number of backward citations assigned to pat-
ent classes that are not associated with the biotechnology industry to the total number of 
backward citations (Phene et al., 2006). For each focal patent, the geographical distance 
(GeoDist) of knowledge was measured as the distance in thousands of miles from the home 
country of the focal patent’s assignee to the home countries of the inventors associated with 
the cited patents. To calculate this measure, we considered the firm’s subsidiary in which the 
innovation took place rather than its headquarters location and averaged the distance across 
all inventors listed for a patent. The resultant value was further averaged across all patents 
cited by the focal patent. This approach is preferable to relying only on the location of the 
first inventor (e.g., Phene et al., 2006; Singh, 2005) since, unlike in scientific publications, 
where the first author typically takes the lead in conducting the research, in patent applica-
tions the first inventor listed often plays a formal role as principal investigator or owner 
of the research center or laboratory that conducts the research. Finally, for each focal pat-
ent, we followed Huang and Murray (2009) and Ziedonis (2004) in measuring the adoption 

of knowledge in the industry (KnowAdoption) as 
1

1n

NASSCITED

NCITED
i

ii

n

=
∑ , where NASSCITEDi 

indicates the number of different firms that have previously cited patent i, which is cited by 
the focal patent, while NCITEDi indicates the count of all patents that have previously cited 
that patent. This measure takes into account the relative concentration of the citing patents, 
thus capturing the number of distinctive innovations relying on a particular knowledge ele-
ment. Knowledge adoption and the technological and geographical distances of knowledge 
search served as moderators of the relationship between the scientific value of an innovation 
and knowledge maturity.

Control variables. The main effects of our moderators served as control variables. In 
addition, we incorporated several control variables considered by prior research that may 
affect the value of innovations. For each focal patent, we controlled for the age of patent 
(PatentAge) by counting the number of years elapsed since the filing date of a focal patent 
until the year 2009, thus accounting for right censoring, that is, the risk that an older patent 
may receive a greater number of forward citations because it can accumulate citations for 
a longer time. We also took into account the diversity of knowledge maturity (KnowMatu-
rityDiversity), measured by the standard deviation in the number of years elapsed since the 
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filing date of patents cited by the focal patent (Katila, 2002). As this time spread increases, 
knowledge recombination may become more challenging yet fruitful (Nerkar, 2003). Next, 
we controlled for interorganizational collaboration (InterOrgCollab) in the innovation pro-
cess by counting the number of applicants to which the patent was assigned. In addition, we 
considered the effects exerted by the different dimensions of search. Following Capaldo and 
Messeni Petruzzelli (2011), we measured search span (SearchSpan) as the number of differ-
ent three-digit patent classes assigned to a patent by the USPTO. Search depth and search 
scope were evaluated based on the measures proposed by Katila and Ahuja (2002). Specifi-
cally, search depth (SearchDepth) was measured for each focal patent as the average number 
of times a patent was repeatedly cited during the past 5 years. In turn, search scope (Search-
Scope) was measured for each patent as the share of citations that could not be found in the 
list of patents cited in the prior 5 years. In addition, we controlled for the number of claims 
per patent (Claims) (Lanjouw & Schankerman, 2004), references to scientific knowledge 
(SciKnowledge) measured by the number of nonpatent references each focal patent cited 
(Narin, Hamilton, & Olivastro, 1997), and number of forward self-citations (SelfCitations).

Besides controls at the innovation level, we controlled for relevant organizational attri-
butes by considering the firm’s patent stock (PatentStock) as a proxy for its expertise, capa-
bility, or propensity to innovate (e.g., Hall, Jaffe, & Trajtenberg, 2005). Firms with greater 
patent stocks are more likely to successfully finalize the patenting process, so this variable 
controls for possible survivor bias (see also Nooteboom, Vanhaverbeke, Duysters, Gilsing, & 
van den Oord, 2007). The firm’s patent stock was measured as the natural logarithm of the 
number of patents that the firm filed with the USPTO during the 5 years preceding the filing 
date of a focal patent. We also controlled for the firm’s innovation performance (Ahuja & 
Lampert, 2001; Nerkar, 2003) by counting the number of thousands of forward citations 
received by the firm prior to the filing of the focal patent (InnovationPerformance). We fur-
ther accounted for such performance by measuring the firm’s proportion of patent applica-
tions that were not approved by the USPTO (InnovationFailure). High values of this measure 
indicate inability to innovate successfully. In addition, we controlled for the firm’s size, 
which may affect its innovation ability, by computing the natural logarithm of the average 
number of firm employees during the 5 years prior to the filing date of each sampled patent 
(FirmSize). This proxy is suitable for measuring firm size in the biotechnology industry, 
because many of these firms do not yet generate revenue, while their assets are mainly intan-
gible (e.g., Rothaermel & Boeker, 2008). Moreover, the size of the team involved in knowl-
edge development may affect the value of the resulting innovation as a result of economies 
of specialization. In fact, large teams may have access to a wide pool of knowledge (Singh, 
2008). Therefore, we controlled for team size (TeamSize), measured as the number of inven-
tors associated with each patent. We also controlled for the firm’s public status (PublicFirm) 
using a dummy variable that receives a value of one if the firm is publicly traded at the filing 
date of its focal patents, and zero otherwise. Also, we controlled for business diversification 
(BusDiversification), which may affect innovation (Hitt, Hoskisson, & Kim, 1997), by count-
ing the number of different SIC codes assigned to the firm.

Next, we controlled for the firm’s age (FirmAge) by computing the difference between a 
firm’s year of incorporation and the filing year of a focal patent. The firm’s age reflects expe-
rience with organizational routines that may enhance the efficiency of innovation. However, 
in rapidly changing environments, such experience may undermine the firm’s ability to adapt 
using innovative capabilities (Sørensen & Stuart, 2000). Furthermore, the firm’s strategies 
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for knowledge search may also vary with its particular biotechnology domain, so we included 
dummies to control for assigned patent classes 424 (drug, bio-affecting, and body treating 
compositions), 435 (chemistry: molecular biology and microbiology), 514 (drug, bio-affect-
ing and body treating compositions others), 530 (chemistry: natural resins or derivatives; 
peptides or proteins; lignins or reaction products thereof), and 800 (multicellular living 
organisms and unmodified parts thereof and related processes), with remaining classes that 
together account for less than 10% of the total number of patents serving as the omitted cat-
egory. We also controlled for government support (GovInterest), using a dummy variable that 
receives a value of one if the patent has been funded by the U.S. government, and zero oth-
erwise. This variable indicates whether the innovation is socially relevant. In addition, we 
controlled for the technological evolution of the industry (Audretsch, 1995; Klepper, 1997), 
using the natural logarithm of the accumulated number of USPTO patents issued in biotech-
nology patent classes at the time of the focal patent’s filing (IndustryEvolution). Thus, our 
findings cannot be simply ascribed to the trajectory of evolution of the biotechnology indus-
try. Finally, we incorporated year dummies (Year) to capture temporal trends. Overall, our 
extensive battery of controls can effectively limit unobserved heterogeneity at the innovation 
and firm levels.

Analysis

The focal patent served as the unit of analysis. Since the dependent variable is a nonnega-
tive integer count variable, the negative binomial model is appropriate for estimating it. The 
Poisson model assumes equity between the mean and the variance. But patent data typically 
feature overdispersion, as evident by the coefficient of variation (standard deviation/mean) 
that equals 2.11 in our case. The negative binomial model that corrects for such overdisper-
sion is more suitable, since it allows for the variance to differ from the mean (Gourieroux, 
Monfort, & Trognon, 1984; Hausman, Hall, & Griliches, 1984). We used hierarchical mod-
els, with Model 1 serving as the baseline model that includes only the control variables, 
Models 2 to 5 serving as partial models that introduce the independent variable and each of 
the moderating variables, and Model 6 serving as the full model that incorporates all vari-
ables. We relied on the partial models for testing our hypotheses, since tests for potential 
multicollinearity indicated that the maximum variance inflation factor (VIF) index in the full 
model exceeds the critical value of 10 (Kleinbaum, Lawrence, Muller, & Nizam, 1998). The 
high VIF values can be ascribed to the multiple inclusions of the main effects in the interac-
tion terms. No symptoms of multicollinearity were observed, as coefficients and levels of 
significance remain consistent across models.

Results

Table 1 reports descriptive statistics and pairwise correlations, showing relatively low 
correlations except for those measured across PatentStock and FirmSize, and PatentAge and 
IndustryEvolution. To avoid concerns about multicollinearity, we excluded the controls for 
firm size and industry evolution from our reported models. The results of the negative bino-
mial models are reported in Table 2, showing a good statistical fit to the data. Consistent with 
prior research, Model 1 reveals that while controlling for self-citations to the firm’s patents 
(ß = 0.10, p < .001), innovation value improves with the firm’s public status (ß = 0.10, p < 
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.01) (Cohen & Levin, 1989), the size of the inventor team (ß = 0.04, p < .001) (Singh, 2008), 
the number of patent claims (ß = 0.01, p < .001) (Lanjouw & Schankerman, 2004), the sup-
port of the U.S. government (ß = 0.48, p < .001), the age of the patent (ß = 0.15, p < .001) 
(Reitzig, 2004), the scientific knowledge referred to by the patent (ß = 0.001, p < .001) 
(Fleming & Sorenson, 2004), and the firm’s innovation performance as captured by its accu-
mulated number of patent citations (ß = 0.05, p < .01) (Ahuja & Lampert, 2001). In turn, 
increases in firm age (ß = −0.01, p < .001) (Sørensen & Stuart, 2000), interorganizational 
collaborations (ß = −0.12, p < .1) (Koput, 1997), business diversification (ß = −0.01, p < .1) 
(Hitt et al., 1997), and patent stock (ß = −0.07, p < .001) (Arora, Gambardella, Magazzini, & 
Pammolli, 2009) negatively affect the development of valuable innovations.

The time spread captured by the diversity of knowledge maturity (ß = 0.04, p < .001) 
indicates the merits of combining old knowledge with new knowledge (Nerkar, 2003). Search 
depth generates an inverted U-shaped effect on the value of innovations (ß1 = 0.01, ß2 = 
−0.0003, p < .01) (Katila & Ahuja, 2002), and search span produces a positive effect (ß = 
0.06, p < .01) (Capaldo & Messeni Petruzzelli, 2011), while the effect of search scope (ß = 
−0.15, p < .05) is negative (Laursen & Salter, 2006). We tested the nonlinear effects of both 
search span and search scope, finding no significant effects of their quadratic terms on the 
value of innovations. Finally, innovations are less valuable in the molecular biology and 
microbiology field (ß = −0.09, p < .05) as defined by patent class 435, with higher value 
observed in the fields of bio-affecting and body treating compositions (ß = 0.08, p < .1) and 
multicellular living organisms (ß = 0.48, p < .001), as indicated by patent classes 424 and 
800, respectively. In addition, technological distance enhances innovation (ß = 1.01, p < 
.001), whereas geographical distance is detrimental to innovation (ß = −0.02, p < .01). Hence, 
the value of an innovation improves when the inventor spans technological boundaries while 
also restricting the geographical scope of knowledge search (Phene et al., 2006). Finally, the 
adoption of knowledge in the industry contributes to the value of an innovation (ß = 0.01, p 
< .001), probably by enhancing its legitimacy and applicability.

Per Model 2, knowledge maturity generates an inverted U-shaped effect on innovation 
value, in support of Hypothesis 1. Specifically, the linear term of KnowMaturity is positive 
(ß = 0.03, p < .001), whereas its squared term is negative (ß = −0.003, p < .001). Thus, 
beyond a certain threshold, knowledge maturity becomes detrimental to the value of innova-
tions. According to Model 3, Hypothesis 2 gains support, as evidenced by the negative inter-
action effect of knowledge maturity and technological distance (ß = −0.05, p < .01). Similarly, 
Hypothesis 3 gains support in Model 4, based on the significant positive interaction of 
knowledge maturity and geographical distance (ß = 0.003, p < .001). Finally, per Model 5, 
Hypothesis 4 gains support, as indicated by the negative interaction effect of knowledge 
maturity and knowledge adoption (ß = −0.001, p < .01). These effects persist in the full model 
(Model 6), to which they are introduced simultaneously.

Figure 2 depicts the predicted value of an innovation as a function of knowledge maturity, 
showing that when knowledge matures beyond 5.5 years, the costs of its maturity outweigh 
the benefits. Hence, there is a relatively short period during which the value of the innovation 
increases, followed by an extended period of substantial decline in value. This inverted 
U-shaped pattern suggests that the effect of knowledge maturity on the scientific value of an 
innovation is not merely increasing at decreasing rates (Nerkar, 2003), but in fact declines 
after a certain threshold. To gain further insight into the interaction effects predicted by 
Hypotheses 2, 3, and 4, we decompose the interaction terms and conduct simple slope 
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analysis (Ai & Norton, 2003; Aiken & West, 1991; Hoetker, 2007) as shown in Figures 3 to 
5. For each of the three hypotheses, we consider two levels of the moderating variables—low 
(one standard deviation below the mean) and high (one standard deviation above the mean)—
and estimate the effect of knowledge maturity on innovation value for both levels (Poppo, 
Zhou, & Zenger, 2008). Figure 3 reveals the negative moderating effect of technological 
distance on the association between knowledge maturity and innovation value. This figure 
shows how the value of the innovation reaches a maximum after 3.5 years of knowledge 
maturity at high technological distance, as opposed to 5.8 years at low technological dis-
tance. Figure 4 shows how geographical distance defers the threshold levels beyond which 
knowledge maturity undermines innovation value. In this case, maximum innovation value 
is reached after 8.4 years for high geographical distance as opposed to 5.2 years for low geo-
graphical distance. Finally, Figure 5 depicts the moderating effect of knowledge adoption on 
the association between knowledge maturity and innovation value. The value of the innova-
tion appreciates as knowledge matures for up to 8 years under the low adoption condition, yet 
in the high adoption condition the value of the innovation peaks at 4 years and declines as 
knowledge further matures. All of the inflection points fall within range (0 to 34 years).

Robustness Tests

To test the robustness of our findings, we conducted several auxiliary analyses using alter-
native operationalizations of our variables and alternative model specifications.

First, in accordance with prior research (e.g., Ahuja, 2000; Hess & Rothaermel, 2011; 
Nooteboom et al., 2007; Rosenkopf & Nerkar, 2001), we considered alternative measures of 
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Figure 4
The Moderating Effect of Geographical Distance
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Figure 3
The Moderating Effect of Technological Distance
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innovation value. First, we excluded self-citations from the count of forward citations and 
dropped the corresponding control variable, still finding support for our hypotheses. Next, 
we divided the count of forward citations by patent age, instead of including patent age as a 
separate control variable. With this alternative specification, Hypotheses 1, 2, and 4 gained 
support, but the interaction term corresponding to Hypothesis 3 lost significance. Furthermore, 
we controlled for the risk that an old patent may be more frequently cited by using a 7-year 
window when counting forward citations to a focal patent instead of relying on the patent age 
control. This alternative specification offered support for our hypotheses. Overall, control-
ling for self-citations and patent age with separate variables better isolates their independent 
effects. Finally, we operationalized our dependent variable as the number of citations received 
by patents in the biotechnology field, while controlling for citing patents in other patent 
classes, still finding support for our hypotheses.

Second, we considered alternative measures of knowledge maturity. In particular, instead 
of measuring the time elapsed since application for a cited patent, we measured knowledge 
maturity with the average number of years elapsed since the last citation of the same patent 
by the same firm. The four hypotheses gained support with this alternative measure, suggest-
ing that the effect of knowledge maturity on innovation value holds when considering both 
the scientific community’s and the firm’s perspectives as well as with respect to both the first 
and last use of knowledge. In addition, we operationalized knowledge maturity as the aver-
age number of times the patents cited by a focal patent were cited in the past by the same 
firm, assuming that knowledge matures with repeated use of knowledge rather than over 
time. Corresponding findings grant support to Hypotheses 1 and 3 on the effect of knowledge 
maturity and the moderating effect of geographical distance.

Figure 5
The Moderating Effect of Knowledge Adoption
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Third, we incorporated interactions of the squared term of knowledge maturity with the 
three moderating variables (TechDist, GeoDist, and KnowAdoption). These interactions gen-
erated consistent results, suggesting that technological distance, geographical distance, and 
knowledge adoption influence mostly the linear trajectory of the knowledge maturity effect. 
Yet these results may suffer from potential multicollinearity, as indicated by the high VIF 
indexes (maximum VIF = 22.65), which led us to exclude these terms from the models.

Fourth, to account for selection bias in the decision to rely on mature knowledge, we ran 
a two-stage model (Heckman, 1979). The first stage assessed the likelihood that an innova-
tion would incorporate mature knowledge, as indicated by a dummy variable receiving a 
value of one when the maximum maturity of cited patents is greater than the mean value of 
knowledge maturity. For exclusion restriction we used the mean number of years elapsed 
since the publication date of nonpatent references cited by the focal patent. The inverse Mills 
ratio estimates were incorporated in the second-stage model, with no material change in 
results. To further account for selection bias, we controlled for the risk that the inventor 
decides to incorporate certain knowledge elements while disregarding others, by adding a 
control variable that measures the value of innovations citing noncited biotechnology patents 
applied for in the same year as the cited patent. Although this control was marginally signifi-
cant (p < .1), it did not affect our reported findings. Finally, we ran piecewise exponential 
models by splitting knowledge maturity into three time intervals using corresponding dummy 
variables, finding further support for our hypotheses.

Fifth, we considered alternative measures of technological distance. We first measured 
technological distance by calculating the ratio of the number of non-biotechnological classes 
to the total number of technological classes for each cited patent and then averaged this ratio 
across the total number of backward citations for each focal patent. With this operationaliza-
tion, the interaction of KnowMaturity and TechDist was negative, but insignificant. Next, we 
calculated an alternative measure that captures proximity of the patents’ technological classes 
(Jaffe, 1986). We then considered another variant of this measure based on Euclidean dis-
tance (Ahuja, 2000; Benner & Waldfogel, 2008; Rosenkopf & Almeida, 2003). Finally, we 
employed a measure of technological distance based on the number of matching patent class 
digits (Trajtenberg, Henderson, & Jaffe, 1997). With these three alternative operationaliza-
tions, Hypothesis 2 gained marginal support, as the interaction of KnowMaturity and TechDist 
was negative yet insignificant. The fact that the distinction between intra- and extraindustry 
knowledge matters more than technological distance, as captured by refined measures of 
technological domains, may suggest that inventors possess sufficient absorptive capacity to 
internalize external knowledge as long as it does not rest beyond the boundaries of the bio-
technology industry.

Sixth, we measured GeoDist as the natural logarithm of the distance between the countries 
of the first inventors listed in the focal and cited patents (Singh, 2008), averaged across all 
backward citations of a focal patent. With this alternative measure, the interaction of 
KnowMaturity and GeoDist was positive yet insignificant. We next measured GeoDist as the 
ratio of the number of backward citations whose first inventor’s home country was not the 
United States to the total number of backward citations (Phene et al., 2006). We also consid-
ered an alternative measure based on the ratio of the number of backward citations for which 
more than 50% of the inventors resided outside the United States to the total number of 
backward citations. In both cases, Hypothesis 3 gained support. Finally, we replaced the 
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geographical distance measure with a measure of cultural distance between the United States 
and the country of origin of the first inventor of a cited patent. We used Kogut and Singh’s 
(1988) composite index of the Hofstede (1980) cultural dimensions. This auxiliary analysis 
revealed a positive interaction effect of knowledge maturity with cultural distance, suggest-
ing that the enhanced value of mature knowledge is partially due to national cultural differ-
ences between the original inventor and the user of knowledge.

Seventh, we replaced our measure of knowledge adoption with a measure of the average 
number of times each cited patent has been previously cited by other firms, excluding self-
citations (Miller, Fern, & Cardinal, 2007), finding consistent results for Hypothesis 4. This 
unweighted measure better captures the number of prior uses as opposed to the number of 
prior users of knowledge components.

Eighth, we accounted for knowledge embedded in scientific publications other than pat-
ents by operationalizing our independent variable and moderators using data on nonpatent 
references. In this case, no support was found for our hypotheses, but when these variables 
and their corresponding interactions were introduced as control variables in addition to our 
reported patent-based models, our findings remained consistent. Since we focus on the inno-
vations of firms rather than the innovations of universities, perhaps patents are more relevant 
than nonpatent references as proxies for knowledge creation.

Ninth, we considered an alternative measure of PatentStock based on the cumulative num-
ber of all patents that a firm filed with the USPTO until the year preceding the filing year of 
the focal patent (t−1) (Furman, Porter, & Stern, 2002). We also replaced PatentStock with 
FirmSize, and PatentAge with IndustryEvolution as alternative control variables. In all these 
cases, the results supported our hypotheses. Tenth, we added FirmSize and FirmAge as mod-
erators of the knowledge maturity effect, which did not weaken the significance of our 
reported moderators. Eleventh, we ran alternative models using clustering with robust stan-
dard errors to account for the potential nonindependence of observations pertaining to the 
same cited patent and to different patents involving the same inventor (Singh & Agrawal, 
2011). Finally, we ran Poisson regression models (Wooldridge, 1999), zero-inflated negative 
binomial models that account for excess zero values in the dependent variable, and models 
with bootstrapping. Under all these alternative model specifications, we found some support 
for our hypotheses. Overall, these auxiliary analyses bestow confidence in our findings.

Discussion and Implications

We study how the scientific value of an innovation varies with knowledge maturity and its 
contingencies on technological and geographical distances, while accounting for the degree 
of adoption of this knowledge in the industry. We find that, up to a point, the scientific value 
of an innovation increases with the maturity of knowledge upon which it is based, but that 
beyond that point the value declines. We ascribe the initial appreciation in value to the time 
needed for knowledge to prove valuable and reliable. Employing mature knowledge may 
also make it possible to uncover new applications that have not been pursued in the past for 
lack of enabling technologies or complementary assets. The appreciation in the value of an 
innovation with knowledge maturity is in line with Nerkar’s (2003) study of the pharmaceuti-
cal industry. Yet as knowledge matures beyond a certain threshold, memory decay can exac-
erbate the challenges of retrieving, interpreting, and applying that knowledge, so that 
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eventually it may be rendered obsolete, thus diminishing the value of corresponding innova-
tions. Therefore, our findings suggest that moderately mature knowledge is most desirable 
for enhancing the scientific value of resulting innovations.

Our findings further indicate that the desirable level of knowledge maturity is contingent 
upon the distance of that knowledge from the industry’s technological domain. The more 
distant the knowledge from the current domain of expertise in the industry, the more difficult 
it is to generate value from maturing knowledge. An inventor’s unfamiliarity with distant 
knowledge and increasing difficulties in searching, internalizing, and leveraging that knowl-
edge can limit its recombination opportunities and depreciate the value of innovations. 
However, these impediments can be offset by seeking geographically distant knowledge that 
can rejuvenate mature knowledge and enhance the scientific value of innovations that incor-
porate it. We ascribe this effect to the relative novelty of mature knowledge that is used 
remotely from its geographical origin.

Finally, we suggest that, as mature knowledge is being incorporated in an increasing num-
ber of innovations, they lose their novelty. Therefore, inventors are better off leveraging that 
knowledge before it is adopted by many firms in their industry. This entails monitoring the 
pace of knowledge adoption in the industry. Consideration of the distance and adoption con-
tingencies can clarify whether inventors should adopt external knowledge as soon as it 
becomes available or instead wait until its value appreciates as a result of enhanced 
reliability.

Implications for Theory

Our study contributes to management research and to the literature on innovation by 
revealing the contingent value of knowledge maturity. We investigate the interplay of the 
maturity of the knowledge elements underlying innovations with the technological and geo-
graphical distances of that knowledge. Unlike prior research that has concentrated on firms’ 
commercial gains from innovations, we study how knowledge maturity shapes the value of 
innovations for the scientific community in terms of recognition by peer inventors and tech-
nological impact on subsequent innovations. We show that the scientific value of knowledge 
maturity can be better assessed when considering its technological and geographical dis-
tances. Hence, firms may need to trace the technological and geographical origins of knowl-
edge and consider the extent of its adoption in their industry.

We conclude that there is an optimal level of maturity beyond which the value of an inno-
vation depreciates. However, relatively mature knowledge can enhance the value of an inno-
vation to the extent that it has been sourced from a distant country. Thus, the value of 
innovations incorporating mature knowledge varies by country of origin, so that firms that 
are late to introduce innovations can still increase the contribution of their innovations to the 
scientific community by extending the international scope of their knowledge search. 
Additional heterogeneity is ascribed to the distance of the incorporated knowledge from the 
industry’s technological domain. Such distance limits the relevance of the inventor’s techno-
logical expertise, thus diminishing the scientific value of an innovation that relies on mature 
knowledge. Finally, we uncover a boundary condition, overlooked by prior research, relating 
to the adoption of mature knowledge in the industry. We demonstrate that because innovation 
does not occur in a vacuum, its scientific value depreciates faster with knowledge maturity if 
a larger number of innovations incorporate such knowledge.
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Our study further advances innovation research by shedding new light on the temporal 
aspect of innovation. Prior innovation research has mostly paid attention to other issues, such 
as a firm’s tendencies to rely on internal versus external knowledge (Laursen & Salter, 2006), 
engage in distant versus local search for technological competencies (Katila & Ahuja, 2002; 
Rosenkopf & Nerkar, 2001), and span multiple knowledge domains (Capaldo & Messeni 
Petruzzelli, 2011). Less attention has been paid to knowledge maturity, with only a few studies 
that show mixed findings. Our study reconciles this mixed evidence by revealing that mature 
knowledge enhances innovation value up to a certain threshold. However, unlike prior research 
that suggested that the value of an innovation increases at a decreasing rate (Nerkar, 2003), we 
show that, beyond a certain level of knowledge maturity, this value actually diminishes. We 
also reveal that the added value of mature knowledge depends on its distance, with some con-
flicting implications depending on whether reach is extended in the technological domain or 
geographical domain. The distance of knowledge seems to influence both its novelty and the 
ability to absorb it (Phene et al., 2006), whereas the rate of adoption of knowledge in the 
industry affects mostly the ability to benefit from knowledge application.

In addition, our study informs research on balancing exploration and exploitation 
(Capaldo, 2007; Gupta, Smith, & Shalley, 2006; Lavie, Stettner, & Tushman, 2010; March, 
1991) by showing how such balance can be achieved when searching for knowledge over 
time. Counter to the temporal separation approach to balance (Brown & Eisenhardt, 1997) 
that calls for focusing on either exploration or exploitation at a given time, we advocate reli-
ance on intermediately mature knowledge. In line with the domain separation approach 
(Lavie, Kang, & Rosenkopf, 2011; Lavie & Rosenkopf, 2006) and the ambidexterity litera-
ture (He & Wong, 2004; O’Reilly & Tushman, 2004; Rothaermel & Alexandre, 2009), we 
call for balance across the technological and geographical domains. Firms are advised to seek 
technologically proximate knowledge while spanning geographical boundaries. Thus, we 
call for balancing geographical exploration with technological exploitation when seeking 
mature knowledge.

Finally, our study informs research on absorptive capacity (Ben-Oz & Greve, 2015; Cohen 
& Levinthal, 1990; Lane, Koka, & Pathak, 2006; Zahra & George, 2002) by noting the limi-
tations of relying on external knowledge that differs from the internal knowledge base. 
Specifically, our findings suggest that even if external knowledge is well established in the 
market, its absorption remains challenging if the inventors lack a related knowledge base. 
The challenges of incorporating and applying mature knowledge are ascribed to misinterpre-
tation, misunderstanding, and misapplication of such knowledge, problems that grow with 
the technological distance between such external knowledge and the inventors’ domain of 
expertise. In fact, our findings reveal that when innovations incorporate mature knowledge 
beyond the current technological domain, the value of those innovations quickly 
diminishes.

Managerial Implications

By demonstrating how mature knowledge can enhance the value of innovations, we 
encourage managers to consider not only the type of knowledge used in innovations but also 
its birth date and birthplace. Mature knowledge is not necessarily less valuable, but its value 
depends on how distant it is from the current knowledge base and country of origin. To inno-
vate effectively, firms need to assess the distance of knowledge sources and their adoption in 
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the industry. We expect mature knowledge to be most valuable when it is related to the indus-
try’s technological domain, yet geographically distant. Hence, our findings depart from prior 
research on absorptive capacity (Phene et al., 2006) that underscored the value of proximity 
irrespective of the type of distance. Furthermore, our findings underscore the need to balance 
exploration and exploitation across domains (Lavie & Rosenkopf, 2006), since the value of 
an innovation is maximized when seeking distant knowledge in the geographical domain 
(i.e., exploration) while investing in local search in the technological domain (i.e., exploita-
tion). Managers do not typically consider the origin of knowledge in their decisions to incor-
porate mature knowledge in new innovations, but they should pay more attention to it when 
considering how to leverage such knowledge in their firms’ innovations.

Limitations and Directions for Future Research

Our study contributes to the innovation literature while leaving room for future research. 
First, using patents as indicators of innovation may raise potential methodological concerns. 
Although patent citations enable the tracking of knowledge flows among innovations, sev-
eral citations are often added by examiners and thus may not reflect an actual knowledge 
flow (Alcacer & Gittelman, 2006). In addition, real knowledge flows generally occur through 
complex interactions involving written and oral communication, learning, face-to-face inter-
actions, chance meetings, and close working relationships, which may be difficult to track 
using patent citations (Singh, 2005). Moreover, patents are often treated as homogenous in 
cross-sectional studies despite the fact that they significantly differ across firms, industries, 
and technology fields (Gittelman, 2008). Finally, not all innovations are patentable, and not 
all patents represent innovations (Giuri et al., 2007), with some firms relying on alternative 
means for protecting their knowledge resources (de Faria & Sofka, 2010). Hence, despite the 
popularity of patent data in the innovation literature, patents cannot fully capture an innova-
tion’s value. Patents represent only a subset of firms’ technologies that corresponds primarily 
to codified knowledge. In addition, not all patent citations reflect genuine incorporation of 
prior knowledge. Path-breaking innovations may not involve extensive citations to historical 
patents. We handle some of these limitations by including relevant control variables and 
applying scrutiny when interpreting our results. Furthermore, we considered nonpatent 
sources of knowledge in our robustness tests. Despite the above limitations, patents are still 
the most commonly used proxy for innovations (e.g., Cattani, 2005; Miller et al., 2007; 
Rosenkopf & Nerkar, 2001; Singh, 2008), since patent data are readily available in most 
countries; the comprehensiveness of patent data supports both cross-sectional and longitudi-
nal analysis; and patent data contain detailed useful information, such as technological fields, 
assignees, inventors, and some other market features (Ratanawaraha & Polenske, 2007), thus 
making patent citations the most robust measure for capturing the scientific value of an 
innovation.

Second, future research can reexamine how mature knowledge contributes to firms’ finan-
cial and market performance (Heeley & Jacobson, 2008), perhaps by distinguishing the 
implications of value creation mechanisms from those of value appropriation mechanisms. 
Third, we focused on the technological and geographic distances of knowledge, but future 
research may consider additional types of distance, such as that relating to organizational 
differences between inventors. Fourth, whereas we focused on the implications of competi-
tion by studying the adoption of knowledge in the industry, future research may study the 
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effects of collaboration in driving knowledge creation and application (Lavie & Drori, 2012). 
Fifth, scholars can focus on the mechanisms that enable effective integration of mature 
knowledge in innovations. Perhaps the value of an innovation depends on the effectiveness 
of these processes irrespective of the distance of knowledge. Finally, our sample is limited to 
the innovations of U.S.-based biotechnology firms that may exhibit particular patterns of 
patenting. Future research may assess the generalizability of our findings by extending our 
inquiry to other industries and countries, such as those in which patents do not serve as an 
essential element of the appropriability regime. Our findings are mostly applicable in tech-
nology-driven industries in which knowledge and innovation are paramount.

Notes
1. The USPTO assigns the following patent classes to the biotechnology domain: 424 (drug, bio-affecting, 

and body treating compositions), 435 (chemistry: molecular biology and microbiology), 436 (chemistry: analytical 
and immunological testing), 514 (drug, bio-affecting, and body treating compositions [different subclasses]), 530 
(chemistry: natural resins or derivatives; peptides or proteins; lignins or reaction products thereof), 536 (organic 
compounds), 800 (multicellular living organisms and unmodified parts thereof and related processes), 930 (peptide 
or protein sequence), and PLT (plants) (Rothaermel & Thursby, 2007).

2. The use of forward citations is particularly suitable for our study, since citations added by examiners do 
not represent a critical issue. First, the share of examiner citations for biotechnology patents is the lowest com-
pared to all other technological fields. In fact, only 25% of drug and medical patents contain examiner citations 
(Alcacer, Gittelman, & Sampat, 2009), and assignees withhold only 5% to 7% of the relevant citations (Lampe, 
2012). Second, we rely on patents granted by the USPTO to U.S. firms, hence further reducing the share of examiner 
citations, which is especially high for foreign firms (Alcacer et al., 2009). As a result, the share of examiners’ cita-
tions in our sample of patents accounts for only 402 patents granted after 2000, corresponding to about 20% of the 
overall number of forward citations.
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