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EXTENDED ABSTRACT 

 

Irrigation is essential for global agricultural production and food security since 

irrigated land represents 20% of the world’s cultivated area but supply about 40% of 

the world’s food production. Even if agriculture is the greatest consumer of water (it is 

estimated that over 70 % of global freshwater is consumed by irrigation) and irrigation 

represents the most important intervention on the hydrological cycle, we have only par-

tial knowledge on the areas irrigated and on the amount of water applied. 

Currently, agriculture is facing a great dilemma: on the one hand, a growing 

world population demands more food and biomass. On the other hand, natural re-

sources (such as water) are only available in limited quantities and their excessive use 

often leads to the degradation of ecosystems, which in turn has adverse effects on 

agricultural production and local livelihoods. Thus, efficient agricultural water manage-

ment is a major issue that even more involves not only in traditionally water-scarce 

regions. However, water use rationalization is especially needed for regions suffering 

from water scarcity and that probably would suffer from water restrictions according 

to climate change scenarios. The Mediterranean region is one of these areas and is 

considered of the most prominent “hot spots” in future climate change projection. Here 

are expected larger warming than the global average and a pronounced increase in 

precipitation interannual variability which will lead to a further reduction of resources 

available and to exacerbate the conflicts among users and sectors for the use of the 

resources. 

To enable sustainable water management two measures are necessary: 

- Water demand and availability at the regional level must be known to iden-

tify possible overuse and adjust water allocation rights. 

- Adopt intelligent irrigation management, which reduces water losses to the 

minimum, providing the right amount of water at the right time. 

The present work demonstrates as in both aspects, investigated the possibility 

offered by the present Remote Sensing (RS) model and dataset to estimate the Crop 

Water Requirements (CWR) and the Irrigation Water Requirements (IWR) at different 



 

II 

temporal and spatial scale. The EO-based FAO-PM method was selected and adopted 

to estimate in an operative way the CWR using a combination of in situ classical agro-

meteorological data with optical RS-derived crop biophysical parameters. The applica-

tion of the method over two different test site and over both herbaceous and woody 

crops highlighted the necessity of adjustment to consider the actual (and not the po-

tential or standard) status of the crops considering the water deficit condition. 

The adjusted EO-based FAO-PM, in combination with the use of Sentinel2-de-

rived information (Leaf Area Index and Surface Albedo), demonstrates its ability to re-

trieve at field scale CWR coherent with the international adopted FAO-PM method. The 

procedure was then extended to the CWR estimation at the irrigation district scale. 

Lastly, the retrieved CWR information was used to estimate the extension of the 

irrigated areas and the irrigation volume applied both at field and irrigation district-scale 

over the two selected study area. 

 

key words Irrigation Water Accounting; Irrigation Water Management; Penman-Mon-

teith; Remote Sensing. 
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INTRODUCTION 

Background and Research motivation 

Irrigation is essential for global agricultural production and food security since 

irrigated land represents 20% of the world’s cultivated area but supply about 40% of 

the world’s food production. Even if agriculture is the greatest consumer of water (it is 

estimated that over 70 % of global freshwater is consumed by irrigation) and irrigation 

represents the most important intervention on the hydrological cycle, we have only par-

tial knowledge on the areas irrigated and on the amount of water applied. 

Currently, agriculture is facing a great dilemma: on the one hand, a growing 

world population demands more food and biomass. On the other hand, natural re-

sources (such as water) are only available in limited quantities. Moreover, excessive 

use often leads to the degradation of ecosystems, which in turn has adverse effects on 

agricultural production and local livelihoods. Thus, efficient agricultural water manage-

ment is a major issue that even more involves not only in traditionally water-scarce 

regions. However, water use rationalization is especially needed for regions suffering 

from water scarcity and that probably would suffer from water restrictions according 

to climate change scenarios. The Mediterranean region is one of these areas and is 

considered of the most prominent “hot spots” in future climate change projection. Here 

are expected larger warming than the global average and a pronounced increase in 

precipitation interannual variability which will lead to a further reduction of resources 

available and to exacerbate the conflicts among users and sectors for the use of the 

resources. 

The present work demonstrates the possibility offered by remote sensing to the 

two fundamentals measures necessary to enable sustainable water management: 

- Mapping the water demand and availability at the regional level to identify possible 

overuse and adjust water allocation rights. 
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- Adopt intelligent irrigation management, which reduces water losses to the mini-

mum, providing the right amount of water at the right time. 

General and specific objectives 

The aim of the entire work is to develop and test an operative remote sensing-

based method to determine Crop and Irrigation Water Requirements in the Mediterra-

nean context which is typically characterized by: 

- Arid or semi-arid climate conditions. 

- Water scarcity, which leads the farmers to apply deficit irrigation strategies. 

- A high fragmented and heterogeneous landscape 

 

Since the overall objective requires an operative approach to the problem, the 

specific criteria used for the model’s design are: 

- easy implementation 

- modularity which leads the possibility to apply the model at different temporal and 

spatial scales 

- limited (and even no) use of crop-specific parameters, since they are depending on 

a large number of crop-climate combinations that can be described only by expen-

sive field measurements. Moreover, in this way it is possible to use the ET model 

also in contexts where a detailed and updated crop map is not available. 

- representativity of the actual crop conditions considering the crop development 

stage and status. 

- coherent with the internationally adopted FAO standards for Crop Water Require-

ments (CWR) and Irrigation Water Requirements (IWR) estimation. The procedure 

overpasses the two biggest weakness of the FAO’s procedures: 

1. the necessity of a crop map. 

2. considers the actual condition instead of the “standard” optimal condition. 

 

The primary objective was achieved through the following sub-objectives: 
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- Define optimal trade-off in terms of spatial, temporal and, spectral resolution, of the 

satellite data for CWR assessment 

- Select and test the most suitable RS-based method for the ET estimation in the 

Mediterranean context 

Research questions 

The following research questions are formulated to achieve the above objective: 

- What are the characteristics (in term of temporal, spatial, spectral resolution) that 

the satellite data should have to be applied for the CWR estimation and monitoring? 

- Which category of existing RS-method is the most appropriate for the CWR esti-

mation (at different spatial scales) in the Mediterranean context?  

- It is possible to use the RS-derived CWR to estimate the IWR over heterogeneous 

and fragmented landscape as the Mediterranean context?  

Hypothesis 

- The existing assessment method for the CWR estimation can be improved using 

remote sensing data. 

- Optical satellite data can be used for the estimation of the actual evapotranspiration. 

Structure of the thesis  

The first Chapter introduces and describes theoretically the main processes and 

components of the soil water balance for agriculture applications: evapotranspiration 

and irrigation. Since efficient agricultural water management requires reliable estimation 

of the Crop and Irrigation Water Requirements, particular attention is dedicated to the 

descriptions of the different methods for the evapotranspiration and irrigation estimation 

using both in-situ and RS-derived data.  

 

Among the methods for retrieving the ET using RS-derived data available in the 

literature, the “one-step” FAO-56 method was retained as the most suitable procedure 
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for the CWR’s estimation in an operative way and over large areas in a Mediterranean 

semi-arid context characterized by a very fragmented and heterogeneous landscape 

with a mosaic of rainfed and irrigated crops. Chapter 2 describes the internationally 

accepted standard FAO Penman-Monteith (FAO-PM) method and the possibility offered 

by the EO-based “one-step” approach to use a combination of in-situ meteorological 

data with crop characteristics as retrieved from optical satellite images directly inte-

grated into the P-M equation to estimate the (potential) crop ET also over large areas. 

Together with the full description of the method and its applications, are presented both 

its mains advantages and limitations. 

 

In Chapter 3 were described the improvements operated on the EO-based “one-

step” approach for retrieve, instead of the potential crop ET, an estimation of the ET 

coherent with the values of ET retrieved using the classical “two-steps” approach using 

literature Kc’s values. The overall scope of the modified method is to determine the 

crop water requirements in an operative way and over large areas in a context of a very 

fragmented and heterogeneous landscape with a mosaic of rainfed and irrigated crops. 

Moreover, the intent was to develop a method that can work over different crop types 

(both full cover herbaceous and sparse woody crops) without the necessity of adjust-

ments of the model’s parameter for each crop class. In this way is possible to use the 

model also in a context where the crop/land cover map is not available and/or updates. 

To address this objective were analysed the two resistance terms of the PM equation: 

the aerodynamic and surface resistance. 

 

Chapter 4 provides a full and detailed description of the input data and the step-

by-step procedure to handle the “one-step” FAO-56 RS-based method using as input 

the biophysical variables retrieved from the Sentinel-2 (S-2) satellites. Moreover, to 

justify the use of the S-2 derived products, a brief description of the mission and of 

characteristics of the data is provided. 
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The prosed methodology was then applied, in Chapter 6, for the estimation of 

the Crop Water Requirements at both plot and irrigation district-scale over the selected 

study areas described and characterized in the previous Chapter 5. In absence of direct 

field measurements of evapotranspiration, the CWR estimated were compared with the 

CWR estimated adopting the classical FAO-56 Kc approach (also called the “two-

steps” approach). 

 

 Finally, in Chapter 7, the estimated CWR was used to feed a simple FAO56-

based Soil Water Balance to estimate the Irrigation Water Requirements (IWR) at both 

plot and irrigation district scale. The estimates IWR were compared with the metered 

volumes applied by the framers. 
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1. CROP AND IRRIGATION WATER REQUIREMENT ASSESSMENT: THE 

FIRST STEP FOR SUSTAINABLE WATER MANAGEMENT 

Overview 

The determination of water fluxes at the Soil-Plant-Atmosphere (SPA) interface 

is of fundamental interest for agro-hydrological management purposes especially for 

irrigation planning and crop water stress monitoring both at the field and regional 

scales. A complete description of these fluxes can be done by analysing the soil water 

balance which can also quantify the processes and interaction of the SPA system. 

This chapter introduces and describes theoretically the main processes and 

components of the soil water balance for agriculture applications: evapotranspiration 

and irrigation. Since efficient agricultural water management requires reliable estimation 

of the Crop Water Requirements (CWR - represented by the ET losses) and the corre-

sponding Irrigation Requirement to meet CWR complementary to rainfall, particular at-

tention is dedicated to the descriptions of the different methods for the evapotranspira-

tion and irrigation estimation using both in-situ and RS-derived data.  

1.1. Soil water balance components 

The water balance computation consists in describing the evolution of the stock 

of water available in the root zone soil. Schematically, the root zone can be presented 

using a container in which the water content may fluctuate. A common and useful way 

to express the water content in terms of root zone depletion because it makes the add-

ing and subtracting of losses and gains straightforward as the various parameters of 

the soil water budget are usually expressed in terms of water depth. Rainfall (P), irriga-

tion (I) and capillary rise (CR) of groundwater towards the root zone add water to the 

root zone and decrease the root zone depletion. ET and percolation losses (DP) remove 

water from the root zone and increase the depletion. The daily water balance, expressed 
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in terms of depletion at the end of the day (i) with referment to the root zone at the end 

of the previous day (i-1), is expressed by Equation (1).  

  

𝐷𝑟,𝑖 = 𝐷𝑟,𝑖−1 − (𝑃 − 𝑅𝑂)𝑖 − 𝐼𝑖 − 𝐶𝑅𝑖 + 𝐸𝑇𝑐𝑖 + 𝐷𝑃𝑖 (1) 

  

Since it is often very difficult to accurately measure all terms of Eq. (1), some 

simplifications are generally made considering the standard conditions for agricultural 

application and looking for the local condition in term of soil depth, slope, permeability 

and surface storage. CR can normally be assumed to be zero when the water table is 

more than about 1 m below the bottom of the root zone (Allen et al., 1998). Deep 

percolation, which is a major unknown of Eq. (1) can be neglected in dry regions, as 

suggested by some researchers (Maselli et al., 2020). Lastly, also the RO term could 

be neglected for application over flat terrain, a condition that prevails in many agricul-

tural regions, but here the decision should be considered also the characteristics of 

precipitation (amount, duration and intensity), the type of soil (and in particular its hy-

draulic conditions and antecedent moisture content) and the land use and cover. Gen-

erally, the impact of the runoff component can be ignored, otherwise, RO can be pre-

dicted using standard procedures from hydrological literature. Under these hypotheses, 

the daily water balance of Eq. (1) can assume the following simplified form: 

  

𝐷𝑟,𝑖 = 𝐷𝑟,𝑖−1 − 𝑃𝑖 − 𝐼𝑖 + 𝐸𝑇𝑐𝑖 (2) 

  

The precipitation term can be estimated from a network of rainfall stations (rain 

gauge measurements) or weather radar data. Therefore, the evapotranspiration and ir-

rigation terms become the key terms of the water balance equation. 
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Figure 1.1. Water balance of the root zone (Source: Allen et al. (Allen et al., 1998)). 

The soil water content can fluctuate between the soil Field Capacity (FC) and 

the permanent wilting point (WP) in the root zone. The FC (or drained upper limit) is 

defined as the water content of a soil that has reached equilibrium with gravity after 

several days of drainage. When the root zone is at FC, following heavy rain or irrigation, 

the minimum value for the depletion Dr,i is zero. As a result of percolation and evapo-

transpiration, the water content in the root zone will gradually decrease and the root 

zone depletion will increase. In the absence of any wetting event, the water content will 

steadily reach its minimum value. The WP (or lower limit of available water) is defined 

as the water content at which plants can no longer extract a sustainable quantity of 

water from the soil and begin to wilt. At that moment, no water is left for evapotranspi-

ration in the root zone, and the root zone depletion has reached its maximum value. 

Typical suction values associated with the FC and WP are -3.3 kPa (-0.33 bars) and -

1500 kPa (-15 bars) respectively. Like water content, FC and WP are defined as a 

volume of water per volume of soil.  

The limits imposed on Dr,i consequently range between: 

  

0 ≤  𝐷𝑟,𝑖 ≤ 𝑇𝐴𝑊 (3) 
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 Where TAW represents the Total Available soil Water in the root zone. Although 

water is theoretically available until WP, the crop water uptake is reduced before the 

wilting point is reached because, as the soil water content decreases, water becomes 

more strongly bound to the soil matrix and is more difficult to extract. When the soil 

water content drops below a threshold value, soil water can no longer be transported 

quickly enough towards the roots to respond to the transpiration demand and the crop 

begins to experience stress. The fraction of TAW that a crop can extract from the root 

zone without suffering water stress is the Readily Available soil Water (RAW). The frac-

tion of TAW that can be depleted from the root zone before moisture stress identified 

whit the factor p into the FAO-56 Soil Water Balance model, differs from one crop to 

another.  

  

𝑅𝐴𝑊 = 𝑝 ∗ 𝑇𝐴𝑊 (4) 

  

After the root zone depletion exceeds RAW, the crop starts to suffer water stress even 

more severe as the soil water content decreases. The root zone depletion is high 

enough to limit evapotranspiration to less than potential values and the crop evapotran-

spiration begins to decrease in proportion to the amount of water remaining in the root 

zone. The rate of water stress can be estimated by introducing the water stress coeffi-

cient (Ks), a dimensionless transpiration reduction factor dependent on available soil 

water: 

  

𝐾𝑠 =
𝑇𝐴𝑊 − 𝐷𝑟

𝑇𝐴𝑊 − 𝑅𝐴𝑊
=

𝑇𝐴𝑊 − 𝐷𝑟

(1 − 𝑝) 𝑇𝐴𝑊
 (5) 

  

The Ks ranging between 0 and 1: for soil water limiting conditions, Ks < 1 while 

when there is no soil water stress, Ks = 1. 

1.2. Evapotranspiration  
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After precipitation, evapotranspiration (ET) is one of the most significant com-

ponents in terrestrial water budget and describes the transport of water into the atmos-

phere as the sum of water leaving the land surface and entering the atmosphere from 

soil, vegetation, and water surfaces through Evaporation (E) and from a vegetation can-

opy via Transpiration (T) (Hu et al., 2015). ET estimations are required for a wide range 

of problems in hydrology, land and water management (water balance, floods, and 

droughts), and studies on global and regional climate change and biogeochemical pro-

cesses and cycles (Hu et al., 2015; Jung et al., 2019). Monitoring the spatial and tem-

poral distribution of ET is critically important for water management, particularly in wa-

ter-scarce regions (Gowda et al., 2008).  

Since evaporation from soil and transpiration by the plant occur simultaneously 

and constitute the majority of the ET (especially for agriculture applications), the term 

evapotranspiration is used to describe the total loss of water from vegetated land sur-

faces to the atmosphere. Crop Water Requirement (CWR) refers to the water transpired 

by the plant, the water evaporated from the soil and the water stored by the plant for its 

metabolic processes. Since the water used for the plant metabolism is substantially 

negligible as compared to E and T, the term CWR is frequently alternative to evapotran-

spiration in standard/optimum conditions. Although the values for ETc and CWR are 

identical, crop evapotranspiration refers to the amount of water that is evaporated and 

transpired while CWR refers to the amount of water that needs to be available in the 

soil for making such crop consumption possible. The CWR always refers to a crop 

grown under optimal conditions and thus reaches its full production potential under the 

given environment and can be supplied to the crops by rainfall, by irrigation or by a 

combination of irrigation and rainfall. 

ET plays a key role in the redistribution of water and energy at the soil–vegeta-

tion–atmosphere interface, and due to its complex interactions, it is considered the 

most difficult and complicated component of the hydrologic cycle to model (Xu and 

Singh, 2005) because of the complex controlling factors and heterogeneity of land-

scape (McCabe et al., 2016). Evaporation and transpiration occur simultaneously and 

both processes depend on several factors. Allen et al. (Allen et al., 1998) regrouped 
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and schematized these factors into three classes: weather parameters, crop character-

istics, management, and environmental aspects (Figure 1.2). 

The principal weather parameters affecting evapotranspiration are solar radia-

tion, air temperature and humidity, and wind speed. While the energy supply from the 

sun and the surrounding air is the main driving force for the vaporization of water, the 

difference between the water vapour pressure at the evapotranspiring surface and the 

surrounding air is the determining factor for the vapour removal which depends to a 

large extent on wind and air turbulence which transfers large quantities of air over the 

evaporating surface. Several procedures have been developed to assess the evapora-

tion rate from these parameters. The evaporation power of the atmosphere is ex-

pressed, adopting a standardized vegetated surface, by the reference crop evapotran-

spiration (ETo). 

Transpiration rate is also influenced by crop characteristics, environmental as-

pects, and cultivation practices: different kinds of plants may have different transpira-

tion rates. The crop type, variety and development stage should be considered when 

assessing the evapotranspiration from crops grown in large, well-managed fields. Dif-

ferences in resistance to transpiration, crop height, crop roughness, reflection, ground 

cover and crop rooting characteristics result in different ET levels in different types of 

crops under identical environmental conditions. Crop evapotranspiration under stand-

ard conditions (ETc) refers to the evaporating demand from crops that are grown in 

large fields under optimum soil water, excellent management, and environmental con-

ditions, to achieve full production under the given climatic conditions. 

Following the procedure proposed by FAO-56 guidelines, reference and stand-

ard evapotranspiration are linked by the crop coefficient (Kc) and the following relation 

(Allen et al., 1998): 

  

𝐸𝑇𝑐 = 𝐾𝑐 𝐸𝑇𝑜 (6) 

  

 Thanks to the Kc it is possible considering all the biophysical differences be-

tween the standard crop adopted for the definition of the standard ET and the specific 

crop or natural vegetation considers.  
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Moreover, it is necessary to consider other factors that can limit crop development and 

reduce evapotranspiration. Among these possible factors, there are the management 

and environmental aspects such as soil salinity, poor land fertility, limited application 

of fertilizers, the presence of hard or impenetrable soil horizons, the absence of control 

of diseases and pests and poor soil management. Other factors to be considered when 

assessing ET are ground cover, plant density and the soil water content. The effect of 

soil water content on ET is conditioned primarily by the magnitude of the water deficit 

and the type of soil. On the other hand, too much water will result in waterlogging which 

might damage the root and limit root water uptake by inhibiting respiration.  

The effects of soil water availability on (evapo)transpiration can be estimated 

by allowing a reduction of the crop coefficient by the crop stress coefficient (Ks). In 

this way the ETc adjusted for water stress, and management and environmental con-

straints can be estimated as: 

  

𝐸𝑇𝑐,𝑎𝑑𝑗. = 𝐾𝑐 𝐾𝑠 𝐸𝑇𝑜 (7) 

 

When assessing the ET rate, additional consideration should be given to the range of 

management practices that act on the climatic and crop factors affecting the ET pro-

cess. Cultivation practices and the type of irrigation method can alter the microclimate, 

affect the crop characteristics, or affect the wetting of the soil and crop surface. For 

example, a windbreak reduces wind velocities and decreases the ET rate of the field 

directly beyond the barrier. The effect can be significant especially in windy, warm, and 

dry conditions although evapotranspiration from the trees themselves may offset any 

reduction in the field. Soil evaporation in a young orchard, where trees are widely 

spaced, can be reduced by using a well-designed drip or trickle irrigation system. The 

drippers apply water directly to the soil near trees, thereby leaving a major part of the 

soil surface dry and limiting the evaporation losses. The use of mulches, especially 

when the crop is small, is another way of substantially reducing soil evaporation. Anti-

transpirants, such as stomata-closing, film-forming or reflecting material, reduce the 

water losses from the crop and hence the transpiration rate. 
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Figure 1.2 Factors affecting the Evapotranspiration process. 

1.2.1. Evapotranspiration from orchards 

The ETc from an orchard is more complex than from a uniform herbaceous 

crop because different components contribute to the water loss from an orchard 

(Steduto et al., 2012). In addition to tree transpiration (Tr), there could be transpiration 

losses from a cover crop or from weeds (Trcc), and there are E losses from the soil. In 

the case of micro-irrigation, two E has two components: one is the E from the soil areas 

wetted by the emitters, and the other is the E from the rest of the soil surface which is 

only wetted by rainfall (respectively Ewz and Edz).  

  

𝐸𝑇𝑐 = 𝑇𝑟 + 𝑇𝑟𝑐𝑐 + 𝐸𝑤𝑧 + 𝐸𝑑𝑧 (8) 

  

This method needs to estimate the four ETc components and therefore is not 

yet widely used. In general, orchards with cover crops have higher ET rates than or-

chards that are cleanly cultivated but the water-use rate of cover crops in orchards is 

difficult to measure and has not been thoroughly investigated. Either cover crops are 

planted in strips of variable width between tree rows or, sometimes, weeds can grow 

in these areas if not controlled periodically by cutting or with herbicides. Instead, as 

there are now methods available to measure tree Tr independently of ETc. Several fac-

tors affect the seasonal Tr values of mature orchards or vineyards well supplied with 
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water. In addition to the level of intercepted radiation, whether the species is deciduous 

or evergreen, the stomatal responses to the environment, the presence or absence of 

fruit, are factors that influence the Tr, and even some cultivar differences within a spe-

cies have been described. If it is not possible to calculate Tr separately, is possible to 

use the overall crop coefficient (Kc) that embodies all the components of ETc. 

1.3. ET estimation methods 

Three biophysical processes in the Earth system are significantly affected by 

ET (Figure 1.3) and thus have been exploited to estimate ET: 

1. Land Surface Energy Balance (SEB): the basic physics of determining water use is 

the principle of energy conservation at the evaporating surface. Evapotranspiration 

is a process governed by energy exchange at the vegetation surface and is limited 

by the amount of energy available either in the form of sensible heat or radiant 

energy. Thanks to this limitation, it is possible to predict the evapotranspiration rate 

by applying the principle of energy conservation.  

  

(𝑅𝑛 − 𝐺) − 𝜆𝐸𝑇 − 𝐻 = 0 (9) 

  

The energy arriving at the surface, the net radiation (Rn), must equal the energy 

leaving the surface for the same period constituted by the sensible heat (H), the 

soil heat flux (G) and the latent heat flux (λET). λET representing the evapotranspi-

ration fraction can be derived from the energy balance equation if all other compo-

nents are known. While the net radiation and the soil heat fluxes can be measured 

or estimated from climatic parameters, measurements of the sensible heat are 

complex and cannot be easily obtained because requires measurement of temper-

ature gradients above the surface. It is important to notice that only vertical fluxes 

are considered in Equation (9) and the net rate at which energy is being transferred 

horizontally, by advection, is ignored. Therefore, the equation is to be applied to 

large, extensive surfaces of homogeneous vegetation only. Moreover, in Equation 

(9) other energy terms, such as heat stored or released in the plant, or the energy 



 

16 

used in metabolic activities, are not considered because they account for only a 

small fraction of the daily net radiation and can be considered negligible when com-

pared with the other four components. 

 

2. Soil water balance: the soil moisture balance equation, based on the mass conser-

vation equation, is “likely to be the fundamental equation in hydrology” (Rodriguez‐

Iturbe, 2000) and was yet described in the previous Paragraph 1.1.  

 

3. Plant growth and the carbon cycle: plant transpiration depends on the leaf level 

energy balance and the leaf area, and it is controlled by stomatal conductance. The 

dependence of the latter on environmental conditions can be cast in the form of 

semi-empirical relationships and used to parameterize leaf-level fluxes of water and 

carbon dioxide and biomass accumulation by photosynthesis (Jarvis et al., 1976). 

 

 

Figure 1.3. Biophysical processes in the Earth system are significantly affected by ET (Source: (Bonan, 

2008), adapted). 

The land surface energy balance is considered in all cases as a constraint, cast often 

in the form of the Penman-Monteith combination equation, or a simplified form of it (Jia 

et al., 2018). Independently of the biophysical process, a measure must be established 
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of the reduction in the rate of evapotranspiration below the maximum rate under unre-

stricted water availability, given radiative and boundary layer forcing. 

1.4. In-situ direct measurements of ET  

Hydrological approach: Weighing lysimeters  

Weighing lysimeters have been developed to give a direct measurement of ET 

exploiting the principle of mass conservation. The lysimeter is a tank or container (of 

many different possible designs, sizes and, shapes) able to define the lateral and deep-

water movement across a boundary (Allen et al., 1991). The main advantage of the 

lysimeter is that water consumption of vegetation can be performed based on the direct 

measurement of mass. However, a lysimeter measurement requires elaborate prepa-

ration and its application is typically limited to only a few individual trees or a small 

surface area of crops (Verstraeten et al., 2008). Majors limitation of lysimeters are the 

root extension is sometimes limited and that the capillary rise is not taken into consid-

eration because the water table can be supposed to be at a considerable depth. 

 

Plant physiology approaches 

Methods based on plant physiology either measure the water loss from a whole 

plant or a group of plants. The two the most common methods of this category are: 

1. the sap flow method can measure only plant transpiration using two possible 

simple accurate basic methods: the heat pulse and the heat balance. The heat 

balance method is the most popular sap flow method to estimate the plant tran-

spiration by determining the sap mass flow using gauges that are attached to 

or inserted in the plant stem as proposed by Čermák et al. (Čermák et al., 1973) 

and improved by Steinberg et al. (Steinberg et al., 1990). While, in the heat 

balance method, a heater element is placed around the plant stem to provide 

energy to the system and thermocouples are used to determine how much heat 

is lost by conduction up, down, and radially in the stem from the heater element. 

The difference between the heat input and these losses is assumed to be 
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dissipated by convection with the sap flow up the stem and may be directly 

related to water flow.  

Sap flow methods are a good alternative to lysimeter experiments, but the op-

eration of sap-flow sensors requires a vast technical input and maintenance 

effort. 

2. The chamber system method was described for the first time by Reicosky and 

Peters (Reicosky and Peters, 1977). The ET rate was calculated as a difference 

(latent heat storage) between two measurements by a psychrometer: one ac-

quisition before the chamber was lowered on the plot and another one minute 

later. Chambers system is easier to implement than the weighing lysimeter, but 

it is not suitable for long term ET measurements. The most serious problem of 

almost all chambers is the microclimate modification during the measurement 

period. 

 

Micrometeorological approaches 

Micrometeorological methods require accurate measurements of meteorologi-

cal parameters with high temporal resolution and their accuracy depends on the validity 

of some hypothesis (such as the flux conservation) which implies that measurements 

are performed over a large flat area with uniform vegetation. In this category of methods 

are included: 

 

1.1. Aerodynamic method 

Assuming that a flux density can be related to the gradient of the concentration 

in the atmospheric surface layer, the latent heat flux by the aerodynamic tech-

nique can be determined directly utilizing measurements of the vapour pres-

sure at different heights above the crop. The major difficulty with this technique 

is the correct measurement of the vapour pressure. For this reason, latent heat 

flux can be derived indirectly by the energy balance where the sensible heat 

flux can be determined by the flux-gradient relation for temperatures. In this 

way, it is possible to avoid complex high-frequency humidity measurements, 
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but the obtained accuracy depends on the number of measurement levels for 

wind speed and temperature profiles  (Wiernga, 1993). 

 

1.2. Eddy covariance 

The transport of vapour, heat, carbon dioxide (CO2) and momentum in the 

lower atmosphere in contact with the canopies is mostly governed by air tur-

bulence. The eddy covariance (EC) method is considered as the standard 

method for measuring surface turbulent fluxes to get the surface fluxes of sen-

sible and latent heat and of (CO2) with high accuracy (Dyer, 1961), and very 

good performances both at hourly and daily scale, also in semi-arid environ-

ments (Er-Raki et al., 2009).  

The EC method requires the synchronized acquisition of vertical wind fluctua-

tions (measured by the sonic anemometer) and vapour density fluctuations 

(by fast response hygrometer with a typical frequency of 10–20 Hz. Despite 

problems linked to the correct management of the sensors, complex data pro-

cessing, and the management of ‘closure error’ of the energy balance of about 

10-30% (Foken, 2008). 

 

1.3. Scintillometer 

Aerodynamic and eddy covariance methods can be applied only on small ho-

mogeneous surfaces and therefore large-scale turbulent fluxes are difficult to 

evaluate because the heterogeneity of most landscapes generates large flux 

variability, which is difficult to measure with the conventional techniques. 

Among the techniques developed to indirect turbulent flow measurement, the 

most promising and widely used is the scintillometery (Brunsell et al., 2011). 

Scintillometer consists of a transmitter and a receiver at both ends of an at-

mospheric propagation path (measurement transect). Depending on the wave-

lengths (λ) of the signal it is possible to distinguish among optical scintillom-

eter (λ of about 1μm) and microwave scintillometers (λ is ranged between 1 

and 10 mm). Scintillometery exploits the fact that fluxes of sensible heat and 
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momentum cause atmospheric turbulence close to the ground, and creates, 

with surface evaporation, refractive index fluctuations due mainly to air tem-

perature and humidity fluctuations. The receiver detects and evaluates the in-

tensity fluctuations of the transmitted signal, called scintillations, which are 

linked to surface fluxes of sensible and latent heat. The magnitude of these 

fluctuations is usually measured in terms of a structural parameter of the re-

fractive index of air integrated along the optical path and are related to the 

measure sensible and latent heat fluxes (H and LE) through the Monin Obukhov 

stability parameters. Temperature fluctuations are the dominant cause of scin-

tillation in the optical wavelengths, and therefore optical scintillometers can be 

applied to measure H without making measurements of, or assumptions on, 

humidity fluctuations. Scintillometers can provide average H estimates over 

areas comparable to those observed by satellites along a path length ranging 

from a few hundred meters to 5 km of the case of large aperture scintillometers 

(LAS) and 10 km reached by the extra-large aperture scintillometers (XLAS) 

(Hemakumara et al., 2003). Since the optical scintillometer provides spatially 

averaged H, LE can be computed as the energy balance residual term assum-

ing 100% energy balance closure. The estimation of a representative value for 

the available energy across the transect is therefore crucial for the accuracy 

of LE retrieved values. 

 

1.5. Remote sensing-based method for ET estimation 

The conventional techniques for the direct measurement of the energy balance 

components’ are on the one hand extremely expensive in term of time and cost and on 

the other and are representative only of local scales and cannot be extended to large 

areas because of the heterogeneity of the land surface, of the dynamic nature and the 

spatial distribution of heat transfer(Jia et al., 2018). Thus, direct measurements of ET 

is only possible at the local scale (for a single plot mostly) and are unable to provide 



Giuseppe Peschechera 

21 

estimates of spatially distributed ET at larger scales (irrigated perimeter or watershed) 

(Gao et al., 2008; van Dijk and Renzullo, 2011). 

Remote Sensing (RS) is the only feasible means of spatially estimating actual 

ET over large areas or continents (Yebra et al., 2013). First attempts to estimate ET by 

remote sensing started at the end of ’80 (Jackson et al., 1987) and during these lasts 

three decades this has become a very active field of research as a new source of data 

were available at a lower cost and higher temporal and spatial resolution. Multiples 

remote sensing ET approaches have been developed and tested (Glenn et al., 2007). 

However, each method was specifically designed to work using different source (air-

borne, satellite or UAV) and type (optical, thermal or radar) of data, with a particular 

type of crops and climate and over different temporal (from the daily scale to the annul 

scale) and spatial scale (from the single plot to the regional scale until the global scale). 

As result, since there are few intercomparison studies, nowadays there is not a con-

sensus on which of them should be preferred (French et al., 2018). A comprehensive 

global water resource monitoring program will utilize satellite information at multiple 

scales and wavelengths merging optical, Thermal Infrared (TIR) and microwaves data 

retrieved from polar and geostationary platforms (Anderson et al., 2012) as well in-situ 

and proximal (UAV) dataset. 

Numerous are also the literature review of the methods during the years. A re-

cent and extensive overview of various methods and model approaches to derive crop 

evapotranspiration and agricultural yield state from remote sensing data are presented 

by Toulios et al. (Toulios et al., 2020). According to Courault et al. (Courault et al., 

2005), these methods can be classified into four mains categories: 

1. Empirical direct methods where remote sensing data are introduced directly in 

semi-empirical models to estimate ET (for example, the simplified relationship 

using Thermal Infra-Red (TIR) remote sensing and meteorological data). 

2. Residual methods of the Surface Energy Budget (SEB) combining some em-

pirical relationships and physical modules.  
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3. Deterministic methods generally based on more complex models, such as 

Soil–Vegetation–Atmosphere Transfer models (SVAT), and where remote 

sensing data are used at different modelling levels. 

4. Vegetation Index (VI) methods, which are based on the use of optical remote 

sensing data. 

 

Considering the different type of remote sensing data exploited, two major categories 

of approach for the ET estimation are discussed in the following: the SEB (TIR-based) 

and the VI (Optical-based) approach. 

 

SEB approaches (TIR-based) 

Land Surface radiometric Temperature (LST) is the result of the thermodynamic equi-

librium dictated by the energy balance at the atmosphere, surface, and subsurface in-

terface, and the efficiency by which the surface transmits radiant energy into the at-

mosphere (Kustas and Norman, 1996). LST is highly variable in space and time mainly 

due to the meteorological forcing variability and to surface properties heterogeneity in 

terms of topography, vegetation cover (density, phenology), surface and root zone soil 

moisture, soil hydrodynamic properties (texture, porosity) and the radiative properties 

(albedo, emissivity) (Prata et al., 1995). LST is highly sensitive to local moisture con-

ditions and the effects of evaporative cooling and plays a key role in diagnosing many 

of the major SEB components (Anderson et al., 2012). Remote sensing provides the 

possibility of retrieving the LST in the spectral range of TIR (8 to 14 μm) with varying 

temporal and spatial resolutions using a thermal camera on different platforms: UAV, 

airborne and satellite. 

Following the classical approach of SEB, LST is used to compute the sensible 

heat (H) from the aerodynamic temperature (TAERO) (which is related to the LST) and 

the above-canopy air temperature (TAIR): 

  

𝐻 =  𝜌𝐶𝑝

𝑇𝐴𝐸𝑅𝑂 − 𝑇𝐴𝐼𝑅

𝑅𝐴
 (10) 
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where: 

• 𝜌𝐶𝑝 is the heat capacity of the air. 

• 𝑅𝐴 is the aerodynamic resistance to turbulent transport between the heights 

above ground level associated with the quantity TAERO and TAIR. It depends 

on local wind speed, surface roughness and stability in the atmospheric 

surface layer. 

Then the flux of latent heat (𝜆𝐸𝑇) is derived, at the instant of the satellite over-

pass, as a residual term of the SEB, described by Equation (9). There are sev-

eral practical issues related to the computation of the sensible heat using the 

expression of Equation (10) especially related to the LST and the TAERO (which 

is a theoretical construct but is not directly measurable) but different studies 

have demonstrated that TIR data can be effectively integrated into SEB model-

ling to mapping ET over large areas.  

Two types of methods are currently used to compute LE: the so-called “single-

pixel” and “contextual” methods. In the first case, the information from each 

pixel is used independently of any other pixel in the image and the balance is 

solved independently of the rest of the image, while the “contextual” methods 

take advantage of thermal contrasts in the image. Calculation of atmospheric 

resistances distributed over large areas is, therefore, a major challenge for the 

“single-pixel” models, partly because of the difficulties encountered in the spa-

tialized estimation of the roughness properties of the surface. To circumvent 

this problem, the “contextual” methods exploit the spatial variability of the sur-

face properties, placing each pixel in its context and locating it with respect to 

endmembers. 

Remote sensing-based SEB models are reviewed in different work present in 

literature (Kalma et al., 2008; Li et al., 2009; Liou and Kar, 2014; Mohan et al., 

2020). The majority considers the land surface as an electrical analogue, which 

means that the rate of exchange of a quantity (heat or mass) between two 

points is driven by a difference in potential (temperature or concentration) and 

controlled by a (variable) number of resistances that depend on the local 
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atmospheric environment and internal properties of the land surface and vege-

tation. 

 

VI-based approaches (Optical-based) 

The strong contrast of absorption and scattering of the red and near-infrared 

bands can be combined into different quantitative indices of vegetation conditions. The 

Vegetation Indices (VIs) are an integrated product of LAI, chlorophyll content, leaf an-

gles, fractional cover, and canopy architecture over vegetated surfaces (Nagler et al., 

2004) and are strongly correlated with physiological processes that depend on photo-

synthetically active radiation absorbed by a canopy, such as transpiration and photo-

synthesis (Sellers et al., 1992). Moreover, several studies showed that VIs are nearly 

scale-invariant in going from leaf-level ground measurements to large-area satellite/ar-

eal measurements. 

VI-based approaches are increasingly being explored, partially because SEB 

methods have been difficult to implement due to the number of satellite sensors that 

have thermal infrared bands is still limited (Yebra et al., 2013) and the coarser spatial 

resolution of the TIR dataset. Among the TIR datasets available, is necessary to set a 

trade-off between temporal and spatial resolution. Landsat satellites provide TIR infor-

mation characterized by high-spatial (100 meters) and low-temporal resolution (16 

days) while the National Oceanic and Atmospheric Administration-Advanced Very High-

resolution Radiometer (NOAA-AVHRR) the Terra/Aqua-Moderate Resolution Imaging 

Spectrometer (MODIS) and the Geostationary Operational Environmental Satellite 

(GOES) are characterized by low-spatial (ranging from 1 to 4 km) and high-temporal 

resolution (ranging from daily to hourly scale). Also, with the recent lunch od Sentinel-

3, this trade-off is not solved because the Sea and Land Surface Temperature Radiom-

eter (SLSTR) provides TIR data at the kilometre scale with revisit time equal to 1.9 days 

at the equator (one operational spacecraft) or 0.9 days (in constellation with a 180° in-

plane separation between the two spacecraft). To solve this trade-off it possible also to 

combine optical and TIR satellites for high-resolution evapotranspiration estimations 

(Guzinski and Nieto, 2019). Therefore, even if to detect and quantify the crop water 
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stress it is preferable to utilise satellite observations both in visible/near-infrared (VIS-

NIR) and TIR parts of the electromagnetic spectrum (Kullberg et al., 2017), numerous 

methods have been developed to estimate et ET using optical data since, by contrast, 

there are several satellites with bands in the Visible, Near Infra-Red (NIR) and Short-

wavelength infrared (SWIR) spectrum over a wide range of temporal and spatial reso-

lutions (Glenn et al., 2010). In particular, the spatial resolution of the retrieved ET maps 

plays a key role in the selecting of the most suitable RS-based ET estimation method 

because it should be comparable with the spatial scale of the predominant landscape 

feature (Kustas et al., 2004). This condition must be accurately considered when work-

ing in a context characterized by high fragmentation agriculture landscape (as the Med-

iterranean area) with field sizes ranging from hundreds to thousands of meters square, 

as better described in Paragraph 4.1. 

Although working with optical data is not possible to detect soil evaporation nor 

vegetation stress (except long term effects) several studies have found VI-based ET 

methods provide a good estimation of ET (Cleugh et al., 2007; Kalma et al., 2008). 

Moreover, since VI-based methods cannot estimate bare soil evaporation or differences 

in stomatal conductance among species and as affected by environmental factors, 

these must be approximated from ground data or additional remote sensing data (Glenn 

et al., 2010).  

There are 3 typical ways to use the VI retrieved from optical data for ET estimation: 

1. To derive the crop coefficient and therefore the ET in the so-called “two-steps” 

or “Kc-VI” approach. 

2. To parameterize the terms of the classical ET equation into the so-called “one-

step” or “analytical” approach. 

3. In combination with LST data into the “dual-source” approach (Moran et al., 

1994).  

Here only the first two listed categories of approaches were analysed while the “dual-

source” approach, since requiring the use of LST data, was not considered. 

 

1. Kc-VI Approach 
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Similarities between the crop coefficient (Kc) curve and a satellite-derived veg-

etation index showed potential for modelling a crop coefficient as a function of 

the vegetation index (Kamble et al., 2013). These similarities were exploited to 

derive empirical relationships between ground measurements of ET (typically 

from flux towers) or evaporative fraction (EF) and the crop coefficient estimated 

from the statistical regression of data, following the relation of Equation (6). 

  

𝐸𝑇𝑐 = 𝐾𝑐(𝑉𝐼) ∗  𝐸𝑇𝑜 (11) 

  

A recent review on spectral vegetation indices approaches is provided by Pôças 

et al. (Pôças et al., 2020). Commonly used VIs include: 

- the Normalized Difference Vegetation Index (NDVI)  

  

𝑁𝐷𝑉𝐼 =
𝜌𝑁𝐼𝑅 −  𝜌𝑅𝑒𝑑

𝜌𝑁𝐼𝑅 +  𝜌𝑅𝑒𝑑
 (12) 

   

The NDVI is a normalized ratio of the near-infrared (NIR) and red bands 

and is sensitive to chlorophyll (Rouse, 1974). It has been used exten-

sively for vegetation monitoring, crop yield assessment and drought 

detection and is also the VI most used to retrieve the Kc (Fisher et al., 

2008).  

Despite its many successful uses, it exhibits scaling problems, asymp-

totic (saturated) signals over high biomass conditions, and is very sen-

sitive to canopy background variations with brighter canopies nega-

tively-biasing NDVI values (Huete et al., 2002). 

 

- the Enhanced vegetation index (EVI) 

  

𝐸𝑉𝐼 =
𝜌𝑁𝐼𝑅 −  𝜌𝑅𝑒𝑑

𝜌𝑁𝐼𝑅 +  𝜌𝑅𝑒𝑑
 (13) 

  

The EVI is an ‘optimized’ vegetation index designed to enhance the veg-

etation signal with improved sensitivity in high biomass regions and 
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improved vegetation monitoring through a de-coupling of the canopy 

background signal and a reduction in atmosphere influences (Yuan et 

al., 2010). Consequently, EVI is more responsive to canopy structural 

variations, including LAI, canopy type, plant physiognomy, and canopy 

architecture (Nagler et al., 2013). 

 

- the Normalized Difference Water Index (NDWI)  

  

𝑁𝐷𝑊𝐼 =
𝜌𝑁𝐼𝑅 −  𝜌𝑆𝑊𝐼𝑅

𝜌𝑁𝐼𝑅 +  𝜌𝑆𝑊𝐼𝑅
 (14) 

  

The NDWI is sensitive to changes in the liquid water content of vegeta-

tion canopies (Gao, 1996). Like the NDVI, also the NDWI does not com-

pletely remove the effects of background soil reflectance  (Lu and 

Zhuang, 2010). 

 

In addition to these VIs also modelled satellite products, such as Leaf Area 

Index (LAI) and the Fraction of Absorbed Photosynthetically Active Radiation 

(fPAR), and the fraction of ground covered by the canopy (fc), were intensively 

used to map the ET (Cleugh et al., 2007; Leuning et al., 2008; Mu et al., 2007; 

van Dijk and Renzullo, 2011; Pereira et al., 2020) exploiting the well-known 

relationship between these variables and the crop coefficient developed studied 

in the 1970s, for annual crops, and later, in the last decennia, for perennial 

crops such as tree and vineyards.  

Several studies have used multispectral VIs derived from remote sensing to 

estimate the ET on agricultural crops including corn (Bausch, 1995), wheat 

(Duchemin et al., 2006; Farg et al., 2012, 2012; Garatuza-Payan et al., 2003), 

cotton (Hunsaker et al., 2003), potato (Jayanthi et al., 2007), maize (Toureiro 

et al., 2017), sugarbeet crops (González-Dugo and Mateos, 2008) and vine-

yards (Balbontín et al., 2017; Vanino et al., 2015b).  
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Analysing the results of these study it is possible to notice that (Anderson et 

al., 2012) VI methods: 

- tend to work best in irrigated and riparian areas that perennial unstressed, 

or over longer timescales where vegetation indices have time to adjust to 

local moisture conditions. In these cases, VI approaches have good capa-

bility to estimate water use requirements by managed crops.  

- are less well-suited for routine satellite monitoring of actual water use for 

natural and agricultural landscapes characterized by stress conditions be-

cause in these contexts, which are of most interest, VI and ET are not well 

correlated. VIs tend to overestimate ET when stress develops most rapidly 

than the adjustment adopted by the crops in terms of biomass and spectral 

response. 

- (in most cases) underestimate actual seasonal ET because during the pre-

emergence phase, where VI are not significant, and evaporation from the 

soil is the major contribution to the ET. Precipitation events and irrigation 

water applied during this phase is neglected and leads to underestimation. 

 

However, the major limitation to the use of the VI-Kc approach over large areas, 

especially over heterogeneous landscapes, is the necessity of use ET meas-

urements to build the Kc-VI relationship for each crop/vegetation type. Moreo-

ver, even if empirical relationships are available in the literature before to be 

applied it is necessary to verify if the context where they were retrieved has the 

same characteristics as the context where will be applied. This is another limi-

tation to the diffusion of the methods because the possible combinations of 

crop/climate types are more numerous than the combination available in the 

literature.  

These considerations relative to Kc-VI approaches for estimating crop coeffi-

cients were recently resumed by Pôças et al. (Pôças et al., 2020) in a SWOT 

analysis reviewing the spectral vegetation indices approaches (Figure 1.4). 
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Figure 1.4. SWOT analysis relative to Kc-VI approaches for estimating crop coefficients (Source: (Pôças 

et al., 2020)). 

 

2. “0ne-step” (or “Analytical”) approach 

The “one-step” approach consists in the force directly remote sensing crop 

parameters (such as albedo, LAI) and VIs into an ET combination equation such as  

Penman-Monteith, Priestly-Taylor (Priestley and Taylor, 1972) or Shuttleworth-
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Wallace (Shuttleworth and Wallace, 1985; Zhou et al., 2006) avoiding the use of 

empirical relationships between optical properties and crop coefficients. However, 

to estimate actual ET is necessary to account for water stress in crop resistance 

using optical VIs (alone or in conjunction with TIR or microwave data) to parame-

terize the resistance terms of the Penman-Monteith equation or the empirical α co-

efficient of the Priestly-Taylor. 

The Priestley-Taylor (PT) equation is similar to the Penman-Monteith 

method but simplified through the introduction of an empirical constant (α) ac-

counting for the vapour pressure deficit and resistance values. Fisher et al. (Fisher 

et al., 2008), working on the global scale, preferred to adopt the Priestley–Taylor 

equation because, even if it is theoretically less accurate than the Penman-Monteith 

equation, not requires parameters that are difficult to characterize globally such as 

aerodynamic resistance, stomatal resistance, and wind speed. They proposed a 

model driven by 5 inputs (net radiation, NDVI, Soil Adjusted Vegetation Index 

(SAVI), maximum air temperature, and water vapour pressure) to reduce potential 

LE to actual LE. The model was developed to work on a monthly scale with MODIS 

satellite data and was compared with 16 FLUXNET sites with different climate con-

ditions and crops. 

Numerous are the application of the “one-step” approach developed to 

work with the FAO Penman-Montheit equation. 

D’Urso and Menenti (D’Urso and Menenti, 1995) introduced an operative 

approach based on the direct integration into the P-M equation of Leaf Area Index 

(LAI), the crop heigh (hc) and the Surface Albedo (α). A complete description of 

this method is reported in Chapter 2. 

The Penman-Monteith equation is on the basis of the algorithm of the global 

MODIS Evapotranspiration/Latent Heat Flux product for the estimation of the actual 

ET (Mu et al., 2007). This 8-day composite product, provided at the global scale 

with a nominal spatial resolution of 500 meters, is calculated on daily basis by 

summing daytime and the nighttime ET and using as inputs daily meteorological 

reanalysis data with MODIS remotely sensed data products such as vegetation 
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property dynamics (described by LAI and Fraction of Photosynthetically Active Ra-

diation (FPAR)), albedo, and land cover. Canopy conductance for plant transpira-

tion was calculated by using LAI to scale stomatal conductance up to the canopy 

level. For many plant species during growing seasons, stomatal conductance is 

controlled by vapour pressure deficit (VPS) and daily minimum air temperature 

(Tmin): Tmin controls dormant and active growing seasons for evergreen biomes 

while high temperatures are often accompanied by high VPDs, leading to partial or 

complete closure of stomata. Under this hypothesis, for a given biome type, two 

threshold values for Tmin and VPD was fixed and the stomatal conductance is esti-

mated using a Biome-Property-Look-Up-Table. The MODIS ET product was vali-

dated worldwide with observed latent heat flux from field-based eddy covariance 

towers, displaced in 232 watersheds (Mu et al., 2011) and provides key information 

for water resource management and to calculate regional water and energy balance 

and soil water status from the regional to the global scale. 

1.6. Irrigation Water Requirement 

The Irrigation Water Requirement (IWR) includes several components, with the 

major component being the replacement of soil water depleted by crop ET (ETc). Other 

components provide water for leaching or controlling the soil salinity level, and for var-

ious miscellaneous purposes such as ensuring germination of seeds, controlling soil 

crusting, controlling frost, and conditioning the soil to enable harvesting root crops. 

Only part of the water for these other components is consumed by ET, therefore the 

IWR of the crop is defined as the amount of irrigation water required to be delivered in 

the field, in addition to the rainfall, to meet the CWR. Under this definition, the IWR is 

considered strictly as the difference between the CWR and effective precipitation, with-

out considering additional water for leaching of salts and to compensate for non-uni-

formity of water application. In such cases, IWR is computed as a residual term of the 

water balance equation as the difference between the CWR and the effective rainfall 

(RainEff) defined as the fraction of the total amount of rainwater retained in the root zone 

and which is effectively used by the plants for meeting the water need (Equation (15)). 
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𝐼𝑊𝑅 = 𝐶𝑊𝑅 − 𝑅𝑎𝑖𝑛𝐸𝑓𝑓 (15) 

  

While the IWR defines the amount of irrigation water required to be delivered in 

the field and therefore is also indicated as “Net” Irrigation Water Requirements (NIWR), 

the irrigation schedule indicates how much irrigation water must be given to the crop, 

and how often or when this water is given to either maximize the production or to max-

imize the benefit. The scheduling is influenced by the soil type (influences the maximum 

amount of water which can be stored in the soil per meter depth), the root depth (fre-

quent – but small – irrigation applications shallow root system and less frequently and 

more water for deep rooting crops) and the irrigation method (surface, sprinkler, or drip 

irrigation).  

The crop coefficient method, as introduced by the FAO-56 guidelines (Allen et 

al., 1998), is currently the method most used for water requirements estimation and 

scheduling irrigations (Glenn et al., 2007). The large diffusion of the method was pos-

sible also thanks to the release of two tools developed by the FAO: 

- CROPWAT: software for the calculation of crop water and irrigation require-

ments based on soil, climate, and crop data (Smith and Nations, 1992). 

- CLIMWAT: a complementary database for CROPWAT providing agroclimatic 

information from over 5.000 stations distributed around the world. 

1.6.1. Irrigation efficiencies 

The term irrigation efficiency (e) expresses the performance of a complete irri-

gation system or components of the system. Not considering the salt balance in the 

crop root zone, the irrigation efficiency is defined as the ratio between the amount of 

water used to meet the consumptive use requirement of the crop to the total volume of 

water diverted, stored, or pumped for irrigation. Thus, the losses that can occur during 

the transport and the distribution as well as the water applied by the irrigation system 

and not being made available to be taken up by plant roots is considered wasted and 

reduces irrigation efficiency.  
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The scheme irrigation efficiency is that part of the water pumped or diverted 

through the scheme inlet which is used effectively by the plants and it can be sub-

divided into: 

- the conveyance efficiency (ec) which represents the efficiency of the transport 

and distribution scheme. 

- the field application efficiency (ea) which represents the efficiency of water ap-

plication in the field. It mainly depends on the irrigation method and the level of 

farmer discipline. Efficient irrigation is achieved when most of the water applied 

is consumed as transpiration and the losses in evaporation, runoff and perco-

lation are kept to a minimum. Some indicative values of the average field appli-

cation efficiency are reported in the following Table. 

Table 1-1. Average field application efficiency (ea) (Source: FAO). 

Irrigation methods Field application efficiency 

Surface irrigation (border, furrow, basin) 60% 

Sprinkler irrigation 75% 

Drip irrigation 90% 

 

Once the conveyance and field application efficiencies have been determined, 

the scheme irrigation efficiency can be calculated as: 

  

𝑒 =  
𝑒𝑐 𝑒𝑎

100
 (16) 

  

Information on irrigation efficiency is necessary to be able to transform NIWR 

into Gross Irrigation Water Requirement (GIWR), which is the quantity of water to be 

applied, considering also water losses. 

  

𝐺𝐼𝑊𝑅 =
𝑁𝐼𝑊𝑅

𝑒
=  

𝐶𝑊𝑅 − 𝑅𝑎𝑖𝑛𝑒𝑓𝑓 

𝑒
  (17) 

  

1.6.2. Factors affecting irrigation management 
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Irrigation management depends on several factors, most of which are interre-

lated. Fernández García et al. resumed the principal factor which affected the irrigation 

scheduling, as described below  (Fernández García et al., 2020): 

 

- Crop: is the main driver of irrigation scheduling as irrigation is intended to satisfy 

the fraction of CWR, equivalent to the amount of water lost by crop evapotranspi-

ration (ETc), that cannot be satisfied with rainwater during the crop season. 

- Soil characteristics: such as soil condition, slope, texture, structure, depth, organic 

matter content, bulk density, salinity, acidity drainage, fertility and chemical param-

eters affect soil water distribution and root water absorption.  

- Irrigation scheduling criteria used to establish irrigation scheduling. Several “irriga-

tion criteria” have been developed including: 

1. A farmer’s perception/experience of crop irrigation needs, which usually 

results in less-than-optimal irrigation scheduling (lack of water during some 

crop stages and over-irrigation in others) and hence, lower production and 

profits. However, worldwide, irrigation management decisions are based 

primarily on local experience, with very limited technical input. 

2. Rational estimation of daily crop irrigation requirements using historical cli-

mate data that are daily updated during the irrigation season. 

3. Rational estimation of daily crop irrigation requirements based on both cli-

mate information and on daily soil water balance. 

4. Estimation of daily irrigation needs using soil water data collected from soil 

moisture sensors. 

5. Irrigation needs to be estimated from plant water status monitoring. 

 

The above criteria define the daily irrigation program once the irrigation 

strategy is established.  

 

- Irrigation strategy is influenced by several factors: 
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• water allocation for the whole season (from full irrigation to different levels 

of deficit irrigation). 

• the type of irrigation system and its hydraulic characteristics. 

• water availability at the field scale, according to the management of the 

irrigation district (on-demand irrigation in which farmers can irrigate 24 h a 

day or by irrigation turns) and the kind and quality of water source. For 

example, groundwater is a more reliable water source and less vulnerable 

to drought compared to surface water which is dependent on climatic var-

iables. 

 

- Water distribution system and irrigation system. Pressurized irrigation networks 

show higher water use efficiency but also increased energy requirements than open 

channel water distribution networks. The operating conditions in these kinds of net-

works must ensure that hydrant service conditions are adequate for the proper 

functioning of on-field irrigation systems, applying the expected water depth and 

avoiding inadequate irrigation schedules that lead to inefficient use of water. More-

over, the hydraulic features of the on-farm irrigation system must be considered to 

establish irrigation programming. These features depend on the type of system 

(surface, sprinkler, or trickle) and its design (layout) and hydrant operation (sector-

ing). 

 

- Energy source and its management. Pressurized water distribution and application 

systems, which have become common in recent decades, are generally more effi-

cient in the use of water than open channel systems. However, improved water 

efficiency leads to the augmentation of energy costs. The operation of the main 

hydraulic networks designed to reduce energy costs may limit the available irriga-

tion time for farmers conditioning the irrigation schedule of their fields. Even in the 

case of the use of renewable energy sources (wind, solar photovoltaic and micro 

hydropower) irrigation must be scheduled around the availability of renewably 
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sourced energy since the generation of energy depends on suitable weather condi-

tions (sufficient wind or solar radiation for pumping).  

 

- Economy and farmer’s behaviour. The costs of current irrigation scheduling sys-

tems (e.g., ICs, sensors, apps, web platforms, etc.) are generally falling. However, 

the adoption of these systems can be justified only by the (significantly) increase 

in farmer income. Therefore, for moderate to low-profit crops, and for small scale 

farms (as usual in the Mediterranean context characterized by a great number of 

small-medium, often familiar, farms) these technologies may still be cost-prohibi-

tive. 

1.6.3. Irrigation monitoring 

Even if agriculture is recognized to be the biggest water consumer sector, de-

tailed, and updated spatiotemporal information about the location and extension of irri-

gated areas are still missing. Global datasets, as the FAO global information system on 

water resources and agricultural water management (AQUASTAT), provide information 

at the Country level based on the information collected during the agricultural census. 

Therefore, the so-called Informal irrigation is not considered in these datasets.  

However, the information available from these datasets are different because 

multiple definitions for the term “irrigated areas” were developed for different applica-

tion and contexts (Thenkabail, 2015): 

- Areas equipped for irrigation. 

- Areas that receive irrigation at least once during their crop growing period. 

- Areas that receive irrigation to meet at least half their crop water requirements 

during the growing season. 

- Areas that are irrigated throughout the growing season. 

- those areas which are irrigated one or more time during crop growing season. 

Following different definitions, the obtained irrigated area extent will vary, therefore the 

key to effective mapping is to set a precise and clear definition of what is mapped. 

http://www.fao.org/aquastat/en
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If the definition and identification of the irrigated areas is a difficult task, estimate 

the spatiotemporal pattern of Irrigation Water Applied (IWA) over large areas (like irri-

gation schemes) is even more complex, because of the great variety of agricultural 

practices applied, particularly for schemes that utilize both surface and groundwater. 

However, the availability of accurate information about the water consumed for irriga-

tion is the first and key step to support the development and monitoring of policies and 

regulations able to support and promote the sustainable management of the water re-

sources, especially in water-scarce regions. Conventional ground-based metering 

methods are costly, in terms of time and labour, and need to be repeated regularly to 

obtain temporal patterns (Ursitti et al., 2018). Therefore they can provide only a partial 

solution only for assessing crop irrigation over relatively small areas and for brief peri-

ods (Maselli et al., 2020). 

 Remote sensing methods can be of assistance in estimating irrigation water 

usage in irrigated agricultural areas and can in some cases be the only way to identify 

the spatiotemporal evolution of the irrigated areas and to close the water budget. Since 

IRW cannot be directly assessed from satellite, statistical RS-based approaches to 

classify the irrigated crops have obtained good results at field scale but are less suitable 

to be applied over large areas were ground-truth samples are missing. Over large areas, 

IWR is mainly estimated using a more deterministic strategy. The first possibility is 

based on the identification of water deficit conditions which are presumably corre-

sponding to irrigation, assuming implicitly that the water used for irrigation approxi-

mately correspond to the not-rain water consumed by the crop (Steduto et al., 2012). 

Under this hypothesis, which can be considered as reasonable in all cases when the 

cost of extracting and distributing irrigation requires the improvement of farmer’s water 

use efficiency (as common in many Mediterranean regions), (net) IWR can be esti-

mated as the difference between the Crop Water Requirements, represented by the 

actual ET (ETc) and the net rainfall (Rn): 

  

𝐼𝑊 =  ∑ 𝐸𝑇𝑐,𝑖

𝑖

−   ∑ 𝑅𝑛,𝑖

𝑖

 (18) 
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In an even more deterministic way, irrigated field and IWR could be estimated 

using RS-SWB (RS-SWB) models can provide a continuous and predictive estimation 

of water balance components, including irrigation. In large scale RS-SWB models, the 

spatial and temporal pattern of actual ET (or equivalently the LE) is derived from RS and 

irrigation is estimated as a residual term of the SWB equation. In a recent approach 

introduced by Brocca et al. (Brocca et al., 2018) even satellite soil moisture product 

was exploited, inverting the SWB model, to quantify the amount of water applied for 

irrigation. However, due to the coarse spatial resolution of the satellite products used, 

this method has low performance when applied over small, irrigated fields. Different 

RS-SWB models were developed to assess the IWR over large areas developed with 

different specific objectives: 

- monitoring of the irrigated area (almost in real-time)  

- management of illegal irrigation: combining information about plots with water 

rights for irrigation with the modelled IWR can help to detect anomalies related 

to possible unregulated irrigations and agricultural plots with water rights that 

were not irrigated.  

- monitoring groundwater use patterns (Hunink et al., 2015). 

- precision irrigation defined as “the accurate and precise application of water to 

meet the specific requirements of individual plants or management units and 

minimize the adverse environmental impact” (Raine et al., 2007). Monitoring 

water use and crop water status in the field is important for developing effective 

precautions, and for this purpose, some indicators are required. 

- Irrigation performance in water user association (Karatas et al., 2009). 

- green-blue water accounting. 

 

Among these models, the most significant retrieved in literature is reported below. 

- The Simulation and Management of On-Demand Irrigation Systems (SIMODIS) 

estimate the actual irrigation water demand in a district in Sicily (Italy) 

(Minacapilli et al., 2008) solving the one-dimensional water flow equation with 

vegetation parameters derived from EO data. The irrigation schedule is set using 
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two crop and soil specific irrigation parameters: the threshold value of soil wa-

ter pressure head in the root zone and the fraction of soil water deficit to be 

refilled. Together with a spatial distribution of the soil hydraulic properties and 

the vegetation conditions throughout the irrigation season, potential ET was es-

timated using a Kc obtained from LandSat TM derived canopy parameters such 

as the leaf area index, LAI, the fractional vegetation cover, the surface albedo, 

and crop height. Under the tested agro-climatic conditions typical for the Med-

iterranean region, was concluded that the spatial variability of the crop condi-

tions had much more influence to assess the irrigation water demand than the 

soil hydraulic spatial variability. 

- Piedelobo et al. (Piedelobo et al., 2018) developed an open-sours tool for irri-

gation almost in near-real-time monitoring and management using free satellite 

imagery (HidroMap) developed and validated in Duero Hydrographic Basin 

(Spain) (Piedelobo et al., 2018). HidroMap was developed to support Hydro-

logical Planning Offices as a decision support tool including all actors involved 

in water management and water policymakers at the field level. 

- HYDROMore is an FAO-56 SWB-based model which integrates RS derived 

products and local data (meteorology, soil hydrology, and crop characteristics) 

gathered from direct observations and geodatabase in the dual crop coefficient 

approach (Sanchez et al., 2010). Its innovative features are on the one hand 

the assimilation of multispectral RS data using the NDVI-Kcb and NDVI act re-

lations; on the other hand, the spatial distribution of the FAO-56 model using a 

distributed hydrological model. The model runs at a daily time-step and pixel-

based scale. The spatial coverage and resolution are defined by the footprint of 

the satellite images over the terrain and their pixel size, respectively. Therefore, 

the model is can be applied over different spatial and water resource scales, 

ranging from the plot and the Water User Association (WUA) to larger scales 

like the aquifer and river basins (Garrido Rubio et al., 2020). 
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However, in the field of irrigation scheduling, there are very few concrete outcomes 

with respect to the number of works and model retrieved in the literature. Vuolo et al. 

summarized some initiatives implementing satellite-based irrigation advisory services 

developed and working in different contexts (Vuolo et al., 2015): 

- Southern Italy, with the “Irrigation assisted by Satellite” – IRRISAT 

(http://www.irrisat.it). 

- Lower Austria, with “Earth Observation for Water resources management” -

EO4Water (http://eo4water.com). 

- Southern Australia, with the “South Australian Trial for a Satellite Irrigation Ad-

visory Service” – IRRiEYE (, http://www.irrieye.com). 

- The Iberian Peninsula with the “System of Participatory Information, Decision 

Support and Expert knowledge for irrigation River basin water management” 

(SPIDER). Its first prototype has been developed in 2005 by the Remote Sens-

ing and GIS Lab of the University of Castilla-La Mancha from and it is currently 

providing time series of Sentinel-2 and Landsat 8 imagery and derived products 

(Eto maps, colour composition RGB, NDVI, Kcb and CWR) for the whole Spain 

and Portugal in near real-time mode, 24 hours after image delivery in the web-

portals of Landsat 8 and Sentinel 2A by USGS and Copernicus, respectively. 

The previously introduced HydroMORE software is used for operative applica-

tions providing distributed spatio-temporal thematic cartography (ETc, NIR…) 

on a monthly time scale in the framework of two EU funded projects aimed 

respectively to generate services on water management to water users at dif-

ferent levels (“SIRIUS EU project”, sirius-gmes.es/) and to detect non-author-

ized irrigation water abstractions in comparison with the local water authorities 

data (“DIANA EU project”, diana-h2020.eu).  

http://www.irrisat.it/
http://eo4water.com/
http://www.irrieye.com/
http://sirius-gmes.es/
https://diana-h2020.eu/en/
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2. THE EO-BASED “ONE-STEP” FAO-56 METHOD 

Overview 

Among the methods for retrieving the ET using RS-derived data available in the 

literature and reported in the previous Chapter, the “one-step” FAO-56 method was 

retained as the most suitable approach for the CWR’s estimation in an operative way 

and over large areas in a Mediterranean semi-arid context characterized by a very frag-

mented and heterogeneous landscape with a mosaic of rainfed and irrigated crops. 

The present Chapter describes the internationally adopted standard FAO Pen-

man-Monteith (FAO-PM) model and the possibility of feed it with a combination of in-

situ meteorological data and crop characteristics retrieved from optical satellite images 

into the so-called EO-based “one-step” approach. Together with the full description of 

the method and its applications, are presented both its mains advantages and limita-

tions. 

2.1. The FAO-PM method 

The FAO Irrigation and Drainage Paper No 56 “Crop Evapotranspiration” was 

introduced in 1998 by the Food and Agriculture Organization of the United Nations to 

revise guidelines for computing crop water requirements (Allen et al., 1998).  The FAO-

56 guidelines were a follow-on to the historic FAO paper No 24 (Doorenbos and Pruitt, 

1977) which introduced the two-step crop coefficient–reference ET procedure to esti-

mate CWRs practically and operatively. In this approach (Equation (6)), reference evap-

otranspiration (ETo) represents the primary weather-induced effects on water con-

sumption, and the crop coefficient (Kc) scales the reference ET to account for crop-

specific influences on ET and their variation during the crop growing season.  

The FAO-56 introduced a more in-depth analysis and decomposition of the two-

stage approach for estimating crop water use and the further expansion of Kc to 
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estimate crop ET under various crop growth and management conditions, accounting 

for the influences of: 

- crop growth stage, amount of vegetation, and cultivar type. 

- the planting date, crop season length, and termination. 

- plant and row spacings, plant density, crop height and canopy architecture. 

- the wetting frequency and its contribution to total ET. 

- soil water availability and associated water stress. 

- soil and water salinity. 

- non-standard and sub-optimal cropping practices.  

 

Besides, in the FAO-56 guidelines: 

- the Kc was extended to natural vegetation to support hydrologic applications. 

- was introduced the dual Kc crop coefficient that, instead of the Kc crop coeffi-

cient that incorporates both crop transpiration and soil evaporation, separates 

these two processes. 

 

But the most important issue addressed by FAO-56 was the introduction of a standard-

ized method for the reference ETo estimation. Indeed, before its introduction, there was 

many equations to estimate the ETo and therefore, for the same crop, different Kc val-

ues were existing depending on the ETo formulation adopted. The missing of a non-

unique relation between crop type and Kc has the effect of limiting the spread of the 

method and the comparison of results worldwide. Therefore, a specific Expert Consul-

tation on Procedures for Revision of FAO Guidelines for Prediction of Crop Water Re-

quirements was nominated to select, through a comparative analysis, the most suitable 

method for the ETo estimation. The Expert consultation recommended the adoption of 

the Penman-Monteith (P-M) (Monteith, 1965) as a globally applicable reference 

method because it is a physics-based method and “physics are physics everywhere” 

(Pereira et al., 2015). The adoption of the P-M equation and single reference basis has 

effectively and substantially reduced the numerous discussions and research efforts of 

the past on the development and selection of ET reference crop methods and has 
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established one worldwide accepted procedure, now largely uncontested, to estimate 

reference crop evapotranspiration. The FAO P-M method has become a de-facto inter-

national standard method for reference evapotranspiration and has been incorporated 

into a variety of models used in irrigation scheduling, irrigation systems design, water 

resources planning (to estimate the water demand), and hydrologic modelling (to esti-

mate the water consumption of vegetation and crop). 

The P-M equation calculates ET by combining the surface energy balance equa-

tion with resistance-based methods. 

  

𝜆𝐸𝑇 =
𝛥(𝑅𝑛 − 𝐺) + 𝜌 𝑐𝑝

(𝑒𝑠 − 𝑒𝑎)
𝑟𝑎

𝛥 + 𝛾 (1 +
𝑟𝑐

𝑟𝑎
)

 (19) 

  

Where: 

• ρ is air density. 

• cp is the specific heat (capacity) of air. 

• γ is the psychrometric constant. 

• es is the saturation vapour pressure at surface temperature (To). 

• ea is the actual vapour pressure or the saturation vapour pressure at dew-

point temperature. 

• ra is the aerodynamic resistance. 

• rc is the canopy or bulk stomatal resistance of the vegetation (resistance to 

vapour diffusion). 

 

The P-M equation introduces the so-called “big-leaf” approach for describing 

the plant canopy exchanges with the overlying atmosphere assuming that the ex-

changes of the whole canopy can be adequately represented and described ad they 

occurred at a single level: the effective source-sink height. At this level, the whole-

canopy parallel-average values of stomatal resistance and the usually much smaller 

leaf-boundary-layer resistance control the exchange between the hypothetical big leaf 

and the surrounding air in the canopy, these resistances being appropriately scaled-
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down from the resistances for individual leaves by dividing by the leaf area index. A 

further resistance for latent and sensible heat is then used to represent the turbulent 

transfer of energy fluxes upward to some reference level in the atmosphere above 

(Shuttleworth, 2006). In the big-leaf model, as represented schematically in Figure 2.1, 

the canopy-average leaf boundary layer resistance and the turbulent aerodynamic re-

sistance act in series for both the latent and sensible heat transfer and are often com-

bined as a single aerodynamic resistance between the surface of the big leaf and the 

reference height above the canopy where atmospheric variables are measured. 

 

Figure 2.1. Simplified representation of the (bulk) surface and aerodynamic resistances for water vapour 

flow (Source: Allen et al. (Allen et al., 1998)). 

The FAO-56 guidelines specified the standardized procedure to estimate each parame-

ter of Equation (19). In particular: 

 

• the surface aerodynamic resistance (ra) determines the transfer of heat and water 

vapour from the evaporating surface into the air above the canopy. Under the hy-

pothesis of neutral stability conditions, where temperature, atmospheric pressure, 

and wind velocity distributions follow nearly adiabatic conditions (no heat ex-

change), in FAO-56 it is estimated by the expression of the Equation (20):  
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𝑟𝑎 =  
𝑙𝑛 [

𝑧𝑚 − 𝑑
𝑧𝑜𝑚

]  𝑙𝑛 [
𝑧ℎ − 𝑑

𝑧𝑜ℎ
]

𝑘2 𝑢𝑧
 

(20) 

  

Where: 

- zm height of wind measurements [m] 

- zh height of humidity measurements [m] 

- d zero plane displacement height [m] 

- zom roughness length governing momentum transfer [m] 

- zoh roughness length governing the transfer of heat and vapour [m] 

- k von Karman’s constant, 0.41 [-] 

- uz wind speed at height z [m s
-1

]. 

 

The factors d, zom and zoh depend upon the crop height (hc) and architecture 

and are estimated by empirical equations. The expressions adopted in FAO-

56 are the followings: 

 

(21) 

𝑑 = 2
3⁄  ℎ𝑐 

 

𝑧𝑜𝑚 = 0.123 ℎ𝑐 

 

𝑧𝑜ℎ = 0.1 𝑧𝑜𝑚  

 

• the (‘bulk’) surface resistance (rs), which describes the resistance of vapour flow 

through the transpiring crop and evaporating soil surface. Considering dense full 

cover vegetation, the surface resistance was estimated as: 

 

(22) 𝑟𝑠 =  
𝑟1

𝐿𝐴𝐼𝑎𝑐𝑡𝑖𝑣𝑒
 

 

 Where: 

- r1 is the bulk stomatal resistance of the well-illuminated leaf [s m
-1

]. 

- LAIactive is active (sunlit) leaf area index, a dimensionless quantity (ex-

pressed as m
2

 leaf area per m
2

 ground area), which quantify the leaf area 
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that actively contributes to the surface heat and vapour transfer. It is gen-

erally the upper, sunlit portion of a dense canopy. 

 

The surface resistance is a key parameter of the P-M equation. It depends on 

numerous factors (including radiation intensity, temperature, and vapour pressure def-

icit) to be considered for its accurate estimation. In general, it is crop-specific and dif-

fers among crop varieties and crop management which can affect for example water 

stress. Yet in FAO-56 it is reported that, where the vegetation does not completely cover 

the soil, the resistance factor should indeed include the effects of the evaporation from 

the soil surface. If the crop is not transpiring at a potential rate, the resistance depends 

also on the water status of the vegetation. 

To introduce the concept of reference evapotranspiration, which is affected only 

by the local climatic condition, was necessary to introduce a reference crop. In FAO-

56 was selected a hypothetical grass reference with “an assumed height (hc) of 0.12 

m having a surface resistance of 70 s m
-1

 and an albedo of 0.23, closely resembling 

the evaporation of an extension surface of green grass of uniform height, actively grow-

ing and adequately watered”.  

 

 

Figure 2.2. Characteristics of the hypothetical reference crop adopted by FAO-56 (Source: Allen et al. 

(Allen et al., 1998)). 
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Under these hypotheses, the expression of the aerodynamic and stomatal re-

sistance was standardized ad assumed the following forms: 

  

𝑟𝑎 =
208

𝑢𝑧
 [m s−1] (23) 

  

𝑟𝑠 =  
𝑟1

𝐿𝐴𝐼𝑎𝑐𝑡𝑖𝑣𝑒
=  

100

0.5 (24 ℎ𝑐)
 ≈ 70 [m s−1] (24) 

  

From the original Penman-Monteith equation (Equation (19)) and the equations 

of the aerodynamic (Equation 4) and surface resistance (Equation (19) and (24) ), the 

FAO Penman-Monteith method to estimate ETo on a daily scale assumes the following 

form: 

  

𝐸𝑇𝑜 =
0.408 𝛥(𝑅𝑛 − 𝐺) + 𝛾 

900
T + 273 𝑢2(𝑒𝑠 − 𝑒𝑎)

𝛥 + 𝛾(1 + 0.34 𝑢2)
  [mm day−1] (25) 

  

Where: 

- Rn is the net solar radiation [MJ m
-2

 day
-1

]. 

- G is the soil heat flux density [MJ m
-2

 day
-1

].  

- T mean daily air temperature at 2 m height [°C]. 

- u2 wind speed at 2 m height [m s
-1

]. 

- (es-ea) represents the saturation vapour pressure deficit [kPa]. 

- Δ is the slope vapour pressure curve [kPa °C
-1

]. 

- γ is the psychrometric constant [kPa °C
-1

]. 

2.2. The EO-based FAO-PM method 

FAO-56 did not provide specific means for estimating ET from satellite imagery. 

However, since it was published, substantial progress has been attained in remote 

sensing of ET, as described in Paragraph 1.5, and nowadays they are also directly 

applied in several irrigation scheduling services for farmers (Calera et al., 2017).  
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Among these methods, the Earth Observation (EO)-based FAO-PM method, as 

proposed by (D’Urso and Menenti, 1995), is an operative approach based on the direct 

application of the FAO Penman-Monteith Equation (19) using as input a combination of 

in-situ meteorological data with crop characteristics as retrieved from optical satellite 

images (the Leaf Area Index (LAI), the crop heigh (hc) and the Surface Albedo (α)) 

directly integrated to estimate resistance factors of the P-M equation. 

The method is also called “Kc-Analytical Approach” because, once the ET map 

is estimated, it is possible to perform the pixel-based Kc calculation for each satellite 

acquisition using the inverse relation of Equation (6): 

  

𝐾𝑐 =
𝐸𝑇𝑐

𝐸𝑇𝑜
 (26) 

  

In the second phase, following the “two-steps” approach, potential crop ET 

(ETc) between two satellite overpasses is estimated as the product of the correspond-

ing daily reference evapotranspiration (ETo), depending only on atmospheric condi-

tions, and the retrieved Kc maps assuming that the estimate Kc map is representative 

of the mean value of the ratio between ETc and ETo over around the date of satellite’s 

passage. With the increased availability of satellite images, which allows reducing the 

time between two consecutive satellite overpasses, this hypothesis has even less in-

fluence on the estimated ET.  
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Figure 2.3. Flow chart of the EO-based FAO-PM method. 

The works retrieved in literature where the EO-based FAO-PM method are sum-

marized in Table 2-1. 

Table 2-1. List of the works available in the literature on the application of the EO-based “one-step” FAO-

56 model, with the indication of the scale and purpose of the work. 

Scale Crop Purpose References 

Regional various  
irrigation  

management 
(D’Urso et al., 2010) 

Plot scale Wheat CWR (Farg et al., 2012) 

Irrigation scheme - CWR (Akdim et al., 2014) 

Regional scale - CWR 
(Neugebauer and 

Vuolo, 2014) 

Plot scale vineyard CWR (Vanino et al., 2015b) 

Irrigation scheme - water accounting (Vanino et al., 2015a) 

Plot scale wheat CWR (Kadam et al., 2017) 

Plot scale tomato CWR & IWR (Vanino et al., 2018) 
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2.2.1. Main hypothesis and limitations 

 

Two are the mains hypothesis adopted to estimate the resistance parameters: 

1. the crop height, which compares in the aerodynamic resistance (ra) calcu-

lation (Equation (20)) was assumed constant and independent from the 

specific crop map derived from satellite data. 

2. the surface resistance (rs) was set at its minimum value corresponding to 

set the bulk stomatal resistance at its minimum value (r1,min).  Kelliher et al. 

showed that a minimum value rc,min for most crops ranges between 50 to 

70 [s m
−1

] (Kelliher et al., 1995). Usually, following the FAO-PM method-

ology, the value of the stomatal resistance was set equal to 100 [s m
-1

]. 

 

The assumption on the crop height has a limited effect on the retrieved ET be-

cause, as demonstrated by different sensitivity analysis, the radiation component in the 

SEB is dominant during the irrigation season at mid-latitude regions. 

Instead, the hypothesis concerning the value of the surface resistance has a 

significant effect on the estimated ET. In particular, selecting and setting a minimum 

value of the stomatal resistance means that the method cannot estimate the actual 

evapotranspiration (ETa) but only the maximum (also called “potential”) ET (Vanino et 

al., 2018). Therefore, the method can be implemented with good results especially over 

homogeneous landscapes represented by irrigated farmland under unstressed condi-

tions (Anderson et al., 2012). 

The unique case retrieved in the literature of a differ parametrization of the sur-

face resistance applied to the EO-based “one-step” FAO-PM method was the work of 

D’Urso et al. (D’Urso et al., 2010). The Authors maintained the hypothesis of assuming 

a minimum value for the stomatal resistance, set equal to 100 [s m
-1

], but exploited a 

different parametrization for the LAI active: 
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𝑟𝑠 =  
𝑟1,𝑚𝑖𝑛

𝐿𝐴𝐼
 for LAI < 0.5 LAImax 

(27) 

  

𝑟𝑠 =  
𝑟1,𝑚𝑖𝑛

0.5 𝐿𝐴𝐼
 for LAI > 0.5 LAImax 

  

𝑟𝑠 =  𝑟1,𝑚𝑖𝑛 for LAI ≥ 4 

   

2.2.2. Advantages 

The direct consequence of the assumption of constant (mean) value for the 

crop height is the independence from the availability of a detailed and updated crop 

map. 

 

Other advantages offered by the EO-based FAO methods are that: 

- it is easily implemented. 

- the retrieved crop coefficients depend only on the effective cover and not 

on other variables such as planting date and density. 

- the resulting ETc maps have the same spatial resolution of the satellite da-

taset exploited which can range from 10 meters (using the high-resolution 

Sentinel-2 data) to 500 meters (using the MODIS datasets). Therefore, it is 

possible to estimate ET at the field scale also in contexts extremely frag-

mented and heterogeneous. Conversely, the TIR-based datasets available 

for continuous crop monitoring during the crop season has a coarser spa-

tial resolution: the highest spatial resolution is provided by the Landsat (100 

meters). 

- Thanks to the availability of several satellites and sensor with bands in the 

Visible, NIR and SWIR spectrum over a wide range of temporal and spatial 

resolutions it is possible to merge these constellations into a “virtual con-

stellation” to increase the temporal resolution of the satellite data. This so-

lution is valid also to solve possible problems of acquisition caused by the 

presence of cloud which makes impossible the acquisition in the optical 

spectrum. 
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3. TOWARDS THE ACTUAL EVAPOTRANSPIRATION ESTIMATION US-

ING THE EO-BASED “ONE-STEP” FAO-PM METHOD  

To estimate the actual ET using remote sensing derived data during last dec-

ades were developed several models even more realistic that are hindered by complex 

parameterization. The trend has been towards increasing complexity, as opposed to 

applicability because greater complexity requires detailed input parameters that limit the 

application to areas where the necessary data are available (Cleugh et al., 2007; Damm 

et al., 2018).  

The use of EO-based “one-step” FAO-PM has the advantage of being easily 

implemented and has become more popular recently for assessing the potential ET 

under different hydro-climatic regions and crops such as wheat, cotton, tomato, 

grapes, and orchards. However, since for water management it is important to estimate 

the actual crop water consumption, it is necessary to analyse the assumption of the 

method to moving towards the actual ET estimation using the EO-based “one-step” 

FAO-PM method.  

 Despite the Penman-Monteith equation is universally accepted by the commu-

nity concerned with estimating crop water requirements as the theoretically superior 

approach, as evidenced by Shuttleworth (Shuttleworth, 2006), the reluctance to use a 

so-called “one-step” estimation results from two outstanding issues: 

1. no method has been yet defined to handle the problem that meteorological var-

iables are commonly available only at 2 m above the ground while, when using 

the Penman-Monteith equation, they are required at some level above the crop 

to calculate the aerodynamic resistances to, and the vapour pressure deficit at, 

the blending height from climate variables at 2 m. 

2. table of effective values currently no exists for the surface resistance of different 

crops equivalent to that for the crop coefficient. Usually, especially for herba-

ceous a minimum value of stomatal resistance is considered assuming that 

crop in standard conditions. But this assumption leads to estimate the maxi-

mum evapotranspiration and not the actual evapotranspiration (Vanino et al., 
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2018), which can be very different especially in case of crop stress due to 

water shortage or plant disease. This approach, therefore, can be applied over 

homogeneous landscapes represented by irrigated farmland under unstressed 

conditions (Anderson et al., 2012). 

 

In the following paragraphs, these two issues are addressed to define an im-

proved procedure for the estimation of the ET, considering the overall objective of de-

termining the crop water requirements in an operative way and over large areas in a 

context of a very fragmented and heterogeneous landscape with a mosaic of rainfed 

and irrigated crops. 

3.1. Crop height and Aerodynamic resistance 

The first obstacle to the direct application of the FAO-56 equation is the dependence of 

the factors of Equations (20) on the crop height, which is variable in time and space 

and is not commonly available, especially working on large, cultivated areas with a 

complex crop pattern. Even if some correlations between the crop height with vegeta-

tion indices are available (Anderson et al., 2004), the efforts to estimate the crop height 

using spectral reflectance data is quite difficult (Akdim et al., 2014). 

In these cases, the most common solution adopted by different Authors is to work with 

a fixed value of crop height, considering its average spatial-temporal distribution for the 

considerate working scale. This assumption is considered valid for irrigated environ-

ments where the radiative component of the FAO-PM equation, at the daily scale, is 

dominant over the aerodynamic term (D’Urso, 2010). Moreover, it results to be con-

sistent with sensitivity analysis published by several Authors which demonstrate as the 

variation of crop height adopted has a low influence on the estimated (potential) crop 

evapotranspiration. These sensitivity analyses were conducted both at a regional scale 

for herbaceous crops (Aghdasi, 2010), showing that a percentage change of 50% in 

crop height corresponds to a variation of the order of 5% of Kc, and at field scale for 

tomato (Vanino et al., 2018) (Figure 3.1) and orange orchards (Consoli et al., 2006) 

(Figure 3.2). Working on an irrigation scheme, Akdim et al. (Akdim et al., 2014) found 
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that ETc hardly depends on hc especially in summer when high values of the vapour 

pressure deficit occur (Figure 3.3).  

 

Figure 3.1. Relationship between potential crop evapotranspiration (ETp) and crop height (hc) ranging 

from 0.1 and 0.6 meters estimated for a tomato field by (Vanino et al., 2018). 

 

Figure 3.2 Error in potential crop evapotranspiration (ETp) estimation for hc and LAI values (Souce: (Con-

soli et al., 2006). 
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Figure 3.3. Relationship between crop evapotranspiration ETc (analytical method) and the surface albedo 

r for different values of hc and LAI = 2, in December 2012 (a) and June 2013 (b) as found by Akdim et 

al. (Akdim et al., 2014). 

Even if the assumption of constant value of crop height over for large areas  

(Consoli et al., 2006) make easier the application of the “one-step” approach because 

it eliminates the dependence from the crop pattern information, still are not fully inves-

tigated the influence of the crop height on the ET estimation for taller crops. The as-

sumption of constant value of crop height was adopted also for tree crops like vineyards 

(Vanino et al., 2015b) but it was tested only over a little range of hc values, not exceed-

ing the 1.40 meters (Consoli et al., 2006), which is not represented of the crop trees 

height, that could easily reach the 3-4 meters. Moreover, for these taller crops, the 

meteorological variables are commonly only available at a fixed height (usually 2 m) 

above the ground while, when using the Penman-Monteith equation, these values are 

required at some level above the crop for which calculations are to be made (Allen et 

al., 1998). 

Following the methodology proposed by Shuttleworth (Shuttleworth, 2006) which in-

troduce a “blending height” in the Atmospheric Boundary Layer (ABL) where meteoro-

logical conditions are independent of the underlying crop, the validity of the assumption 

of a unique value of crop height independently from the crop pattern and its temporal 

evolution (which is fundamental especially for herbaceous crops) was tested if also for 

taller crops. For the test were considered different conditions of Leaf Area Index, surface 
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albedo, and crop heights. In particular, the crop heights selected range from the typical 

values for herbaceous crops (0.50, and 1.00 meter) and for woody crops (2.00, 3.00, 

4.00 and 5 meters). Moreover, the crop height value of 10 meters was tested to assess 

the validity of the method. Were also selected 4 values of blending height (Z) (5, 10, 

20 and 50 meters) to be compared against the standard FAO-56 blending height of 2 

meters. 

The test was conducted with the meteorological data retrieved at the Cerignola CBC 

station during the 15 days stared from the 5
th

 until the 20
th

 of July 2017 and reported 

in Table 3-1. This period was considered because was representative of the summer 

condition where the crop evapotranspiration is maximum. The analysis, to be not af-

fected by the daily meteorological condition, was conducted considering the average 

values retrieved during the considered period. 

Table 3-1. Meteorological data from the Cerignola CBC station metered during the 15 days stared from 

the 5th until the 20th of July 2017 and used for the analysis of the aerodynamic resistance. 

 

P Tmax Tmin RHmax RHmin Solar. Rad. 
Wind 

speed 

[mm] [°C] [°C] [%] [%] [cal/cmq/g] [Km/g] 

05/07/2017 0.00 35.40 13.60 82.00 22.00 536.23 118.74 

06/07/2017 0.00 36.00 18.20 70.00 22.00 540.70 130.38 

07/07/2017 0.00 35.70 17.90 72.00 24.00 516.24 128.58 

08/07/2017 0.00 37.00 17.90 83.00 23.00 518.31 139.80 

09/07/2017 0.00 39.20 19.20 80.00 13.00 505.80 175.98 

10/07/2017 0.00 39.30 18.20 74.00 9.00 533.57 131.04 

11/07/2017 0.00 38.10 18.50 86.00 19.00 516.44 152.40 

12/07/2017 0.00 36.50 22.30 76.00 27.00 527.68 224.40 

13/07/2017 21.80 33.30 19.80 89.00 39.00 424.23 186.78 

14/07/2017 0.00 30.20 20.40 87.00 35.00 478.54 314.34 

15/07/2017 0.00 27.70 19.00 82.00 29.00 545.52 254.16 

16/07/2017 0.00 28.90 15.70 75.00 30.00 534.86 215.64 

17/07/2017 0.00 31.80 16.70 85.00 29.00 467.60 185.16 

18/07/2017 0.00 32.10 15.50 88.00 32.00 527.82 132.72 

19/07/2017 0.00 33.30 17.30 88.00 25.00 537.79 115.50 

20/07/2017 0.00 35.10 18.00 81.00 29.00 515.02 141.18 

Average 34.35 18.01 81.13 25.44 514.15 171.68 

 



 

58 

Assuming the absence of divergence of the momentum flux between 2 m and the blend-

ing height above a reference crop, then the friction velocity is constant with height and, 

in neutral atmospheric stability, the wind speed at any height Z (uz) above an extensive 

area of reference was estimated as proposed by Shuttleworth (Shuttleworth, 2006): 

  

𝑢𝑍 = 𝑢𝑍𝑚 

ln [
𝑍 − 0.08
0.0148 ]

ln [
𝑍𝑚 − 0.08

0.0148 ]
  (28) 

  

The resulting wind profile follows the typical wind profile power law (Figure 3.4). 

 

Figure 3.4. Wind speed estimated at the different blending heights (Z), from the wind speed measure-

ments at Zm = 2 meters, using the expression of Equation (28). 

By replacing the expression of wind speed at any height Z into the expression 

of Equation (20), it is possible to estimate the aerodynamic resistance as: 

  

𝑟𝑎 =  
𝑅𝑐

𝑍

 𝑢𝑍𝑚 
  

 

(29) 

  

Where 𝑅𝑐
𝑍
 is a dimensionless variables defined as: 
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𝑅𝑐
𝑍 =  

ln [
𝑧𝑚 − 𝑑

𝑧𝑜𝑚
]  ln [

𝑧ℎ − 𝑑
𝑧𝑜ℎ

]

𝑘2 
 
ln [

𝑍𝑚 − 0.08
0.0148 ]

ln [
𝑍 − 0.08

0.0148 ]
 

 

(30) 

  

As shown in Table 3-2 and Table 3-3, the use of different crop heights following 

the proposed procedure and Equation (30), lead to small differences in the final esti-

mated crop evapotranspiration. These differences increase with the increase of the LAI 

and crop height. However, in the ranges of the crop heights of the main agriculture 

crops (0,5 – 4,0 meters), these differences are very limited and allow to assume a 

unique crop-independent value for the crop height, as done by several Authors. In the 

rest of the present work, therefore, all the computation are performed assuming a crop 

height equal to 0.50 meters. 
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Table 3-2. Estimated crop evapotranspiration ETc [mm/day] (analytical method) for surface albedo equal 

to 0.15 and different values of blending height (Z), crop height (hc) and Leaf Area Index (LAI) during 

summer season (July 2017). 

 

 

 
Albedo = 0.15 

Z [m] =  2 5 10 20 50 

LAI = 1 hc [m] = 

0.50 4.15 4.05 3.99 3.95 3.90 

1.00 4.34 4.17 4.09 4.03 3.97 

2.00 4.71 4.34 4.21 4.13 4.05 

3.00 - 4.48 4.30 4.20 4.10 

4.00 - 4.61 4.38 4.25 4.14 

5.00 - 4.75 4.45 4.30 4.18 

10.00 - - 4.77 4.48 4.30 

LAI = 2 hc [m] = 

0.50 5.73 5.41 5.24 . 4.98 

1.00 6.45 5.80 5.54 5.35 5.17 

2.00 8.13 6.42 5.96 5.67 5.41 

3.00 - 7.01 6.29 5.91 5.57 

4.00 - 7.64 6.60 6.10 5.71 

5.00 - 8.43 6.89 6.28 5.83 

10.00 - - 8.55 7.04 6.28 

LAI = 3 hc [m] = 

0.50 6.60 6.12 5.89 5.72 5.54 

1.00 7.69 6.70 6.32 6.05 5.79 

2.00 10.89 7.66 6.93 6.50 6.13 

3.00 - 8.62 7.45 6.85 6.37 

4.00 - 9.77 7.93 7.15 6.56 

5.00 - 11.33 8.42 7.25 6.74 

10.00 - - 11.60 8.69 7.43 
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Table 3-3. Estimated crop evapotranspiration ETc [mm/day] (analytical method) for surface albedo equal 

to 0.20 and different values of blending height (Z), crop height (hc) and Leaf Area Index (LAI) during 

summer season (July 2017). 

 

 

 
Albedo = 0.20 

Z [m] =  2 5 10 20 50 

LAI = 1 hc [m] = 

0.50 4.02 3.90 3.84 3.78 3.73 

1.00 4.24 4.04 3.95 3.88 3.81 

2.00 4.67 4.24 4.09 4.00 3.90 

3.00 - 4.40 4.20 4.08 3.96 

4.00 - 4.55 4.29 4.14 4.01 

5.00 - 4.71 4.37 4.19 4.05 

10.00 - - 4.74 4.41 4.19 

LAI = 2 hc [m] = 

0.50 5.54 5.20 5.03 4.89 4.75 

1.00 6.29 5.62 5.34 5.14 4.95 

2.00 8.14 6.26 5.78 5.48 5.20 

3.00 - 6.87 6.13 5.72 5.38 

4.00 - 7.54 6.42 5.93 5.52 

5.00 - 8.36 3.89 6.11 5.64 

10.00 - - 8.49 6.91 6.11 

LAI = 3 hc [m] = 

0.50 6.37 5.88 5.65 5.47 5.28 

1.00 7.49 6.48 6.08 5.81 5.54 

2.00 10.78 7.46 6.71 6.27 5.88 

3.00 - 8.45 7.24 6.63 6.13 

4.00 - 9.63 7.74 6.94 6.33 

5.00 - 11.23 8.24 7.22 6.51 

10.00 - - 11.51 8.51 7.22 
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3.2. Modelling the (bulk) surface resistance (rs) 

The conception of bulk surface resistance originates from the “big-leaf model” 

introduced into the P-M equation (Monteith, 1965) for describing plant exchanges with 

the overlying atmosphere assuming the land surface as a uniform layer. It is closely 

related to leaf area index (LAI), soil moisture, temperature, atmospheric wetness, and 

leaf physical properties, but it is not directly measurable (Li et al., 2019). Surface re-

sistance increases when the crop is water-stressed and when the soil water availability 

limits crop evapotranspiration. 

Since rs describes the resistance of vapour flow through the transpiring crop 

and evaporating soil surface when the vegetation does not completely cover the soil, in 

principle, it should be furtherly subdivided into canopy surface conductance and soil 

surface conductance (Shuttleworth and Wallace, 1985), while there is usually no dis-

tinction between bulk surface conductance and canopy surface conductance on the 

large scale since the transpiration typically is the primary component (Monteith and 

Unsworth, 2013).  

The challenge of applying the Penman-Monteith model at a large scale is the 

parameterization of surface resistance. It can be quantified from two possible perspec-

tives: understanding the relationship between stomatal/surface conductance and its 

controlling environmental factors or investigating the consequent effects, such as the 

changes in terms of surface temperature (Hu et al., 2018). 

The first approach is valid and largely implemented at the field scale in ET esti-

mation. Jarvis (1976) firstly employed meteorological observations (photon flux den-

sity, temperature, vapour pressure deficit, leaf water potential and ambient CO2 con-

centration) to parameterize stomatal conductance (CL) because it is influenced by cli-

mate and water availability (however, the degree of influence varies by crop type and 

variety). As a logical consequence, Stewart (1988) further extended the stomatal con-

ductance model to the canopy scale using LAI and including other meteorological var-

iables (solar radiation, specific humidity deficit, temperature, and soil moisture deficit). 

The resulting Jarvis-Stewart model has been widely applied in ET estimation (Cleugh 
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et al., 2007) even in RS-based model as the MODIS and the LSA SAF (Satellite Appli-

cation Facility on Land Surface Analysis) products. 

In the MODIS ET algorithm (Mu et al., 2007) the biome-specific canopy re-

sistance was estimated as a function of the mean potential conductance per unit leaf 

area (CL) and two factors that limit stomatal resistance by minimum air temperature 

and vapour pressure deficit: 

  

𝑟𝑠 =
1

𝐿𝐴𝐼 𝐶𝐿 𝑚(𝑇𝑚𝑖𝑛) 𝑚(𝑉𝐷𝑃)
 (31) 

  

In the LSA SAF ET algorithm the canopy resistance (rs,canopy) is parameterized 

as a function of the minimum stomatal resistance (rs,stoma,min) and of the Jarvis functions 

(f1, f2, f3) for the stomatal response to radiation, soil water content and atmospheric 

humidity demand, respectively using as input the downwelling surface shortwave flux 

(S), the average volumetric soil water content in the root zone (w) and the atmospheric 

moisture deficit (𝛿𝑞𝑎): 

  

𝑟𝑠,𝑐𝑎𝑛𝑜𝑝𝑦 =
𝑓1(𝑆) 𝑓2(𝑤) 𝑓3(𝛿𝑞𝑎) 𝑟𝑠,𝑠𝑡𝑜𝑚𝑎(min)

𝐿𝐴𝐼 
 (32) 

  

The downwelling shortwave flux is derived from the Meteosat Second Genera-

tion (MSG) Spinning Enhanced Visible and Infrared Imager (SEVIRI) instrument, while 

the soil moisture and temperature in the four soil layers (7 cm for the top layer and then 

21, 72, and 189 cm) are modelled as a solution to diffusion equations at the spatial 

scale of MSG/SEVIRI grid to compute the soil water content in the root-zone. The air 

temperature, air humidity and surface atmospheric pressure provided by the ECMWF 

interim reanalysis product (ERA-Interim) are used to calculate the atmospheric mois-

ture deficit. 

In the ETMonitor model developed by Hu and Jia (Hu and Jia, 2015) to estimate 

the daily actual ET, the canopy surface resistance was parameterized by a multiplicative 

response, described by limiting functions (f), to several environmental factors include 

the solar radiation (Ra), the air temperature (ta) and the vapour pressure deficit (VDP) 
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and the root zone soil moisture (𝜃𝑟). In addition, was introduced the leaf shadowing 

factor (Fs) linked to the LAI and the canopy structure. 

  

𝑟𝑠,𝑐𝑎𝑛𝑜𝑝𝑦 =
 𝐹𝑠

𝐿𝐴𝐼 

 𝑟𝑠,𝑠𝑡𝑜𝑚𝑎(min)

𝑓1(𝑅𝑠) 𝑓2(𝑡𝑎)𝑓3(𝑉𝑃𝐷) 𝑓3(𝜃𝑟)
 (33) 

  

Zhou et al. (Zhou et al., 2006) used the Shuttleworth and Wallace model (Shut-

tleworth and Wallace, 1985) and NDVI to estimate ET from sparse canopy adopting the 

P-M ETo with an increase of stomatal resistance based on the generic equation:  

  

𝑟𝑠,𝑐𝑎𝑛𝑜𝑝𝑦 =
𝑟𝑠𝑡𝑜𝑚𝑎𝑡𝑎𝑙,𝑚𝑖𝑛

𝐿𝐴𝐼𝑒𝑓𝑓 𝐹𝑖(𝑋𝑖)
 (34) 

  

With 𝐹𝑖(𝑋𝑖) represents the stress function for the generic factor 𝑋𝑖  (water, 

pests, nutrients, etc.). 

 

Other similar models were proposed by Leuning (Leuning et al., 2008) and 

Irmak-Mutiibwa model (Irmak and Mutiibwa, 2010). Even if it is logical to parameterize 

rs by meteorological data and LAI, there are several limitations to the application of 

these models on a large scale: 

- the non-linearity of environmental stress functions increases the difficulty of 

acquiring model parameters.  

- the interdependence of environmental variables (such as air temperature and 

vapour pressure deficit) may result in misestimates the model parameters 

(Wang et al., 2014). 

- spatial meteorological data are not directly measured but interpolated with 

sparse station measurements, which introduces additional uncertainty.  

 

The second possible approach to retrieve the rs consists of the research of the effects 

of changing in rs values. This approach was selected by Smith et al. (Smith et al., 1988) 

and Shuttleworth and Gurney (Shuttleworth and Gurney, 1990), since the rs controls ET 

and eventually affects the land surface temperature, developed a theoretical relationship 
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between foliage temperature and canopy conductance for sparse crops based on Shut-

tleworth-Wallace model. The obtained relationship is over-complex and of therefore has 

limited applicability. Recently different Authors had proposed a simplified model (e.g. 

by introducing dry and wet reference temperatures and employed the temperature index 

to estimate stomatal conductance at the leaf scale) while others applied similar meth-

ods to the field-scale problem (Hu et al., 2018). 

 

Due to these difficulties, a recent approach to address the estimation of the rs over large 

areas is to exploit the capability of remote sensing to capture and to quantify the vege-

tation and soil properties through the synthetic information provided by indices sing 

optical, thermal and microwave sensors (Yebra et al., 2013; Bai et al., 2017; Hu et al., 

2018; Barraza et al., 2015, 2017).  

Since the visible, NIR and SWIR bands are sensitive to leaf chlorophyll concentration, 

and leaf turgor and structure, Yebra et al. studied an optical-based surface conductance 

model to estimate actual evapotranspiration using six different vegetation indices de-

rived from the MODIS sensor and three contrasting estimation approaches: the first two 

approaches directly regressed various MODIS VIs (NDVI, EVI, Kc, NDWI) and products 

(the leaf area index and the fraction of photosynthetically active radiation) with ET  (“di-

rect regression”) and the evaporative fraction (EF) (“potential evapotranspiration scal-

ing”). The EF was computed as the ratio between ET and the available energy assumed 

to be equal to the sum of the measured sensible and latent (λE) heat.  

  

𝐸𝑇 = 𝑎 + 𝑏 𝑉𝐼 

(35) 
𝐸𝐹 = 𝑎 + 𝑏 𝑉𝐼 

  

In the third approach, the so-called “PM conductance approach” (PM-rs approach), the 

PM equation was inverted to obtain surface conductance (for dry plant canopies). The 

PM-rs uses an empirical relationship between rs and different VIs to parameterize the 

conductance term of the PM equation. The remote sensed-derived rs is subsequently 

used as input in the PM equation together with other key meteorological drivers to es-

timate ET. The PM-rs approach is the most mechanistic VI–ET model and provides the 
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best conceptual basis for ET estimation since VIs are used to derive rs, which is then 

combined with meteorological data within the PM framework 

  

𝑟𝑠 = 𝑎 exp[ 𝑏 (𝑉𝐼 −  𝑉𝐼𝑀𝐼𝑁 )] (36) 

  

The estimated ET was compared with in-situ measurements from eddy covariance flux 

towers at 16 FLUXNET sites located over six different land cover types. They concluded 

that the use of VIs to estimate rs within the PM framework provides the best basis for 

ET estimation when compared to direct regression or PET scaling approaches or the 

two MODIS vegetation products (LAI and fPAR). However, none of the three most suc-

cessful VIs was uniformly superior across all land cover types. 

 

Bai et al. proposed an approach to simulate water stress in a PM-based model (RS-

WBPM) when estimating ET in areas having a Mediterranean climate using precipita-

tion, vertical root distribution and satellite-retrieved vegetation information. A multilayer 

water balance module was employed to simulate the soil water stress factor of multiple 

soil layers at different depths. The RS-WBPM model was evaluated at 27 flux sites 

having a Mediterranean climate. Results show that incorporating recommended VI 

(NDVI for shrub and EVI for other biomes), the model can capture the variation of ET in 

summer at most sites. As all inputs of RS-WBPM are globally available, and therefore 

it can be implemented on a regional and global scale. 

 

Barrazza et al. evaluated and compared optical and passive microwave index-based 

retrievals of rs and ET following the P–M approach over forests (Barraza et al., 2015). 

The methodology was evaluated over the growing season at five FLUXNET sites, which 

provided the in-situ measurements of ET, using MODIS (MYD09A1) and AMSR-E pas-

sive microwave data to compute the Vis (EVI, NDWI and Frequency index). 

From the analysis conducted, the Authors concluded that a combined optical-micro-

wave approach produced the best ET estimates for evergreen forest and offered a ro-

bust approach for deciduous forest without sacrificing precision. A similar conclusion 

was found analyzing savannah vegetation (Barraza et al., 2017) where ET is mostly 
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driven by available water and the vegetation exerts strong control over the rate of tran-

spiration. In this context, as in general for arid and semi-arid lands, optical Vis-based 

ET models tends to overestimate water fluxes. In water-limited ecosystems the micro-

wave indices provided information about water availability and moisture stress (e.g. 

water content in leaves and shallow soil depths, atmospheric demand) at a high tem-

poral resolution, thereby providing a scaling factor for potential rs. The method com-

bines multi-sensor derived with global meteorological data to estimate rs. The compar-

ison of the retrieved ET with the global MODIS LE product indicates that the model that 

they proposed could estimate ET at a regional scale using global meteorological data 

in arid and semi-arid biomes and could be further extended to continental scales provid-

ing equally robust estimates of LE. 

 

Hu et al. compared and evaluate the performance across and within land cover types 

of three different (and contrasting) forms of rs models, by using six optical-based veg-

etation index (derived from MODIS sensor), thermal-based Temperature Vegetation Dif-

ference Index (TVDI), and jointly using the optical and thermal index. The three pro-

posed surface conductance models on remote sensing information and reduced the 

uncertainty of meteorological data originating from spatial interpolation and were de-

signed to be an alternative approach to acquiring evapotranspiration estimation for 

large-scale application. The analysis was conducted over three-year evapotranspiration 

observation at three stations in the North China Plain. Generally, widely used vegetation 

index including NDVI and EVI produced good estimation of surface conductance and 

evapotranspiration because they were able to capture the growth process of leaf and 

describe the temporal variation trend of surface conductance. The empirical TVDI-

based model performed poorly in quantifying surface conductance. The combination 

of vegetation index and TVDI generated the optimal surface conductance estimation for 

all sites. 

3.2.1. The proposed (bulk) surface resistance (rs) model 
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To meet the overall and the specific objectives of the present work, the pro-

posed model for the estimation of the (bulk) surface resistance was designed to be: 

- not crop-specific, to allows to use of the ET model also in contexts where 

a detailed and updated crop map is not available. 

- coherent with the surface resistance model adopted by the FAO P-M equa-

tion. 

- (sufficiently) representative of the actual crop conditions considering the 

crop water stress (even if by exploiting only optical satellite data). 

 

Under these working hypotheses, the FAO P-M surface resistance (Equation  

(22)) was modified to include remote sensing derived information about the crop sta-

tus, synthetically described by one vegetation index, into the expression of the re-

sistance.  

  

𝑟𝑠 =  
𝑟1(𝑉𝐼)

𝐿𝐴𝐼𝑒𝑓𝑓
 (37) 

  

Among the various remote sensing-based vegetation indices retrieved in literature, was 

selected the widely used for vegetation monitoring: the Normalized Difference Vegeta-

tion Index (NDVI). It is the most widely used proxy for live green vegetation cover, pro-

duction, and yield. It is also largely applied for the estimation of phenological indicators 

such as the length of the growing season, the onset date of greenness, and the date of 

maximum photosynthetic. Moreover, as described before in Paragraph 1.5, it is the VI 

most applied to retrieve the crop coefficient in the “Kc-VI approach”.  

The NDVI value can range between -1.0 and +1.0. and is functionally (but not 

linearly) equivalent to the simple infrared/red ratio (NIR/VIS). Negative values of NDVI 

(values approaching -1) correspond to water. Values close to zero (from -0.1 to 0.1) 

generally correspond to barren areas of rock, sand, or snow. Low, positive values rep-

resent shrub and grassland (approximately 0.2 to 0.4), while high values indicate tem-

perate and tropical rainforests (values approaching 1).  
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A simple linear relation between the NDVI and the stomatal resistance was im-

posed maintaining the same structure of the P-M’s surface resistance:   

  

𝑟𝑠 =
𝛼 𝑁𝐷𝑉𝐼

𝐿𝐴𝐼𝑒𝑓𝑓

 

(38) 

  

Following this empirical relation, as shown in Figure 3.5, the surface re-

sistances decrease as the area of vegetation per unit ground area (LAI) increases as 

coherent with the well-known Shuttleworth and Wallace model (Shuttleworth and Wal-

lace, 1985). 

 

Figure 3.5. The empirical relationship between the LAI and NDVI with the surface resistance (rs). 

While the NDVI has a standardized definition and procedure of calculation, the 

LAI value depends on the method of estimation applied. Pasqualotto et al.  (Pasqualotto 

et al., 2019) analysed the influence of the LAI parameter estimated with four different 

methodologies in the calculation of crop potential evapotranspiration (ETc) with the 

adapted FAO-PM, using a multi-temporal S-2 dataset. The tested LAI products ware 

retrieved using empirical (vegetation indices), semi-empirical (CLAIR model with fixed 

and calibrated extinction coefficient) and artificial neural network S2 products (ANN S2 
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LAI) derived from the Sentinel Application Platform Software (SNAP) biophysical pro-

cessor. The analysis, conducted over four different test areas, showed that the crop 

potential evapotranspiration values estimated with the ANN S2 LAI product are the clos-

est to those estimated with the in-situ LAI values using a dataset with seasonal infor-

mation of wheat and tomato. Moreover, ANN S2 products are the only ones that do not 

produce saturation, demonstrating the great potential of ANN S2 products for opera-

tional use in the monitoring of agricultural areas. 

The procedure used for the estimation of the coefficient α of Equation (38) is 

reported in detail in Chapter 6. 

3.3. Masking no cropped areas 

The FAO-PM ET model was designed to estimate the evapotranspiration from 

cropped areas, therefore whether the model is running at a large scale or field scale, it 

is important to identify the growing crop season and to mask for the rest of the time the 

no cropped areas. Even if this operation is important both at the local and at the regional 

scale, is right to the latter the most affected by overestimation in the crop and irrigation 

water requirements estimation because otherwise also the not cropped areas are con-

tributing to the balance.  

For this reason, in this improved version of the Analytical Approach, was intro-

duced the preliminary masking of the no vegetated areas based on the values of the 

Vegetation Fraction Cover (VFC) as better described in Paragraph 4.4. 
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4. HANDLE THE EO-BASED “ONE-STEP” FAO-56 METHOD WITH SEN-

TINEL-2 DATA 

 Overview 

This Chapter provides a full and detailed description of the input data and the 

step-by-step procedure to follow to handle the “one-step” EO-based FAO-PM method 

using as input the biophysical variables retrieved from the Sentinel-2 (S-2) satellites. 

Moreover, to justify the use of the S-2 derived products, a brief description of the mis-

sion and a characterization in terms of spectral, temporal and, spatial resolution of the 

data is provided. 

4.1. Why use Sentinel-2?  

Sentinel-2 (S-2) is a polar-orbiting, multispectral high-resolution imaging mis-

sion for environment monitoring developed into the European Commission’s Coperni-

cus program (https://earth.esa.int/). It is based on a constellation of two identical sat-

ellites (S-2A launched on 23 June 2015 and S-2B 7 March 2017) in the same orbit, 

180° apart for optimal coverage and data delivery capable able to cover all Earth’s land 

surfaces The mission was designed to offer continuity and to expand the French SPOT 

(“Satellite Pour l’Observation de la Terre”) and the US LandSat  (“Land Satellite”) mis-

sions (Drusch et al., 2012) proving free and open-access global coverage at an un-

precedented spatial, temporal, and spectral resolution. These characteristics are de-

scribed in detail in the following paragraphs with an especial focus on the land and 

agriculture applications. 

4.1.1. Spectral Resolutions  

Both Sentinel-2A and Sentinel-2B satellites have onboard the same Multi-Spec-

tral Instrument (MSI) with 13 bands from the visible (VIS) and the near-infrared (NIR) 

to the shortwave infrared (SWIR) at different spatial resolutions ranging from 10 to 60 

m: four bands at 10 m, the classical broadband visible blue, green, red, and near-

https://earth.esa.int/
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infrared; six bands at 20 m, four narrow bands in the vegetation red edge spectral-

domain (705, 740, 775, and 865 nm), and two longer SWIR bands (1610 and 2190 

nm); and three bands at 60 m dedicated to atmospheric correction (443 nm for aero-

sols and 940 nm for water vapour) and cirrus detection (1380 nm) (Table 4-1).  

Table 4-1. Bands and resolutions of Sentinel-2 Multi-Spectral Instrument (MSI). 

Sentinel-2 Bands 
Central Wavelength Resolution 

[µm] [m] 

Band 1 Coastal aerosol 0.443 60 

Band 2 Blue 0.490 10 

Band 3 Green 0.560 10 

Band 4 Red 0.665 10 

Band 5 Vegetation Red Edge 0.705 20 

Band 6 Vegetation Red Edge 0.740 20 

Band 7 Vegetation Red Edge 0.783 20 

Band 8 NIR 0.842 10 

Band 8a Vegetation Red Edge 0.865 20 

Band 9 Water vapor 0.945 60 

Band 10 SWIR- Cirrus 1.375 60 

Band 11 SWIR 1.610 20 

Band 12 SWIR 2.190 20 

 

S-2 is the first optical Earth observation mission of its kind to include three 

bands in the ‘red edge’ which, combinate with the high resolution and frequent revisit 

times, can provide key information for vegetation health and growth monitoring for re-

gional to a global scale, especially during the rapidly growing in the summer. Moreover, 

it is possible to distinguish between different crop types as well as data on numerous 

plant indices essential to accurately monitor plant growth parameters such as Leaf Area 

Index (LAI), Leaf Chlorophyll Content (LCC) and Leaf Cover (LC). The principal purpose 

for land application of each MSI band is reported in Table 4-2. 
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Table 4-2. Principal purpose for land applications of each MSI band. 

Band Principal purpose 

Band 1 Atmospheric correction (aerosol scattering) 

Band 2 
Sensitive to vegetation senescing, carotenoid, browning and soil background. 

Atmospheric correction (aerosol scattering) 

Band 3 Green peak, sensitive to total chlorophyll in vegetation 

Band 4 Maximum chlorophyll absorption 

Band 5 
Position of the red edge. 

consolidation of atmospheric corrections/fluorescence baseline. 

Band 6 Position of red edge, atmospheric correction, retrieval of aerosol load. 

Band 7 Leaf Area Index (LAI), the edge of the Near-Infrared (NIR) plateau. 

Band 8 LAI 

Band 8a 
NIR plateau, sensitive to total chlorophyll, biomass, LAI, and protein. 

Water vapour absorption reference; retrieval of aerosol load and type. 

Band 9 Water vapour absorption, atmospheric correction. 

Band 10 Detection of thin cirrus for atmospheric correction. 

Band 11 
Sensitive to lignin, starch, and forest above-ground biomass.  

Snow/ice/cloud separation. 

Band 12 

Assessment of Mediterranean vegetation conditions. Distinction of clay soils 

for the monitoring of soil erosion.  

The distinction between live biomass, dead biomass, and soil, e.g. for burn 

scars mapping. 

4.1.2. Temporal Resolutions  

Monitoring crop development and crop ET over the growing season for the pur-

pose of irrigation management requires dense time series of multispectral imagery at a 

spatial resolution high enough to resolve within-field variability and delivered in real-

time (Calera et al., 2017). 

The orbit type and altitude of the S-2 mission were designed to provide a high 

temporal resolution with a 5-day global revisit frequency, and up to 2-day revisit in top 

northern and southern parts of the globe. Its sun-synchronous orbit guarantees a fre-

quent and systematic coverage of all land surfaces needful for both land cover and land 

cover change mapping, and to support the assessment of bio-geophysical parameters 

(Drusch et al., 2012). 
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4.1.3. Spatial Resolutions  

Focusing on the spatial resolution of S-2, it ranges between 10 and 60 meters 

(Table 4-1), but the agricultural dedicated bands are either 10 or 20 m, depending on 

the bandwidth, while the other bands at 60 m are for atmospheric aerosols and water 

vapour observations mainly for improved image calibration. 

Due to their shorter revisit time and more detailed spatial resolution (compared, 

for example, to Landsat mission whit 16 days and mostly 30 m pixel size), more pre-

cision in sub-field monitoring can be performed using these paired satellite constella-

tions, hence covering from agroecosystem to field scales more precisely and thus gain-

ing relevance for use in agricultural contexts and even more specifically smallholder 

farming systems (Segarra et al., 2020).  

As recently suggested by Blatchford et al. (Blatchford et al., 2020) it is im-

portant to compare the spatial resolution of the satellite dataset with the irrigation 

scheme characteristics. They suggested, for plots with average size ranges from 2 to 

10 hectares, that: 

• Spatial resolutions of 250 m, 100 m, and 30 m are suitable for inter-annual and 

inter-scheme assessments for adequacy, equity, and crop water productivity 

(CWP), regardless of plot size. 

• Spatial resolutions of 250 m and 100 m should not be used for inter-plot compari-

son for adequacy, equity, or CWP on plots with extension inferior to 2 ha. The 30 

m resolution may also be too coarse, and Sentinel-2 application should be consid-

ered. 

• Spatial resolutions of 250 m and 100 m show general spatiotemporal trends for 

adequacy, equity, and CWP within a scheme, but not the full extent of plot-to-plot 

variation for all plot sizes tested. 

However, they recommend further investigation into the resolution requirements to suit-

ably undertake irrigation assessment in smaller plots. 
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4.2. Input data 

The EO-based “one-step” FAO-PM approach requires as input a combination 

of in-situ meteorological data and crop characteristics estimated from satellite images. 

While the biophysical parameters necessary are described in Paragraph 4.3.2, the char-

acteristics that the meteorological data should have, are discussed in detail in the fol-

lowing. 

 

- Temperature 

The (average) daily maximum and minimum air temperatures in degrees Cel-

sius (°C) are required. Where only (average) mean daily temperatures are avail-

able, the calculations can still be executed but some underestimation of ETo 

will probably occur due to the non-linearity of the saturation vapour pressure-

temperature relationship. Using mean air temperature instead of maximum and 

minimum air temperatures yields a lower saturation vapour pressure es, and 

hence a lower vapour pressure difference (es - ea), and a lower reference evap-

otranspiration estimate. 

 

- Air Humidity 

The (average) daily actual vapour pressure, ea, in kilopascals [kPa] is required. 

The actual vapour pressure, when not available, can be derived from maximum 

and minimum relative humidity (%), psychrometric data (dry and wet bulb tem-

peratures in °C) or dewpoint temperature (°C) according to the procedures re-

ported in FAO-56 Guidelines (Allen et al., 1998). 

 

- Radiation 

The daily net radiation expressed in megajoules per square metre per day [MJ 

m
-2

 day
-1

] is required. These data are not commonly available but can be derived 

from the (average) shortwave radiation measured with a pyranometer or from 

the (average) daily actual duration of bright sunshine (hours per day) measured 
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with a (Campbell-Stokes) sunshine recorder using the procedures are outlined 

in Chapter 3 of FAO-56 Guidelines (Allen et al., 1998). 

 

- Wind speed 

The (average) daily wind speed in metres per second [m s
-1

] measured at 2 m 

above the ground level is required. It is important to verify the height at which 

wind speed is measured, as wind speeds measured at different heights above 

the soil surface differ.  

 

As outlined in FAO-56 Guidelines (Allen et al., 1998), where data for some weather 

variables are missing, it is recommended to calculate ET using the standard FAO 

Penman-Monteith method after resolving the specific problem of the missing data 

with the procedures for estimating missing climatic data are outlined in Chapter 3 

of FAO-56 Guidelines.  

The use of an alternative ET calculation procedure, requiring only limited meteoro-

logical parameters, should generally be avoided. Differences between ET values 

obtained with the FAO-PM equation with, on the one hand, a limited data set and, 

on the other hand, a full data set, are expected to be smaller than or of similar 

magnitude to the differences resulting from the use of an alternative ET equation. 

 

Altitude above sea level and the latitude (expressed in degrees north or south) of 

the location should be specified. These data are needed to adjust some weather 

parameters for the local average value of atmospheric pressure (a function of the 

site elevation above mean sea level) and to compute extra-terrestrial radiation (Ra) 

and, in some cases, daylight hours (N).  
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4.3.  Flow chart of the S-2 based “one-step” FAO-PM approach 

The methodology proposed follows the flow diagram of Figure 4.1. Each sub-

step is detailed in the paragraphs below. 

 

Figure 4.1 Flow chart for ET estimation with the one-step FAO approach. 

4.3.1. Selection of images 

The Bottom Of Atmosphere (BOA) reflectance (Level-2A) images were retrieved 

and downloaded from the Copernicus Open Access Hub (https://scihub.coperni-

cus.eu/). Level-2A are calibrated and atmospherically corrected, from radiometric and 

geometric corrected (Level-1C), using the European Space Agency’s (ESA) Sen2Cor 

processor (Main-Knorn et al., 2017). Among the available images, were selected only 

the images with a cloud coverage lower than 20%. In this way, it was possible to con-

sider only the images with low cloud contamination over the entire 100 km
2

 tile. Once 

selected the images were downloaded and clipped to the extension of the considered 

study area. Again, the cloud mask filter was applied to exclude the satellite images with 

cloud coverage higher than 20% over the considered area. In this way was ensured that 

only the satellite images with the lowest cloud contamination were selected and used 

https://scihub.copernicus.eu/dhus/%23/home
https://scihub.copernicus.eu/dhus/%23/home
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for the rest of the computation. For these last cloud filtering, was exploited the infor-

mation contented into the Scene Classification Map (SCM) provided within the Level-

2A product. Thanks to the SCM map were masked pixels flagged as “no data”, “satu-

rated”, “dark features/shadows” and “cloud-covered” (Figure 4.2). 

 

 

Figure 4.2. Scene Classification Values. 

4.3.2. Computing biophysical parameters 

4.3.2.1. Leaf Area Index (LAI) and Vegetation Fraction Cover 

(VFC) 

Leaf Area Index (LAI) and Cover Fraction (FVC) maps were retrieved at each 

satellite overpass using the Biophysical Processor tool (L2B) of the ESA’s Sentinel-2 

Toolbox. L2B is one of the tools of the Sentinel Application Platform (SNAP) provided 

for the visualization, analysis, processing, and exploitation of MSI data. L2B processor 

makes possible to create value-added products (Level-2B) with a special focus on ag-

ricultural vegetation monitoring (Drusch et al., 2012). It employs a neural network al-

gorithm tailored for S-2 and trained using radiative transfer simulations from PROSAIL 
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(PROSPECT+SAIL) radiative transfer models (Jacquemoud et al., 2009) to estimate 

the canopy characteristics from the S-2 Top of Canopy (TOC) reflectance. The algo-

rithm provides the biophysical variable product (FVC and LAI) values with a spatial 

resolution of 10 meters. Moreover, for each retrieved biophysical parameter, the algo-

rithm provides the relative input/output quality flag. These flags were utilized for exclud-

ing the pixels with input and/or output out of range (and providing product outside tol-

erance) and pixels with bad quality of input values. 

4.3.2.2. Surface albedo (α) 

Albedo (α) is a dimensionless biophysical characteristic of the soil-plant can-

opy system over lands and represents the amount of solar energy reflected by the sur-

face. Therefore, it is a key parameter for local and regional estimation of energy and 

mass exchanges between the Earth surface and the atmosphere because provides in-

formation on the radiative balance necessary to ET estimation. 

Considering the limited spectral resolution of EO data normally available, the 

albedo was estimated as an approximation of the hemispherical and spectrally inte-

grated surface albedo. Under this approximation, the albedo was calculated as a 

weighted sum of surface spectral reflectance ρλ derived from the atmospheric correc-

tion, with broadband coefficients ωλ representing the corresponding fraction of the so-

lar irradiance in each sensor band (D’Urso and Belmonte, 2006) as proposed by 

Menenti and Bastiaanssen (Menenti et al., 1989). For each satellite overpass, the 

broadband surface albedo was calculated as the integration of the Level-2A S-2 surface 

reflectance (ρλ) across the shortwave spectrum, as shown in equation (4). 

  

𝛼 =  ∑ 𝜌𝜆𝑖
 𝜔𝜆𝑖

𝑛

𝜆𝑖=1

 (39) 

  

𝜔𝜆𝑖
=  

𝐸𝜆
0

∑ 𝐸𝜆
0

𝜆

 (40) 
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The broadband weights (wλ) represent the corresponding fraction of the solar 

irradiance in each sensor band (𝐸𝜆
0
) and are sensor dependent. They were calculated 

for the S-2 surface reflectance product (with a spatial resolution of 10 meters) and are 

reported in the following table: 

Table 4-3. Weighting coefficients for the calculation of albedo. 

Band Number 
Center (λ) 

Spectral width 

(Δλ) 
𝑬𝝀

𝟎
 ωλi 

[μm] [μm] [W m
-2
] [-] 

B1 0.443 0.02 1893 - 

B2 0.49 0.065 1927 0.1836 

B3 0.56 0.035 1846 0.1759 

B4 0.665 0.03 1528 0.1456 

B5 0.705 0.015 1413 0.1347 

B6 0.74 0.015 1294 0.1233 

B7 0.783 0.02 1190 0.1134 

B8 0.842 0.115 1050 0.1001 

B8a 0.865 0.02 970 - 

B9 0.945 0.02 831 - 

B10 1.375 0.03 360 - 

B11 1.61 0.09 242 0.0231 

B12 2.19 0.18 3 0.0003 

   Sum 1.0000 

 

4.4. Masking no cropped areas with Sentinel-2 VFC  

As described in Paragraph 2.1, the FAO-PM model was designed to estimate 

the evapotranspiration from cropped areas and therefore it is necessary to mask and 

exclude all the not vegetated areas, occupied basically from build-up, bare soil, and 

water surfaces, present inside each satellite image acquired. For this operation, the 

Vegetation Fraction Cover layer was used to mask the pixels width FVC value less of a 

threshold value settled at 0.10. This value was accurately selected to avoid the to con-

sider as not vegetated also areas with sparse vegetation, which are spread diffused 

especially in the “Sinistra Ofanto” study area. 
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5. DESCRIPTION OF THE SELECTED STUDY AREAS 

5.1. Sinistra Ofanto (CBC - Italy) 

The irrigation district “Sinistra Ofanto” (Figure 5.1) is a large, cultivated area 

situated in the North of the Apulian Region (Italy) and delimited by the Ofanto river at 

the southeast. It is characterized by an extremely heterogeneous and fragmented land-

scape with the presence of vineyards, olive trees, orchards, and cereals.  

 

Figure 5.1.  Satellite view of the “Sinistra Ofanto” irrigation scheme (S.R. WGS84) with the location of 

the agrometeorological station working on the study area and managed by the CBC and ARIF (respec-

tively the circular and square point) and its overall position in the Italian Peninsula (upper right box). 

The irrigation district is managed by the “Capitanata” Irrigation Consortium 

(Consorzio per la Bonifica della Capitanata – CBC), one of the greatest and most im-

portant Water User Association (WUA) of the Mediterranean region (Lamaddalena et 

al., 2004). It covers a large, cultivated area (55.000 ha) served by a water distribution 
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network working since 1983 proving water for 40.000 ha organized in 21 command 

areas called "districts" each of that are sub-divided into smaller operational units called 

irrigation "sectors" that are composed of several grouped farms (Zaccaria et al., 2013). 

Water management in the study area is typical of semiarid regions with an upstream 

sub-catchment that transfers surface flows collected by the Capaciotti and San Pietro 

sull’Osento dams to the downstream plain supporting irrigated agriculture. The area 

serviced by the system is subdivided into the “Zona Bassa” ("Low zone"), where water 

is supplied to farms by gravity, and the “Zona Alta” ("High zone") where cropped fields 

are at higher elevations relative to the water source and irrigation water is conveyed 

and supplied using a lifting plant. In this work were considered the 4 districts which 

constitute the so-called “Zona Alta” that, for its relatively higher elevation, has an inde-

pendent distribution network. The overall extension of the “Zona Alta” (sub-district: 11, 

12, 13 and, 14) is 12,726 hectares and is fully equipped with a telemetry system (Ac-

quacard) that, through a flowmeter installed in each hydrant (about 2,500), records the 

volume of water applied by the farmers. For this study area, the daily pattern of the 

water distributed is currently available only for a limited number of hydrants. However, 

the total seasonal volumes of water distributed for each sub-district are available. 

The irrigation season, in accord with the amount of water stored in the 2 dams 

which served the area (Capaciotti and Osento), starts the 1
st

 of April and ends the 30
th

 

November of each year, as happened for the 3 irrigation season considered in the pre-

sent work (2017, 2018 and, 2019). The irrigation network usually works “on-demand” 

but, during the peak of the irrigation demand, it can be set to works “on-turn”. 

The climate of the study area is typically Mediterranean with strong seasonal 

and inter-annual variability. Annual precipitation ranges between 400 and 700 mm oc-

curring predominantly during the winter while summers are generally hot and dry. 
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5.1.1. Satellite dataset 

Following the procedure for the selection of the best quality satellite images 

available from the Copernicus Open Access Hub, as previously described in Paragraph 

4.3.1, for the 3 considered irrigation seasons starting from March to October of each 

year. The complete scene list is reported in Annex 1. The annual number of available 

images ranges from a maximum of 24 for 2019 to a minimum of 14 for the 2017 first 

year of operativity of the Sentinel-2B satellite which was launched in the 7
th

 March 

2017. 

The resulting effective temporal resolution of the images acquisition is in line 

with the theoretical “cloud-free” temporal resolution especially during the summers, 

where clouds are absent, and it is easily possible to retrieve an S-2 image every 5 days. 

5.1.2. Meteorological data 

The sub-irrigation scheme “Zona Alta” is covered by four agrometeorological 

weather station of two different networks. Two stations are managed directly by the 

Consortium CBC and are fully equipped for the measurements of the standard agrome-

teorological data. The other two are managed by the Regional Agency for the Irrigation 

(“Agenzia Regionale per le Attività Irrigue e Forestali” - ARIF). Among these lasts two 

weather station, only the station of “Ortanova” (0PU07) is fully equipped while for the 

station of “Cerignola” (MFG06) the solar radiation measurement is missing. The com-

plete description of the 4 weather stations is provided in Table 5-1 while their position 

is represented in Figure 5.1.   
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Table 5-1. Weather stations used for the “Zona Alta” case study. 

  
Coordinate 

[S.R. WGS84] 
Elevation Data availability 

  N E [m] 2017 2018 2019 

ARIF 

Ortanova 

(0PU07) 
41.347220 15.744167 52 x x x 

Cerignola 

(MFG06) 
41.194168 15.932222 96 x x x 

CBC 

Cerignola 41.26070 15.84820 126 x x*  

Stornara 41.28940 15.79920 94  x*  

* data available starting from the 1st of June 

 

All the stations are located on the edge of irrigated fields and sensors are 

mounted at standard sensor heights for agricultural weather data collection require-

ments. Daily agrometeorological measurements were spatially distributed using Inverse 

Distance Weighting (IDW) method. 

Reference evapotranspiration and rainfall time series retrieved for each meteor-

ological station during the three years are reported in Figure 5.2, Figure 5.3 and, Figure 

5.4. Looking at the rainfall patterns, the three considered years appears to be com-

pletely different from 2017 characterized by a very low amount of rainfall. This can be 

further confirmed by confronting the average monthly rainfall over the study area with 

the long-term monthly rainfall registered. Unfortunately, the selected four agrometeor-

ological stations are not able to provide a long-term series of data. Therefore, was used 

the long-term rainfall measurement (from 1950 to 2016) meteorological station of 

Cerignola of the network of the Region Civil Protection Agency (www.protezioneciv-

ile.puglia.it). From this comparison, it is evident as 2017 was a year characterized by 

very low precipitation, not only concerning the other 2 following years but also looking 

to the historic average trend. All the year was characterized by values of monthly pre-

cipitation lower than the average with the only exception for May. During the irrigation 

season, this trend was, even more, exacerbate with the total absence of precipitation 

during June and August. 

https://protezionecivile.puglia.it/centro-funzionale-decentrato/rete-di-monitoraggio/annali-e-dati-idrologici-elaborati/annali-idrologici-parte-i/
https://protezionecivile.puglia.it/centro-funzionale-decentrato/rete-di-monitoraggio/annali-e-dati-idrologici-elaborati/annali-idrologici-parte-i/
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The cumulated precipitation volumes occurring during the irrigation season pe-

riod (April-September) for 2018 and 2019 were almost similar (respectively 278.6 and 

292.7 mm) and in line with the long-term average value (equal to 223 mm). However, 

as shown in Figure 5.5, the temporal patterns of the rainfall are sensible different among 

these 2 years. Indeed while during the irrigation season 2018 the monthly rainfall fol-

lows the average long term pattern (with the only exception for rain deficit occurring 

during April, soon recovered during May), the irrigation season 2019 is characterized 

by an initial irrigation season with rainfall in line with the long-term average, an excep-

tional rainy July (with monthly rainfall almost equal to 2.5 times the expected average 

monthly rainfall) and closure of season with September and October with relatively lim-

ited rainfall (almost the 50% of the expected). 

Even the monthly average values of reference evapotranspiration reflect the me-

teorological difference among the three years. As shown in Figure 5.6 for the agrome-

teorological station of Ortanova (the unique station equipped with the solar radiometer 

and working along the three considered years), the year 2017 has the highest values 

of ETo along all the year and especially during July and August where the average ETo 

was equal to almost 8 mm. 
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Figure 5.2. Annual time series of precipitation and potential evapotranspiration (ETo) during 2017.  
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Figure 5.3. Annual time series of precipitation and potential evapotranspiration (ETo) during 2018. 
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Figure 5.4. Annual time series of precipitation and potential evapotranspiration (ETo) during 2019. 
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 Precipitation Percentual variation 

Month 
Mean  

1950-2016 
2017 2018 2019 2017 2018 2019 

1 53.3 92.5 37 97.3 +74% -31% +83% 
2 48.2 42.2 41.6 27.8 -12% -14% -42% 
3 53.2 20.4 91.6 30.8 -62% +72% -42% 
4 47.8 23 11.6 61.5 -52% -76% +29% 
5 43.1 52.5 114.3 74.7 +22% +165% +73% 
6 33.3 2.2 38.5 30.9 -93% +16% -7% 
7 23.5 10.7 27.2 79.5 -54% +16% +238% 
8 25.6 0.3 40.1 26.7 -99% +57% +4% 
9 49.7 39.4 46.9 19.4 -21% -6% -61% 

10 58.6 13.1 68.6 31.3 -78% 17% -47% 
11 65.2 73.3 53 67.8 +12% -19% +4% 

Total 501.5 369.6 570.4 547.7    
 

Figure 5.5. Precipitation characterization of the Sinistra Ofanto scheme for the reference period 1950-

2016 compared to the years of study (2017-2019) and the percentual variation against the long-term 

average monthly rainfall. 

 

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10 11

[m
m

]

2017 2018 2019 Mean 1950-2016



Giuseppe Peschechera 

91 

 

Figure 5.6.  Monthly reference Evapotranspiration characterization of the Sinistra Ofanto scheme for the 

three years of study (2017-2019). 
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5.1.3. Crop pattern 

Annually updated information about the crop pattern of the Sinistra Ofanto 

scheme is not currently available. The unique data available is, therefore, the Regional 

Land Use Map (“Carta dell’Uso Del Suolo” - UDS) even if it is referred to the year 2011. 

From the analysis of the Land Use Map, it was possible to estimate the mean crop 

pattern for each Irrigation District of the “Zona Alta” as reported in Table 5-2. It is im-

portant to notice that from the UDS maps it is not possible to estimate the exact exten-

sion of winter crops (mainly represented by wheat) and summer crops because they 

are reported in the unique crop class denominated as “annual crops”. Moreover, their 

spatial distributions can change yearly as the farmers choice analysing a large set of 

parameters including the water availability and cost and the trend of the market. It is 

true also for the other crop classes (e.g., it is not possible to sub-divided table and wine 

vineyard) but in these cases, as the crops are plurennial, can be assumed that looking 

at the average crop pattern distribution, there are very little changes over consecutive 

years. 

Table 5-2. Crop pattern, reported in hectares and in percentual terms, for each irrigation district of the 

"Zona Alta" irrigation scheme. 

District Olive 
Stone 

Fruits 
Vineyards 

Annual 

Crops 

Cropped  

Area 

Total Area 

[ha] 

11 1,323 87 1,611 1,790 4,812 5,262 

12 984 1 663 349 1,997 2,097 

13 838 18 548 704 2,107 2,172 

14 445 17 698 1,971 3,131 3,228 

11-14 3,590 122 3,521 4,814 12,047 12,759 

      

 

District Olive 
Stone 

Fruits 
Vineyards 

Annual 

Crops 

Cropped  

Area 

11 25.2% 1.7% 30.6% 34.0% 93.1% 

12 46.9% 0.0% 31.6% 16.7% 95.2% 

13 38.6% 0.8% 25.2% 32.4% 97.0% 

14 13.8% 0.5% 21.6% 61.1% 97.0% 

11-14 28.1% 1.0% 27.6% 37.7% 94.4% 
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The average crop pattern over the entire “Zona Alta” shows that both olives and 

vineyards occupied almost 28% of the area and 38% is devoted to annual crops. This 

composition however is not respected considering each district individually (only Dis-

trict 11 follows the average crop mapping of the entire study area). It is possible to 

notice as the District 14 (located in the highest part of the scheme) shows the highest 

percentual of annual crops and vice versa the District 12 (the closest to the Ofanto 

river) it’s mostly occupied by olive and vineyards and therefore has the lowest percen-

tual of annual crops. 

5.1.4. Selected crop classes and plots 

The selected plots falling into the Irrigation District 12 which, as previously de-

scribed, is mainly occupied by olive trees (46.9%) and vineyards (31.6%) which cor-

respond to the selected crop classes. Since from the crop map available are not pro-

vided useful information about the crop variety, it was not possible to further subdivided 

these two crop class but it is important to notice that in the considered area there is the 

presence of both table and oil olive and wine and table grapes. These different varieties 

of course require different managerial cultivation strategies (also for the irrigation) but 

cannot be assessed unless field surveying that in this case are missing.  

Tree crops and vines have more complex behaviour and have been less studied 

than the major annual crops. For these crop classes currently is not possible to define 

a simple and robust dynamic simulation model of the yield response to water, as Aq-

uaCrop is for the herbaceous crops (Steduto et al., 2012).  

Olive (Olea europaea L.) is an evergreen tree grown primarily between 30 and 

45° latitude in both hemispheres even if the almost total harvested area (95.5 %) was 

concentrated in ten countries surrounding the Mediterranean Sea: Spain, Italy and 

Greece are the main producers of virgin oil followed by Tunisia, Syria, Turkey, and 

Morocco. Although traditional groves vary in cultivar composition, tree density, training 

system, degree of mechanization and chemical inputs, they are still the most wide-

spread production system and a landmark of Mediterranean landscapes. About 90 per 
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cent of the world production of olive fruit is for oil extraction, and the rest is for table 

olives. Olive trees have been sparsely planted for centuries (typical densities of tradi-

tional groves are between 50 and 100 tree/ha), without irrigation, on marginal lands in 

Mediterranean climate conditions because of their strong resistance to drought, lime 

and salinity. Intensive orchards have a higher density (ranging between 200 and 550 

tree/ha) which translates into higher productivity per unit land area than traditional sys-

tems. In areas of annual rainfall higher than 600 mm, production can be maintained 

under rainfed conditions in soils with good water-holding capacity. However, irrigation 

plays an important role in the drier areas, and/or for soils with limited water storage. 

Elsewhere, irrigation plays an important role in stabilizing yields in the years of low 

rainfall. Irrigation is becoming common in the intensive orchards as it allows early onset 

of production (from the second to fourth year after planting), high yields (averages up 

to 10-15 tonne/ha) under optimal conditions and less variability because of alternate 

bearing. During the last years very high density, hedgerow type, olive orchards (from 

1000 to 2000 tree/ha) have been developed to further reduce harvesting costs using 

over-the tree harvesting machines. In these systems, due to the higher ETc demand of 

the dense canopies and the low soil volume available for each tree, irrigation is needed. 

This last system is not yet adopted in the Sinistra Ofanto scheme. 

Grapevine is a long-lived deciduous crop with temperature-driven phenology. 

The annual cycle of grapevine in temperate and cool environments includes a dormancy 

phase and a phase of active vegetative and reproductive development and growth. 

Grapevines are grown in Mediterranean-type climates in southern Europe, California, 

and parts of South Africa, Chile, and Australia. Winter rainfall often ensures soil water 

storage that allows for early growth, whereas a pattern of terminal drought is typical of 

rainfed vines in Mediterranean environments. Rainfall pattern and soil-water storage 

capacity are major drivers of the temporal pattern of water supply and water deficit in 

rainfed systems. Temporary water deficits are common in temperate, summer rainfall 

regions of western and central Europe where vineyards are established in shallow soils 

or soils with low water-holding capacity. 
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To compare the estimated with the Applied Irrigation Water volumes (as re-

ported in Chapter 7.2) particular attention was paid to the selection of the plots to find 

a unique correspondence with the upstream hydrant. Indeed, as the average farm sizing 

is small, in general at each hydrant corresponds to more than one farm (and more crop 

types). Using this criterion, among the 505 hydrants present over District 12, only 18 

olive and 7 vineyard plots were selected. Their spatial distribution is reported in Figure 

5.7.  

 

Figure 5.7. Spatial distribution of the selected Olive (green) and Vineyards (violet) plots. 
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5.2. The “Canal del Zujar Irrigation District” (CZID - Spain) 

The Canal del Zujar Irrigation District (CZID) is a Water User Association (WUA) 

located in southwest Spain (Extremadura region) (Figure 5.8) covering a total area of 

21,141 hectares organized in 10 independent hydraulic sectors. In particular, the “Sec-

tor II” of the CZID was selected for this work. It covers an irrigated area of 2,691 hec-

tares and is composed of 1,466 hydrants. Sector II is equipped with a telemetry system 

that, through a flowmeter installed in each hydrant, records the volume of Irrigation 

Water Applied (IWA) at an hourly scale. The water consumption records were aggre-

gated on daily basis in each hydrant for the 2017 irrigation season. Besides, for each 

hydrant, information about the type of crop and the farm size is also recorded. 

 

Figure 5.8. Identification of the Sector II of CZID (S.R. WGS84) and its position in the Iberian Peninsula 

(upper right box). 

The main crops are tomato, maize, and rice. Drip irrigation is used for tomato 

and maize crops, while rice is flood irrigated. The average and standard deviation of the 
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area of the farms are 1.15 ha and 2.08 ha, respectively. However, a farm that covers 

an area of 26 ha can be found in this WUA. 

The average temperature in the area ranges from 7.1 °C in January to 25 °C in 

July, and the average maximum temperature ranges from 13.2 °C to 35.1 °C. The av-

erage annual rainfall is 390 mm. The maximum evapotranspiration occurs in July, with 

a daily average value for this month of 7.03 mm. The average annual evapotranspiration 

is 1,296 mm.  

5.2.1. Satellite dataset 

Following the procedure for the selection of the best quality satellite images 

available, as previously described in Paragraph 4.3.1, 23 Sentinel-2 images (reported 

in Annex 2. ) were retrieved from the Copernicus Open Access Hub (https://scihub.co-

pernicus.eu/). Since the Level-2A became an operational product starting from the mid-

dle of March 2018, the first three images were generated from the Level-1C product 

using the Sentinel-2 Toolbox. 

The resulting effective temporal resolution of the images acquisition is in line 

with the theoretical “cloud-free” temporal resolution and therefore adequate to crop 

monitoring. Only in the first part of the year can be observed a reduction in the number 

of available images, due to the presence of clouds and the limited operativity of the 

Sentinel-2 mission (the Sentinel-2B was launched only in the 7
th

 March 2017). 

5.2.2. Meteorological data 

The daily climatic data used in this work were retrieved from the closest weather 

station, “Don Benito-EFA”, of the Sistema de Información Agroclimática para el Re-

gadío (SiAR).  In particular, the following daily climatic data, recorded from 1st January 

2017 until 31st December 2017, were used: maximum and minimum temperature (T) 

and relative humidity (RH), precipitation (P) and, average Wind Speed (WS) and Solar 

Radiation (SR). In the Figure 5.9 and Figure 5.10 are reported the annual pattern of 

Temperature, Precipitation and, potential evapotranspiration (ETo) recorded during 

https://scihub.copernicus.eu/dhus/%23/home
https://scihub.copernicus.eu/dhus/%23/home
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2017. More information about the weather station is available at http://redarexplus.go-

bex.es/. 

 

Figure 5.9. Annual time series of Effective Precipitation and potential evapotranspiration (ETo) during 

2017 recorded and estimated at the weather station “Don Benito-EFA”. 

 

 

Figure 5.10 – Annual time series of daily maximum, mean and minimum Temperature (T) 2017 recorded 

and estimated at the weather station “Don Benito-EFA”. 
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5.2.3. Selected crop classes and plots 

Tomato and maize, the first two crop types for surface occupied in the CZID 

area, were selected. Respectively 67 and 18 plots were selected for each class. Even 

in this case, where the IWA data was available at daily scale for all the 1,466 hydrants, 

was necessary to effectuate a selection due to the mismatching between the crop cover 

map with the area served by each hydrant (which based on the cadastral map and does 

not consider the real extension of the farm). 

The spatial distribution of the selected plots is reported in Figure 5.11 and co-

vers almost uniformly all the CZID area. 

 

Figure 5.11. Spatial distribution of the selected tomato (red) and maize (green) plots. 

Maize and tomato are not only the first two crop types for surface occupied in 

the CZID, but are twos of the most important cultivation in the Mediterranean context 

(Steduto et al., 2012). 



 

100 

Maize (Zea mays L.) ranks as the most important crop worldwide in terms of 

grain production. Although wheat and rice are the most important for direct human 

consumption, maize seeds are often the main component of animal feed. Moreover, it 

is used also to produce vegetable oil, sugar syrup, alcohol as biofuel, and feedstock 

for the manufacturing of plastic. Maize originated in a climate with warm summers. It 

is grown, however, extensively in temperate regions for grain as well as for silage. For 

the latter, the crop is harvested before full maturity, when the grains are in the late phase 

of filling and the vegetative material still mostly green, is coarsely chopped and partially 

fermented as animal feed. Even in areas with a growing season too short for grain to 

mature, maize is popular as a crop for silage and forage. Where rainfall amount and 

distribution are usually favourable and the soil is deep with a high water-holding capac-

ity, maize is grown without irrigation or only with supplemental irrigation. In the more 

arid areas, maize is irrigated. Seasonal maize water use varies according to evaporative 

demand of the atmosphere, and hence according to climate, time of the season when 

the crop is grown, the life cycle length of the crop, and water availability. For well-

watered situations, seasonal ET ranges from less than 500 to more than 800 mm, the 

typical seasonal ET of a cultivar of medium-season length grown in a temperate climate 

at a latitude of 35º to 40º being around 650 mm. These global values are in line with 

the standard CWRs values for grain and fodder maize provided from the SIAR for the 

considered crop season and which value respectively 800 and 565 mm. 

Tomato is the second most valuable vegetable crop next to the potato. It re-

quires soils with proper water-holding capacity and aeration and is intolerant to soil 

compaction and waterlogging. Well-drained, deep, sandy loam soils are preferred, but 

heavier soils can also be highly productive under proper management. At some loca-

tions tomato needs a 3-year rotation, with crops other than solanaceous (e.g., potato, 

pepper, eggplant, tobacco), to minimize nematodes, virus, and bacterial diseases. The 

life cycle varies from 95-115 days for processing tomato (cultivated in the CZID) or up 

to more than 145 days for undetermined fresh market tomato. Processing tomato con-

sumes 400-800 mm of water from emergence/transplanting to harvest, depending on 

climate, plant type, soil, irrigation, and crop management. The reference value of CWR 
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provided by the SIAR for the growing season 2017 is 615 mm. Over the peak growing 

period, maximum water uses in average is equal to 4-7 mm/day in a sub-humid climate 

but can reach 8-9 mm/day in more arid areas. Tomato plants can tolerate drought to 

some degree; therefore, soil moisture levels can reach 50 per cent of the TAW without 

significant yield losses after the development of the canopy is completed. It is important 

to maintain adequate soil moisture levels early in the life cycle, at transplanting, and 

from the first flower until complete fruit setting (e.g., of the fifth truss on the main axes). 

Irrigation can stop a few weeks before harvest, depending on soil water storage and 

rainfall expectancy. 
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6. THE IMPROVED EO-BASED “ONE-STEP” FAO-56 METHOD: valida-

tion and application at the plot scale  

6.1. Methodological approach 

6.2. Statistical Performance metrics 

The following types of metrics were calculated to assess the performance of the 

simulation for both CWR and IWR estimation. Assuming that Oi and Pi are the ob-

served and the predicted values, and n the number of observations, the metrics 

used assumed can be written as: 

 

Standard Deviation 

  

𝑆𝐷 =   √
∑ (𝑋𝑖 − 𝑋̅)2𝑛

𝑖=1

𝑛
 (41) 

  

 

A disadvantage of the Standard Deviation is the unsuitability to determine inter-

unit variation. Therefore, the SD is normalized into the Coefficient of Variance: 

  

𝐶𝑉 =
𝑆𝐷

𝑋̅
[%]   (42) 

  

Mean Error 

  

𝑀𝐸 =  
∑ (𝑃𝑖 − 𝑂𝑖)

𝑛
𝑖=1

𝑛
 (43) 

  

 

Mean Percentage Error 

  

𝑀𝑃𝐸 =  
1

𝑛
 ∑

(𝑃𝑖 − 𝑂𝑖)

𝑂𝑖

𝑛

𝑖=1

 (44) 
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Mean Absolute Error 

  

𝑀𝐴𝐸 =  
∑ |𝑃𝑖 − 𝑂𝑖|

𝑛
𝑖=1

𝑛
 (45) 

  

 

Mean Absolute Percentage Error 

  

𝑀𝐴𝑃𝐸 =  
1

𝑛
 ∑

|𝑃𝑖 − 𝑂𝑖|

𝑂𝑖

𝑛

𝑖=1

 (46) 

  

 

Root Mean Square Error 

  

𝑅𝑀𝑆𝐸 =  √
∑ (𝑃𝑖 − 𝑂𝑖)2𝑛

𝑖=1

𝑛
 (47) 

  

The RMSE is a difference-based evaluation giving an indication of the coinci-

dence or lack of coincidence between simulated and measured value, was cal-

culated. RMSE indicates the difference between measured and simulated val-

ues and has the advantage of producing a result in the same units as that used 

for measurement. The calculated RMSE can be compared with the size of the 

difference that is considered acceptable. A disadvantage of RMES lies in that 

the residual errors are calculated as squared values, which means that higher 

values in a time series are given greater weight than lower values. 

 

Coefficient of determination - R
2

 

In the linear regression between observed and model-estimated values esti-

mates of the intercept and the slope are good indicators of accuracy. Best val-

ues of intercept and slope are zero and 1, respectively. 
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6.3. Testing the classical EO-FAO56 approach to estimate the ET 

As previously remarked, the assumption of setting the surface resistance (rs) at 

its minimum value corresponding to set the bulk stomatal resistance at its minimum 

value, usually assumed equal to 100 ms
-1

 (as done in FAO P-M equation), allows to 

estimate the maximum (potential) crop ET. The ET estimated under this hypothesis was 

analysed and compared at the plot scale over the selected plots of the two selected 

study areas. However, due to the absence of field measurement of ET, the comparison 

was made in terms of crop coefficient (Kc) values using locally validated datasets: for 

the “Zona Alta” they were obtained from the last regional water accounting report 

(“Bilancio Idrico Irriguo” - www.sit.puglia.it); while, for the “CZID” the were retrieved, 

as the meteorological data, from the Sistema de Información Agroclimática para el 

Regadío (SiAR) website.  

The Kc values for the Zona Alta were additionally corrected, as suggested into 

FAO-56 guidelines, to consider the effects of climate conditions (wind speed and the 

minimum relative humidity) and crop height: 

  

𝐾𝐶,𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝐾𝑐 +  [0.04(𝑢2 − 2) + 0.004 (𝑅𝐻𝑚𝑖𝑛 − 45)] (
ℎ𝑐

3
)

0.3
 

(48) 

  

The height of olive and vineyard was considered constant and the used values 

were fixed respectively to 4 and 2 meters. This correction was not applied to the CZID 

study area since the temporal evolution of the crop height for each plot is unknown. 

As demonstrated respectively in Figure 6.1 - Figure 6.2, the direct application 

of the EO-based “one-step” FAO-PM approach leads to overestimating the Kc (and 

therefore ET) for olive and vineyards. For almost all the considered plots, the estimated 

Kc values are higher than the reference literature-based Kc, sometimes also 2 times 

higher. For vineyards plots, the Kc during the midseason growth phase, corresponding 

to its maximum value, range between 1.10 and 1.25 in almost all plots and during the 

three years, while the literature value for the study area is estimated at 0.70. However, 

the pattern of the temporal trend follows the phenology of the crop while for the olive it 

seems to be influenced also by the presence of weeds crops among the trees.  

http://www.sit.puglia.it/portal/portale_cis/bilancio_irriguo
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2017  

2018  

2019  

Figure 6.1. Olive’s Kc estimated at plot scale (in grey) using the classical version of the EO-based “one-

step” FAO-PM approach versus the “standard” Kc and Kc,Corrected (respectively the solid and dashed 

lines). 
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2017 

 

2018 

 

2019 

 

Figure 6.2. Vineyard’s Kc estimated at plot scale (in grey) using the classical version of the EO-based 

“one-step” FAO-PM approach versus the “standard” Kc and Kc,Corrected (respectively the solid and dashed 

lines). 
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The Kc values estimated for the herbaceous crops (maize and tomato) results to be lower than 

the Kc values retrieved from the SiAR and valid for the CZID area. Even if the trend retrieved from each 

plot is almost the same, it appears to be shifted in time depending on the plantation date and on the crop 

growing cycle length, which is farm-specific. From Figure 6.3 it is also possible to notice that the direct 

use of EO-based “one-step” FAO-PM approach leads to estimate crop ET also before the seeding and 

after the harvesting when generally the vegetation is absent, and the soil is bare. Also in this case the 

ETc estimated could be estimated as potential evaporation from the soil (with Ke = 0.20, as usually 

assumed in literature (Allen et al., 1998)). 

Maize 

 

Tomato 

 

Figure 6.3. Maize and Tomato’s Kc at plot scale (in grey) estimated using the classical version of the 

EO-based “one-step” FAO-PM approach versus the “standard” Kc. 

To understand these differences in terms of surface resistance were compared 

the “standard” surface resistance estimated using the expression on Equation (22) and 
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adopting a minimum bulk resistance equal to 100 ms
-1

, with the values retrieved by 

inverting the FAO P-M equation, as suggested by Shuttleworth (Shuttleworth, 2006), 

as a function of the Kc and of the dimensionless parameter (𝑅𝐶
𝑍
) used for the estimation 

of the aerodynamic resistance used in Equation (30): 

  

𝑟𝑠 =
1.056 (𝑅𝐶

𝑍 + 144.4)

𝐾𝑐
− 1.3297 𝑅𝐶

𝑍  

(49) 

  

 As demonstrated in Figure 6.4, Figure 6.5 and Figure 6.6 the assumption of a 

constant value for the stomatal resistance (assumed equal to 100 sm
-1

) leads to a un-

derestimate of the surface resistance for every crop class considered.  
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2017  

2018  

2019  

Figure 6.4. Estimated surface resistance (rs) at plot scale (in grey) versus the “standard” surface re-

sistance obtained for Olive from Equation (49). 
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2017  

2018  

2019  

Figure 6.5. Estimated surface resistance (rs) at plot scale (in grey) versus the “standard” surface re-

sistance obtained for Vineyards from Equation (49). 
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Corn 

 

Tomato 

 

Figure 6.6. Estimated surface resistance (rs) at plot scale (in grey) versus the “standard” surface re-

sistance obtained for Maize and Tomato from Equation (49). 
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6.4. Calibrating the proposed expression for the (bulk) surface re-

sistance (rs) estimation 

As demonstrated in the precedent Paragraph 6.3, the assumption of a constant 

value for the stomatal resistance (assumed equal to 100 sm
-1

) leads to underestimating 

the surface resistance for every crop class considered, both for annual and perianal 

crops. However, even if the values of the surface resistance result always inferior to 

the FAO-Kc inverted surface resistance, the structure of Equation (22), thanks to the 

presence of the LAI at the denominator, allows following the phenology of the annual 

crops. For these crops, as reported in the FAO-56 handbook, the temporal evolution of 

the LAI is strictly correlated with the crop hight and the crop phenology. For perennial 

crops, like olives, this is not true because the seasonal variations of the LAI are much 

more limited. 

Starting from these considerations were analysed the temporal patterns of the 

principal satellite-derived VIs: the Vegetation Fraction Cover (VFC), the NDVI and the 

LAI. As the NDVI is used, as previously described, in a great number of applications for 

vegetation monitoring and in many Kc-VI and surface resistance models, the idea was 

to include the NDVI into the FAO-56 expression of the surface resistance. Moreover, 

since the specific objectives of the present work, is to develop a not crop-specific sur-

face resistance model, coherent with the surface resistance model adopted by the FAO 

P-M equation and (sufficiently) representative of the actual crop conditions considering 

the crop water stress, the simplest linear relation with the surface resistance was im-

posed: 

  

𝑟𝑠 =
𝛼 𝑁𝐷𝑉𝐼

𝐿𝐴𝐼𝑒𝑓𝑓

 
(50) 

  

For the selection of the value assumed by the coefficient 𝛼, different values 

were selected, and the retrieved surface resistance was compared with the values ob-

tained from Equation (49). In the left column of Figure 6.7 - Figure 6.17 are reported 

these comparisons made with 𝛼 assumed equal to 300, 400 and 500 (respectively 

reported with the letter a, b, and c).  
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Olive - 2017 

a) VFC 

  

b) NDVI 

 
 

c) LAI 

  

Figure 6.7. Surface resistance estimated for olive fields during the 2017 growing season (left column, 

using the relation of Equation (38) with α equal to 300 (a), 400 (b) and 500 (c)) and the Vegetation 

Fraction Cover (VFC), NDVI and LAI (right column). 
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Olive - 2018 

a) VFC 

 
 

b) NDVI 

 
 

c) LAI 

  

Figure 6.8. Surface resistance estimated for olive fields during the 2018 growing season (left column, 

using the relation of Equation (38) with α equal to 300 (a), 400 (b) and 500 (c)) and the Vegetation 

Fraction Cover (VFC), NDVI and LAI (right column). 

  



 

116 

 

Olive - 2019 

a) VFC 

  

b) NDVI 

  

c) LAI 

  

Figure 6.9. Surface resistance estimated for olive fields during the 2019 growing season (left column, 

using the relation of Equation (38) with α equal to 300 (a), 400 (b) and 500 (c)) and the Vegetation 

Fraction Cover (VFC), NDVI and LAI (right column). 
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Vineyards - 2017 

a) VFC 

 
 

b) NDVI 

 
 

c) LAI 

 
 

Figure 6.10. Surface resistance estimated for vineyard fields during the 2017 growing season (left col-

umn, using the relation of Equation (38) with α equal to 300 (a), 400 (b) and 500 (c)) and the Vegetation 

Fraction Cover (VFC), NDVI and LAI (right column). 
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Vineyards - 2018 

a) VFC 

 
 

b) NDVI 

 
 

c) LAI 

 
 

Figure 6.11. Surface resistance estimated for vineyard fields during the 2018 growing season (left col-

umn, using the relation of Equation (38) with α equal to 300 (a), 400 (b) and 500 (c)) and the Vegetation 

Fraction Cover (VFC), NDVI and LAI (right column). 
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Vineyards - 2019 

a) VFC 

 
 

b) NDVI 

 
 

c) LAI 

 
 

Figure 6.12. Surface resistance estimated for vineyard fields during the 2019 growing season (left col-

umn, using the relation of Equation (38) with α equal to 300 (a), 400 (b) and 500 (c)) and the Vegetation 

Fraction Cover (VFC), NDVI and LAI (right column). 
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Maize 

a) VFC 

 
 

b) NDVI 

  

c) LAI 

 
 

Figure 6.13. Surface resistance estimated for maize fields (left column, using the relation of Equation 

(38) with α equal to 300 (a), 400 (b) and 500 (c)) and the Vegetation Fraction Cover (VFC), NDVI and 

LAI (right column). 
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Tomato 

a) VFC 

 
 

b) NDVI 

 
 

c) LAI 

 
 

Figure 6.14. Surface resistance estimated for tomato fields (left column, using the relation of Equation 

(38) with α equal to 300 (a), 400 (b) and 500 (c)) and the Vegetation Fraction Cover (VFC), NDVI and 

LAI (right column). 
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Since measurements of surface resistance over the considered plots are miss-

ing, the use of the term “calibration” appears to have low (or none) significant if applied 

in rigours sense Instead, in this work “calibration” was intended as the qualitative re-

search of a “one-fit” value of the parameter α valid for the most generic crop-climate 

conditions. In this sense, the calibration of the surface reflectance model proposed had 

as objective the research of the value of the parameter α valid for both the study areas 

and the extremely different crop considered (herbaceous, woody, and perennial crops) 

considering the different climate conditions between years. 

Following these criteria, the best-fit value of the parameter was estimated to be 

500. Therefore, the expression adopted for the surface resistance estimation is: 

  

𝑟𝑠 =
500 𝑁𝐷𝑉𝐼

𝐿𝐴𝐼𝑒𝑓𝑓

 

(51) 

  

In Figure 6.15 - Figure 6.17 were reported the temporal patterns for each crop 

class of the retrieved Kc estimated using Equation (51) compared with the literature-

based values and with the Kc retrieved by the direct application of the EO-based FAO-

PM approach. The comparison shows that for all the cases analysed, the obtained Kc 

curves follow the expected FAO-kc curves. If the model reduces the Kc value for the 

considered woody crops (olive and vineyard), for the herbaceous crops (maize and 

tomato) there is an increment of the Kc value achieved during the crop season. For 

these crops, the estimated Kc patterns are now more similar to the FAO-Kc pattern. 

Moreover, the FAO-Kc lines in these cases represent an upper limit border for the esti-

mated Kc, in line with the definition of the “optimal” crop coefficient. 



Giuseppe Peschechera 

123 

Olive 

2017  

2018  

2019  

Figure 6.15. Olive's Kc estimated along the three crop seasons using the proposed EO-based "one-step" 

approach (green) and the reference FAO Kc and adjusted Kc FAO (respectively the continuous and 

dashed blue lines).  
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Vineyards 

2017  

2018  

2019  

Figure 6.16. Vineyard's Kc estimated along the three crop seasons using the proposed EO-based "one-

step" approach (green) and the reference FAO Kc and adjusted Kc FAO (respectively the continuous and 

dashed blue lines). 
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Maize 

 

Tomato 

 

Figure 6.17. Maize and tomato’s Kc estimated along the crop season using the classical and the pro-

posed improved EO-based "one-step" approach (respectively the grey and green lines) and the reference 

FAO Kc (blue lines). 
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6.5.  Seasonal CWR estimation at the plot scale 

Adopting the proposed aerodynamic and surface resistance model, was possi-

ble to estimate the daily ETc using the procedure described in Chapter 4 during the 

period between the first and the last available S-2 overpass of every considered year. 

The seasonal CWR for each plot was estimated by summing the daily ET maps along 

the crop growing season. For vineyards and olive crops, the considered growth season 

follows the irrigation season of the “Sinistra Ofanto” study area and therefore ranges 

from April to the end of October. Instead for the annual crops considered, tomato and 

corn, since in general the planting date and the length of the crop cycle are farm-spe-

cific, the growing phase was retrieved using the procedure reported in Paragraph 4.4 

opportunely modified to be applied with the average FVC value instead of the pixel-

based value. In these case in fact, as the spatial information about the limits of each 

plot was available, was possible to follow the FVC trend at the plot scale.  

6.5.1. Olive 

Form Figure 6.18 it is possible to notice that the CWR using the standard two 

steps FAO56 approach reflects only the seasonal differences in terms of ETo described 

in Paragraph 5.1.2 with higher CWR for the year 2017 (equal to 4,282,0 m
3

/ha) and 

lower for the others two years. The differences in terms of CWR among the plots are 

influenced only by the spatial interpolation of the meteorological data and does not 

reflect the differences existing among plots due to different spacing among threes or 

crop status (in terms of disease or water stress). 

Instead, the CWR estimated using the proposed EO-based method can repro-

duce the differences among the plots as dictated by the expression of the surface re-

sistance (Equation (38)) and the LAI and NDVI values over each plot. In absence of 

field surveying and measurements, it is not possible to correlate these differences to 

any variable able to affect the ETc. However, looking at the plots of Figure 6.18, for all 

the considered plots during 2017 the model detects a CWR inferior to the expected 

FAO-Kc CWR which is not influenced by the rainfall pattern and therefore is not able to 
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consider the rainfall deficit occurring during all the year and especially during the sum-

mer. 

 

 

 

 

 

 

Figure 6.18. Scatter plot and differences plot between the estimated seasonal CWR and the standard 

FAO potential CWR (estimated using the Kc,adj) for each olive plot and for the three considered irrigation 

seasons (2017-2019). 

The extraordinary climatic conditions of 2017 were reflected in the synthetic 

quantitative description of the results provided from the statistical descriptors and 
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reported in Table 6-2. Indeed, on average the CWR estimated was 650 m
3

/ha inferior 

to the expected using the FAO-kc method, with an MPE of -15.1 %. This result, how-

ever, could be justified with the fact that the Kc correspond to the “potential” or “opti-

mal” crop condition and therefore the estimated ETc represent the upper limit value for 

the specific crop considered. The CWR estimated for the year 2018 and 2019 confirm 

this assumption because the values obtained are in line with the expected FAO-kc de-

rived with MPE lower than equal respectively -2.1 and 3.6%. 

 

Table 6-1. Summary statistics for the description of seasonal olive’s CWR [m
3

/ha/year] estimated using 

the standard “two-step” FAO approach and the EO-based “one-step” approach. 

 

CWR FAO [m
3
/ha/year] CWR estimated [m

3
/ha/year] 

2017 2018 2019 2017 2018 2019 

Max 4,391.0 3,802.0 3,729.0 3,997.0 4,042.0 4,224.0 

Min 4,222.0 3,613.0 3,366.0 3,325.0 3,202.0 3,108.0 

Average 4,282.4 3,691.3 3,514.6 3,632.1 3,612.2 3,633.2 

SD 59.0 60.7 124.8 211.2 249.0 306.4 

 

 Table 6-2. Summary statistics comparing seasonal olive’s CWR estimated using the standard 

“two-step” FAO approach and the EO-based “one-step” approach for the three considered irrigation 

seasons. 

 2017 2018 2019  

ME -650 -79 119 [m
3
/ha] 

SE 237 264 349 [m
3
/ha] 

MPE -15.1% -2.1% 3.6% [-] 

MAE 650 224 290 [m
3
/ha] 

MAPE 15.1% 6.0% 8.3% [-] 

RMSE 692 276 369 [m
3
/ha] 
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6.5.2. Vineyards 

 

 

 

 

 

 

Figure 6.19. Scatter plot and differences plot between the estimated seasonal CWR and the standard 

FAO potential CWR (estimated using the Kc,adj) for each vineyard plot and for the three considered irriga-

tion seasons (2017-2019). 

Even the analysis of the vineyard’s CWR confirms that the application of the 

classical FAO-Kc method to estimate the CWR leads to overestimating the CWR, 
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especially during rain scarce years (as was 2017 for the Sinistra Ofanto). Moreover, 

these differences are sensibly higher than the ones retrieved for olive. As expected, the 

maximum displacement was retrieved for the crop season 2017 where the ME was 

equal to -1,278 m
3

/ha. During the other years, the differences between estimated and 

expected CWR decreased to 10-11 %, corresponding to a ME of -618 and - 576 

m
3

/ha/year.  

Table 6-3. Summary statistics for the description of seasonal vineyard’s CWR [m
3

/ha] estimated using 

the standard “two-step” FAO approach and the EO-based “one-step” approach. 

 

CWR FAO CWR estimated 

2017 2018 2019 2017 2018 2019 

Max 5,636 4,824 4,786 4,523.0 4,482 4,361 

Min 5,397 4,544 4,277 4,098.0 3,943 3,781 

Average 5,525 4,715 4,635 4,247.3 4,109 4,097 

SD 86 90 174 166.1 174.7 204.3 

 

Table 6-4. Summary statistics comparing seasonal vineyard’s CWR estimated using the standard “two-

step” FAO approach and the EO-based “one-step” approach for the three considered irrigation seasons. 

 2017 2018 2019  

ME -1,278 -619 -576 [m
3
/ha] 

SE 112 200 257 [m
3
/ha] 

MPE -5.8% -1.9% -2.1% [-] 

MAE 1,278 619 576 [m
3
/ha] 

MAPE 5.8% 1.9% 2.1% [-] 

RMSE 1,283 651 630 [m
3
/ha] 

 

The underestimation of CWR was retrieved and confirmed for each plot for the 

three years which could indicate, besides an incorrect estimation of the parameter α 

used in the surface resistance expression, also the possibility that farmers apply a water 

management strategy that leads to controlled water stress reflected in the CWR esti-

mated. Moreover, is necessary to consider as the seasonal dynamics of Kc is affected 

by crop age and the environment as demonstrated by different Authors (Figure 6.20). 
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Figure 6.20. Seasonal dynamics of crop coefficients for vines in central Washington (USA) and São 

Francisco (Brazil). (Sources: (Steduto et al., 2012)). 
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6.5.3. Tomato 

 

 

 

CWR 

[m
3
/ha/year] 

Max  6934.0  

Mean  5272.8 

Min 3477.0 

SD 700.4 

Figure 6.21. Estimated crop growing season and seasonal CWR for each tomato plot. On the CWR his-

togram are reported the average and the standard deviation (respectively the dashed and dotted lines). 
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The seasonal CWR estimated for tomatoes field ranges between 6,934.0 and 

3,477.0 m
3

/hectare with a mean value of 5,272.8 m
3

/hectare. These values are in line 

with the standard CWR for tomato provided from the SIAR which for 2017, estimated 

for a standard growing season started the 1
st

 of May (Day Of the Year - DOY 121) and 

ended the 30
th

 of September (DOY 273), was equal to 6,132 m
3

/hectare. Since the 

retrieved crop growing season is different for each plot, any other correlation at the plot 

scale between standard and modelled CWR over a shorter temporal scale was not pos-

sible.   

The retrieved crop growing season for the 67 fields considered, started on av-

erage on the DOY 141 (141.6 ±13.7 days) and was long 101 days (101.1 ± 8.6 days) 

with an average end on the DOY 243 (242.7 ±16.6 days). Therefore, it is possible to 

conclude that the procedure for the delimitation of the growing season based on the 

FVC trend is valid for tomato. 

6.5.4. Maize 

The seasonal CWR estimated for maize ranges between 4,886.0 and 8,130.0 m
3

/hec-

tare with a mean value of 6,877.4 m
3

/hectare. These values are in line with the standard 

CWR for grain and fodder maize provided from the SIAR value respectively 8,025 and 

5,630 m
3

/hectare. However, from the available crop map was not possible to distin-

guish among these varieties, and therefore it was not possible any other correlation for 

variety. Moreover, since the retrieved crop growing season is different for each plot any 

other correlation at plot scale between standard and modelled CWR over a shorter tem-

poral scale was not possible.   

The retrieved crop growing season for the 19 fields considered, started on av-

erage on the DOY 126 (126.4 ±10.2 days) and was long 140 days (139.7 ± 10.2 

days) with an average end on the DOY 265 (265.0 ± 11.0 days).  
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CWR 

[m
3
/ha/year] 

Max 8130.0   

 Mean 6877.4   

 Min 4886.0   

 SD 723.5   

Figure 6.22. Estimated crop growing season and seasonal CWR for each maize plot. On the CWR histo-

gram are reported the average and the standard deviation (respectively the dashed and dotted lines). 
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6.6. CWR estimation at the irrigation district scale 

6.6.1. CWR of “Sinistra Ofanto” Irrigation Scheme 

Since the crop map for the Sinistra Ofanto scheme was available, it was possi-

ble to estimate the CWR for the “Sinistra Ofanto” irrigation Scheme. The CWRs of each 

district were estimated on daily basis using the classical “two-steps” FAO-PM ap-

proach. According to the land cover map, the average value of the crop coefficient for 

each irrigation district was estimated as the weighted mean of the crop coefficients: 

  

𝐾𝑐 =  
∑ 𝐾𝑐𝑖 𝐴𝑖

𝑁
𝑖=1

𝐴
 (52) 

  

Since the land cover map available is not updated every year, it does not provide 

a distinction between winter and summer crops which are reported in the unique crop 

class “annual crops”. Therefore, summer crops were identified year by year as the 

residuals cropped field excluding the perennial crops (assumed stable during the three 

irrigation seasons). The crop pattern of each irrigation district was reported in Table 

5-2. The adopted Kc values were retrieved from the FAO-56 guidelines and are graph-

ically reported in Figure 6.23. To define the Kc values for the summer crops was as-

sumed as a unique representative summer crop the tomato. Another simplification was 

introduced grouping into a unique crop class vineyard and stone fruit threes since they 

are characterized by a similar Kc temporal pattern and values.  

The CWRs were estimated starting from the 1
st

 of April to the 15
th

 of September, 

corresponding to the core of the irrigation season.  
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Figure 6.23. Temporal evolution along the year of the used Kc value for the estimation of CWR. 

Looking at the seasonal CWRs values reported in Table 6-5, it is possible to 

notice as the CWR estimated with the Kc-FAO approach is always greater than the one 

retrieved with the EO-based FAO-56 method. This could be a further confirmation of the 

fact that the FAO-Kc approach leads to estimate the potential (maximum) and not the 

actual evapotranspiration. The overestimation is significantly higher for the dry years 

2017 and 2019, while it is moderate for the rainier irrigation season 2018.  

It is also interesting to notice as the total estimated CWR for the three years 

results to be a constant while, using the classical FAO-Kc approach, it is highly variable 

and influenced by the climatic conditions. Once again this demonstrates as the classi-

cal FAO-Kc approach leads to estimate the potential (maximum) evapotranspiration 

which is not representative of the Mediterranean contexts where water availability is the 

main limiting factor to the evapotranspiration process.  
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Table 6-5. Comparison between seasonal CWR estimated at irrigation district-scale using the EO-based 

FAO-56 method and the potential CWR retrieved from the classical Kc-FAO approach.  

Irrigation 
CWR EO-based FAO 56 

District 
2017 2018 2019 

11 12,429,312 12,064,661 12,140,099 

12 5,959,955 6,095,646 5,971,049 

12 4,877,243 5,529,286 5,616,974 

14 4,551,633 4,732,743 4,370,227 

Total 27,818,143 28,422,336 28,098,349 

    

Irrigation 
CWR FAO-Kc 

District 
2017 2018 2019 

11 18,299,993 13,440,549 14,415,231 

12 8,617,818 6,714,727 7,388,554 

12 7,781,496 5,696,723 6,408,350 

14 5,623,828 4,333,069 6,295,459 

Total 40,323,135 30,185,068 34,507,594 

    

Irrigation 
CWR EO-based FAO 56 / CWR FAO-Kc 

District 
2017 2018 2019 

11 67.9% 89.8% 84.2% 

12 69.2% 90.8% 80.8% 

12 62.7% 97.1% 87.7% 

14 80.9% 109.2% 69.4% 

Average 69.0% 94.2% 81.4% 
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6.6.2. CWR of “Canal del Zujar Irrigation District” 

For the CZID the information about the crops cultivated during 2017 covers only 

60.38% of the total extension area. Moreover, as most of the crop are annuals, char-

acterized by a different crop pattern for each plot, even in presence of a detailed crop 

map the comparison with the standard FAO-56 CWR values is difficult and limited to a 

qualitative assessment since the standard Kc curve follows a theoretical pattern that 

does not consider the effective crop phenology which is affected by the specific mete-

orological conditions for the considered growing season and the farmers' choices as 

the sowing date.  

Even if the direct comparison with the standard kc-FAO CWR is not possible, 

the obtained retrieved EO-based CER is in the following reported and qualitatively dis-

cussed. 

The total estimated cropped area estimated using the FVC dataset following the 

procedure reported in Paragraph Masking no cropped areas3.3 covers about 96 per 

cent of the entire extension of the CZID. It is also possible to follow the temporal pattern 

of the extension of the cropped areas (Figure 6.24). The biggest development of the 

vegetated areas, as retrieved from the FVC trend at pixel-level, happened from April, 

reaches its maximum during the summer, and fall again since the end of August. 

In the same way, it is possible to describe the spatial and temporal evolution of 

the CWR. The estimated annual reference evapotranspiration (estimated from the first 

to the last S2 overpass) results equal to 1,3422 mm. In the same period, the estimated 

average CWR value is 431 mm with very large spatial differences inside the CZID study 

are, as shown in Figure 6.26. The total seasonal CWR volume is estimated at 

11,883,209 m
3

.  Lastly, in Figure 6.25 is reported the annual pattern of ETo and Rainfall 

compared with the estimated average ETc over the CZID for 2017.  



Giuseppe Peschechera 

139 

 

Figure 6.24. Temporal pattern of the extension of the cropped areas, based on the FVC trend. 

 

Figure 6.25. The annual pattern of ETo (dashed line), (estimated) average ETc  and Rainfall over the CZID 

for 2017. The vertical red lines indicate respectively the first and last Sentinel-2 overpass. 
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Figure 6.26. The spatial pattern of the estimated annual CWR over the CZID study area. 
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7. TEST THE EO-BASED “ONE-STEP” FAO-56 METHOD FOR IRRIGA-

TION ACCOUNTING AND MONITORING  

7.1. Methodological approach 

As previously described in Paragraph 1.6.3 there are two mains possible way 

to estimate the IWR.  

The first possibility is based on the identification of water deficit conditions 

which are presumably corresponding to irrigation, assuming implicitly that the water 

used for irrigation approximately correspond to the not-rainwater consumed by the 

crop. Under this hypothesis, which can be considered as reasonable in all cases where 

the cost of extracting and distributing irrigation requires the improvement of farmer’s 

water use efficiency (as common in many Mediterranean regions), (net) IWR can be 

estimated as the difference between the Crop Water Requirements, represented by the 

actual ET (ETc) and the net rainfall (Rn) as reported in Equation (18). This approach 

can be easily applied for the IWR estimation of annual crops because farmers trying to 

avoid the condition of water deficits which lead to a reduction of plant transpiration and 

a decrease in the production of biomass. Indeed, usually, annual crops are being grown 

for its biomass (such as alfalfa or maize silage) or for its grains (like wheat, maize, and 

rice) and a water stress condition in such case lead to a decrease of biomass and grain 

yield and consequently of gross farmers’ income. 

A completely different scenario characterizes tree crops and vines (and for 

some annual crops, such as cotton) where the fruit is the economic product, a reduc-

tion in biomass production does not always result in a parallel reduction in fruit pro-

duction (but can be affected negatively some quality parameters, such as fruit size or 

appearance). On the other hand, it has long been known that water deficits have bene-

ficial effects on the production of trees and vines. Therefore, in addition to saving water, 

there are also other aspects and factors to be considered applying and managing water 

stress in perennial crops in terms of improving product quality and growers’ revenues. 

Therefore, estimate the IWR for tree crops is more complex because irrigation is applied 

to avoid water deficits that are not compatible with management objectives. The usual 
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objective of the manager is to maximize net economic benefit, which does not always 

coincide with maximum yields, as when deficit irrigation can improve fruit quality and 

thus crop value.  

Another great difference among annual and tree crops is represented by the 

deep of the root zone which for tree roots may reach several meters (however the ef-

fective depth of rooting for irrigation purposes is considered the maximum depth con-

sidered for water budget calculations ranges between 1.5 and 2 meters). In this case, 

therefore, the water storage capacity can sustain a relevant portion of the CWR. For this 

reason, it is not possible to consider the simplified equation of Equation (18) to estimate 

the IWR for tree crops, but it is necessary to apply the water budget method for irriga-

tion scheduling. With this method, the tree root zone is considered a reservoir of soil 

water that is depleted as the ETc take place. The soil reservoir of available water that 

the tree depletes through ET is allowed to lose water until a soil water threshold (Allow-

able Depletion - AD) is reached, below which water stress starts to affect negatively 

crop production, quality or both. At this point, irrigation must be applied to refill the soil 

profile. This schematic representation follows the FAO-56 SWB method (Equation (2)) 

described in detail in Paragraph 1.1. 

 

The water budget method requires also more input data regarding: 

- The available soil water holding capacity or Total Available Water (TAW), defined 

as the difference between field capacity and permanent wilting point. It varies ac-

cording to soil texture between 50 to 200 mm/m. 

- Rooting depth. 

- The Allowable Depletion (AD) usually varies between 50-70 per cent of TAW and 

represents the threshold level of the root zone storage capacity below which the 

level of water deficit in the tree is undesirable and therefore, at this point, irrigation 

is applied.  

 



Giuseppe Peschechera 

143 

Moreover, it is important to know the farmers’ behavior to reproduce it into the 

irrigation module of the SWB under the form of frequency and amount of every irrigation 

event. 

In general, the way to cope with water scarcity is to modify the horticultural 

practices also by reducing the application of irrigation water. Deficit irrigation (DI) is 

defined as a regime where the irrigation water applied is less than the orchard ET re-

quirements to induce the extraction of water from the soil reservoir. Two situations may 

then develop: 

1. if sufficient water is stored in the soil and transpiration is not limited by soil water, 

the consumptive use (ET) is unaffected even though the volume of irrigation water 

was reduced.  

2. if the soil water supply is insufficient to meet the ET demand, crop water deficits 

lead to a reduction in growth and transpiration and therefore DI reduces ET below 

its maximum potential. 

 

There are many approaches to designing a DI program, but they follow two 

different principal strategies, reported graphically in Figure 7.1: 

1. the continuous or Sustained DI (SDI), in which a constant fraction of the crop ET is 

applied at regular intervals. If the soil profile is full at the start of the season, the 

trees take up soil water to compensate for the deficits; as the season progresses, 

the soil is progressively depleted, and the water deficits increase with time in the 

absence of rainfall.  

2. the regulated DI (RDI), defined as a regime that purposely stresses the trees or 

vines at specific developmental stages of the crop that are considered to be the 

least sensitive to water deficits. The goal of RDI, when water supplies are relatively 

high, is to have little if any, negative impact on the yield of marketable products and 

on gross profits. It should be emphasized that under RDI, the trees are subjected 

to irrigation deficits only at certain stages of development (normally when repro-

ductive growth is relatively low) but they generally receive full irrigation outside 
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these periods. The RDI concept can also be used in drought years, where available 

irrigation supplies are limited 

 

Figure 7.1. Patterns of seasonal applied water to an orchard under full irrigation (Control) and regulated 

(RDI) and sustained (SDI) deficit irrigation. Source: (Steduto et al., 2012). 

Since in the RDI strategy the manager must decide whether to impose more 

severe water deficits during the stress-tolerant periods (or begin to expand the stress 

into the less stress-tolerant stages of the season or a combination of both) playing with 

the timing, magnitude, and duration of the stress periods it is hardly forecasting be-

cause is a farmer dependent choice. Therefore, the developed irrigation module for the 

tree crops works under the hypothesis of sustained deficit irrigation (SDI). 
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7.2. Irrigation Accounting and Monitoring at the plot scale for tree 

crops 

To estimate the IWR of tree crops, was settled an FAO-based SWB model, as 

described in Paragraph 1.1. Assuming that, as usual for agricultural applications: 

- the water table is more than about 1 m below the bottom of the root zone, the 

capillarity rise term (CR) was assumed to be equal to zero. 

- Deep Percolation (DP), as commonly assumed in dry regions, can be neglected. 

- the impact of the runoff (RO) component can be ignored. 

Under these hypotheses, the daily SWB assumes the expression yet reported in Equa-

tion (2):  

  

𝐷𝑟,𝑖 = 𝐷𝑟,𝑖−1 − 𝑃𝑖 − 𝐼𝑖 + 𝐸𝑇𝑐𝑖  

  

The net precipitation term was estimated from the rainfall measurements from 

the considered rainfall stations working on the Sinistra Ofanto scheme, applying a dou-

ble threshold procedure. The first was applied to exclude the first 4 mm of rainfall which 

here was considered not effective for the CWR’s fulfilment; the second threshold was 

imposed to consider that the infiltration into the soil could not exceed its maximum daily 

infiltration capacity. This second term, which in theory depend on the status of the soil 

and on the characteristics of the de precipitation (its intensity) was here defined adopt-

ing cut-off threshold limits fixed to 45 mm. All the exceeding amount of the rainfall was 

considered lost. 

The SWB’s irrigation module follows the regulated DI (RDI) strategy. For the 

two considered crop class was necessary to define the crop dependant SWB’s param-

eters, that are reported in Table 7-1. 

Soil properties data, synthetically described by the water content at Field Ca-

pacity (FC) and Wilting Point (WP), were retrieved from the Maps of indicators of soil 

hydraulic properties for Europe database (Panagos et al., 2011). This database pro-

vides the water retention and the hydraulic conductivity of topsoil (saturated hydraulic 

conductivity) at the spatial resolution if 1 km for the entire EU, estimated using as input 
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the European Soil Database and the new pan-European soil hydraulic pedotransfer 

functions based on the modified FAO texture class. 

Table 7-1. Crop dependent SWB’s parameters used for the IWR of tree crops (olive and vineyard) 

  Olive Vineyard 

Rooting depth [m] 2,00 1.50 

Allowable depletion (p) [-] 0.65 0.50 

 

In the following two Paragraphs were analysed the results for each crop class, 

while the detailed outputs of the SWB are reported in Annex 3. 

7.2.1. Olive 

The IWE estimated for the olive plots is highly variable along with the three 

irrigation seasons and, during the same year, among the different plots. The number of 

the considered plot is different year by year due to the preliminary selection of the avail-

able irrigation volume registration finalized to exclude the time series incomplete or af-

fected by errors. 

The irrigation season 2017 was the only for which the SWB was able to esti-

mate the IWRs. Indeed, not only the average IWE (992,1 m
3

/ha) it is close to the average 

IWA (1.188,9 m
3

/ha) but also the scatter plot demonstrates the goodness of the esti-

mation because the points result equally distributed along the 1:1 line (Figure 7.2). 

The irrigation season 2018 was strongly influenced by very cold days that oc-

curred during the flowering phase which have compromised the entire yearly olive pro-

duction. This can justify the fact that the farmers since the production was not able to 

pay back the cost of irrigation and thanks to the favourable rainfall pattern, decided to 

not irrigate. Indeed, the resulting average IWA (equal to 102.0 m
3

/ha), was lower than 

the average estimated IWR (447.2 m
3

/ha). The scatter plot confirms that this average 

data is valid for all the plots because all the points are located on the left of the 1:1 line 

(Figure 7.3). 
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Inversely, during the irrigation season 2019, was registered an average over-

irrigation demonstrated on a global basis by the average IWA value significantly higher 

than the average IWE (respectively equal to 1,243.9 and 177.3 m
3

/ha), and on the sin-

gle plot by the scattergram which demonstrates as all the points are located on the left 

of the 1:1 line (Figure 7.4). Since the irrigation module of the SWB model was designed 

to replace the water stress condition, the IWE does not consider the economic aspects 

behind the adoption of an irrigation strategy which in this specific crop season can 

justify the application of more water than the amounts strictly necessary to avoid the 

water stress to improve the olive production. 

The analysis of the results for the irrigation seasons 2018 and 2019 demon-

strated as the IWR estimation for tree crops is more complex because: 

- needs to consider not only the SWB equation but also the economic aspect 

which affect the farmers’ irrigation strategy. 

- is highly affected by the rainfall pattern and the soil water storage capacity. 

- requires the knowledge of the spatial distribution of soil and crop characteris-

tics. 
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2017 

 

 

IWA [m
3
/ha] IWE [m

3
/ha] 

Mean 992.1 Mean 1188.9 

SD 476.5 SD 325.5 

Figure 7.2. Seasonal SWB’s components for each olive plot estimate during 2017 (upper plot) and scatter 

plot between Applied and Estimated Irrigation Water [m
3

/ha]. 
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2018 

 

 

IWA [m
3
/ha] IWE [m

3
/ha] 

Mean 102.0 Mean 424.3 

SD 447.2 SD 418.8 

Figure 7.3. Seasonal SWB’s components for each olive plot estimate during 2018 (upper plot) and scatter 

plot between Applied and Estimated Irrigation Water [m
3

/ha]. 
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2019 

 

 

IWA [m
3
/ha] IWE [m

3
/ha] 

Mean 1243.9 Mean 177.3 

SD 555.4 SD 536.2 

Figure 7.4. Seasonal SWB’s components for each olive plot estimate during 2019 (upper plot) and scatter 

plot between Applied and Estimated Irrigation Water [m
3

/ha]. 
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7.2.2. Vineyards 

 

The comparison of estimated and applied IW volumes for the analysed vineyard 

plots shows clearer farmers behaviour than the observed for olive plots. Analysing the 

results for the three irrigation seasons considered, it is evident as the farmers usually 

not apply more water than the amount strictly necessary to avoid the onset of unsus-

tainable water stress conditions which can affect grape production. Indeed, inde-

pendently from the meteorological conditions in only one plot was retrieved IWE higher 

than the estimated. 

For the irrigation season 2017 were available the data for only 4 hydrants which 

do not allow a deep statistical analysis of the results. However, for these hydrants the 

mean IWA, equal to 1,475 m
3

/ha while the estimated IW was mostly double (2,389 

m
3

/ha). 

The 2018 and 2019 irrigation season, thanks to the favourable rain condition, 

showed the lowest average IWE (equal respectively to 1,536 and 1,549 m
3

/ha). How-

ever, while the 2019 average farmers’ behaviour was clear and the scatter plot between 

IWE and IWA lies over the 1:1 line, 2018 was characterized by a general tendency to 

under-irrigate, in comparison with the optimal IWE which in average is equal to 1,091 

m
3

/ha. 
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2017 

 

 

IWA [m
3
/ha] IWE [m

3
/ha] 

Mean 1,475 Mean 2,389 

SD 713 SD 180 

Figure 7.5. Seasonal SWB’s components for each vineyard plot estimate during 2017 (upper plot) and 

scatter plot between Applied and Estimated Irrigation Water [m
3

/ha]. 
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2018 

 

 

IWA [m
3
/ha] IWE [m

3
/ha] 

Mean 1,091 Mean 1,536 

SD 303 SD 176 

Figure 7.6. Seasonal SWB’s components for each vineyard plot estimate during 2018 (upper plot) and 

scatter plot between Applied and Estimated Irrigation Water [m
3

/ha]. 

  

0

1,000

2,000

3,000

4,000

5,000

A400 A405 A477 A630 A662 A735 D781

[m
3 /

h
a/

ye
ar

]

ID HYDRANT

Rainfall IWA Max SWC CWR

y = 1.3169x
R² = 0.9313

0

500

1,000

1,500

2,000

2,500

3,000

0 500 1,000 1,500 2,000 2,500 3,000

IW
E

IWA



 

154 

2019 

 

 

IWA [m
3
/ha] IWE [m

3
/ha] 

Mean 1,409 Mean 1,549 

SD 405 SD 271 

Figure 7.7. Seasonal SWB’s components for each vineyard plot estimate during 2019 (upper plot) and 

scatter plot between Applied and Estimated Irrigation Water [m
3

/ha]. 
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7.3. Irrigation Accounting and Monitoring at the plot scale for an-

nual crops 

The irrigation estimation for the considered annual crops was conducted fol-

lowing the simplified approach described in Paragraph 7.1. 

Since the IWE represent the water to be provided at the crop root, to be com-

pared with the IWA it is necessary to consider losses that could happen at the field 

scale through the introduction of the irrigation efficiency. The value of the irrigation 

efficiency adopted, considering the irrigation system adopted and the farmers' behav-

iour for the CZID, was fixed to 95%.  

7.3.1. Tomato 

 

IWA [m
3
/ha/year] IWE [m

3
/ha/year] 

Mean 5,439.9 Mean 5,272.8 

SD 4,174.0 SD 3,477.0 

Figure 7.8 Scatter plot between (net) Applied (Irrigation efficiency 0.95) and Estimated Irrigation Water 

retrieved for tomato [m
3/

ha/year]. 
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7.3.2. Maize 

 

IWA [m
3
/ha/year] IWE [m

3
/ha/year] 

Mean  5,940.8  Mean  6,134.7  

SD  454.3  SD  685.7  

Figure 7.9. Scatter plot between (net) Applied (Irrigation efficiency 0.95) and Estimate Irrigation Water 

retrieved for maize [m
3

/ha/year]. 

For tomato and maize, the scatter plot between IWA and IWE shows a clear 

regular trend. In the case of maize, framers usually apply under-irrigation due to the 

economic balance between the costs supported for irrigation and the increase of farm-

ers’ income. Tomato has and higher value which can justify the application of more 

water. 

These two trends are clearly showed respectively in Figure 7.8 and Figure 7.9. 

  



Giuseppe Peschechera 

157 

7.4. Irrigation Accounting and Monitoring at the irrigation district 

scale   

7.4.1. IWR of “Sinistra Ofanto” Irrigation Scheme  

The seasonal IWR of the “Sinistra Ofanto” Irrigation Scheme was assessed ex-

tending the FAO56-based SWB model proposed and described in Paragraph 7.2 to the 

whole irrigation scheme. The following Table 7-2 resumes the principal components of 

the SWB with a specific focus on rainfall and irrigation. To compare the IWA with the 

IWE, the net (net) IWE provided by the SWB was increased applying the irrigation effi-

ciency coefficient. It was estimated and assumed equal to 0.95 since in the area is 

active a progressive volumetric water tariff which encourages the farmers to apply very 

efficient irrigation strategies. 

 

Table 7-2. Resume of the principals seasonal positive SWB’s components (rainfall and irrigation 

[m
3

/year]) estimated at the irrigation district scale (ID). 

 
2017 2018 2019  2017 2018 2019 

ID Rain Total   IWA CBC  

11 3,778,194 7,174,039 11,121,281 
 

5,933,796 3,734,173 5,251,241 

12 2,219,545 3,530,948 5,212,899  2,911,394 1,402,125 2,637,765 

13 1,760,976 3,469,004 5,187,063  2,885,511 1,231,693 2,466,225 

14 1,265,277 2,304,044 4,021,909  2,869,103 2,034,221 2,461,412 

Total 9,023,992 16,478,035 25,543,152  14,599,804 8,402,212 12,816,643 

        

ID Rain Effective   (Gross) IWE 

11 3,355,353  6,544,099  6,741,310   6,196,582  3,161,057  3,337,656  

12 1,845,548  3,233,008  2,969,492   4,098,489  1,749,637   1,671,747  

13 1,612,425  2,868,112  2,924,824    3,293,886  1,415,734  1,289,326  

14 1,240,060  2,228,656  2,421,186     2,564,444  1,261,554  1,463,534  

Total   8,053,386  14,873,876  15,056,812   16,153,402  7,587,981  7,762,263  

      

ID Rain Effective / Rain Total  (Net) IWE / IWA  

11 88.8% 91.2% 60.6%  104.4% 84.7% 63.6% 

12 83.1% 91.6% 57.0%  140.8% 124.8% 63.4% 

13 91.6% 82.7% 56.4%  114.2% 114.9% 52.3% 

14 98.0% 96.7% 60.2%  89.4% 62.0% 59.5% 

Total 89.2% 90.3% 58.9%  110.6% 90.3% 60.6% 



 

158 

It is important to notice as the temporal distribution of rainfall is crucial to esti-

mate the IWR. Indeed, while 2018 and 2019 are characterized by a very different vol-

ume of rainfalls (respectively equal to 16.5 and 25.3 Mm
3

), the estimated effective 

rainfall is very different and respectively equal to 14.9 and 15.1 Mm
3

. This could be 

explained by looking at the meteorological characterization of the area, reported in Par-

agraph 5.1.2 which shows as the irrigation season 2019 was characterized by heavy 

and frequents rainfalls until July followed by the second part of the irrigation season 

relatively dry. For this reason, only 58.9% of the total rainfall volume (on average) was 

estimated as effective for 2019, while in the previous irrigation season the effectiveness 

of rainfall was higher and close to 90%. 

The seasonal IWE for the 2017 and 2018 for the entire study area results to be 

close to the IWA provided by the Consortium with a 10% of overestimation during the 

dry year 2017 and vice versa an underestimation during 2018 highly influenced by the 

precipitation events. Even if these considerations are valid at the level of each irrigation 

district, the magnitude of the differences are variables for each district as a function of 

the specific crop patterns. 

A different consideration is necessary to analyse the results for the irrigation 

season 2019. Hence, as experienced at the plot scale, the IWA for 2019 results higher 

than the estimated. However, the SWB model, and in particular the irrigation module, 

was designed to estimate the IWR strictly necessary to avoid the occurrence of water 

stress and cannot consider other factors that can affect the farmers’ irrigation strate-

gies.  

Even if the SWB model can estimate the IWR at the daily scale, since for the 

Sinistra Ofanto the temporal distribution of the IWA is missing, was not possible to 

assess the performance of the SWB model during the irrigation season. 
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7.4.2. IWR of “Canal del Zujar Irrigation District” 

The IWR for the CZID was estimated at a daily scale using the simplified ap-

proach of Equation (18). In this case, since the temporal pattern of the IWA by the 

farmers is available, was possible compare not only the seasonal total volume but also 

the temporal trends of the Applied and Estimated IWR over the entire area. The total 

IWA volume for 2017 is equal to 10,519,303 m
3

 not equally distributed during the year. 

Indeed, almost half of the IWA is concentred during June and July (which account re-

spectively the 30.75% and 17.54% of the total IWA). For the IWR estimation was there-

fore selected the period ranging from the 1
st

 of April to the 30
th

 of October, where almost 

the totality of IW was applied by farmers (98.16% corresponding to 10,325,613 m
3

). 

During the considered period the total effective rainfall, as retrieved from the 

SiAR, amount to 27.1 mm, occurring exclusively during April. For the rest of the period, 

no rainfall events were registered. The total effective rainfall, as reported in Paragraph 

5.2.2 was equal to 104.2 mm. 

Since the IWE represent the water to be provided at the crop root, to be com-

pared with the IWA it is necessary to consider losses that could happen at the field 

scale introducing the Net IWA: 

  

𝑁𝐼𝑊𝐴 =  
𝐼𝑊𝐴

𝑒
 (53) 

  

The value of the irrigation efficiency adopted, considering the irrigation system 

adopted and the farmers' behaviour for the CZID, was fixed to 95%. Under this hypoth-

esis, the Net IWA volume amounts to 9,809,332 m
3

. 
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Figure 7.10. Temporal trend of the daily and cumulated IWA registered at the CZID during the year 2017. 

 

 

Figure 7.11. Temporal trend of the estimated CWR (red line), IWA (blue line) and effective rainfall. 

The total estimated IWE is equal to 9,747,443 m
3

 corresponding to an average 

IWE of 3,584 m
3

 per hectare effectively cropped (excluding all the areas not cropped).  
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Figure 7.12. Comparison of the cumulated IWE and the gross (upper plot) and Net (bottom plot) IWA. 

The irrigation efficiency used was assumed equal to 95%. 

The good agreement between estimated ad applied irrigation was confirmed 

also from the comparison of their temporal trends. In Figure 7.12 are reported the scat-

ter plots between the cumulated IWE and net/gross IWA. The two datasets have a 

strong linear correlation and a low displacement from the 1:1 line. This displacement 

is better quantified both in terms of absolute and relative (reported to the total IWA) 

volumes in Figure 7.13. 
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Figure 7.13 Differences (absolute and relative) between the temporal evolution of the IWA and the IWE 

cumulative curves.  

The differences highlighted from Figure 7.13, assuming that the estimated CWR 

is correct, show the presence of three different possible phases of irrigation manage-

ment: 
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1. During the first phase (April-May) the net IWA is smaller than the estimated, 

however, in this phase the water accumulated into the soil during the winter 

could be extracted and used by crops. 

2. In the second phase (June – mid-August) the IWA is bigger than the ex-

pected. It could be justified assuming that this phase is the most delicate 

for the crop growing and therefore farmers applied more water than the 

strictly necessary. 

3. In the last phase, coincident with the maturing and harvesting phase, the 

IWA is lower than the expected. 

 

Since the Equation (18) was applied on the S2- pixel basis, it is possible to also 

retrieve the spatial distribution of the IWE at the selected temporal scale. In Figure 7.14 

is reported the IWE estimated for the whole period considered (April to October). How-

ever, due to an incomplete spatial description of the IWA dataset, was not possible to 

perform a spatial correlation, between estimated and applied irrigation. 
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Figure 7.14. The spatial pattern of the estimated annual irrigation water requirement (IWE) [mm/year] 

over the CZID study area. 
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CONCLUSIONS 

Major findings 

Regarding the CWR estimation using EO-derived data: 

 

- The EO-based FAO-PM approach in its original formulation, compared against the 

potential (maximum)  CWR estimated using the classical Kc-FAO approach, lead to 

a high overestimate of the CWR for the trees crops analysed (olive and vineyard) 

and vice versa to underestimate the CWR for annual crops (tomato and maize). 

 

- The modification of the resistance terms of the FAO-PM equation (particularly the 

surface resistance) leads to a better estimation of the CWR which result to be co-

herent with the FAO-Kc derived CWR. Moreover, the proposed modification allows: 

 

• to capture the water stress in dry years (as retrieved for the crop season 

2017 over the Sinistra Ofanto test site). 

• to be applied also without the knowledge of the spatial distribution of the 

crop types since the parametrization is crop-independent.  

 

 

Regarding the IWR estimation: 

 

- identify irrigated agriculture is relatively simple in arid regions and for annual crops 

because, due to climatic conditions, the development and growth of agricultural 

crops would be impossible without irrigation. In these cases, irrigation can be as-

sumed with a high degree of probability.  

 

- IWR estimation for tree crops is more complex because: 
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• needs to consider not only the SWB equation but also the economic aspect 

which affect the farmers’ irrigation strategy. 

• is highly affected by the rainfall pattern and the soil water storage capacity. 

• requires the knowledge of the spatial distribution of soil and crop characteris-

tics. 

Perspectives and future lines of investigation 

The possible future lines of investigation could follow two principal pillars: 

1. Consolidate the robustness of the method, due to: 

- use field ETc measurements to calibrate and validate quantitatively the 

“one-step” EO-based FAO-PM method. 

- Even if this work considered the major crop classes which characterize the 

Mediterranean agricultural system, it is necessary to extend the analysis 

over the remaining crops. 

- Testing and validating the procedure over the major possible number of 

study areas spread for the Mediterranean area. 

- Improve the RS-SWB especially for the woody crops, also including the 

socio-economic variables that could influence the framers’ behaviour. 

 

2. Apply the overall described procedure to agro-environmental studies finalized to: 

- monitoring of the irrigated area  

- monitoring of groundwater use patterns 

- precision irrigation 

- Irrigation performance assessment 

- green-blue water accounting 

- Water-Energy-Food nexus analysis 
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The spatial and temporal scale of these applications could be extremely variable 

since the procedure is modulable and scalable.  

The spatial scales could range from the single plot scale to the Water User 

Association scale since to regional/watershed scale. The unique limitation of the pro-

cedure is represented by the increase, considering study areas even bigger, of the 

amount of data to be managed and stored. From the operative point of view, the pro-

posed procedure is easily appliable. 

The temporal scale and perspective could be very different. The procedure was 

tested and developed over data retrieved from previous crop season and therefore was 

demonstrated to be able to represent the ex-post Crop and Irrigation Water Require-

ments, but it can be applied also in a near-real-time mode feeding the model in contin-

ues with meteorological measurement and prevision and satellite-derived crop status 

information. In this way, it is possible to use the retrieved information as Decision Sup-

port Tools (DST) to take wise decisions on irrigation water-related management and 

governance issues. These previsions could be further extended looking to the mid-long-

term period considering different possible scenarios as results of the effect of climate 

change (e.g., change in rainfall pattern) or socio-economic changes derived for exam-

ple from the Common Agricultural Policy or from the change in customer needs and/or 

behaviours.  
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Annex 1. List of Sentinel-2 images selected for the "Zona Alta" test site 

DOY Date Satellite 2017 2018 2019 

63 4-Mar S2B     x 

68 9-Mar S2A   x 

83 24-Mar S2B   x 

88 1-Mar S2A x     

98 8-Apr S2A x x   

103 13-Apr S2B  x  

108 18-Apr S2A   x 

113 23-Apr S2B   x   

133 13-May S2B  x  

138 18-May S2A x     

153 2-Jun S2B  x  

158 7-Jun S2A x  x 

168 17-Jun S2A   x 

173 22-Jun S2B  x  

178 27-Jun S2A     x 

183 2-Jul S2B  x x 

188 7-Jul S2A x  x 

193 12-Jul S2B  x x 

198 17-Jul S2A x   

203 22-Jul S2B  x x 

208 27-Jul S2A x x x 

213 1-Aug S2B  x x 

218 6-Aug S2A x  x 

223 11-Aug S2B  x x 

228 16-Aug S2A x  x 

233 21-Aug S2B  x x 

238 26-Aug S2A x   

243 31-Aug S2B     x 

248 5-Sep S2A x x x 

258 15-Sep S2A x x  

268 25-Sep S2A  x x 

273 30-Sep S2B   x X 

278 5-Oct S2A x   

283 10-Oct S2B  x x 

288 15-Oct S2A x  x 

293 20-Oct S2B  x  

298 25-Oct S2A  x x 

303 30-Oct S2B  x  

N. images  14 21 24 
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Annex 2. List of Sentinel-2 images selected for the “Canal del Zujar” test 

site 

Level DOY Date 

L1C 

12 12-Jan-2017 

52 21-Feb-2017 

92 2-Apr-2017 

L2A 

102 12-Apr-2017 

122 2-May-2017 

142 22-May-2017 

152 1-Jun-2017 

172 21-Jun-2017 

182 1-Jul-2017 

192 11-Jul-2017 

202 21-Jul-2017 

212 31-Jul-2017 

232 20-Aug-2017 

242 30-Aug-2017 

252 9-Sep-2017 

262 19-Sep-2017 

272 29-Sep-2017 

282 9-Oct-2017 

302 29-Oct-2017 

312 8-Nov-2017 

322 18-Nov-2017 

352 18-Dec-2017 

357 23-Dec-2017 

 N. images 23 
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Annex 3. Soil water balance at plot scale for the “Sinistra Ofanto” case 

study 

In the present Annex are reported the Soil Water balance outputs at the hydrant 

scale for the “Sinistra Ofanto” case study. Over the same plot are reported the Soil 

Water Content (SWC) in the soil simulated under 3 scenarios (as reported in the Figure 

below): 

1. Scenario without irrigation (reported with the red line). 

2. Scenario with the Irrigation really applied by the farmers, as metered by the Con-

sortium (blue line, IWA). 

3. Scenario with the Irrigation really applied by the farmers, as simulated by the irri-

gation module of the SWB adopted (green line, IWE). 
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