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Abstract 

Everything around us is connected: individuals in society, infrastructures in cities, cells in 

the brains, interacting species in ecosystems, etc... These connections allow us to represent all 

complex real systems as networks and help us to understand how the world really works.  

Novel approaches and metrics, that often go beyond traditional analysis tools, are made 

available to model and interpret an impressive number of natural and anthropogenic 

phenomena, i.e., to investigate and understand the networks behavior. We are talking about the 

Complex Networks Theory (CNT), a new challenge that fascinates and involves the scientific 

community. 

In this thesis, we aim to contribute to the study of Water Distribution Networks (WDNs), 

particularly to the relationship between connective structure and dynamics occurring in these 

complex networks, tailoring classic CNT tools. The study starts from the basic concepts 

proposed by the CNT, shows the limits they present when applied to infrastructural systems 

such as WDNs, strongly constrained spatially, and proposes their tailoring.  

Then, we suggest a new complex network-based framework to model and simulate WDNs 

accounting for their intrinsic peculiarities and spatial limits enhancing the WDNs analysis and 

providing more reliable tools to identify the actual behaviour of these hydraulic systems. 

Accordingly, we propose new metrics and models, supported by efficient calculation tools. 

 

 

Keywords: Complex Networks; CNT; Water Distribution Networks; WDN analysis and 

classification; centrality metrics; intrinsic relevance of nodes; modularity index. 
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Résumé 

Tout autour de nous est connecté : les individus dans la société, les infrastructures dans les 

villes, les cellules du cerveau, les espèces en interaction dans les écosystèmes, etc. Ces 

connexions nous permettent de représenter tous les systèmes réels complexes comme des 

réseaux nous aidant à comprendre comment le monde réel fonctionne vraiment. 

Nouvelles approches et métriques, qui vont souvent au-delà des outils d'analyse 

traditionnels, sont mises à disposition pour modéliser et interpréter un nombre impressionnant 

de phénomènes naturels et anthropiques, c'est-à-dire explorer et comprendre les caractéristiques 

des réseaux. Nous parlons de la Théorie des Réseaux Complexes (CNT), un nouveau défi qui 

fascine et engage la communauté scientifique. 

Dans cette thèse, nous entendons contribuer à l'étude des réseaux de distribution d'eau 

(WDN), en particulier à la relation entre la structure connective et la dynamique se produisant 

dans ces réseaux complexes, en adaptant les classiques outils de la CNT. L'étude part des 

concepts de base proposés par la CNT et montre les limites qu'ils présentent lorsqu'ils sont 

appliqués à des systèmes infrastructurelles tels que les WDN, fortement contraints spatialement, 

et propose leur adaptation. 

Ainsi, nous proposons un nouveau cadre pour modéliser et simuler les WDN en tenant 

compte de leurs particularités intrinsèques et de leurs limites spatiales en améliorant leur 

analyse et en fournissant des outils plus fiables pour identifier le comportement réel de ces 

systèmes hydrauliques. 

À cet égard, nous proposons des nouvelles métriques et modèles, soutenus par des outils de 

calcul efficaces. 

 

 

Mots clés : Réseaux complexes ; CNT ; réseaux de distribution d’eau ; analyse et classification 

de réseaux de distribution d’eau ; métriques de centralité ; pertinence intrinsèque des nœuds ; 

indice de modularité. 
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Riassunto 

Tutto ciò che ci circonda è connesso: individui nella società, infrastrutture nelle città, cellule 

nel cervello, specie interagenti negli ecosistemi, ecc. Queste connessioni ci consentono di 

rappresentare tutti i sistemi reali complessi come reti e ci aiutano a capire come il mondo reale 

funziona davvero. 

Nuovi approcci e metriche, che spesso superano i tradizionali strumenti di analisi, sono resi 

disponibili per modellare e interpretare un numero impressionante di fenomeni naturali e 

antropici, ovvero per esplorare e comprendere le caratteristiche delle reti. Stiamo parlando della 

Teoria delle Reti Complesse (CNT), una nuova sfida che affascina e coinvolge la comunità 

scientifica. 

In questa tesi, ci proponiamo di contribuire allo studio delle reti di distribuzione idrica 

(WDNs), in particolare al rapporto tra struttura connettiva e dinamiche che si verificano in 

queste reti complesse, adattando i classici strumenti della CNT. Lo studio parte dai concetti 

base proposti dalla CNT, ne mostra i limiti che presentano quando applicati a sistemi 

infrastrutturali come le WDNs, fortemente vincolati spazialmente, e ne propone un 

adattamento. 

Quindi, proponiamo un nuovo framework per modellare e analizzare le WDNs tenendo 

conto delle loro peculiarità intrinseche e dei loro limiti spaziali migliorando la loro analisi e 

fornendo strumenti più affidabili per identificare il comportamento effettivo di questi sistemi 

idraulici. 

A tal proposito, proponiamo nuove metriche e modelli, coadiuvati da strumenti di calcolo 

efficienti. 

 

 

Parole chiave: reti complesse; CNT; Reti di distribuzione idrica; analisi e classificazione delle 

reti di distribuzione idrica; metriche di centralità; rilevanza intrinseca dei nodi; indice di 

modularità. 
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In the last century, the advent of Complex Network Theory (CNT) allowed us to analyze the 

nature, complexity, and behavior of many real complex systems. The integration of both 

mathematical (e.g., probability, graph theory, matrix analysis, etc.) and technical tools (e.g., 

computer sciences, etc.) as well as the increasing availability of data, allowed one the study and 

interpretation of a huge number of systems, from physical to social, biological, infrastructural, 

etc... Such systems present relationships between connectivity structure and dynamics, and the 

main aspect in these interactions is the topology, i.e., how the elements are connected and 

interact with each other. Euler (1736), more than two centuries ago, for the first time faced a 

topology problem with graph theory, conceiving bridges (urban infrastructures) as a graph, i.e., 

a series of vertices connected by edges. Later, several network models and metrics have been 

introduced in order to associate real systems to predefined patterns and to facilitate their 

analysis and management. Most of the studies conducted to date using CNT tools focus on 

immaterial networks, such as hyperlinks for Internet networks, neurons for brain networks, air 

routes for air transport networks, etc. (see Figure 1- a), b), c)), for which, CNT metrics and 

models shown to be very useful and of immediate application.  

 

Figure 1. a) Brain network. Source: Van den Heuvel and Sporns, 2011; b) US air route network. Source: 

Zhou, 2004; c) Internet network. Source: Pelino, 2013; d) street network map of Salem, 

Oregon (USA). 
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The results in the application of these tools are so satisfactory that the theory soon assumed 

a general character: valid for any real system, regardless of its characteristics. When these 

studies also involved infrastructure systems (Figure 1-d), characterized by a tangible and often 

very spatially limited connective structure (e.g., Water distribution network- WDNs), the results 

were often unreliable, differing from the real behaviour of the systems analysed. The idea that 

everything was good for every system failed, i.e., classic CNT tools and framework are not 

suitable for the study of infrastructure systems as WDNs. The idea of proposing a new 

framework, tailoring that proposed by the CNT, appeared the only viable one. 

Accordingly, the aim of the present thesis is to deepen the study of WDNs, by proposing a 

new framework, tailoring CNT tools, for WDNs classification and domain analysis. Starting 

from these considerations, we (i) realized a brief review on the main CNT tools and metrics 

proposed until today for the study of complex real networks, (ii) evaluated their actual 

application and usefulness/ unusefulness for WDNs, (iii) tailored the CNT tools in order to 

capture the specificity of the hydraulic system domain (e.g. the hydraulic features of pipes, the 

presence of unidirectional devices, etc.), accounting for the hydraulic and topologic features of 

these spatial networked systems and, finally, (iv) embedded the information about the intrinsic 

relevance of vertices into CNT tools (Giustolisi et al., 2020), i.e., considering the different role 

of the vertices in the network (e.g. source nodes, demand nodes, strategic structure, etc.). 

The proposal is not alternative to the usual (and necessary) multiple hydraulic simulations 

but represent a complementary tool to the classic ones, assisting, for example, the engineering 

judgment for WDN analysis, design, and management tasks (Giustolisi et al., 2019). 

 

This thesis work is the result of a journey that starts 5 years ago, when I approached the 

study of water distribution networks (WDNs). My attention was mainly focused on studying 

the domain of such infrastructural systems using approaches based on Complex Network 

Theory (CNT). The choice to study the WDNs using the CNT tools was linked to the need to 

find solutions to novel tasks. In fact, we realized that the studies carried out in the last decades 

by CNT, if properly tailored to the specific peculiarities of WDNs, could make a crucial 

contribution to addressing and solving several technical needs. The study of the domain, for 

example, has relevance both from a scientific and technical-practical point of view, and 

represents a valid support in facing increasingly complex problems in WDNs management.  

We produced various contributions, analysing both the hydraulic and topological 

components of WDNs, fuelling more and more the idea that information on the hydraulic model 
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and domain should coexist and be complementary to each other to improve analysis and 

management of these systems.  

It was interesting to study the basics of CNT, both from a historical and scientific point of 

view, and it was very stimulating to try to go further, in search of new paradigms and strategies 

that would allow us to tailor CNT tools to study WDNs. 

 

1.1 Tailoring the classic CNT framework 
Complex Network Theory (CNT) models in an efficient way the most part of the real world 

as networks. Networks are composed of vertices (nodes) connected by edges (links), that 

indicate the interactions among them. Several classes of networks exist (Newman, 2010), and 

water distribution networks (WDNs) belong to the infrastructure ones. Such systems are special 

infrastructure networks belonging to the subset of spatial networks because their connectivity 

structure is constrained by environmental factors (Barthélemy, 2011; Giustolisi et al., 2017). 

WDNs differ from classic immaterial networks, for which standard CNT tools are useful and 

effective. In fact, their classification and analysis using the standard CNT tools is very difficult 

and uncertain. For example, (i) the network structure of WDSs is strongly constrained by the 

spatial characteristics of the environment where they are constructed; (ii) pipes and not nodes, 

with their asset features, are the most important network components for hydraulic systems; 

(iii) WDNs are equipped by directional devices that influence the flow direction; (iv) nodes 

have different roles in the network (demand nodes, source nodes, connection nodes) for which 

it is necessary to embed the information about their intrinsic relevance in the analysis. The 

topology- based study proposed until today is not enough.  

According, in this thesis we propose a new framework for WDNs analysis tailoring the 

classic CNT tools. 

 

1.1.1 Pipes as key components for WDNs analysis 

CNT tools are based on a nodal perspective. In fact, generally, standard centrality metrics 

looks at ranking the node importance: it is customary to identify nodes with higher degree 

values, for classification purposes, or betweenness values, for system vulnerability purposes, 

etc… Preserving the importance of the nodal perspective, with the useful information that can 

result from it, this study focuses on the need to shift the perspective to edges. For WDNs, in 

fact, the relevant physical components are the edges (pipes), material components that with 

weights corresponding to their asset features (e.g., length, diameter, hydraulic resistance, etc.) 

influence the hydraulic behavior. The hydraulic features of pipes play a relevant role in 
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determining the hydraulic state and need to be carefully considered in the analysis. Nodes 

become components responsible to transfer the water (i.e., information) among pipes. There is 

an exception: water source nodes represent a sort of hydraulic hubs and need to be studied with 

a specific analysis. Therefore, pipes and source nodes are the most important component of 

WDNs.  

Accordingly, the first step of our tailoring focus on the centrality metrics more suitable for 

WDNs studies from an edge perspective. To this aim, we use the edge betweenness (Girvan 

and Newman, 2002) and tailor the closeness, harmonic closeness and the extended neighbour 

degree centrality metrics considering edges (Giustolisi et al., 2020). 

The next step is attributing weights to the pipes when computing tailored CNT tools as, for 

example, the pipes hydraulic resistance. These weights allow of moving the network domain 

analysis closer to the expected hydraulic behaviour of the system. For example, pipe hydraulic 

resistances drive the water fluxes. 

 

1.1.2 Directional devices as prior information 

The network connectivity structure (i.e., the topology) of a network is described as a graph, 

that can be undirected (i.e., the adjacency matrix is symmetric) when all flow path directions 

are unknow, or directed, when the flow path directions are known, e.g., unidirectional devices 

are installed. Generally, the WDNs topology is analyzed considering indirect networks, i.e., 

without defining preferential directions for the flow. The presence of unidirectional devices 

(that correspond to pipes having null conductance in one direction) plays a relevant role in 

determining the hydraulic state and need to be carefully considered in the analysis. 

Unidirectional devices introduce a prior information about the flow directions because the 

hydraulic domain of WDNs can be modified by the presence of devices allowing water to flow 

only in one direction. This prior is normally considered for pipes close to the reservoir. For 

directional devices installed into the network, instead, it happens that the shortest paths between 

two pipes, one upstream and the other downstream of a specific device, can only be traversed 

in one direction, i.e., that of the device, reducing the number of shortest paths allowed in the 

direction contrary to that of the device. This information enhances the domain analysis and can 

be useful to quantify for example, the feasibility of management interventions, in advance with 

respect to hydraulic modelling.  
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1.1.3 The intrinsic relevance of nodes as hydraulic information 

In WDNs nodes play a different hydraulic role: source nodes, demand nodes and connection 

nodes. Source nodes are very few nodes in the network and can represent reservoirs, tanks, 

pumps and any WDN component from which the water is delivered to the network from the 

mass and/or energy perspective. They represent special hubs because all the information starts 

from them to be transferred to the portion of the network supplied by each of them (Giustolisi 

et al., 2019). Demand nodes represent hydraulic outflows and can assume a different 

importance depending on the property they serve (e.g., private properties, hospital, school, 

administrative establishments, etc..). Connection nodes are connections among pipes, for 

example in crossroads. CNT tools do not account for this difference because the classification 

findings are based only on topological features of the network, i.e., they refer only to the 

network connectivity structure, neglecting the intrinsic characteristics of elements (i.e., the 

hydraulic component). In fact, when computing CNT metrics, the assumption is that all nodes 

are equal. Such assumption can hide a part of the network information because topology does 

not contain all the information for defining, for example, the network centrality of elements or 

the network classification. For WDNs this assumption would involve a twofold mistake: (i) 

demand nodes have the same relevance of a source node and (ii) source nodes, that should be 

conceptually hydraulic hubs in WDNs, being generally connected to a single pipe (i.e., feeding 

the network from the source), have a very low degree of connection, thus assuming less 

topological importance than demand nodes. Furthermore, the presence of strategic nodes 

(hospitals, schools, administrative buildings, etc.) is neglected. Nodes have different intrinsic 

relevance, independent from their topological position and connectivity that needs to be 

considered and embedded in the analysis.   

To enhance the WDNs analysis and their classification, the information about the intrinsic 

relevance of nodes, i.e., their role in the network, needs to be embedded into CNT tools. This 

means to couple the hydraulic information with the topological ones to make CNT tools useful 

for such complex systems. 

 

1.2 Outline 

This thesis is organized as follows. In Chapter 2, we recall the basic concepts of Complex 

Network Theory. In Chapters 3 we focus on water distribution networks: from hydraulic 

modelling (mass and balance equations) to hydraulic domain (material and spatial peculiarities) 

showing how classification and analysis of these system using classic CNT tools is not reliable 

and highlighting the need of a tailoring. 
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In Chapters 4 we propose a tailoring of the CNT tools. We start with two strategies of 

tailoring of the centrality metrics. The first tailoring process (Giustolisi et al., 2019; Simone et 

al., 2020) consists of three conceptual steps: (i) to move from a node-based perspective (typical 

of usual centrality problems) to an edge-based perspective where pipes are the key components 

of the network; (ii) to create a WDN-tailored network topology aimed at considering the 

different hydraulic roles of nodes: source nodes, tanks, and demand nodes, through a strategy 

based on the presence of fictious nodes connected to each source node. The number of such 

fictitious nodes depends on the number of demand nodes fed by the source node. In this way, 

even if the source node is physically connected with one pipe only to the network, its importance 

increases; (iii) to evaluate edge centralities in the tailored topology for betweenness, closeness, 

and degree, the more suitable centrality metrics for WDNs, also considering appropriate 

weights on pipes that contain domain information (e.g., pipe resistance); and (iv) to include the 

prior information about the flow direction in the pipes where directional devices are installed 

or for which the hydraulic conditions constrain the flow direction as, for example, next to the 

reservoirs.  

The second tailoring process (Giustolisi et al., 2020) embeds the information about the 

intrinsic relevance of nodes into the analysis. Such improvement allows to assign a different 

relevance during the analysis to each node and aims at avoiding the fictitious nodes in WDN 

original topology in correspondence of source nodes, decreasing the calculation times. The 

intrinsic relevance for each node, defined as Rn (n=1, …, N), is assigned equal to the demand 

for each demand node and to the sum of demand for the source node. Several experiments 

conducted on random and regular networks are reported. Finally, the paradigm of the intrinsic 

relevance of nodes is applied to a social network (the historical Florence family’s marriage 

network), to demonstrate its general validity. It follows the application of the tailoring for 

WDNs analysis. Firstly, the paradigm of the intrinsic relevance of nodes is applied to real 

WDNs and results are then compared with those obtained using the previous tailoring (Tailored 

WDN topology).  

Secondly, we report the tailoring process adopted for the modularity index (Giustolisi and 

Ridolfi, 2014 a, b) and presents the development of strategies for DMA design (Laucelli et al., 

2017) and pressure sampling design (Simone et al., 2016). 
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2.1 Historical Introduction 

CNT is born with Euler more than two century ago with the work untitled "Seven Bridges 

of Königsberg" (1736). Euler lived in Königsberg, in East Prussia, today Kaliningrad in Russia. 

The river Pregel with its branches divided the city into four regions, which were connected by 

seven bridges (see Figure 2). 

 

 

Figure 2. Scheme of Königsberg bridges at the time of Euler. Source Commentarii academiae 

scientiarum Petropolitanae, Volume 6, pp. 216-231. 

Curiosity: The inhabitants of the city were used to walk around the city searching for a path 

that allowed them to cross all bridges only once. 

Euler addresses the problem as an exercise in Geometria situs, a branch of geometry today 

known as topology. Euler realized that the possibility of finding a path-solution is independent 

on human ability and from the distance between the points, but rather dependent from the 

geometric characteristics of the path. He schematized the Königsberg bridge problem 

abstractly, only using a graph to represent lands and bridges, where each land region was a node 

and each bridge a connection (link) (see Figure 3).  

        

Figure 3. Map of Königsberg with four land areas (A, B, C and D) separated by the river (left).  Euler’s 

schematization of Königsberg bridges using graph theory (right). 
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Euler used four nodes, named A, B, C, and D, to represent the land areas separated by the 

river, connecting among them all land areas that share a bridge. In terms of graph the scheme 

is reported in Figure 3 (right). The problem was to find a path, called Eulerian path (Figure 4-

left), between two nodes in the graph where every link appears exactly once. In case the 

Eulerian path starts and ends at the same graph node, always traversing each graph link exactly 

once, it would have been a Eulerian cycle (Figure 4-right).  

 

Figure 4. Left: Example of Eulerian Path but no Eulerian Cycle. Right: Examples of Eulerian Cycle. 

Euler solved the problem by mathematically demonstrating the impossibility of the solution 

through the first theorem of graph theory: in a graph with more than two nodes and an odd 

number of links a path that crosses all nodes only once cannot exist. The solution, in fact, 

required nodes with an odd number of connections only at the beginning or at the end of the 

path, admitting at most two.  

In order to understand Euler’s procedure, it is important to introduce some new concepts and 

notations: (i) two vertices are adjacent if they are connected by an edge/link and (ii) the number 

of neighbors of a node i, denoted by ki, represents its nodal degree. Euler demonstrated that any 

graph with n nodes/vertices and e edges/links satisfies the relation 

     
1

2
n

ii
k e

=
=       (1) 
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Hence, for the Königsberg bridges case, the sum of degrees is even (2·7=14) and, 

consequently, the number of nodes with odd degree is even (4), since in each of the four nodes 

converges an odd number of links. Euler noticed that a Eulerian path was possible only if the 

graph had all nodes of even degree or if only two of them have odd degree. In the latter case it 

was necessary to start the path in one of these odd nodes and finish it in the other. Resuming, 

is n the number of nodes of a graph G with odd degree, if n > 2 no Eulerian path exists, if n= 0 

there are Eulerian paths starting from any node and if n= 2 only one Eulerian path exists that 

starts and arrives in the two odd nodes, respectively. Since the Königsberg Bridge graph had 

four nodes with odd degree, there was no solution to the problem, that is, no Eulerian path 

existed. 

Euler, with this first demonstration, established the novel mathematic field named graph 

theory, which represents today a branch of mathematics, which guides the basis of our thinking 

about networks. Cauchy (1813) and L'Huillier (1861) generalized Euler’s concept establishing 

the basis for the topological studies.  

 

2.2 Basic concepts 

A network (or graph) is a mathematical object G= (V, E) where V = {1, . . ., V} is the set of 

vertices (or nodes) of G, and E = {e1, . . ., em} is the set of edges (or links) of G (see Figure 5). 

The size of the graph G, which corresponds to the size of the set E, is indicated by L= |E| and 

the size of the set V is indicated by N= |V|. The most part of the complex systems of the real 

world have hundreds of thousands or even millions of vertices, which makes their visualization 

and study not easy. To facilitate their visualization and analysis, real networks are generally 

represented by sparse graphs, i.e., |E| = O(|V|).  

 

Figure 5. Example of a graph G with ten vertices represented by grey circles (v= 1, …, 10) and 12 edges 

represented by grey lines (e= a, …, n). 



 

14 
 

Each vertex v can represent several components in different real systems (nodes, crossroads, 

actors, people, neurons, etc.) and each edge e represents the connection between two 

components (links, pipes, roads, ties, synapses, etc.). Two vertices (i, j) are adjacent if there is 

an edge between them, i.e., if e = (i, j) є E. 

A graph G= (V, E) is indirect if E is a set of unordered couples, i.e., edges (links) have not a 

direction (Figure 6-left) or is direct if E is a set of ordered couples, i.e., edges (links) have a 

direction (Figure 6-right). For indirect graphs, the relationship between nodes is symmetric, i.e., 

given two nodes (i, j) є G, eji = eij, while for direct graphs eji ≠ eij. 

 

Figure 6. Left. Undirect graph, eji = eij for each edge. For example, vertex 3 is connected to vertex 4 

and vice versa, i.e., a34 = a43. Right. Direct graph, eji ≠ eij for each edge. For example, vertex 

3 is connected to vertex 4 but the vertex 4 is not connected to the vertex 3, i.e., a34 ≠ a43. 

 

A path in a graph G is a sequence of vertices {v1, v2, …, vn} connected by edges. Each path 

contains v+1 vertices and v edges. The length of a path is the number of traversed edges along 

the path. The path with the minimum number of edges between two vertices (i, j) represent the 

shortest path, i.e., a shortest path is a path between two vertices such that no shorter path exists. 

When i and j, i.e., starting and ending nodes of a path, coincide, their distance is 0, i.e., d(i, j)= 

0, while when i and j are unreachable, their distance is defined to be infinity, i.e., d(i, j)= ∞. 

Figure 7 shows, for the graph of Figure 5, all possible paths between vertices 1 and 5. One 

shortest path exists, and it belongs the vertices {1, 6, 5} traversing the edges h and e.  
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Figure 7. a) Path in red between vertices 1 and 5 crossing vertices 2 and 6. The length of the path is 

equal to 3 {a, i, e}. b) Path in green between vertices 1 and 5 crossing vertices 2 and 3. The 

length of the path is equal to 3 {a, b, c}. c) Path in blue between vertices 1 and 5 crossing the 

vertex 6. The length of the path is equal to 2 {h, e}. The latter is the shortest path between the 

vertices 1 and 5. 

 

The average of the shortest paths between all the vertices in the network is defined as 

Average path length L,  

    
1

( 1)
i j i j

i j

L d d
N N 

= =
−

      (2) 

where N is the number of vertices in G and dij is the shortest network distance between all 

the vertices. The greatest shortest path refers to the diameter (Dmax) of the graph G. 

A complete graph G= (V, E), or a Clique, is a graph where each pair of vertices is connected 

by an edge. The complete graph on n vertices is denoted by Kn. Figure 8 reports a complete 

graph K6.  

 

Figure 8. A complete graph G with 6 vertices (K6). Each vertex is connected to all the other 5 vertices. 

The clustering coefficient C (Watts and Strogatz, 1998) measures the relationship between 

the number of edges E connected to their adjacent vertices and the possible number of edges 

between these latter.  It is based on the number of triangles present in the graph:  

     
2

( 1)

i
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t
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k k
=

−
     (3) 
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where ti denotes the number of triangles around node i. The value of Ci varies between 0 

(neighbors of a vertex are not connected to each other) and 1 (neighbors of a vertex are all 

connected to each other). Figure 9 shows the clustering coefficient Ci for the vertices 6 and 7 

of the graph of Figure 5. The global clustering coefficient C(G) of the graph is the average of 

the local values Ci: 

1

1
( )

n

i

i

C G C
n =

=       (4) 

 

Figure 9. a) Clustering Coefficient Ci for the vertex 6. Three connections are possible between the 

vertices connected to the vertex 6 (2-5; 5-1 and 1-2) but only one exists (see dashed link 

between vertices 1 and 2). Then C6= 1/3. b) Clustering Coefficient Ci for the vertex 7. Three 

connection are possible between the vertices connected to the vertex 7 (4-8; 4-10 and 10-8) 

but they do not exist. Then C7= 0. 

 

A weighted graph G associates a label (weight) to every edge in the graph. A weighted graph 

is represented by a tuple (V, E, w) where V and E are sets of vertices and edges of the graph G, 

respectively, and w: E→R is a function that associates a weight w(e) to each edge e є E. Several 

networks are represented by edges having a weight, usually a real number, that can represent a 

cost, a distance, a capacity, etc… Figure 10 reports an example of weighted graph. 

It is important noting that shortest paths can also be measured in weighted graphs. The 

shortest path between two vertices (i, j) corresponds for weighted graph with the lowest weight 

and not with the least number of edges (see Figure 11- left).  
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Figure 10. Weighted graph. Each edge has a weight that can correspond to several features (length, cost, 

etc.). 

A tree is a graph G= (V, E) without any cycles (undirected acyclic graph) and where each 

couple of vertices is connected by only one path. A spanning tree T= (V, E’) of a graph G= (V, 

E) is a tree that contains the set of vertices V and a subset of edges E’ of the graph G. If v is the 

number of vertices in the graph, each spanning tree has v−1 edges. A minimum spanning tree 

(MST) or minimum weight spanning tree is the spanning tree with the minimum weight in the 

graph, i.e., the spanning tree whose sum of edge weights is as small as possible (see Figure 11- 

right). 

 

Figure 11. a) The weighted path between vertices 1 and 5 is equal to 10 (crossing vertices 2 and 3), 25 

(crossing vertices 2 and 6) and 24 (crossing the vertex 6). The shortest path is the first one 

{1, 2, 3, 5}, differently from what obtained for the non-weighted graph (see Figure 5), where 

the shortest path was the last one {1, 6, 5}, with a minimum number of edges. b) A minimum 

spanning tree starting on node 5. 
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A clique is a subset of vertices C⊆ V of an undirected graph G= (V, E) such that every two 

distinct vertices in the subgraph are adjacent, i.e., the subgraph is complete. The complete graph 

of Figure 8 is a clique with 6 vertices. 

 

2.3 Graph representation 

The adjacency matrix A is the most used representation of a graph G and indicates whether 

couples of vertices are connected or not in the graph. The adjacency matrix for a graph G of 

order n is represented by a square matrix of order n where each row (column) corresponds to a 

vertex of the graph. For a simple graph, the adjacency matrix corresponds to a logical matrix 

where elements are all either 0 or 1. The adjacency matrix A(G) = (aij) of a graph G = (V, E) is 

defined by the conditions, 



 

1  if  ,

0  if  ,
ij

i j E
a

i j E

 
= 



     (5) 

and for ∀i ∈ {1, …, n} we get that aii = 0 (i.e., no self-loops exist). 

For undirected graphs, the adjacency matrix is symmetric with respect to the main diagonal, 

while for direct graph it is not necessarily. The adjacency matrix of a weighted graph reports 

the weights of the edges between vertices in the cells.  

The incidence matrix B of a graph indicates the relationship between vertices and edges, i.e., 

it shows whether couples of vertices-edges are connected or not. Each row corresponds to a 

vertex and each column corresponds to an edge of the graph. For a graph G the incidence matrix 

B(G)= (bi,e) corresponds to a logical matrix where elements are all either 1, if the vertex i and 

edge e are incident, or 0 otherwise. The sum of each column is equal to 2 because each edge 

has a vertex connected to each end.  

The incidence matrix of a graph G is related to the adjacency matrix of its line graph L(G),  

( ( )) ( ) ( ) 2T

mL G G G= −A B B I     (6) 

where A(L(G)) is the adjacency matrix of the line graph of G, B(G) is the incidence matrix, 

Im is the identity matrix of dimension m and the apex T indicates the transpose of the matrix. 

The discrete Laplacian can be obtained from the oriented incidence matrix B (G) as B (G) B 

(G)T. 

The degree of a vertex is the number of edges connected to the vertex. The degree can be 

easily calculated by the expression: 

1

n

ijj
a

=       (7) 
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The degree for indirect networks in terms of the adjacency matrix is 

1

n

i ijj
k

=
=  A       (8) 

where the sum is over all nodes in the network.  

A node with a high degree, i.e., more adjacent nodes, can be considered as being well 

connected and a node with a relatively low degree, i.e., few adjacent nodes, can be considered 

weakly connected. The minimum, the maximum, and the average degree of the vertices of G 

represent standard characterization metrics in graph theory. The most studied vertex 

characteristic is the average degree, 

1

1 n

i

i

k k
n =

=        (9) 

The degree matrix is a diagonal matrix that reports the information about the degree of each 

vertex, i.e., its number of connections. The degree matrix D(G) = (aij) of a graph G is defined 

by the conditions, 

,

deg( )    

0            

i

i j

v if i j
d

otherwise

=
= 


     (10) 

The Laplacian matrix of a graph G can be used to find many useful properties of a graph, as 

for example its number of spanning trees. The Laplacian matrix Lnxn of a graph G = (V, E), 

where |V|= n, is defined as: 

= −L D A       (11) 

 

Where A is the adjacency matrix and D the diagonal matrix of degrees of the graph G. The 

elements of Lnxn are given by: 

 

,

deg( )    

1                    

0           

i

i j i i

v if i j

if i j and v is adjacent to v

otherwise

=

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L    (12) 
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Figure 12. Simple graph G with 10 vertices and 12 edges. a) Adjacency matrix A of G contains 10 rows 

(columns) as the number of vertices in the graph and it is symmetric with respect to the main 

diagonal, being the graph undirected. b) Incidence matrix B of G contains 10 rows as the 

number of vertices and 12 columns as the number of edges. c) Degree matrix D of G contains 

the number of connections of each vertex (degree) on the main diagonal. d) The Laplacian 

matrix L of G contains the degree of each vertex on the main diagonal and information about 

connections between all vertices of G in the remaining part. 
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2.4 Network models and common properties 

The degree of a vertex represents a relevant information for classifying networks, referring 

to the probability of distribution of the number of edges incident each vertex of the network. 

The interest in classifying real systems according to its connectivity structures is related to 

capturing its emerging behaviour. Several models have been developed in order to simplify the 

study of complex systems (Newman et al., 2006; Newman, 2010), whose connectivity structures 

is defined by using the nodal degree, the average path length, the clustering coefficient and the 

probability of connection. 

The first study about the nodal degree distribution of real networks (Erdos and Rény, 1959; 

1960) refers to random networks (see Figure 13), i.e., networks with a nodal degree that is 

randomly distributed around an average value and characterized by a high homogeneity. 

Random networks allow to capture real networks features better than regular networks, which 

are characterized by an absolute homogeneity (constant degree of internal nodes) with shortest 

paths between couple of nodes too large, while random networks are characterized by lower 

and more realistic values of the shortest paths with respect to the regular ones (Milgram, 1967).  

 

Figure 13. Random network. Source: http://corelab.mae.ufl.edu/random.html. 

 

A mixed behaviour between regular and random networks characterizes the small world 

networks (see Figure 14), proposed by Watts and Strogatz (1998), based on the so-called small 

world effect (Milgram, 1967; Travers and Milgram; 1069). The most part of the vertices are not 

close to each other, but the neighbours of a given vertex are probably close to each other and 

most vertices can be reached by any other vertex with a small number of steps. 

http://corelab.mae.ufl.edu/random.html
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Figure 14. Small world network. Color encoding represents nodes belonging to the same cluster. 

Source: Norcini Pala, 2020. 

 

Later on, Barabasi and Albert (1999) proposed the scale-free networks (see Figure 15) in 

order to describe real networks characterized by non-homogeneous nodal degree distributions, 

i.e., networks where many nodes have a low degree and few nodes (called hubs) have a high 

degree.  

 

Figure 15. Small world network. Researchers from Queen Mary University of London and Karlsruhe 

Institute of Technology. 
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Networks with a homogeneous degree distribution (regular, small world and random 

networks) present a significant structural resistance to both random failures and intentional 

threats, while networks with a heterogeneous degree distribution (scale free networks) show a 

very high structural resistance to random failures but a weak resistance to intentional threats 

(Albert et al., 2000). In this sense, the classification of real networks by associating their degree 

distribution to the Poisson (homogeneous degree distribution) or Pareto (heterogeneous degree 

distribution) models is useful to assess network vulnerability with respect to random failures 

and intentional threats. 

 

2.4.1 Random networks 

Erdös and Rényi (1959) introduced the random networks, i.e., networks where many nodes 

have a similar number of connections and the degree distribution is randomly distributed around 

an average value. For random networks, the existence of an edge between a pair of nodes has 

probability p and the average degree is:  

( 1)k p n p n=  −       (13) 

the number of random connections between them is: 

1 1
( 1)

2 2
L p n n k n=   − =      (14) 

and the probability of a node having degree k is: 
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 

   (15) 

The equation (14) highlights how in random networks all nodes have principally the same 

number of links, i.e., a great number of nodes with a similar degree. The high homogeneity of 

these networks results in a Poisson distribution of degrees (see Figure 17).  

Random networks are proposed when looking for models more responsive to real systems 

than regular networks, i.e., network having a regular topology. Moreover, since randomness 

(i.e., elements arranged randomly) does not represent, generally, the main feature of most real 

systems, new models to capture the real behavior of complex systems are proposed: small world 

and scale free networks.  

 

2.4.2 Small World networks 

Small world networks (Watts and Strogatz, 1998) based on Milgram’s experiment (Milgram, 

1967; Travers and Milgram, 1969) on six degrees of separation of social networks, are 
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characterized by the presence of nodes that can reach other nodes through a small number of 

edges. Milgram Stanley tested the existence of shortest paths in social networks, persuaded that 

the typical distance between actors (i.e., the number of vertices in a social network) was small. 

He attributed this phenomenon to the growing globalization that led to an increasingly 

interconnected world. Therefore, a small-world network refers to an ensemble of networks in 

which shortest paths, i.e., the distance between vertices, increases sufficiently slowly as a 

function of the number of vertices in the network. 

 

Curiosity: Milgram's most famous experiment recalls the famous six degrees of separation. 

He sent 96 packages to randomly selecting people residing in Omaha, NE, (USA) from a 

telephone directory. Each package contained a leaflet from Harvard University (where 

Milgram worked) and instructions for recipients. The goal was for each recipient to attempt 

to deliver the package to a target actor, a Milgram's friend who lived in Boston, MA, USA. 

The only information about the target actor were the name, address, and job (agent of 

exchange). Each recipient had to send the package to someone who he believed could meet 

Milgram's friend or know someone who lived in Boston or that for work purposes had more 

chances to find him. The instructions were repeated equally for each recipient. Milgram 

asked the recipients to record each step of the path in the package. The average number of 

steps for the paths that reached the goal (18 of the 96) was 5.9. From this experiment it is 

customary to state that there are no more than 6 steps between each pair of people in the 

world, i.e., 6 degrees of separation. 

Modern versions report much lower success rates (Dodds, 2003). 

 

Figure 16. Image from Milgram’s original article in Psychology Today, showing a “composite” of the 

successful paths converging on the target person. Each intermediate step is positioned at the 

average distance of all chains that completed that number of steps. Source: Easley and 

Kleinberg, 2010. 

The most famous small world model was proposed by Duncan Watts and Steve Strogatz 

(1998), with the aim to describe networks with both small mean geodesic path lengths and 
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significant local clustering coefficient. In fact, despite the large size of real system, small world 

networks have the average distance L between two randomly chosen vertices, i.e., the number 

of edges along the shortest path connecting them, that grows proportionally to the logarithm of 

the number of nodes N in the network,  

logL N       
 
(16) 

The clustering coefficient of small world networks, instead, is generally high, differently 

than for random networks, where it is considerably small since the edges are randomly 

distributed.  The Watts and Strogatz’s model (1998) conciliate the existence of a large clustering 

coefficient with a characteristic path length. They started from a ring lattice with N nodes in 

which every node was connected to its neighbours and then each edge of the lattice was 

randomly rewired with probability p. The procedure covered from regular to random networks, 

with a Poisson distribution of degree and a probability p of connections between two nodes (see 

Figure 17). In fact, although small world networks are not completely random networks, a 

Poisson distribution of degree can model them, being characterized by a certain level of 

homogeneity, which is lower than regular and higher than random networks. For small world 

networks, the probability p is greater than the null value of regular networks but rather lower 

than values of random networks. The small world effect in the network is favoured by the new 

connections. 

 

Figure 17. a) A regular network in which each internal vertex has the same number of connection e=4. 

The absolute homogeneity of internal vertices produces a constant degree distribution for 

the internal vertices (p(k)= constant). b) A small world network is created by removing each 

edge with uniform probability p and rewiring it to produce an edge between a couple of 

vertices that are chosen uniformly at random. c) Random network. The high homogeneity of 

vertices produces a degree distribution randomly distributed around an average value 

(Poisson distribution). Source: Giustolisi et al., 2017. 
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The Poisson distribution models random networks and exhibits a peak value at <k> and a 

high probability of nodal degree around <k>, i.e., a high homogeneity of the degree distribution, 

and the nodal degree distribution of small world networks has essentially the same features as 

the random ones. The Poisson distribution degenerates to a single degree (considering only 

internal nodes) for the case of regular networks, characterized by an absolute homogeneity. 

Finally, the small world networks introduced by Watts-Strogatz was obtained starting from a 

ring lattice regular network (Figure 18), increasing the probability of connection, p.  

 

 

Figure 18. From Watts-Strogatz (1998), the explanation of small world networks with respect to regular 

and random networks. a) Ring lattice. Starting from this configuration, connections are 

randomly rewired with a given rewiring probability p. For p = 0 the network does not change 

its regular lattice topology while for p = 1 the network become random. Intermediate values 

of p result in small world networks, i.e., networks with characteristics mixed between regular 

and random. b) Clustering coefficient Cp and the Average path length Lp, both normalized 

by clustering C0 and average path length L0 of the ring lattice regular network. When the 

rewiring probability p gives networks with clustering coefficient like that of regular 

networks and average path length like that of the random networks, we obtain small-world 

networks. Source Giustolisi et al., 2017. 

 

2.4.3 Scale-free networks 

Barabasi and Albert (1999) proposed a new network model (Figure 19), named scale free, 

according to which the degree distribution follows a power law distribution. The scale free 

networks are characterized by a high clustering coefficient and many short paths between all 

couple of vertices, i.e., small world features. In other words, few nodes having a much higher 

degree than many nodes, named hubs, characterize scale free networks. 
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The substantial difference with respect to the previous network models resides in three main 

factors: growth, preferential attachment, and fitness. Differently from random and small world 

models, which assume a fixed and constant number N of nodes randomly connected or rewired 

in the network, Albert and Barabasi proposed a model for real-world networks that allowed of 

increasing the number of nodes over time, presenting ever-larger systems (e.g., WWW grows 

in time by the addition of new web pages). Whit regard to the preferential attachments, instead, 

small world and random networks assume that the probability that two nodes are connected is 

random, while in most real networks, new nodes prefer to connect to the highly connected nodes 

in the network, i.e., prefer to be connected to a node rather than another in the network 

depending on the nodal degree. Finally, the fitness model (Bianconi and Barabasi, 2001) refers 

to the evolution of a network according to which the fitness of a nodes influences how the links 

between nodes change over time. Fitter nodes attract more edges than less fit nodes. For 

example, a web page whose network structure is realized using the fitness model, will more 

likely include hyperlinks to popular documents with already high degrees (preferential 

attachment), because such highly connected documents are easy to find and thus well known 

(Chapela et al., 2015). Therefore, the model algorithm of scale free networks (i) starts with a 

small number of nodes, (ii) the number of nodes in the network increases, (iii) the probability 

of the new node to be connected to an existing node depends on the degree and (iv) nodes with 

high fitness can attract more than nodes with high degree, despite the high ability of hubs to 

take edges added to the network. It is to report that also scale free networks can have a low 

degree of separation of nodes, although they are not random networks, similarly to small world 

(Xiao and Guanrong, 2003) because the hubs reduce the path lengths among nodes. The 

formulation of the Pareto (or power law) model for degree distribution is expressed as a 

polynomial. 

( )P k k −      (17) 

where γ represents the power-law exponent and it is a constant (ranging from 1.5 to 3) 

(Newman, 2010; Barthelemy, 2011). A power law distribution is a relatively slow decreasing 

function without peak at its average value. Furthermore, power law model is scale invariance, 

i.e., it does not change if scales (length, weight, or other variables) are multiplied by a common 

factor.  
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Figure 19. Left. A scale-free network. Right. The degree distribution follows a power law, at least 

asymptotically, indicating that many vertices have a low degree, and few vertices have a 

high degree (hubs). Source Giustolisi et al., 2017. 

 

A typical value for the degree power-law exponent in the majority of real networks is 2 ≤ γ 

≤ 3. Resuming, the Barabási-Albert model produces a degree power-law distribution with 

exponent γ= 3, meanwhile the Watts-Strogatz and the Erdös-Rénji follow a Poisson 

distribution. 

 

2.5 Assortativity 

Assortativity is the preference, for a node in a network, to attach to other nodes that are 

similar in terms of degree (Newman, 2002). It represents a degree-degree correlations measure 

between nodes that tend to attach to similar degree nodes (assortativity) or different degree 

nodes (disassortativity). I.e., a network is said to be assortative when high degree nodes are 

connected to other high degree nodes and vice versa, while a network is said to be disassortative 

when high degree nodes are connected to low degree nodes and vice versa (see Figure 20).  

 

Figure 20. Example of assortativity. Left) Assortativity network where high-degree nodes attach to 

other high-degree nodes and viceversa. Right) Disassortativity network where hubs connect 

to low degree nodes. 

In terms of network models, assortative networks follow a Poisson distribution, considering 

most edges connected to nodes that exhibit similar degrees and disassortative networks follow 

a Pareto distribution, considering most edges connected to nodes that exhibit different degrees. 
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For instance, social networks (e.g., friendship network) can be highly assortative (see Figure 

21) because nodes tend to be connected with other nodes with similar degree values while 

biological networks can be highly disassortative (see Figure 22) because high degree nodes tend 

to attach to low degree nodes (Newman, 2002). 

 

Figure 21. Assortativity network: well-connected nodes tend to join other well-connected nodes. 

Source: Moody, 2001. 

 

Figure 22. Disassortativity network: well-connected nodes join to a much larger number of less-well-

connected nodes. Source: Jeong, et al., 2001.  

 

Assortativity is defined with ρ and ranges between -1 and 1. The degree assortativity, 

identified as ρD, provides information about structure and behavior of a network (when subject 

to random or targeted attack, virus spread, etc.). The original definition of assortativity proposed 

by Newman (2002) for non-weighted and non-directed networks, based on the correlation 
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between random variables, has been successively quantified by the Pearson correlation 

coefficient (Van Mieghem, 2014) and extensively analyzed by Piraveenan (2010), whose 

proposed studies of networks perfectly assortative or perfectly disassortative. A structural 

metric that characterizes the degree similarity of adjacent nodes is the degree-degree 

correlation. This correlation is characterized by the assortativity r and defined as the Pearson 

correlation coefficient:  

22
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where i and j are the degrees at the two ending nodes of an edge and the ⟨ ⟩ notation represents 

the average over all edges. If the assortativity coefficient of a network is negative, a hub tends 

to be connected to non-hubs, and vice versa. Therefore, for r > 0 the network exhibits an 

assortative mixing pattern, for r < 0 a disassortative mixing pattern and for r=0 the network a 

neutral degree-mixing pattern (Xu et al., 2009).  

 

2.6 Centrality metrics 

Complex Network Theory (CNT) studies the relevance of elements in networks using 

centrality metrics. The CNT approach for studying network’s centrality is based on the idea that 

critical components (nodes and edges) stand between others, playing the role of an intermediary 

in the interactions or in the communications. Greater is the number of connections and paths in 

which a node or edge participates, higher is its importance in the network.  

Many centrality metrics are proposed over the years to clarify the concept of importance, in 

terms of centrality, detailing components and interrelationships among the various elements of 

networks. Freeman (1977-1979) is among the first to propose a comprehensive study of the 

vertex topological centrality, by identifying three main metrics: (i) the degree as capability to 

spread information because of the number of local connections (Freeman, 1977), (ii) the 

position in the network as importance of the vertices for the global exchange of information 

into the entire system (Freeman, 1977), and (iii) the connections which identify preferential 

shortest paths into the network (Freeman, 1979; Giustolisi et al., 2020). Several centrality 

metrics are proposed later by many researchers in order to evaluate the most central element in 

the network with respect to different physical phenomena, (e.g., see Newman, 2018); examples 

are the Katz centrality (Katz, 1953), the eigenvector centrality (Bonacich, 1987), the PageRank 

(Page et al., 1998), and the so-called Hub and Authorities (Kleinberg, 1999), Cross-clique 

centrality (Everett and Borgatti, 1998). 
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Degree Centrality (Freeman, 1977) is a local centrality metric that represents the number of 

edges incident upon a node. It describes the local structural importance of the nodes thought 

the number of its neighbours, i.e., the node with highest number of first neighbours (adjacent 

nodes) is the most important (central). The degree centrality of a node i can be defined as 

(Nieminen, 1974; Freeman, 1979): 

           1,...,D

i i ij

j

C k a i V= = =     (19) 

where CD
i is the degree centrality, ki is the degree of the node i in the network G. Since a 

node i can at most be adjacent to (N−1) other nodes, it is possible normalize the metric dividing 

for the factor (N−1): 
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      (20) 

The value of CD
i is now independent from the size of the network and range between 0 and 

1.  

Closeness Centrality (Freeman, 1977) is a centrality metric that measures the geodesic 

distance (shortest path) from a node to all other nodes in a network, denoted by the reciprocal 

of the sum of all distances of a node from all other nodes. It measures the centrality of a node 

considering how it is relatively close to all other nodes. Closeness centrality can be regarded as 

a measure of how long it will take to spread information from i to all other nodes sequentially.  

The closeness centrality of a node i can be defined as (Sabidussi, 1966; Freeman, 1979): 
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       (21) 

where CC
i is the closeness centrality and ∑dij is the average distance from node i to all the 

other nodes in the network. The normalized form of the closeness centrality considers that a 

node i can at most be adjacent to (N−1) other nodes and represents the average length of the 

shortest paths instead of their sum, given by the previous formula multiplied by N-1: 
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
      (22) 

where N is the number of nodes in the graph. The value of CC
i range between 0 and 1 for the 

normalized form.   

The closeness centrality only works for fully connected networks. In fact, when the distance 

between two nodes belonging to different components is infinite, the metric is equal to the null 

value for each node. It is possible to define the metric as the summation of the inverse of each 

distance, which is the formulation of the Harmonic Centrality (Rochat, 2009).  
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Betweenness Centrality (Freeman, 1977) is a global centrality metric that measures the 

importance of an element counting how many times it is traversed by shortest paths between 

two vertices, quantifying how a node intervenes in the transfer of information through the 

network. It seems clear that the node with the most strategic location is the most important. The 

betweenness centrality of a node i can be defined as (Freeman, 1977; 1979): 

( )B st
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

  

=        (24) 

The normalized form of the betweenness centrality is obtained by dividing for the number 

of couples of nodes, not including the node i, which for directed graphs is (N−1) (N−2) and for 

undirected graphs is (N−1) (N−2)/2. This way we obtain: 
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Table 1 and Figure 23 report degree, closeness, harmonic and betweenness values for all 

nodes of the graph of figure 5. 

Table 1. Degree, closeness, harmonic closeness and betweenness values for all vertices/nodes of the 

network in Figure 23. 

 

Node Degree Closeness Harmonic 

Closeness 

Betweenne

ss 
1 2 0,040 4,48 0.00 

2 4 0,053 5,83 11.00 

3 3 0,059 5,67 11.00 

4 3 0,059 5,67 16.50 

5 3 0,056 5,50 4.00 

6 3 0,050 5,33 1.00 

7 3 0,048 5.17 14.00 

8 1 0,035 3,57 0 

9 1 0,037 3,82 0 

10 1 0.035 3.57 0 
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Figure 23. The figure highlights the vertices/nodes into the network with higher values of degree (2), 

closeness (3 and 4), harmonic closeness (2) and betweenness (4). 

 

2.7 Network partitioning and modularity index 

Graphs help us to understand, in a visual way, the global organization of complex real 

systems. When the graph is small this type of representation works very well but, as soon as the 

system become of hundreds or thousands of vertices, the graph seems to disappear to make way 

for a meaningless cloud of nodes. When N is large, to find a division of the network into 

communities, i.e., uncovering communities/modules in the network, could be helpful to 

understand the structure of the network and make it more readable. In fact, complex systems 

can be naturally divided into several modules that represent groups of densely connected nodes 

with sparse connections to the nodes of other groups. 

Graph partitioning and community detection are the two main methods that refer to the 

division of a network into modules. In the first one number and size of modules are fixed apriori 

by the user, i.e., the method divides the system into a required number of modules, regardless 

of the organization of the system. In the second one number and size of modules are not fixed 

apriori but determined by the organization of the system. This method should be able, 

independently, to identify various modules of different size in the same system and to divide 

the latter only when a good subdivision exists, leave it undivided otherwise. 

In order to detect groups/communities, several methods have been proposed (Fortunato, 

2010) and the modularity index was introduced as the most widely accepted and used metric to 

measure the propensity of the system division into modules/communities (Newman and Girvan, 

2004). The modularity index is a CNT topological index and relies strictly on the network 

structure, depending only on the identification of network adjacency matrix (Steinhaeuser and 



 

34 
 

Chawla, 2010). Furthermore, its assessment does not require high computational costs. For a 

given network, a higher value of the modularity index indicates a better identification of 

modules, i.e., a network with nodes densely connected within modules but lightly connected 

between different modules. The maximum value of the modularity index corresponds to the 

maximum degree of division of the network.  

The high successful application of the modularity index in a wide range of fields is due (i) 

to the flexibility of the metric in embedding information about properties of the network links, 

(ii) to the range of the maximum value between zero and unit, (iii) to the availability of efficient 

maximization algorithms for very large size problems and (iv) to the applicability to different 

and varied types of networks (Giustolisi and Ridolfi, 2014a). 

The modularity index has been proposed as a comparison between the real network and a 

random network which share some general topological characteristics (e.g., the total number of 

links into the network and the nodal degree distribution) with the real one. Modularity is defined 

as (Newman and Girvan, 2004),  

                    ( ) ( ) ( )
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where Aij are the elements of the adjacency matrix Ā of the network, Pij is the expected 

fraction of edges between nodes i and j in the null/random network (i.e., the expected number 

of edges in the network if they are randomly distributed), Mi is the identifier of network 

modules, δ is the function to apply the summation to the elements of the same module (i.e., δ = 

1 if Mj = Mi and δ = 0 otherwise), and summation runs on all the possible node pairs (i,j), with 

i ≠ j. In Eq. (25), the expected fraction Pij is computed using nodal degree: i.e., ki (kj) is the 

degree of the i-th (j-th) node (i.e., the number of edges incident that node). The two following 

terms of the modularity in Eq. (26), 
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are, respectively, the fraction of edges connecting nodes which are in the same module and 

the expected fraction of edges connecting nodes in the same module in a random graph having 

the same degree distribution of the original graph.  

The modularity can be formulated also as,  
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where emm is the fraction of the edges with both the ending nodes belonging to the m-th 

module, nm is the number of network modules, and am is the fraction of edges having at least 

one end node in the module m. The pipes dividing modules are counted ½ when computing am. 

In fact, am is ½ of the summation of nodal degrees of the module m, divided by np. It is possible 

to write 
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where nc is the number of edges separating modules, namely the number of “cuts” in the 

network. Those cuts are virtual and relate to the division into blocks (modules), i.e., the metric 

Q can be explained as a measure of the block decomposition of the adjacency matrix of the 

network graph. 

Figure 24 reports the network of Figure 5 (left) and its division in three modules (right) 

obtained with three virtual cuts. 

 

Figure 24. Entire network (left) and its division in three modules (right) with three virtual cuts. 

Modularity index Q=0.34. 

 

 

Therefore, dividing networks into modules by optimizing the modularity index is essential 

to discover the connections between subnets and to make various practical applications simpler 

in many real systems. At the same time, however, the optimization of modularity can have 

limits, failing to identify modules smaller than a scale that depends on the total size of the 

network and the degree of interconnection of the modules. Modularity compares the number of 

edges in a module with the expected number of edges in the same module if the network was 
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random, i.e., with edges randomly attached assuming the same number of nodes, that keep their 

original degree. This assumption implicitly assumes that each node can get attached to any other 

node of the network, that can result unreasonable if the network is very large, since, physically 

speaking, a node cannot be directly connected to any other node within the network. Moreover, 

as the size of the network increases, the number of edges between two modules decreases, and, 

for very large networks, it may even become less than one. In this case, the optimization of the 

modularity could lead to the merger of the two modules, which would be viewed as a single 

module, thus limiting the formation of small modules (Fortunato and Barthélemy, 2007). 
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Water distribution networks (WDNs) represent complex systems of water drawing, 

treatment, transport, and distribution whose purpose is supplying city centers. They are 

composed of several interconnected components, structured in non-trivial configurations, 

whose behavior is largely influenced by their connective structure, spatial limits, and 

interactions between components (Yazdani and Jeffrey, 2011; Giustolisi et al., 2017). Such 

complex systems must be reliable both in relation to random failures and intentional threats, in 

the identification of contaminants, in the control of pressures and in the leakages management, 

as well as for purposes related to monitoring, calibration of hydraulic models and system 

control, for example by optimally dividing the network into modules, in order to improve its 

design and management (Simone et al., 2016; Berardi et al. 2017; Mazzolani et al., 2017; 

Giustolisi et al. 2017b; Laucelli et al., 2017). WDNs planning and management focused, for a 

long time, on empirical assessments based on two mainly concepts: increase the level of energy 

and the topological redundancy of the networks (Mays, 2000), increasingly, consequently, 

number of loops and hydraulic diameters. Furthermore, most studies on the vulnerability and 

the robustness of such systems neglects the topological aspects, losing a lot of useful 

information during the analysis.  

Such incomplete knowledge of the actual behavior of WDNs led, often, to the choice of 

inadequate management and planning solutions, and sometimes to disadvantageous 

interventions, because based on incomplete data and analysis. The need to develop alternatives 

for WDNs studies is increasingly pressing and in the last years CNT attracted attention by 

making possible a new, interesting, and structured design approach from the point of view of 

their analysis, management and optimization, both in their functioning and evolution (Giustolisi 

et al., 2017).  

Numerous studies of WDNs based on CNT methods and metrics have been proposed. 

Kesavan and Chandrashekar (1972) began using graph theory for nonlinear pipe networks. 

Jacobs and Goulter (1988, 1989) and Kessler et al. (1990) proposed few works about 

vulnerability and robustness of WDN based on topological metrics, showing how regular 

networks, i.e., networks with equal number of links incident to each node, are less vulnerable 

to failures. The concept of vulnerability and system failure is also faced by Ostfeld and Shamir 

(1996) mainly referred to the WDNs redundancy when failure occur. Gupta and Prasad (2000) 

proposed a steady-state analysis of flow and pressure based on linear graph theory. Deuerlein 

(2008) proposed a network simplification based on the connectivity structure of WDNs, in order 

to improve the understanding of the single network components and their interaction. Yazdani 

and Jeffrey (2010; 2012a) represented WDNs as large sparse planar graphs showing 
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relationship between topological features and network resilience, also introducing two new 

metrics, meshedness and algebraic connectivity, in order to quantifying WDNs redundancy and 

robustness, respectively. Successively, they proposed several strategies for understanding 

WDNs structure (Yazdani and Jeffrey, 2012b), studying their connectivity and the relationship 

with system robustness and susceptibility to damage, modeling weighted and directed networks. 

Finally, in 2011, they proposed the link-node representation of WDNs and a wide range of 

metrics in order to establish potential relationships between structural features and performance 

of WDNs. Hawick (2012) used betweenness centrality metric and rank network to study WDNs 

robustness and fragmentation properties. Gutiérrez-Pérez et al. (2013) proposed a methodology 

based on spectral measurements using PageRank and HITS algorithms in order to achieve an 

efficient vulnerability analysis and to establish the relative importance of smaller areas in 

WDNs. Sheng et al. (2013) explored the formation of isolated communities due to pipeline 

failures using a graph-algebraic model. Shuang et al. (2014) proposed the study of nodal 

vulnerability of WDNs under cascading failures. Nazempour et al., (2016) proposed a new 

approach for the optimal placement of sensors for contamination detection in WDNs. 

Successively, Giustolisi et al., (2017) proposed the neighborhood degree strategy for 

augmenting the information with respect to the original nodal degree distribution increasing the 

maximum nodal degree with respect to the original one, also reducing the dependency of the 

distribution by the spatial constraints. They demonstrated that, when using the neighborhood 

degree, the Poisson distribution more reliably represents the connectivity of WDNs. Various 

authors proposed strategies to understand the actual role of the topological structure in the 

functioning of WDNs (Giudicianni et al., 2018; Giustolisi et al., 2019; Simone et al., 2020) and 

of spatial networks in general (Barthelemy, 2018). 

The graph theory concepts are used also for monitoring and control purposes and optimal 

network division with respect to topology and asset characteristics (Laucelli et al., 2017; Torres 

et al., 2016; Perelman and Ostfeld, 2011). A paradigm from CNT largely used for WDNs 

division/segmentation bases on the modularity index (Newman and Girvan, 2004). Starting 

from the original Newman’s formulation, suggested for immaterial networks (Barthélemy, 

2011), Scibetta et al. (2013) and Diao et al. (2013) proposed the first segmentations of WDNs. 

Later on, Giustolisi and Ridolfi (2014a) proposed (i) the WDN-oriented modularity index, 

tailoring the original one, in order to accounting for the features of WDNs and (ii) the 

infrastructure modularity index (2014b), modifying the WDN-oriented modularity index, in 

order to overcome the resolution limit of the original one (Fortunato and Barthélemy, 2007), 

which causes the non-identifiability of smaller modules depending on the size of the network. 



 

41 
 

Simone et al. (2016) extended the concepts of network segmentation to pressure sampling 

design, introducing the sampling-oriented modularity index and the concept of “pressure” 

DMAs. 

However, as well as network analyzes only based on energy parameters are not exhaustive, 

the use of purely topological studies for WDNs analysis has a limited scope (Yazdani and 

Jeffrey, 2010; Giustolisi et al., 2019). 

 

3.1 Hydraulic modelling and hydraulic domain 
In the early twentieth century the aim of the hydraulic analysis was to calculate the operating 

pressures at the nodes of the network, to ensure the satisfaction of water demands to users and 

the fire protection. Progressive urban development produced ever larger, more complex and 

dated WDNs, implying increasingly greater management needs with respect to leakages 

management, reliability, water quality, energy optimization, rehabilitation, etc. With the advent 

of automatic calculation, Todini and Pilati (1988) conceived the Global Gradient Algorithm 

(GGA) based on the assumption of fixed demands at the nodes of the WDNs. The hydraulic 

solver, created for hydraulic verification, assumed demand nodes known at any time step 

independently on network head/pressure status, i.e., it allowed a demand-driven analysis 

(DDA). No relationship between pressures and demand was assumed and the leakages 

component was commonly kept as percentage of the fixed nodal demands. Successively, Todini 

(2003) introduced the need for a hydraulic simulation capable of evaluating the effective 

demand that could be supplied to users in conditions of pressures below the minimum pressures 

for correct service, i.e., allowing a pressure-driven analyses (PDA). He stated that a relationship 

between pressure and demand was necessary because demands were not fixed but generally 

depend on the pressure status. In fact, the pressure-driven simulation models a more realistic 

prediction of leakages, where the leakage component is evaluated as a function of the network 

pressure (Giustolisi et al., 2008). 

Bhave (1981) was the first to model WDNs considering PDA. He proposed to model the 

networks by defining a minimum pressure required for normal working conditions. 

Germanopoulos (1985) combined the concept of leakages to that of pressure-dependent 

demand. Wagner et al. (1988) proposed a pressure-demand model for controlled outlets based 

on a function that is hydraulically significant but not differentiable (Ackley et al., 2001), 

particularly close to zero value of the flow rate. Successively, Wagner’ approach, which reflects 

well the real hydraulic operation of WDNs, is considered the most appropriate for pressure 

dependent demands (Gupta and Bhave, 1996). In 2008 Giustolisi et al. proposed the 
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introduction of an adaptive overrelaxation parameter to pressure-driven analysis within GGA 

and using Wagner et al. (1988) and Germanopoulos (1985) models within GGA and EGGA, 

Giustolisi et al. (2008), accounted for demand and leakage dependencies on network head/ 

pressure status. The leakage component was evaluated as a function of the network pressure at 

the level of each individual pipe preserving the accuracy of the hydraulic calculation.  

Giustolisi and Walski (2012), studying Wagner's model, shown how it was consistent with 

the real hydraulic operation of the network where users statistically check the flow rates to the 

taps as long as the pressures are sufficient (Torricelli's law for completely open devices): 

equations (29) expresses an effective demand d(i, t) at the i-th node at hour t which, only for 

pressures greater than Pser (i) minimum pressure for a correct service, is equal to the request 

statistical water of the user dreq (i, t), while it is zero for pressures lower than the height of the 

tap Pmin (i) and responds to Torricelli's law for intermediate pressures, or in conditions of 

insufficient pressure (pressure-deficient condition). Figure 25 reports the correspondent 

Wagner’s model diagram. 
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Figure 25. Pressure-demand diagram for users. 

 

Generally, the hydraulic behavior of WDNs can be described by three components:  

- mass and momentum balance equations 

- domain (topological and and the most important pipes characteristics (e.g., 

length, pipe resistance or conductance, etc.) where equations are solved 
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- boundary conditions (e.g., demands, water tank levels, devices state, etc.) 

usually assumed slowly time-varying to neglect fast transient effects. 

The hydraulics behavior is then simulated as a sequence of steady-state snapshots over time, 

which captures the slow change of the network boundary conditions (Giustolisi and Walski, 

2012). Although these different boundary conditions alter the single values of flows and 

pressure, the domain of the problem (i.e., the internal connectivity structure of the network, the 

topological position of the reservoirs, the pipes resistance/conductance, etc.) determines the 

main traits of the hydraulic behaviour of a WDN and greatly determine the system state over 

time. Therefore, the analysis of the WDN hydraulics domain cannot substitute the hydraulic 

simulations, because the information about the continuity and momentum equations is not 

contained in the domain, but it can represent a useful tool to identify the main features of the 

hydraulic system (Giustolisi et al., 2019). Therefore, it is essential to analyse the topology of 

WDNs and make it complementary to hydraulic analyses to provide increasingly reliable results 

and to drive technicians in the most appropriate management choices. 

Considering a WDNs as a graph, we obtain that edges and vertices of the graph represent 

the number of pipes (np) and nodes (nn) of the hydraulic system, respectively. The nodal degree, 

k, of the specific node n is the number of pipes p incident the node n. The network connectivity 

can be described by the topological incidence matrix, which is generally used also for hydraulic 

system representation (Giustolisi et al., 2008b). Figure 26 (left) reports a simple water system 

composed of five nodes, nn=5 (four demand nodes and one reservoir) and five pipes, np=5. 

Figure 26 (right) reports the corresponding incidence matrix composed by np rows, each 

corresponding to one pipe of the hydraulic system, and nn columns. The sum of the elements of 

each column gives the number of pipes connected to the corresponding node, i.e., its degree. 

 

Figure 26. Simple hydraulic network (left) and corresponding topological incidence matrix (right). 
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If we also consider the hydraulic side of the system, we can state that a network of np pipes 

with unknown flow rates, nn nodes with unknown heads (internal nodes) and n0 nodes with 

known heads (e.g., reservoir) can be analysed by solving the following non-linear mathematical 

system based on momentum and mass balance equations: 

( )
0 0pp p pn n p

np p n n n

+ = −

− =

A Q A H A H

A Q d H 0
    (31) 

where Qp = [np,1] column vector of unknown pipe flow rates; Hn = [nn,1] column vector of 

unknown nodal heads; H0 = [n0,1] column vector of known nodal heads; dn = [nn,1] column 

vector of nodal demands; 0n = [nn,1] column vector of null values; App = diagonal matrix of size 

[np,np], whose elements are based on pipes resistance and flow; Apn=AT
np and Ap0 = topological 

incidence sub-matrices of size [np,nn] and [np,n0] represent the domain of the equations, i.e., the 

network. The general topological matrix Āpn=[Apn ¦ Ap0] of size [np,nn+n0], is the incidence 

matrix (Todini and Pilati, 1988), which includes the information about the direction of pipes, 

negative or positive. The solution of the system (30) requires the identification of the unknowns 

(Qp; Hn) considering known the boundary conditions (dn; H0) and information about pumps 

curve or devices status over time if present. Rp or Cp = [np,1] column vector of pipe resistances 

or conductance complete the characteristics of domain, (Āpn) (Giustolisi et al., 2019).  

It is worth noting that the matrix multiplication of the transpose of general topological matrix 

and itself (Ānp x Āpn) provides the Laplace matrix, which is the difference between the degree 

matrix and the adjacency matrix, of the graph referred to the WDN domain. Furthermore, the 

global gradient algorithm (GGA) for WDN hydraulics is (Giustolisi and Walski, 2012), 
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where iter is a counter of the iterative solving algorithm, Dpp is a diagonal matrix whose 

elements are the derivatives of the head loss function with respect to Qp and Dnn is a diagonal 

matrix whose elements are the derivatives of dn
iter with respect to network pressure status as 

dn= dn (Hn). The GGA involves the iterative solution of a linear nodal system of equations, to 

compute Hiter+1, and a nodal mass balance correction obtained by np independent equations to 

compute Qiter+1 based on Hiter+1. The matrix Anp(Dpp)
-1Apn plays a relevant role for the nodal 



 

45 
 

solutions and it is a Laplace like matrix integrated with the information of pipes resistance Rp, 

being the diagonal elements, referring to the kth pipe, Dkk = Dkk(Rkk,|Q|) of Dpp (Giustolisi et al., 

2019). 

This fact shows and demonstrates the mathematical fundamentals of studying the WDN 

hydraulics domain. 

 

3.2 Characteristics of the network: material and spatial peculiarities 

Studies about structure and evolution of distribution/transportation systems started with 

quantitative geographers in the 60-70s. Hagget and Chorley (1969) were the first to address the 

problem of the spatial peculiarities studying topology and geometry of transportation networks. 

Many other authors proposed metrics and models to characterize such spatial systems and study 

their temporal and spatial evolution (Kanksy, 1963; Taafe et al., 1963). With the advent of the 

first computers and an ever-increasing availability of data relating to networks, it has been 

possible to represent real systems in more detail even if the purely spatial component of some 

of them, linked to geometry as well as to their topology, was often neglected. WDNs represent 

one of the cases of much studied infrastructural networks for which, however, the spatial 

component has often been ignored. Actually, such systems are limited in the space and governed 

by a metric: the Euclidian distance (Barthelemy, 2018). Furthermore, pipes, which represent 

the key elements for WDNs, are material components characterized by asset features such as 

length, diameter, and hydraulic resistance. This means that to characterize this type of networks 

we need of the topological information (stored in the adjacency matrix), of the spatial 

information (coordinates of nodes) and of the asset characteristics about pipes. The spatial 

constraints affect the structure and properties of these networks, whose performance depend on 

distance, i.e., the probability of finding a link between two nodes decreases with the distance. 

In fact, WDNs are manmade distribution systems that progressively grow filling the space based 

on connection costs and nodal distances, but also constrained by the impracticality of some 

connections (Buhl et al., 2006). Furthermore, the growth of these systems affects the temporal 

component as well as the spatial one. They constantly change over time for multiple factors 

(e.g., human behavior, climatic conditions, political and social dispositions, etc.). Each 

variation adds new data to the system, which should be updated. One of the most obvious 

examples of infrastructure network subject to changes over time is the street network. Figure 

27 shows the evolution of the Paris street network over time (Barthelemy, 2018). The network 

in 1789 only considers the main level of transportation of the city and presents a different scale 

representation (low) with respect to those in 1999 (high), which reports the secondary level of 
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the transportation with quite all the streets: it is evident that the system is much more 

constrained. The classification of the network from the first scale representation to the last scale 

representation could vary at least with respect to the categories of small world and random 

networks. This means that considering only the mains of WDNs (primary level of the 

distribution), i.e., neglecting a secondary level of the distribution and/or connections to 

properties, means to analyse a different system with a different behaviour (e.g., vulnerability). 

In this perspective, the temporal component, linked to the availability of data, becomes 

increasingly important in the classification of infrastructural networks. 

 

Figure 27. Evolution of the Paris street network. Source: Barthelemy, 2018.  

 

3.3 WDNs classification and assessment using the classic CNT framework 

Most of the studies on CNT concern the characterization and classification of complex real 

systems and the identification of the most suitable metrics for understanding and describing 

their behaviour. Several CNT metrics represent irrelevant parameters for WNDs study, or, in 

any case, they need to be adapted to be efficiently applied to such systems. 

 

Degree 

CNT generally classifies the connectivity structures of real systems using the nodal degree, 

the average path length, the clustering coefficient, and the probability of connection. For WDNs 

most of these metrics are irrelevant.  

The spatiality of WDNs is mainly related to the urban texture, e.g., streets and buildings, 

constraining the pipe installation and influencing the layout. In fact, nodes represent 
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intersections between pipes for transferring information (flow), and since they are generally 

located at road junctions, the number of pipes incident the node corresponds to the number of 

streets that converge at the intersection. This fact limits the maximum nodal degree for WDNs, 

reducing the range of possible values for nodal degree. It results that WDS classification by the 

CNT standard nodal degree distribution is very difficult and uncertain (Yazdani and Jeffrey, 

2011) because of the very low values of the maximum standard nodal degree and the resulting 

unreliable statistical for those networks. A first step to overcome this limit is represented by the 

neighborhood degree (Giustolisi et al., 2017), defined as the sum of the degrees of the nearest 

neighbours (i.e., only nodes immediately adjacent). The method augments the information with 

respect to the original nodal degree distribution increasing the maximum nodal degree with 

respect to the original one and reducing the dependency of the distribution by the spatial 

constraints. When using the neighborhood degree, the connectivity structure of WDNs follows 

a Poisson distribution, i.e., WDNs network connectivity presents a low vulnerability with 

respect to failure events, consistent with the fact that technicians generally design WDNs using 

a criterion of redundancy beyond the hydraulic capacity requirements.  

Figure 28 report the BBLAWN WDN layout and Figure 29 reports its classification using 

both classic degree and neighborhood degree. Discerning between the Poisson and Pareto 

distributions when using the classic nodal degree is difficult, also because the maximum degree 

is five and, when only five points are available to fit the distribution, it can result statistically 

unreliable. Differently, discerning between the Poisson and Pareto distributions when using the 

neighborhood degree is possible and quite immediate. In this last case, in fact, twelve points 

are available, and it is evident that the pattern follows well the cumulative Poisson distribution.  
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Figure 28. Top. WDN layout. Bottom. Actual distribution of classic degrees and neighbourhood nodal 

degree versus Poisson and Pareto distributions for BBLAWN WDN. Source: Giustolisi et 

al., 2017. 

 

Clustering coefficient and probability of connection 

The Poisson distribution models the fact that each pair of nodes is connected randomly with 

a probability p, which generates a network having a great number of nodes with a similar 

degree. For regular networks, the probability p is zero and tends to increase with increasing 

random connections in the network, and for small world networks, the probability p is greater 

than the null value of regular networks but rather lower than values of random networks. 

Regular networks are highly ordered with shortest paths linking two nodes very high, differently 

from what happens to real systems. The shortest paths for random network, instead, is very low. 

Therefore, a real system, generally, has an average path length typical of small world networks, 
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i.e., lower than regular network and greater than random networks. It is worth to note that also 

scale free networks can have a low average path length, similarly to small world, because the 

presence of hubs reduces the degree of separation among nodes, but WDNs connectivity 

structures are not scale free, i.e., characterized by nodes working as hubs. 

Random and small world networks, modelled by the Poisson distribution, can be 

characterized by the clustering coefficient Cp and the average path length Lp, normalized by 

clustering C0 and average path length L0 of the ring lattice regular network (see Figure 18). 

Regular networks, with null p, have high Lp/L0 and Cp/C0, small world networks, with 

intermediate p, have a low Lp/L0 and a high Cp/C0 and random networks, with p close to unit 

value, have low both Lp/L0 and Cp/C0. Generally, the probability p determines the average 

degree of the network,  

                                                                     ( )1k p n= −                           (33) 

The situation changes for WDNs, whose average degree is determined by spatial constraints. 

It is possible to state that the average degree for WDNs ranges from 2 to 3, hence, we can write,  

          1
2.5

1

k
p p n

n

−


=  
−

               (34) 

where the probability of connection is very low for the network connectivity structure of 

WDNs because of spatial constraints, in addition to being inversely proportional to the size of 

the network (Simone et al., 2018). As a result, the Watts-Strogatz (1998) scheme must be used 

with caution for this type of system. 

Figures 29 and 30 report the diagrams of Ln/L0, Cn/C0 versus the decreasing network size, 

and not versus the probability of connection p, for 21 analysed WDNs. The diagram in Figure 

29 clearly demonstrates that Ln/L0 increases with decreasing of the network size as also shown 

by the trend line there reported, meaning that decreasing the WDN size, the network structure 

exhibits a higher regularity. Therefore, Figure 29 indicates that n should substitute p in Watts-

Strogatz diagram (1998).  
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Figure 29. Normalized average path length Ln/L0 versus decreasing network size. Source: Simone et al., 

2018.  

 

The diagrams of Figure 30 reports normalized clustering coefficient Cn/C0 versus decreasing 

network size. It shows that the parameter has very low values and it does not depend on network 

size. This because the spatial constraints of analysed networks limit the number of elementary 

topologies (triangles). In fact, this metric will be of significant interest when applied to networks 

with a large range of degree variations (Barthelemy, 2018) that is not the case in WDNs. 

  

Figure 30. Normalized clustering coefficient Cn/C0 versus decreasing network size. Source: Simone et 

al., 2018.  

 

Betwenness and Closeness 

Several CNT centrality metrics have been proposed for quantifying the importance of 

elements in networks, analysing the key features of the physical domain (i.e., the network) 

where WDN hydraulics occurs. Betweenness and closeness, together with degree, are identified 

as the most suitable centrality metrics for studying infrastructure networks (e.g., Borgatti, 2005; 

Barthélemy, 2018; Giustolisi et al., 2019). As example, here we report their application for a 

benchmark WDN, named Apulian network (Giustolisi et al.; 2008), composed of 23 nodes, 34 
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pipes and one reservoir (Figure 31), in order to demonstrate the usefulness of the metrics for 

WDNs analysis. 

 

Figure 31. Apulian layout.  

We start computing the shortest paths between each couple of nodes in the network using 

the Dijkstra’s algorithm (1959). Betweenness and closeness centrality for the Apulian network 

are normalized in the range [0, 100] and reported in Figure 32. The figure refers to the centrality 

values for nodes and not pipes. In this framework, node 6 exhibits both the maximum 

betweenness centrality and the maximum closeness centrality, i.e., it results the most efficient 

in spreading the information (closeness) because it is the closest to the others and, furthermore, 

it is also the most traversed by the shortest paths (betweenness) (Giustolisi et al., 2019). 

However, since a nodal failure is generally unrealistic for WDNs, failing of node 6 corresponds 

to failing of pipes connected to it, being an interruption of a pipe a common technical 

occurrence. Furthermore, this topological analysis does not highlight the importance of source 

waters within the network. 

These facts clarify the need of tailoring the classing centrality metrics to adapt them to the 

analysis of WDN hydraulic domain features. 
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Figure 32. Betweenness centrality (left) and closeness centrality (right) for Apulian network.  

 

3.4 Need for CNT tailoring 

During the last decade, several researchers started using classic CNT tools for WDNs 

analysis. The usefulness of these tools is recognized in all works as well as the limits they 

present in the analysis of infrastructural systems. The analysis fully reflects the purely 

topological character of the CNT tools: results depend on the connectivity structure. Various 

attempts have been made to assign/associate specific physical features to the connectivity 

structure to make much more reliable the WDNs analysis, for example introducing weights and 

using direct graphs (Yazdani and Jeffrey, 2012). However, the results have not always been the 

expected ones.  

In order to correctly perform a technical transfer of the CNT tools to the specific 

infrastructure network, a tailoring process began in 2014 with Giustolisi and Ridolfi. They 

proposed of using the modularity index (Newman and Girvan, 2004) for the optimal 

segmentation design of WDNs. Since the original formulation of the modularity index was not 

advisable for WDNs (the random network assumed as benchmark for community detection has 

not correspondence for infrastructure networks), they proposed a tailoring in order to account 

for WDNs peculiarities. Their tailoring affects (i) the general topological incidence matrix, 

which is commonly adopted to represent the network topology of the hydraulic systems; (ii) 

pipe characteristics (weights), in order to account for the specific technical task of 

segmentations; (iii) the developing of a cut position-sensitive metric that allows to install 

devices (cuts) close to the end nodes of pipes and not in the middle of pipes, as expected with 

the classic modularity. The novel WDN-oriented modularity index allows multi-objective (MO) 

optimization strategy that maximizing the modularity index versus the minimization of the 

number of observations (e.g., pressure and flow devices), result in a Pareto set of optimal 



 

53 
 

segmentations (selected in order to optimally segment according to a specific management 

criteria) versus the solution cost. In a second work, Giustolisi and Ridolfi (2014b) focused on 

the resolution limit issue (Fortunato and Barthélemy, 2007), that increases with network size 

and that limits the identifiability of small modules with respect to the size. They overcome the 

problem by proposing a novel infrastructure modularity index starting from the WDN-oriented. 

We continue the tailoring process (Giustolisi et al., 2017) proposing the neighborhood nodal 

degree, instead of the classic degree, for the WDNs classification. The novel metric allows to 

overcome the problem of spatial limits, typical of WDNs, increasing the degree of each node 

and finding a greater number of points for the identification of a distribution shape. We showed 

that the Poisson distribution well characterizes the WDNs connectivity structure. This means 

that the domain has random features increasing the size (i.e., the number of nodes), i.e., a good 

structural resistance. However, we leaved out all the information related to the hydraulic 

behaviour of these systems, e.g., the presence of strategic structures like reservoirs and public 

buildings, whose intrinsic relevance is independent from their topological position and 

connectivity, and directional hydraulic devices, which can influence the flow inside the 

network. I.e., the structural analysis captured the network domain features on average. 

Novel studies and further tailoring are necessary to adapt CNT methods to the actual 

behaviour of WDNs in order to obtain a reliable classification and assessment of these systems. 
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This chapter addresses and concretizes the need to adapt CNT metrics for WDNs. The first 

part presents and discusses two strategies of tailoring referred to the most suitable centrality 

metrics for spatial network (betweenness, closeness, harmonic closeness, and degree) 

accounting for WDNs peculiarities. The topic has been the subject of three publications in 

international journals (Giustolisi et al., 2019; Simone et al., 2019; Giustolisi et al., 2020) that 

will be recalled along the text. The second part briefly recall the tailoring process adopted for 

the modularity index and presents two of the works produced on the subject, about the 

development of strategies for DMA design (Laucelli et al., 2017) and pressure sampling design 

(Simone et al., 2016). 

 

The need to adapt CNT metrics for WDNs has been addressed for several years and referred 

to numerous tasks. In particular, the use of centrality metrics has always been addressed to the 

network classification and vulnerability, while the use of the modularity index to the network 

planning and management through their optimal division in segments.  

Several centrality metrics have been proposed and each one identifies different elements as 

the most important (central) with respect to different applications/ physical phenomena (Benzi 

et al., 2015), i.e., the use of a metric must be appropriate to the kind of flow process that 

characterizes the network. The flow process for spatial networks, such as WDNs, is based on 

the concept of shortest paths (Borgatti, 2005).  

Now, once the most suitable centrality metrics for studying WDNs have been identified, they 

need to be tailored in order to considering the specific peculiarities of these hydraulic systems. 

We start presenting a first tailoring approach, enhanced in the second phase of my PhD by a 

second one. 

• The first approach aimed to develop a WDN-tailored centrality metric to identify the 

WDN domain, i.e., a tailored edge betweenness able to identify the role of topological 

domain features in the emergent hydraulic behaviour. Particularly, the tailoring is 

performed considering three specific features of WDNs: (i) edges, i.e., pipes, are the 

relevant components, in contrast with standard CNT centrality metrics, that generally 

focus on nodes; (ii) pipes are material components characterized by asset features (e.g., 

length, diameter, hydraulic resistance, etc.); (iii) each node can represent a different 

system component (e.g., source of water, connection node and demand node) (Giustolisi 

et al., 2017). Consequently, we computed the edge relevance instead of nodal one, we 

ed weights to edges to account for the specific asset characteristics of pipes and we 

modified the connectivity structure of the network to distinguish source, connection and 
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demand nodes. To this aim, we introduced fictitious nodes (whose number depends on 

the number of demand nodes) connected to the source nodes. In this way, the topological 

relevance of the source nodes is emphasised by generating fictitious water paths that 

embed the different hydraulic role played by source nodes. In other words, fictitious 

nodes allow weighting topologically source nodes with respect to the demand nodes. 

The tailored metric represents a useful tool to support WDNs analysis, design, and 

management tasks, although adding a fictitious node for each demand node increases 

the network size and the number the shortest paths to be calculated. 

• The second approach aimed to develop a novel tailoring of the centrality metrics 

considering the information about the intrinsic relevance of each node, exogeneous data 

independent from their topological position and connectivity, and to embed it into the 

analysis to make useful CNT tools for WDNs. The intrinsic relevance for each node, 

defined as Rn (n=1, …, N), is assigned equal to the demand for each demand node and 

to the sum of demand for the source node. This way, all nodes assume a different 

relevance during the analysis. The novel strategy is performed using several functions 

f(Rs, Rt) that depend on the intrinsic relevance of nodes s and t. 

This tailoring approach is more flexible and general with respect to the previous one 

because it allows to adopt “intrinsic relevance” also different from the demand for water 

networks, or to adopt others relevance for networks other than WDNs. 

Regarding the network division in segments, the concept of modularity was among the first 

to be borrowed from the CNT to be applied to the WDNs analysis and management. The 

tailoring procedure was proposed, through various scientific papers, by Giustolisi and Ridolfi 

(2014a, b) who introduced various basic formulations of the modularity index accounting for 

WDN peculiarities. Starting from these searches, we used the WDN-oriented modularity index 

to perform the optimal DMA design strategy of WDNs and extended the metric to define the 

Sampling-oriented modularity index and to perform the optimal Sampling design strategy 

(Simone et al., 2016) aimed at the optimal location of pressure meters in WDNs.  

 

4.1 WDN-oriented Centrality metrics for WDNs assessment 

We conceived and developed the tailoring strategy with the aim to produce a tool that would 

allow the identification of the domain analysis of WDNs. The tailoring process involved four 

conceptual steps. The first one was to move from a node-based perspective (typical of CNT 

applications) to an edge-based perspective, where pipes are the key elements of the network 

characterized by specific asset features (e.g., length, diameter, pipe resistance, etc.). The second 
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step was to create a WDN-tailored network topology to embed the different hydraulic roles of 

nodes: source nodes, tanks, and demand nodes. The third step was to evaluate edge centralities 

in the tailored topology where pipes are weighted with appropriate domain information (e.g., 

pipe resistance). The last step involved the prior information about the flow direction in pipes 

where unidirectional devices are installed or next to the reservoirs. 

 

4.1.1 Edge centralities 

The functioning of a WDN entails two main operations: (i) the water is delivered at pipe 

level and (ii) nodes are network elements that transfer the water (i.e., information) among pipes. 

This first definition clarifies why pipes, with their asset features, represent the most important 

network components for WDNs. Furthermore, focusing on pipes allowed us to attribute to them 

asset characteristics, generally neglected in topological analysis before. For example, 

considering the hydraulic resistance as attribute for pipes allows to move the network domain 

analysis closer to the expected hydraulic behaviour of the system. 

We moved the focus from nodes to pipes assuming, as metric to be used, the edge 

betweenness (Girvan and Newman, 2002) and tailoring closeness, standard and harmonic, and 

degree centrality metrics with respect to edges. One way to evaluate the effectiveness of the 

new topological metric was to identify the hydraulic behaviour of the networks through the 

evaluation of a hydraulic metrics and then proceed to a comparison of them. Obviously, the 

greater the correspondence between the two metrics, the more the topological metric was 

suitable in identifying the WDNs domain. We referred to the pipe flowrate as hydraulic metric, 

also based on the concept of shortest hydraulic paths within the network. 

Edge Betweenness: Edge Betweenness is a global centrality metric that measures the 

importance of an edge counting how many times it is traversed by shortest paths between two 

vertices, i.e., quantifying how an edge intervenes in the transfer of information through the 

network. It seems clear that the edge with the most strategic location is the most important. The 

edge betweenness centrality of an edge l can be defined as (Girvan and Newman, 2002): 

( )B st
l

s t G st
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l
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

 


=        (35) 

Edge Closeness Centrality: Edge Closeness is a centrality metric that measures the edge 

efficiency in spreading the information and it considers the geodesic distance (shortest path) 

between pipes rather than between nodes, denoted by the reciprocal of the sum of all distances 
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of a pipe from all other pipes. I.e., it measures the centrality of a pipe considering how it is 

relatively close to all other pipes. The Closeness centrality of an edge l can be defined as:  

       
,

1C

l

l ee

C
d

=


      (36) 

It is important noting that even if the edge and the nodal metrics are performed with the same 

procedure and algorithm (Dijkstra, 1959), the edge metrics are more meaningful for WDNs, 

accounting for flow path disruption.  

Edge Degree Centrality: edge degree is the number of edges connected to one of the two 

ending nodes of that edge, i.e., the degree computed using the line graph matrix. The extension 

of the edge degree (n-EN) is similar to the n-neighborhood degree involving edges at level n 

(Giustolisi et al., 2017).  

Hydraulic centrality metrics: hydraulic centrality metrics can be defined considering the 

hydraulic status of WDNs (e.g., pipe flowrate) and given boundary conditions (e.g., costumers 

demand, tanks level, etc). We assumed that the domain analysis using the WDN-tailored metrics 

allows understanding in advance the role of pipes in determining the system hydraulics 

independently on the specific set of boundary conditions. For example, the edge betweenness 

informs about the most relevant pipes transferring water similarly to the pipe flowrate centrality. 

This means that topological (e.g., edge betweenness) and hydraulic centralities (e.g., pipe 

flowrate) are correlated to each other, i.e., the information obtained computing the topological 

centralities can be helpful for identifying, in advance, the “emerging” hydraulic behaviour of 

WDNs without the need of hydraulic simulations and independently on the specific boundary 

conditions. The drawback is that the topological centrality metrics lack information about the 

hydraulic status, e.g., the presence of source nodes, that represent a sort of hubs for WDNs, and 

of directional devices, that constrains the flow direction. Furthermore, (i) although the edge 

betweenness is very similar to the flowrate, the topological metric does not consider pipe 

features (e.g., length, hydraulic resistances, etc.) that instead are embedded in the hydraulic one; 

(ii) hydraulic metrics are time varying, differently from the topological ones, since the WDN 

hydraulic behaviour changes over time; (iii) the hydraulic metrics accounts for any change 

concerning the network, e.g., addition of reservoirs or tanks in existing nodes, installation of 

unidirectional devices, addition or removal of nodes, while the topological metrics account only 

for the last one. In fact, the transformation of a demand node into a source node significantly 

affects the hydraulics of the system without, however, affecting its topology.  
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4.1.2 Source nodes  

We highlighted several times the need to assign different roles to the nodes within the 

system. Accordingly, we created a hydraulic-based topology that accounts for the different 

hydraulic role of source nodes with respect to other nodes. The first step was inserting the 

domain information about reservoirs assuming: (i) the presence of Nf connected fictitious nodes, 

(ii) M reservoirs and (iii) Nd demand nodes in the network. For each reservoir exists a star of Nf 

connected fictitious nodes whose number is equal to Nd/M (See Figure 33). Increasing the 

number of nodes connected to a reservoir increases its topological relevance and the reservoir 

act as a sort of hubs with respect to the hydraulic system behaviour.  

In fact, in this way, the shortest paths starting from the fictious nodes (all forced to cross the 

reservoir to reach the other nodes of the network) will cross at least Nf times each reservoir and 

the relevance of the original position of the reservoir with respect to the entire network structure 

is preserved although amplified according to Nf, i.e., the topological relevance of the reservoirs 

is multiplied by Nf.. It is important noting that without reservoirs, and therefore stars of fictious 

nodes, the connectivity structure degenerates into the original one, which coincides with the 

topological one, i.e., hydraulics does not exist.  

 

Figure 33. Hydraulic-based topology obtained inserting the domain information about reservoirs. Stars 

of fictious nodes Nf are inserted in correspondence of each reservoir in order to increases its 

topological relevance. The Figure reports Apulian network with two tanks. In this case, M= 

2, Nd = 22 and, therefore, Nf = 11 for each reservoir. Source: Giustolisi et al., 2019. 

 

It is important to keep in mind that if the influence area of each reservoir, i.e., how many 

nodes it feed, is known, a different number of demand nodes Nd and therefore of fictious nodes 
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Nf exists for each reservoir. Conversely, if there is no information about the influence area, each 

reservoir has the same number of Nd and Nf. 

The next step was inserting the domain information about tanks, i.e., nodal sources 

characterized by an emptying/filling process that occurs during the operating cycle of the 

hydraulic system. Here we acted considering the maximum water volume VT that can be 

supplied during the emptying process by the tank and the average water volume VD supplied 

during the operating cycle to the demand nodes. The procedure is like that proposed for 

reservoirs, with the difference that in this case the star of fictitious nodes considers the tank 

volume and the number of demand nodes based on the emptying/filling process. We assumed 

Nf connected fictitious nodes, already attributed to reservoirs, and Nd demand nodes. The 

number of fictious nodes attributed to each tank equals the minimum integer value between 

Nd·VT/VD and Nf. Decreasing the volume VT the tank node tends to a demand or connectivity 

node and increasing the volume VT the tank node tends to a reservoir. However, even if tanks 

are hubs too, they always have less or equal importance of reservoirs because the number of 

their fictitious nodes can be equal or less to those traversing the reservoir. Furthermore, VT also 

influence the relevance of pipes close to the tanks. Looking at the Figure 34, it is possible to 

state that if VD is larger than VT, the pipe between reservoir and tank (pipe 1) is much more 

relevant than the pipe between tank and distribution system (pipe 2), because it still represents 

the main source of supply for the network. Differently, when VT and VD are comparable, pipe 2 

becomes the most relevant because is able to ensure the supply of the network for an operating 

cycle, i.e., for the time necessary for repairing/replacing the pipe 1. 

 

Figure 34. Scheme of the WDN-oriented topology modifications to account reservoirs and tanks. 

Source: Giustolisi et al., 2019. 

 

4.1.3 Directional devices 

The WDNs topology has been commonly analysed by considering the association of these 

systems to indirect networks, i.e., networks whose features do not present a flow direction. For 

WDNs this association translates into considering networks without unidirectional devices, or, 
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in any case, neglecting their possible existence. In order to perform a complete topological 

analysis of WDNs, the next step has been to consider unidirectional devices and their variation 

over time in the tailoring strategy. In fact, the boundary conditions, linked to the presence of 

such devices, define the flow direction, influencing the shortest paths and, therefore, the domain 

of the system. It can happen, for example, that the shortest paths between two pipes, one 

upstream and the other downstream of a specific device, can be traversed only in one direction, 

i.e., that of the device. The consequence is that the edge betweenness of these pipes is 

automatically reduced compared to that computed on the network without devices. An example 

of how the presence of devices affects the flow within a network is given in Figure 35 (Top), 

that reports a simple network fed by two reservoirs (A and B), composed of 2 connection nodes 

and 4 demand nodes. A check valve (CH) is installed between the reservoir A and the demand 

node 1. The direction of the CH is from node 1 toward reservoir A. The behaviour of the 

network changes if we consider direct or indirect network, i.e., whether or not we consider the 

presence of the CH. Not assuming the unidirectional device, the repartition of the demand nodes 

is equal for each reservoir, i.e., each reservoir can reach all four demand nodes. Differently, 

assuming the presence of the unidirectional device, the flow starting from the reservoir A is 

unable to reach the four demand nodes because the CH directs the flow in the opposite direction. 

Differently, the flow that starts from reservoir B reaches all demand nodes, going in the same 

direction of the CH. Figure 35 (Bottom) enriches the example with other cases. 

 

 

Figure 35. Top. Simple network fed by two reservoirs (A and B), composed of 2 connection nodes and 

4 demand nodes and a check valve (CH). The system domain, influenced by the flow, changes 

considering the network as direct or indirect, i.e., considering, or not the presence of the 

unidirectional device (CH). Bottom. The same network positioning the CH in three different 

ways. The reachable nodes, both in the case of a direct or indirect network, are reported below 

each example. The results do not change for the indirect network, while they vary with the 

variation of the position and of the directionality of the CH. This example makes us 
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understand how it is important considering unidirectional devices even in the topological 

analysis, i.e., in defining network domain.  

 

4.1.4 Case studies 

The present chapiter show how the WDN-tailored edge betweenness, properly tailored for 

accounting the WDNs features, represents a useful tool for the domain analysis of real WDNs 

and a support for the hydraulic analysis of these systems. Here we report the application of the 

WDN-tailored edge betweenness to several real networks with different size, asset features and 

hydraulic schemes. The procedure is detailed using the BBLAWN network (Giustolisi et al., 

2019) while it only reports and discusses the results for the other six networks.  

BBLAWN WDN is composed of 390 nodes, 439 pipes, 1 reservoir, 7 tanks, 11 pumps, 1 

control valve and 1 check valve. A star of fictitious nodes (Nf=Nd as M=1) has been associated 

to the only reservoir and allows it of acting as a topological hub in the system. The hydraulic 

metric flowrate is computed for the network, and it is compared with the standard edge metric, 

weighted with the connectivity, in Figure 36.  

The metric pipe flowrate identifies the pipes close to the reservoir as the most significant 

(Figure 36-left), while the standard edge betweenness fails in ranking correctly pipes close to 

the reservoir, not recognizing them as the most significant (Figure 36- right). It is important 

noting that the analysis only reports the 5% highest values, both for topological and hydraulic 

metrics. In this perspective, we can state that pipes with edge betweenness, weighted with 

connectivity, falling in the 5% highest values, does not correspond to the pipes with the highest 

flow rates, i.e., the highest 5% values of the average values for one-day hydraulic simulation.  

 

Figure 36. Hydraulic metric pipe flowrate (left) and normalized standard edge betweenness (right) for 

BBLAWN network. The standard topological metric does not identify the most important 

paths as identified by the flowrate. In particular, the metric does not recognize the pipe close 

to the reservoir as the most important. Source: Giustolisi et al., 2019. 
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Applying the tailoring process, the relevance of pipes/ paths close to the reservoir increases 

(Figure 37- left). I.e., the tailored metric is now able to capture the relevant hydraulic features 

of the system with respect to the source nodes. Using the pipe hydraulic resistance as weight 

for pipes (see Figure 37- right), the analysis is getting closer and closer to the hydraulic 

behaviour of the system because the resistance drives the water fluxes.  

 

Figure 37. WDN-tailored edge betweenness for BBLAWN network using pipes connectivity (left) and 

hydraulic resistance (right) as weight. Source: Giustolisi et al., 2019. 

 

The comparison between flowrate (Figures 36- left) and WDN-tailored edge betweenness 

weighted with the hydraulic resistance (Figure 37- right) demonstrates that the two metrics 

identify the same pipes as more important, i.e., the modification of the network topology 

considering source nodes and weighting edge betweenness by pipe resistance allows one to 

obtain an effective domain analysis. Inserting the domain information about tanks, the 

connectivity structure of the system changes again (Figure 38-left). This time, the metric does 

not identify the pipe close to the only reservoir as the most important for WDN hydraulics, 

attributing a low relevance to the line starting from the main source of water. Inserting the 

information about the directional devices the problem is solved (see Figure 38-right), i.e., the 

metric well captures the emerging hydraulic behaviour of the system. This last step highlights 

that the information on directional devices enhance the domain analysis.  

Results show that the WDN-Tailored Edge betweenness, just considering the domain 

structure of the system, identifies quite all the most important pipes as ranked by pipe flow 

rates. Pipes close to the only reservoir result the most important for the WDN hydraulics, while 

the relevance of the other pipes does not change although it has a new parametrization referred 

to the most important one. The Spearman correlation index (Spearman, 1904) between WDN-

Tailored Edge betweenness, weighted with hydraulic resistance, and pipe flow rate is equal to 
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0,74. i.e., there is a high correspondence between two metrics, although the topological metric 

focuses only on the domain structure and the hydraulic one depends also on the boundary 

conditions and on momentum and continuity equations.   

 

Figure 38. WDN-tailored edge betweenness using pipes resistance and tank information. The right panel 

also considers information about directional devices. Comparing the right panel with Figure 

36-left we can state that the topological metric is able to capture the emerging hydraulic 

behaviour due to the connectivity structure of the network. Source: Giustolisi et al., 2019. 

 

Following (Figure 39-44), we report the flowrate (left panel) and the WDN-Tailored edge 

betweenness (right panel) for the remaining real networks. 

 

 

Figure 39. Pipe flow (left) and WDN-tailored edge betweenness weighted with pipes resistance (right) 

for Apulia 1 network. The network is composed of 986 nodes, 1,105 pipes and a single 

reservoir from which the main path starts to reach the centre of the network. The correlation 

index between two metrics is equal to 0,64, i.e., the edge betweenness well identifies the 

hydraulic behaviour of the networks. Source: Simone et al., 2019. 
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Figure 40. Pipe flow (left) and WDN-tailored edge betweenness weighted with pipes resistance (right) 

for Apulia 2 network. The network is composed of 7,716 nodes, 8,496 pipes, 3 reservoirs 

five pressure control valves and presents a wide range of diameters. The WDN-Tailored 

edge betweenness identifies quite well all the most important pipes in terms of pipe flow 

rates. In fact, the correlation index between two metrics is equal to 0,60, i.e., the edge 

betweenness well identifies the hydraulic behaviour of the networks. Source: Simone et al., 

2019. 

 

 

Figure 41. Pipe flow (left) and WDN-tailored edge betweenness weighted with pipes resistance (right) 

for Apulia 3 network. The network is composed of 1,270 nodes, 1,472 pipes and 3 reservoirs. 

The metric identifies various main paths within the network probably since of the presence 

of three reservoirs. Since each reservoir has its own area of influence in terms of demand 

nodes, each main path has a different relevance. The result is consistent with the information 

provided by the flow rate. In fact, the correlation index between two metrics is equal to 0,54, 

i.e., the WDN-Tailored the edge betweenness well identifies the hydraulic behaviour of the 

network. Source: Simone et al., 2019. 
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Figure 42. Pipe flow (left) and WDN-tailored edge betweenness weighted with pipes resistance (right) 

for Apulia 4 network. The network is a very looped network composed of 3,166 nodes, 3,483 

pipes, 2 reservoirs and a portion of network no longer in use (dotted blue). The high 

redundancy favours the presence of several paths with similar relevance. The WDN-Tailored 

edge betweenness identifies a greater number of paths as relevant with respect to the pipe 

flow rates, probably because the network is oversized, and the topologic metric considers 

the diameters and not the flow that effectively crosses them. The correlation index between 

two metrics is equal to 0,66, i.e., the edge betweenness well identifies the hydraulic 

behaviour of the networks. Source: Simone et al., 2019. 

 

 

Figure 43. Pipe flow (left) and WDN-tailored edge betweenness weighted with pipes resistance (right) 

for Apulia 5 network. The network is composed of 7,164 nodes, 7,895 pipes, 1 reservoir and 

a pressure control valve downstream of the reservoir. The WDN-Tailored edge betweenness 

identifies a different number of paths as relevant with respect to the pipe flow rates, i.e., the 

flow has no direct correspondence with the resistance for all the pipes. However, the 

correlation index, equal to 0,62, shows once again that the analysis is close to the hydraulic 

of the system. Source: Simone et al., 2019. 
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Figure 44. Pipe flow (left) and WDN-tailored edge betweenness weighted with pipes resistance (right) 

for Apulia 6 network. The network is a very looped network composed of 1,111nodes, 1,307 

pipes, 4 pressure control valves and 1 reservoir. The hydraulic metric highlights the mains 

pipes without defining properly a main path. The same happens with the topological metric, 

confirming once again that the edge betweenness well identifies the hydraulic behaviour of 

the network. The correlation index between two metrics is equal to 0,54. Source: Simone et 

al., 2019. 

 

Table 2 reports the Spearman correlation index (Spearman, 1904) between two metrics of 

the six analysed networks considering several weights for the edge betweenness, i.e., 

connectivity, length, and resistance. 
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Apulia 1 986 1,105 1 0 0,64 0,71 0,73 

Apulia 2 7,716 8,496 3 0 0,60 0,63 0,65 

Apulia 3 1,270 1,472 3 0 0,54 0,50 0,53 

Apulia 4 3,166 3,483 2 0 0,66 0,75 0,79 

Apulia 5 7,164 7,895 1 0 0,62 0,70 0,75 

Apulia 6 1,111 1,307 1 0 0,54 0,59 0,60 

        

Table 2. Topological characteristics and correlation index for the six analysed WDNs. 

The results obtained by applying the WDN-tailored edge betweenness to real WDNs, 

confirmed the usefulness of the metric for the WDN domain analysis. The domain analysis 

provided correlation index values ranging in the interval [0,50; 0,79]. 

Indeed, although the WDN-Tailored edge betweenness cannot replace the hydraulic 

simulation, it might provide useful indications to drive calibration, maintenance works as well 

as relevance of pipes to plan operations.  
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4.2 Paradigm of the Intrinsic Relevance of Vertex/ Node 

We conceived and developed a strategy with the aim to enhance the domain analysis of real 

systems without resorting to artifices, for example linked to the need to increase the topological 

relevance of specific nodes (e.g., source nodes for WDNs). The assumption was that whatever 

the system analysed, each vertex/node has an own intrinsic relevance, independent from the 

topological one, that must be embedded into the analysis.  

CNT tools have always evaluated the importance of elements only considering the 

topological features, i.e., the connective structure and the position of the elements. 

Consequently, each type of analysis, assuming an identical intrinsic relevance for all nodes, 

neglected a part of the network information.  

For example, the strategy presented in the previous paragraph, i.e., the idea to assign a star 

of fictitious nodes in correspondence of the source nodes in order to increase their topological 

relevance, arises precisely from the impossibility of considering an intrinsic relevance for this 

type of hubs. For the specific case, since demand nodes have an intrinsic relevance generally 

similar to each other and much lower than that of the source nodes, assuming identical relevance 

for them did not significantly affected the success of the analyses. The problem arises from the 

fact that a percentage of demand nodes is represented by strategic structures (e.g., hospital, 

schools, etc.) other than the source nodes. The assumption of the same intrinsic relevance for 

these nodes led to a loss of useful information on the main paths between the strategic structures 

within the networks. Therefore, also for these nodes it would be necessary to propose a way to 

increase their topological relevance. We found the solution to this problem. By embedding the 

intrinsic relevance of all nodes within the analysis, it will no longer be necessary to propose 

artifices to increase the topological relevance of specific nodes to obtain reliable results.  

In WDNs, nodes with many connections, which can represent release nodes in the network, 

present a high topology-based centrality correctly detected by classical CNT tools, because high 

number of connections corresponds to high centrality. Differently, a source node generally 

presents a low number of connections and CNT tools cannot correctly quantify their actual 

centrality in the network, because a low number of connections does not correspond to low 

centrality. The finding is that not considering the information about the intrinsic relevance of 

nodes can give misleading outcomes for some networked systems. Therefore, with reference to 

the study of WDNs it is important to consider the intrinsic relevance of all nodes, i.e., the 

intrinsic relevance referred to demand, strategic and sources nodes need to be embedded in the 

centrality evaluation to make useful CNT for such networked systems.  
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The intrinsic relevance Rn (n=1, …, N) of each node is an exogenous information depending 

on the type of network and analysis to be performed. For WDNs, characterized by source nodes 

supplying water to other nodes, the intrinsic relevance could be assigned equal to the demand 

for each demand node and to the sum of demand for the source node. This way, all nodes assume 

a different relevance during the analysis. The strategy is performed using several functions f(Rs, 

Rt) that depend on the intrinsic relevance of the ending nodes s and t of the generic edge l. The 

values of the function f(Rs,Rt) can be stored in a matrix having the same dimension of the 

adjacency matrix with zero diagonal elements, i.e., a matrix, generally asymmetric (f (Rs,Rt) ≠ 

f (Rt,Rs)), is constructed each time by observing the specific system analyzed.  

The function f(Rs,Rt) has a problem-dependent structure, i.e., the selection of a specific 

function allows to embed a diverse exogenous information in the standard centrality metrics. 

For example, when we assume f(Rs,Rt) = Rs the degree d(s) and closeness C(s) are simply scaled 

by Rs and the relevance of the node s does not influence its neighbors, meaning that we are only 

increasing the degree and the capacity to transfer information of the specific node. I.e., 

centrality metrics increase as the intrinsic relevance of the vertices increases. It follows that the 

intrinsic relevance of the nodes does not coincide with the pipe weights because the first scales 

the inverse distance (harmonic centrality) or determines the importance of the shortest paths 

(betweenness) while the second considers the strength of the connections and the effect in 

determining the shortest path and the distance between the vertices (Giustolisi et al., 2020). 

It is important noting that the novel centrality metrics, obtained embedding the intrinsic 

relevance of nodes, represent a generalization of the classic ones, i.e., f (1,1) = 1. Examples of 

functions are: (i) f (Rs, Rt) = Rs∙Rt; (ii) f (Rs, Rt) = (Rs + Rt)/2; (iii) f(Rs,Rt) = Rs and (iv) f(Rs,Rt) 

= max[Rs, Rt]; (v) f(Rs, Rt) = Rpath and (vi) f(Rs, Rt) = Rpath (where Rpath indicates the relevance 

of vertices crossed in the path). 

Furthermore, f(Rs, Rt) can be considered as a constitutive function that allows to specify the 

characteristics of the network to be analyzed and depends on the specific characteristics of the 

problem under examination. By increasing the knowledge of the constitutive function, and 

therefore of the network, the accuracy of the analysis increases. From this point of view, it is 

possible to identify the functions f(Rs,Rt) most suitable for the various physical systems, also 

considering that it should be monotonically increasing.  

The strategy draw attention to the importance of embedding the information about the 

intrinsic relevance of nodes into CNT tools to enhance the WDNs analysis. This choice allowed 

to obtain concrete results on the actual role of topological domain features in the emergent 

hydraulic behaviour. 
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4.2.1 Embedding the intrinsic relevance of vertices to the centrality metrics: degree, 

harmonic and betweenness centrality 

We extended the standard definitions of degree, closeness, harmonic closeness and 

betweenness to embed the intrinsic relevance of nodes, showing that this information can 

increase the capability of centrality tools to assess the relevance of vertices and edges.  

Degree centrality 

The standard degree of Eq. (19) assumes that all vertices are characterized by an identical 

intrinsic relevance and that the metric exclusively depends on the connectivity structure, 

( )         D

s stt
C D s A t = 1 ... V= =      (37) 

We assumed that each node has an own intrinsic relevance, defined as Rv (v=1, …, V), i.e., 

the metric does not exclusively depend on the connectivity structure. The function f(Rs, Rt), that 

depends on the relevance of vertices s and t, weights the importance of the connection of the 

vertex s with its neighbors. Hence, the definition of the standard degree can be extended to 

embed the information about the intrinsic relevance of the vertices through the function f (Rs, 

Rt) as follows, 

                                                ( ) ( ),         D

s st s tt
C D s A f R R t = 1 ... V= =   (38) 

The use of a pure regular network, composed of four vertices and four edges (Figure 45), 

help us to explains how the new metric works. The function f (Rs, Rt) = Rs∙Rt is considered. With 

the assumption of identical relevance of nodes, i.e., RA = RB = RC = RD = 1, the degree is equal 

to two for each node. Doubling only the relevance of the vertex A (i.e., RA = 2), DA = 4, DB = 

DD = 3 and DC = 2. I.e., increasing the intrinsic relevance of the node A increases its relevance-

embedding degree and that of the adjacent nodes B and D. Therefore, associating information 

on intrinsic relevance and connective structure generates hubs and leads to networks more and 

more scale free. 

 

Figure 45. Regular network: the degree case. Source: Giustolisi et al., 2020. 
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Harmonic centrality 

The harmonic version of the closeness of Eq. (23) assumes that all the vertices are 

characterized by an identical intrinsic relevance and that the metric exclusively depends on the 

connectivity structure, 

                                                 ( )
,

1
            C

s t
s t

H C s t = 1 ... V
d

= =   (39) 

where ds,t is the shortest distance between vertices s and t. 

We assumed that each node has an own intrinsic relevance, defined as Rv (v=1, …, V), i.e., 

the metric does not exclusively depend on the connectivity structure. The definition of the 

standard harmonic can be extended to embed the information about the intrinsic relevance of 

the vertices through the function f(Rs, Rt) as follows,  

                                           ( )
( )

,

,
            

s tC

s t
s t

f R R
H C s t = 1 ... V

d
= =   (40) 

We use the same pure regular network of the degree case and the same function f (Rs, Rt) = 

Rs∙Rt. With the assumption of identical relevance of nodes (i.e., RA = RB = RC = RD = 1) and 

identical weighs for all edges, CA = CB = CC = CD. To explain the different role of edge weights 

with respect to the vertex intrinsic relevance, we assume a different weight for the edge AB, 

i.e., wA-B = 0.5 and wB-C = wC-D = wD-A = 1 (Figure 46), obtaining CA = CB = 3.66 and CC = CD 

= 2.66. Nodes A and B are characterized by a greater capacity to spread information with respect 

to C and D, being wA-B lower than the other weights.  

 

Figure 46. Regular network: harmonic centrality case. Source: Giustolisi et al., 2020. 

Assuming that each vertex has its own intrinsic relevance, doubling RA, the intrinsic 

relevance of A increased its capacity to spread information (i.e., the value of the harmonic 

centrality) and that of the nearest (as distance d) nodes, obtaining CA = 7.33, CB = 5.66, CC = 

3.33 and CD = 3.66. Therefore, associating information on intrinsic relevance, connective 
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structure, and edge weights (for weighted networks), increases the capacity to spread 

information of the most relevant nodes and of the nearest ones.  

Betweenness centrality 

The standard betweenness of Eq. (24) assumes that all the vertices are characterized by an 

identical intrinsic relevance and that the metric exclusively depends on the connectivity 

structure. The metric assigns the number of shortest paths traversing a vertex v for all the 

couples of vertices s and t of the network, 

                                                        ( )
( ),

,

      
s tB

v s v t N
s t

v
C B v



  
= =    (41) 

Similarly, the edge betweenness, EB(e), assigns the number of shortest paths traversing an 

edge e, for all the couples of vertices s and t of the network,   

                                                         ( )
( ),

,

         
s tB

l s t N
s t

e
C EB e



 
= =    (42) 

It is important noting that for weighted networks a single shortest path exists between each 

couple of vertices s and t,  

                                                           
( ) ( )

( ) ( )

,

,

        s ts v t N

s ts t N

B v v S

EB e e S





  

 

= 

= 




  (43) 

where the Kronecker's δ function value is unitary if the vertices v (or the edge e) is member 

of the shortest path Ss,t and zero otherwise.  

Figure 47 indicates how betweenness is computed. Generally, given a shortest path between 

two nodes s and t, the standard betweenness of each traversed node (or edge) has a unitary 

increment (Figure 47-a), while the novel betweenness of each traversed node (edge) increases 

of a quantity f (Rs,Rt) (Figure 47-b).  

 

Figure 47. (a) Assignment of the standard betweenness to internal elements of a shortest path between 

vertices s and t. The values referred to the vertices are reported above the path and those 

 

(a)  

 

 (b) 
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referred to the edges, shown in square brackets, are reported below the path. Notice that the 

betweenness of traversed vertices (or edges) has a unitary increment. After the identification 

of all the shortest paths between all the couples s and t, the betweenness assigns to each 

vertex (edge) the number of times has been traversed. (b) Betweenness embedding intrinsic 

relevance. In this case, the betweenness increment of traversed vertices (or edges) is 

computed from f(Rs, Rt). Source: Giustolisi et al., 2020. 

The standard betweenness can be extended to embed the information about the intrinsic 

relevance of the vertices through the function f(Rs, Rt) as follows,  

( ) ( ) ( )

( ) ( ) ( )

,

,

,        

,

s t s ts v t N

s t s ts t N

B v f R R v S
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 

= 

= 




 (44) 

or considering the most general case of Eqs. (40) and (41), 
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 (45) 

Let us consider the same network and function f (Rs, Rt) = Rs∙Rt of the degree and harmonic 

cases. Figure 48 reports the shortest paths and the formulae to compute the betweenness and 

the edge betweenness considering the network as unweighted. With the assumption of identical 

relevance of vertices, of nodes (i.e., RA = RB = RC = RD = 1) and identical weighs for all edges, 

BA = BB = BC = BD = 1 and EBA-B = EBB-C = EBC-D = EBD-A = 4. Doubling the relevance of A 

(RA = 2), increases the betweenness of vertices and edges which need to be traversed to reach 

the most relevant vertices and the relevance-embedding betweenness becomes: BA = BC = 1 and 

BB = BD = 2 and EBA-B = EBD-A = 7 and EBB-C = EBC-D = 5. It is important noting that when two 

paths exist between two nodes, as for example between A and C, the factor ½ (A, C = 2) 

accounts for that occurrence.  
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Figure 48. Regular network: betweenness case using an unweighted network. Source: Giustolisi et al., 

2020. 

To explain the different role of edge weights with respect to the vertex intrinsic relevance, 

we assume a different weight for the edge AB, i.e., wA-B = 0.5 and wB-C = wC-D = wD-A = 1. Figure 

49 show the different roles of edge weights and relevance of vertices in determining the 

betweenness. 
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Figure 49. Regular network: betweenness case using a weighted network. Source: Giustolisi et al., 2020. 

The assumption of identical relevance of vertices (RA = RB = RC = RD = 1) provides BA = BB 

= 2 and BC = BD = 0 and EBA-B = 6, EBB-C = 4 and EBC-D = EBD-A = 2. Doubling the relevance 

of the vertex A (RA = 2), the betweenness becomes: BA = 2, BB = 4, BC = BD = 0 and EBA-B = 8, 

EBD-A = 6, EBB-C = 2, EBC-D = 4, i.e., embedding the intrinsic relevance increases the centrality 

of the vertices and edges which need to be traversed to reach the most relevant vertices.  

The results confirm that the vertex intrinsic relevance plays an important role together with 

the network topology (connectivity structure and edge weights) in assessing the centrality 

ranking. 

 

4.2.2 Regular and random networks 

The paradigm of the intrinsic relevance is applied to two regular and random networks of 

100 and 1,000 vertices, generated using the Watts and Strogatz model (Watts and Strogatz, 

1999) with mean degree d = 10 and probability p = {0,1}. We proceeded by calculating both 

the standard metrics, betweenness and closeness, and the new metrics with the previously 

defined six functions, i.e., (i) f (Rs, Rt) = Rs∙Rt; (ii) f(Rs,Rt) = (Rs + Rt)/2; (iii) f(Rs,Rt) = Rs and 

(iv) f(Rs,Rt) = max[Rs, Rt]; (v) f(Rs, Rt) = Rpath and (vi) f(Rs, Rt) = Rpath. The intrinsic relevance 

was assigned to vertices adding to the basic unit value a random value sampled from a uniform 

distribution in the range [0; d].  

We started by considering that the generated networks were made up of nodes having the 

same intrinsic relevance. We proceeded by randomly selecting a fraction r= 10% of the vertices 

assigning them, always randomly, an intrinsic relevance. The analysis continued by randomly 

assigning an intrinsic relevance to all vertices (r=100%) in the same range [1; 1+d]. Therefore, 

we have three different cases: 

• all vertices share the same relevance equal to one; 

• a fraction r=10% of vertices have random relevance in the range [1; 1+d]; 

• all vertices (r=100%) exhibit random relevance in the range [1; 1+d]. 

For each network (regular and random, with 100 and 1,000 vertices), analysed with the 

function f(Rs, Rt)= Rs∙Rt and pattern of intrinsic relevance (10% of randomly assigned intrinsic 

relevance to vertices and 100% assigned to all vertices) we report the scatter plots of: 

• standard versus the relevance-based betweenness; 

• relevance-based betweenness versus intrinsic relevance; 

• standard versus the relevance-based harmonic centrality;  
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• relevance-based harmonic centrality versus intrinsic relevance; 

and networks with coloured vertices referring to a colour-bar indicating the values of the: 

• standard betweenness;  

• relevance-based betweenness; 

• intrinsic relevance of vertices; 

• standard harmonic centrality;  

• relevance-based harmonic centrality. 

The same tests were done using the remaining five functions and they are available as 

supplementary material. 
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Figure 50. f (Ri, Rj) = Ri∙Rj performed for a regular network with 100 vertices. It reports standard vs 

relevance-based betweenness with r=10% (1st panel-left) and r=100% (1st panel-right), 

intrinsic relevance vs relevance-based betweenness with r =10% (2nd panel-left) and r 

=100% (2nd panel-right), classic vs relevance-based harmonic centrality with r =10% (3rd 

panel-left) and r =100% (3rd panel-right), and intrinsic relevance vs relevance-based 

harmonic with r =10% (4th panel-left) and r =100% (4th panel-right). 
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Figure 51. Regular network with 100 vertices corresponding to r=10% (left-panel) and r=100% (right-

panel) of the randomly assigned intrinsic relevance. The coloured vertices refer to the colour-

bar indicating the values of the: standard betweenness (1st panel), relevance-based 

betweenness (2nd panel), intrinsic relevance of vertices (3rd panel), standard harmonic 

centrality (4th panel) and relevance-based harmonic centrality (5th panel). The relevance-

based metrics refers to the function f (Ri, Rj) = Ri∙Rj as in Figure 50. 
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Figure 52. f(Ri, Rj) = Ri∙Rj performed for a random network with 100 vertices. It reports standard vs 

relevance-based betweenness with r=10% (1st panel-left) and r=100% (1st panel-right), 

intrinsic relevance vs relevance-based betweenness with r =10% (2nd panel-left) and r 

=100% (2nd panel-right), classic vs relevance-based harmonic centrality with r =10% (3rd 

panel-left) and r =100% (3rd panel-right), and intrinsic relevance vs relevance-based 

harmonic with r =10% (4th panel-left) and r =100% (4th panel-right). 
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Figure 53. Random network with 100 vertices corresponding to r=10% (left-panel) and r=100% (right-

panel) of the randomly assigned intrinsic relevance. The coloured vertices refer to the colour-

bar indicating the values of the: standard betweenness (1st panel), relevance-based 

betweenness (2nd panel), intrinsic relevance of vertices (3rd panel), standard harmonic 

centrality (4th panel) and relevance-based harmonic centrality (5th panel). The relevance-

based metrics refers to the function f(Ri, Rj) = Ri∙Rj as in Figure 52. 
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Figure 54. f (Ri, Rj) = Ri∙Rj performed for a regular network with 1,000 vertices. It reports standard vs 

relevance-based betweenness with r=10% (1st panel-left) and r=100% (1st panel-right), 

intrinsic relevance vs relevance-based betweenness with r =10% (2nd panel-left) and r =100% 

(2nd panel-right), classic vs relevance-based harmonic centrality with r =10% (3rd panel-left) 

and r =100% (3rd panel-right), and intrinsic relevance vs relevance-based harmonic with r 

=10% (4th panel-left) and r =100% (4th panel-right). 
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Figure 55. Regular network with 1,000 vertices corresponding to r=10% (left-panel) and r=100% (right-

panel) of the randomly assigned intrinsic relevance. The coloured vertices refer to the colour-

bar indicating the values of the: standard betweenness (1st panel), relevance-based 

betweenness (2nd panel), intrinsic relevance of vertices (3rd panel), standard harmonic 

centrality (4th panel) and relevance-based harmonic centrality (5th panel). The relevance-

based metrics refers to the function f (Ri, Rj) = Ri∙Rj as in Figure 54. 
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Figure 56. f (Ri, Rj) = Ri∙Rj performed for a random network with 1,000 vertices. It reports standard vs 

relevance-based betweenness with r=10% (1st panel-left) and r=100% (1st panel-right), 

intrinsic relevance vs relevance-based betweenness with r =10% (2nd panel-left) and r =100% 

(2nd panel-right), classic vs relevance-based harmonic centrality with r =10% (3rd panel-left) 

and r =100% (3rd panel-right), and intrinsic relevance vs relevance-based harmonic with r 

=10% (4th panel-left) and r =100% (4th panel-right). 
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Figure 57. Random network with 1,000 vertices corresponding to r=10% (left-panel) and r=100% 

(right-panel) of the randomly assigned intrinsic relevance. The coloured vertices refer to the 

colour-bar indicating the values of the: standard betweenness (1st panel), relevance-based 

betweenness (2nd panel), intrinsic relevance of vertices (3rd panel), standard harmonic 

centrality (4th panel) and relevance-based harmonic centrality (5th panel). The relevance-

based metrics refers to the function f (Ri, Rj) = Ri∙Rj as in Figure 56. 

About the betweenness centrality, the tests shown that: 

- for regular networks, the correlation between standard and novel metric is low, in fact 

the intrinsic relevance is always an important external information to characterize the 

specific problem; 

- for random networks, the correlation between classic and extended metric is low for 

r=10% and increases for r=100%, because the intrinsic relevance is an important 

external information to characterize the specific problem when it concerns the 10% of 

vertices, and it is less so increasing the number of nodes, until it vanishes for r = 100%; 

- increasing the size of the random network the correlation between classic and extended 

metric increases, because the importance of the intrinsic relevance vanishes when 

randomly assigned to all the vertices (r=100%); 
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- functions f(Rs,Rt)= (Rs·Rt) and f(Rs,Rt) = Rpath emphasize the role of the intrinsic 

relevance;  

- the intrinsic relevance is not correlated to the standard betweenness when the function 

f(Rs,Rt) depends on the ending vertices of the paths since of the specific meaning of the 

metric;  

- the intrinsic relevance of vertices becomes to be correlated to the standard betweenness 

when the function f(Rs,Rt) depends on all the vertices of the paths because the most 

relevant vertices contribute to the metric values when traversed. 

 

About the harmonic centrality, the tests show that: 

- both for regular and random networks, the correlation between standard and novel 

metric is always low, in fact the intrinsic relevance is always an important external 

information to characterize the specific problem; 

- the intrinsic relevance of vertices is quite always correlated to the harmonic centrality 

because the value of the metric for a vertex is at least scaled by its intrinsic relevance 

f(Rs, Rt) = Rs; 

- the intrinsic relevance of vertices is not correlated to the harmonic centrality when the 

function f(Rs, Rt) depends on all the vertices of the paths, because the intrinsic relevance 

of all the vertices in the shortest paths determines the metric value. 

 

4.2.3 The social network case: the Florence Families network 

Here we report the application of the extended metrics on a social network, precisely the 

Florence Families network (Padgett and Ansell, 1993; Alvarez-Socorro et al., 2015; Latora et 

al., 2017), composed of seventeen vertices, corresponding to the most notables Renaissance 

Florentine Families, and twenty-three edges, corresponding to the marriages between them. 

Computing the standard betweenness with the assumption of identical intrinsic relevance of 

vertices, i.e., Rv=1 for all nodes, we obtained the vertex and edge ranking shown in Figure 58, 

whose values are reported in Tables 3 and 4. The size of the family emblem indicates the node 

centrality, while the marriage link colour indicates the edge betweenness. Guasconi is the most 

central family, and the marriage between Peruzzi and Castellani is the most important link. 

However, it turned out strange that the Medici family, which has always been considered the 

most central/ influential of the Renaissance, was not the most central here too. We associated 
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this inconsistency with a lack of information useful for defining the metric itself, i.e., the 

intrinsic relevance of the vertices. 

 

Figure 58. Standard betweenness for the Florence Families network. Vertices are characterized by 

identical intrinsic relevance, equal to 1. Each family is represented by its own emblem, 

whose size is proportional to the corresponding vertex betweenness centrality. The edge 

betweenness is shown by coloured edges, ranging from black (maximum value) to cyan 

(minimum value). The colour bar of the figure is obtained subtracting the minimum value 

and normalizing to 100. Source: Giustolisi et al., 2020. 

 

Table 3. Standard betweenness centrality for the Florence families’ network. 

Family Standard Betweenness Centrality 

Guicciardini 0,00 

Tornabuoni 0,00 

Medici 24,00 

Da Uzzano 0,00 

Rondinelli 3,00 

Guasconi 34,92 

Pepi 0,00 

Scambrilla 0,00 

Benizzi 0,00 

Castellani 23,00 

Strozzi 26,33 

Rucellai 0,00 

Peruzzi 29,75 

Albizzi 19,00 

Altoviti 0,00 

Della Casa 0,00 

Panciatichi 2,00 
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Table 4. Standard edge betweenness centrality for the Florence families’ network 

Marriage Edge Standard edge betweenness  

Guicciardini Medici 8,50 

Tornabuoni Medici 8,50 

Medici Guasconi 17,50 

Medici Albizzi 7,00 

Da Uzzano Guasconi 8,33 

Rondinelli Guasconi 9,08 

Rondinelli Castellani 1,00 

Guasconi Strozzi 13,00 

Guasconi Peruzzi 4,25 

Guasconi Albizzi 1,00 

Pepi Castellani 8,00 

Scambrilla castellani 8,00 

Benizzi Strozzi 9,67 

Castellani Peruzzi 22,00 

Strozzi Rucellai 9,67 

Strozzi Peruzzi 10,00 

Strozzi Panciatichi 0,00 

Peruzzi Albizzi 3,00 

Peruzzi Della Casa 3,83 

Peruzzi Panciatichi 0,42 

Albizzi Altoviti 9,00 

Albizzi Della Casa 0,00 

Albizzi Panciatichi 2,00 

 

When we assumed that each family had an intrinsic relevance equal to the gross wealth (i.e., 

the sum of marital, trade, partnership, bank, and real estate relations) quantified in florins 

(Padgett and Ansell, 1993), the coupling and interaction between topology and intrinsic 

relevance made Medici the most central family. In fact, the function f(Rs,Rt) = Rs∙Rt identified 

Medici as the most central family and the marriage between Medici and Guasconi as the most 

central link. The gross wealth of each family is reported close to the family name in Figure 55. 

These results highlight the fact that Medici represent the most central family in the socio-

economic structure of the Florence families, i.e., the most traversed by the socio-economic 

activities and not the one that holds the greatest gross wealth (i.e., intrinsic relevance). 

Therefore, Medici results the most central in the network because it is always traversed by the 

paths between the four of five richest Florentine families (Medici excluded), not being these 

four families linked by marriages. This consideration supports even more the fact that the 



 

93 
 

importance of an element in the network is the result of the combination of topology and 

intrinsic relevance. 

 

Figure 59. Proposed betweenness centrality, embedding the family intrinsic relevance of the Florence 

Family network. The intrinsic relevance corresponds to the family gross wealth (in florins) 

and its value is reported close to the name of each family. Emblem size and edge color (from 

black for maximum value to cyan for minimum value) highlight the vertex and edge 

centrality, respectively. Source: Giustolisi et al., 2020 

Table 5. Relevance-embedding betweenness centrality for Florence family’s network, assuming the 

vertex intrinsic relevance based on gross wealth in florins. The colour bar of the corresponding 

figure is obtained subtracting the minimum value and normalizing to 100. 
Family Intrinsic relevance in 

florins 

Relevance-embedding 

betweenness centrality 

Guicciardini 203,087 0,00E+00 

Tornabuoni 299,878 0,00E+00 

Medici 248,105 9,65E+11 

Da Uzzano 96,131 0,00E+00 

Rondinelli 43,588 3,87E+10 

Guasconi 341,198 7,62E+11 

Pepi 43,100 0,00E+00 

Scambrilla 148 0,00E+00 

Benizzi 26,093 0,00E+00 

Castellani 111,355 8,01E+10 

Strozzi 407,296 2,40E+11 

Rucellai 93,891 0,00E+00 

Peruzzi 150,375 3,69E+11 

Albizzi 249,940 4,10E+11 

Altoviti 77,621 0,00E+00 

Della Casa 140,624 0,00E+00 

Panciatichi 193,878 5,76E+10 



 

94 
 

Table 6. Relevance-embedding edge betweenness for Florence family’s network, assuming the vertex 

intrinsic relevance based on gross wealth in florins. The colour bar of the corresponding figure 

is obtained subtracting the minimum value and normalizing to 100. 

Marriage Edge Relevance-embedding edge 

betweenness  

Guicciardini Medici 4,76E+11 

Tornabuoni Medici 6,74E+11 

Medici Guasconi 8,52E+11 

Medici Albizzi 4,97E+11 

Da Uzzano Guasconi 2,26E+11 

Rondinelli Guasconi 1,35E+11 

Rondinelli Castellani 4,51E+10 

Guasconi Strozzi 6,49E+11 

Guasconi Peruzzi 2,22E+11 

Guasconi Albizzi 1,57E+11 

Pepi Castellani 8,43E+10 

Scambrilla castellani 0,00E+00 

Benizzi Strozzi 6,45E+10 

Castellani Peruzzi 2,41E+11 

Strozzi Rucellai 2,26E+11 

Strozzi Peruzzi 2,35E+11 

Strozzi Panciatichi 1,60E+11 

Peruzzi Albizzi 9,96E+10 

Peruzzi Della Casa 1,63E+11 

Peruzzi Panciatichi 1,03E+11 

Albizzi Altoviti 1,78E+11 

Albizzi Della Casa 1,51E+11 

Albizzi Panciatichi 2,66E+11 

 

We computed the standard degree and the extended one. In the first case we obtained the 

vertex ranking shown in the Figure 60 (left), whose values are reported in Table 7. The degree 

values range from 1 to 6 and Guasconi, Albizzi and Peruzzi represent the most central families, 

i.e., the most important hubs, being connected to six other families by marriages. For the second 

one, embedding the family gross wealth (in florins) as intrinsic relevance during the analysis, 

the degree values range between 0 to 4,08E+12 (Figure 60- right). Guasconi family remains the 

most important socio-economic hub, being a rich family (intrinsic relevance equal to 341,198 

florins) connected with six families by marriages. The extended degree informs that Strozzi, 

the richest family (with an intrinsic relevance equal to 407,296 florins) and connected with five 

families with marriages, becomes the second socio-economic hub. Overall, the example shows 

that socio-economic influence of a family on its neighbours is relevant if the family is rich and 

well connected (by means of marriages) with other rich families.  



 

95 
 

 

Figure 60. Standard degree centrality (left) and proposed degree centrality embedding the family 

intrinsic relevance of the Florence Family network (right). The novel metric shows that the 

most central family within the network is not only the most connected but also the one with 

high relevance, i.e., the metric is a combination of topology and relevance of the elements. 

 

Table 7. Standard degree and Degree embedding vertex intrinsic relevance for Florence family’s 

network.  

Family Standard Degree Degree embedding 

vertex intrinsic 

relevance 

Guicciardini 1 5,00E+10 

Tornabuoni 1 7,40E+10 

Medici 4 2,71E+11 

Da Uzzano 1 3,20E+10 

Rondinelli 2 1,90E+10 

Guasconi 6 4,08E+12 

Pepi 1 4,00E+09 

Scambrilla 1 0.00E+00 

Benizzi 1 1,00E+10 

Castellani 4 2,60E+10 

Strozzi 5 3,28E+12 

Rucellai 1 3,80E+10 

Peruzzi 6 2,17E+12 

Albizzi 6 2,88E+12 

Altoviti 1 1,90E+10 

Della Casa 2 5,60E+10 

Panciatichi 3 1,57E+12 
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We also computed the standard harmonic centrality and the extended one. In the first case 

we obtained the vertex ranking shown in Figure 61 (left), whose values are reported in Table 8. 

The harmonic centrality values range from 5,817 to 10,667. Guasconi and Peruzzi represent the 

most efficient families to spread socio-economic activities in the network, followed by Albizzi. 

For the second one, embedding the family gross wealth (in florins) as intrinsic relevance during 

the analysis, the harmonic values range between 1,35E+08 to 6,08E+11 (Figure 61- right) and 

Guasconi remains the most central family to spread socio-economic activities through the 

network because of its economic relevance and topological position into the network of 

marriages. The novel harmonic informs that Strozzi, the richest family, becomes the second one 

in ranking because of its economic relevance and position in the network of marriages. 

 

Figure 61. Standard harmonic centrality (left) and proposed harmonic centrality embedding the family 

intrinsic relevance (right) of the Florence Family network. The novel metric shows that the 

most central family within the network is both the richest one and the most connected one. 

 

Table 8: Novel degree and harmonic centrality for Florence family’s network, assuming the vertex 

intrinsic relevance based on gross wealth in florins. The embeds considers the intrinsic 

relevance of vertices in florins. 

Family Degree Harmonic 

Guicciardini 5,983 2,29E+11 

Tornabuoni 5,983 3,24E+11 

Medici 9,000 4,31E+11 

Da Uzzano 6,667 1,23E+11 

Rondinelli 7,833 6,08E+10 

Guasconi 10,667 6,08E+11 

Pepi 5,817 3,83E+10 

Scambrilla 5,817 1,35E+08 
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Benizzi 6,250 3,26E+10 

Castellani 8,667 1,35E+11 

Strozzi 9,667 5,94E+11 

Rucellai 6,250 1,14E+11 

Peruzzi 10,667 2,90E+11 

Albizzi 10,333 4,47E+11 

Altoviti 6,500 9,43E+10 

Della Casa 7,667 1,91E+11 

Panciatichi 8,500 3,02E+11 

 

The extended degree and harmonic allowed to integrate the economic and social information 

of the families, obtaining a different result from the standard CNT analyses.  

 

4.2.4 Enhanced WDNs Assessment using the Paradigm of the Intrinsic Relevance of 

Vertices 

Here we report the application of the extended metrics on Apulian network (see Figure 34), 

composed of twenty-four vertices, that represent twenty-three demand nodes and one source 

node, and thirty-four edges, corresponding to the pipes for the water distribution. The strategy 

is performed using the function f(Rs, Rt) = Rs∙Rt. 

Computing the standard betweenness with the assumption of identical intrinsic relevance of 

vertices, i.e., Rv=1 for all nodes, we obtained the edge ranking shown in the figure 62 (left), 

whose values are reported in Table 9. The metric does not identify the pipes close to the 

reservoir as the most important, and this result is somewhat unrealistic from a technical point 

of view, since it is known that the most important edge for the distribution network corresponds 

to the pipe connecting the network to the source of water because all the paths from the source 

of water always traverse that edge. When we embedded the intrinsic relevance in the analysis, 

equal to the water demand for each demand node and to the sum of supplied water for the source 

node, the importance of pipes/ paths close to the reservoir increases, i.e., the extended metric 

correctly identifies the pipe close to the reservoir as the most important edge (See Figure 62-

right), consistently with the hydraulic engineering knowledge. In fact, the metric identifies the 

edge 34 as the most important and the main path is that between vertices 24-8. Results are 

reported in Table 9. 
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Figure 62. Left. Standard edge betweenness for Apulian network. Source and demand nodes have the 

same intrinsic relevance equal to 1. The most important pipe is the number 4. Right. 

Proposed edge betweenness embedding the intrinsic relevance in terms of demand for each 

node and as sum of demands for the source node (values in l/s are reported close to each 

node). The pipe 34 results the most important edge. The edge betweenness is identified by 

coloured edges ranging from black (maximum value) to cyan (minimum value). Source: 

Giustolisi et al., 2020. 

 

Table 9. Standard edge betweenness (source and demand nodes are characterized by the identical 

intrinsic relevance) and relevance-embedding edge betweenness (intrinsic relevance of 

vertices is assumed equal to the demand, for nodes, and the sum of demands, for the source 

node) for all pipes of the water supply system. The colour bar of the corresponding figure is 

obtained subtracting the minimum value and normalizing to 100. 

 

Pipe Standard edge 

betweenness 

Relevance-embedding 

edge betweenness  

Pipe Standard edge 

betweenness 

Relevance-embedding 

edge betweenness  

1 38 0,0305 18 22 0,0179 

2 26 0,0198 19 31 0,0105 

 3 52 0,0075 20 25 0,0069 

4 65 0,0209 21 13 0,0040 

5 3 0,0044 22 44 0,0105 

6 32 0,0396 23 26 0,0037 

7 58 0,0344 24 28 0,0040 

8 60 0,0089 25 40 0,0060 

9 0 0,0000 26 15 0,0053 

10 22 0,0080 27 26 0,0041 

11 15 0,0035 28 22 0,0137 

12 15 0,0026 29 8 0,0050 

13 8 0,0007 30 15 0,0024 

14 30 0,0087 31 52 0,0156 

15 43 0,0140 32 17 0,0102 

16 48 0,0213 33 17 0,0027 

17 62 0,0279 34 23 0,0796 
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In order to understand how the presence of strategic structures was considered in the 

analysis, we added a hospital in node 10, amplifying its demand, i.e., its intrinsic relevance, by 

10 times. The edge 34 results again the most important pipe, but the metric now identifies a 

new main path, i.e., those between vertices 24-10. This fact demonstrates that the function 

f(Rs,Rt) = Rs∙Rt correctly emphasizes the most important pipes for water supplying security at 

the hospital.  

 

Figure 63 Intrinsic relevance-embedding edge betweenness when a hospital is present in the vertex 10. 

Its intrinsic relevance is ten times its demand. The proposed edge betweenness again 

identifies pipe 34 as the most important, but the main path in the network changes in favor 

of those connecting the source node and the hospital. Source: Giustolisi et al., 2020. 

 

The analysis highlights even more the need of embedding the intrinsic relevance of nodes 

for the centrality evaluation of WDNs. 

Here we report the application of the Relevance-embedding edge betweenness to several real 

networks with different size and asset characteristics, already analysed with the WDN-Tailored 

edge betweenness (Giustolisi et al., 2019). The metric is computed using the function f(Rs,Rt) 

= Rs∙Rt, because it correctly emphasizes the most important pipes/ path for WDNs. Figures 64-

69 and Table 10 demonstrated the crucial role played by intrinsic relevance in assessing the 

correct vertex and edge ranking. The comparison between flowrate (left) and the Relevance-

embedding edge betweenness weighted with the hydraulic resistance (right) demonstrated that 

the topological metric identifies the domain of the network, i.e., it captures the emerging 

hydraulic behaviour of the system.  
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Figure 64. Hydraulic metric pipe flowrate (left) and Relevance-embedding edge betweenness for 

Apulian 1 network (right). The topological metric identifies the pipe close to the only 

reservoir as the most important for WDN hydraulics. The main path, from the reservoir to 

the city center, also matches the two metrics. The correlation index between two metrics is 

equal to 0,815, i.e., the relevance-embedding edge betweenness very well identifies the 

hydraulic behavior of the networks. 

 

 

 

Figure 65. Hydraulic metric pipe flowrate (left) and Relevance-embedding edge betweenness for 

Apulian 2 network (right). The network is fed by 3 reservoirs. Even if the topological metric 

is not able to capture the importance of the main paths, it identifies both the range of 

importance of the reservoirs and of the main paths. In fact, the correlation index between 

two metrics is equal to 0,691, i.e., it well identifies the hydraulic behavior of the network. 
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Figure 66. Hydraulic metric pipe flowrate (left) and Relevance-embedding edge betweenness for 

Apulian 3 network (right). The network is fed by 3 reservoirs, each with its own intrinsic 

relevance. The two metrics identify the same pipes as more relevant within the network. 

The correlation index between two metrics is equal to 0,751, i.e., the Relevance-embedding 

edge betweenness well identifies the hydraulic behavior of the network. 

 

 

Figure 67. Hydraulic metric pipe flowrate (left) and Relevance-embedding edge betweenness for 

Apulian 4 network (right). Apulian 4 is a very looped network composed with a portion of 

network no longer in use (dotted blue). The novel metric correctly identifies the pipe close 

to the reservoir as the most important edge, even if, since the high redundancy of the 

network, it identifies other paths as relevant with respect to the pipe flow rates. This may 

be due to the fact that the topologic metric considers the diameters and not the flow that 

effectively crosses them. The correlation index between two metrics is equal to 0,843, i.e., 

the Relevance-embedding edge betweenness well identifies the hydraulic behavior of the 

networks. 
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Figure 68. Hydraulic metric pipe flowrate (left) and Relevance-embedding edge betweenness for 

Apulian 5 network (right). Apulian 5 is a very looped network of great size. The topological 

metric identifies a greater number of main paths within the network than the hydraulic 

metric, even if the main paths coincide for both. In fact, the correlation index, equal to 0,818, 

shows once again that the analysis is close to the hydraulic of the system. 

 

 

Figure 69. Hydraulic metric pipe flowrate (left) and Relevance-embedding edge betweenness for 

Apulian 6 network (right). The topological metric identifies the main paths as identified by 

the flow, even if the range of values differs. The correlation index between two metrics is 

equal to 0,677, i.e., the Relevance-embedding edge betweenness well identifies the 

hydraulic behavior of the networks. 

 

Table 10 reports the Spearman correlation index (Spearman, 1904) between two metrics of 

the six analysed networks considering several weights for the edge betweenness, i.e., 

connectivity, length, and resistance, in order to includes the domain characteristics of the 

networks into the analysis. 

The Figures demonstrated how the Relevance-embedding edge betweenness is effective in 

identifying the emerging behaviour of WDNs. These results are confirmed by the Spearman 

correlation index, which for the metric vary between 0,60 and 0,84. 
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Table 10. Topological characteristics and correlation index for the six analysed WDNs using flow rate 

and Relevance-embedding edge betweenness. 
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Apulia 1 986 1,105 1 0 0,82 0,75 0,79 

Apulia 2 7,716 8,496 3 0 0,69 0,71 0,71 

Apulia 3 1,270 1,472 3 0 0,75 0,69 0,63 

Apulia 4 3,166 3,483 2 0 0,84 0,81 0,83 

Apulia 5 7,164 7,895 1 0 0,82 0,70 0,81 

Apulia 6 1,111 1,307 1 0 0,68 0,60 0,63 

        

 

4.3 WDN-oriented Centrality metrics vs. Intrinsic Relevance of Vertices 

The topology-based metrics, as they come from CNT, cannot provide reliable information 

about the actual importance of nodes and pipes for WDNs, i.e., they cannot be useful to discover 

the key features of the physical domain (i.e., the network) where hydraulics occurs. To 

overcome this problem, we firstly proposed the WDN-tailored edge betweenness as centrality 

metric able of describing the emergent hydraulic behaviour of WDNs. The tailoring is 

successively enhanced with the Relevance-embedding edge betweenness. The advantages 

deriving from the second strategy compared to the first are evident looking at the case studies 

analysed. In particular, the paradigm of the intrinsic relevance of vertices: 

- avoid the presence of fictitious nodes in WDN original topology, thus reducing 

the calculation times; 

- consider for the various nodes an intrinsic relevance that can refer to different 

situations and networks. This makes the metric more flexible and general than the 

previous one. In the case of WDNs we decided to assign, as intrinsic relevance, the 

demand for the demand nodes and the sum of the demands for the reservoirs. In this 

way it is not necessary to topologically increase the relevance of the source nodes, since 

there is already a ranking of intrinsic relevance of all the nodes; 

- presents much more reliable results than those obtained with the WDN-tailored 

edge betweenness. 

In order to demonstrate that the Relevance-embedding edge betweenness better identifies 

the emergent hydraulic behaviour of WDNs compared to WDN-tailored edge betweenness, 

Figures 70-75 report diagrams that compare the distribution of the pipe flow rates (sorted in 

descending order) both with the corresponding distribution of the WDN-tailored edge 

betweenness and Relevance-embedding edge betweenness, also in logarithmic scale (right 
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panel) for the six real networks analysed previously. The comparison confirms that Relevance-

embedding edge betweenness works better than its predecessor in detecting main paths within 

WDNs, i.e., in identifying the physical domain of WDNs. The good performance of the two 

metrics, and the added value of Relevance-embedding edge betweenness, is confirmed by the 

Spearman correlation index (Spearman, 1904), weighted with length, connectivity and 

resistance (see Table 11). 

 

Table 11. Comparison of correlation indices using flowrate and both WDN-Tailoring edge betweenness 

and Relevance-embedding edge betweenness. Results show that Relevance-embedding edge 

betweenness works better in identifying the emergent hydraulic behaviour as described by 

pipe flow rates. 
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Apulia 1 0,64 0,71 0,73 0,82 0,75 0,79 

Apulia 2 0,60 0,63 0,65 0,69 0,71 0,71 

Apulia 3 0,54 0,50 0,53 0,75 0,69 0,63 

Apulia 4 0,66 0,75 0,79 0,84 0,81 0,83 

Apulia 5 0,62 0,70 0,75 0,82 0,70 0,81 

Apulia 6 0,54 0,59 0,60 0,68 0,60 0,63 
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Figure 70. Top. Comparison between the pipe flows and the WDN-Tailored edge betweenness for 

Apulian 1. The correlation index is equal to 0,64. Bottom. Comparison between the pipe 

flows and the Relevance-embedding edge betweenness for Apulian 1. The correlation index 

is equal to 0,82. The diagrams on the right panel have the x-axis in logarithmic scale.  

 

 

Figure 71. Top. Comparison between the pipe flows and the WDN-Tailored edge betweenness for 

Apulian 2. The correlation index is equal to 0,60. Bottom. Comparison between the pipe 

flows and the Relevance-embedding edge betweenness for Apulian 2. The correlation index 

is equal to 0,69. The diagrams on the right panel have the x-axis in logarithmic scale.  
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Figure 72. Top. Comparison between the pipe flows and the WDN-Tailored edge betweenness for 

Apulian 3. The correlation index is equal to 0,54. Bottom. Comparison between the pipe 

flows and the Relevance-embedding edge betweenness for Apulian 3. The correlation index 

is equal to 0,75. The diagrams on the right panel have the x-axis in logarithmic scale.  

 

 

Figure 73. Top. Comparison between the pipe flows and the WDN-Tailored edge betweenness for 

Apulian 4. The correlation index is equal to 0,66. Bottom. Comparison between the pipe 

flows and the Relevance-embedding edge betweenness for Apulian 4. The correlation index 

is equal to 0,84. The diagrams on the right panel have the x-axis in logarithmic scale.  
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Figure 74. Top. Comparison between the pipe flows and the WDN-Tailored edge betweenness for 

Apulian 5. The correlation index is equal to 0,62. Bottom. Comparison between the pipe 

flows and the Relevance-embedding edge betweenness for Apulian 3. The correlation index 

is equal to 0,82. The diagrams on the right panel have the x-axis in logarithmic scale.  

 

 

Figure 75. Top. Comparison between the pipe flows and the WDN-Tailored edge betweenness for 

Apulian 5. The correlation index is equal to 0,54. Bottom. Comparison between the pipe 

flows and the Relevance-embedding edge betweenness for Apulian 3. The correlation index 

is equal to 0,68. The diagrams on the right panel have the x-axis in logarithmic scale. 
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4.4 WDNs oriented modularity index for DMAs and sampling design 
The concept of modularity was among the first to be borrowed from the CNT to be applied 

to infrastructural networks, adapting it in particular to the analysis and management of WDNs. 

The tailoring process was proposed in the course of various scientific papers, by Giustolisi and 

Ridolfi (2014a, b) who introduced various basic formulations for the modularity index aimed at 

combining the peculiarities of the WDN infrastructure in addition to the meaning technician of 

tubes and modules. This chapter briefly retraces the tailoring process that took place over the 

years and presents two of the works we produced on the subject. The first work proposed the 

development of a district strategy, i.e., DMA design, (Laucelli et al., 2017) based on a 

topological segmentation and a hydraulic distrectualization of WDNs. In the second work we 

extended the concept of modularity index, already tailored, to pressure sampling design (Simone 

et al., 2016), introducing a new metric to perform the optimal location of pressure meters in 

WDNs. Both works demonstrated the effectiveness of the metric in management applications 

on WDNs.  

Analysis and management of WDNs has always presented many problems related with a 

non-homogeneous behaviour of these infrastructural systems. Several solutions have been 

proposed to manage this problem, and the most used and studied is the community 

detection/segmentation strategy, i.e., the division of the network into smaller modules. 

Researchers proposed several approaches to segmentation (Jacobs and Goulter, 1988; Yang et 

al., 1996; Walski, 1983; Davidson et al., 2005; Deuerlein, 2008; Perelman and Ostfeld, 2011; 

Alvisi and Franchini, 2014; Yazdani and Jeffrey, 2012; Scibetta et al., 2013; Diao et al., 2013; 

Albert and Barabasi, 2002; Newman, 2004) in order to identify an optimal division of the 

network with respect to WDN topology and characteristics. Also, CNT studies proposed several 

approaches/ metrics for real systems segmentation (Steinhaeuser and Chawla, 2009) and the 

modularity index (Girvan and Newman, 2004) resulted the most widely accepted and used 

metric to measure the propensity of the network division into modules. The modularity index 

derives from a comparison between a real network and a random network that share some 

common topological characteristics (e.g., the total number of connections to the network). 

However, the direct use of the original formulation of the modularity index for WDNs is 

inadequate (Giustolisi and Ridolfi, 2014; Barthélemy, 2011) because the structure of this type 

of network is strongly constraints by several limits, and the random network taken as a reference 

point for the detection of segments has not a clear correspondence with the infrastructural one. 

To overcome this limit, Giustolisi and Ridolfi (2014a) proposed a tailoring of the modularity 

index for WDNs, defining the WDN-oriented modularity index, accounting for the features of 
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WDNs using the general topological incidence matrix commonly adopted in hydraulic 

modeling,  
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where nc is the number of pipes linking modules of the infrastructure, namely the number of 

conceptual cuts in the network (i.e., the decision variables of the WDN segmentation problem) 

and nm is the number of network modules. The summation inside the square brackets is related 

to pipe weights stored in the vector wp, whose sum is W, and Kronecker's δ function makes that 

the sum refers only to the weights of pipes belonging to the m-th module (i.e., δ = 1 if Mm=Mk 

and δ = 0 otherwise). The term Q1 of Eq. (46) decreases with the number of cuts, while Q2 

generally increases with the number of modules. For a given number of modules, Q2 increases 

with the similarity of modules to each other with respect to the assigned weights. 

They developed a cut position-sensitive index in order to account for the actual position of 

conceptual cuts, which would later be devices, along pipes (i.e., close to ending nodes instead 

of the middle of pipes) generating districts and introduced in the formulation of the modularity 

index the pipe weights, i.e., asset and/or hydraulic information at pipe level. This way, the 

tailored metric allowed dividing the network into districts similar to each other with respect to 

an assumed weight. The tailored modularity index was successively extended proposing the 

attribute–based segmentation index to allow the division of the network into districts having 

internal similar attribute (e.g., diameter, average elevation, average pressure, etc.), 
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where ap is the vector of pipe attributes, ā(N) is the mean value of the pipe attributes of the 

network N, i.e., of ap, and ā(Mm) is the mean value of the pipe attributes in Mm. Function δ 

limits the summation of the pipe attributes to the elements belonging to the same module. 

Furthermore, since the tailored metric was still affected by resolution limit (Fortunato and 

Barthélemy, 2007), which causes the non-identifiability of smaller modules depending on the 

size of the network, Giustolisi and Ridolfi (2014b) proposed the infrastructure modularity index 

to overcome such limit, 



 

110 
 

( )
( ) ( ) ( )

2

1 1

,1
1         

pm
nn

p m kc act k
p

m kp

n n
IQ

n W



= =

  − −
 = − −
  

 
w

w  (48) 

where nact is the actual number of modules satisfying given constraints (e.g., the minimum 

length of the modules, the minimum number of pipes, etc.).  

Starting from these findings, we proposed a comprehensive application of the infrastructural 

modularity, i.e., a distrectualization (DMA design) strategy (Laucelli et al., 2017) based on two 

phases: topological segmentation and hydraulic distrectualization. The first phase of the 

strategy involves a virtual segmentation of the topological structure of the network with 

conceptual cuts in order to obtain virtual segments. This phase is based on a two-objective 

optimization that, on the one hand, maximizes the modularity index which measures the 

efficiency of the topological division into segments and, on the other, minimizes the number of 

conceptual cuts that separate the segments. The second phase involves the installation of 

devices, flow meters or closed valves, in the location of the conceptual cuts. This phase is based 

on a three-objective optimization that, on the one hand, minimizes the number of flow meters 

and the total unsupplied customer demand and, on the other, maximize the reduction of 

background leakages. Finally, the application of the segmentation strategy divides the system 

in a number of segments bounded by installed devices allowing to define district metering areas 

(DMAs), which are useful for different technical purposes, e.g., demand and background 

leakages management, burst detections, rehabilitation works, model calibration, etc.  

We further extended the concept of network segmentation to pressure sampling design 

(Simone et al., 2016), introducing the sampling-oriented modularity index to perform the 

optimal location of pressure meters, i.e., to optimize the pressure monitoring system mainly 

based on network topology and weights assigned to pipes according to the specific technical 

tasks.  

Starting from Eq.s (46-48) we defined, respectively, the sampling-oriented modularity Qs, 

sampling-oriented infrastructure modularity IQs, sampling-oriented attribute–based modularity 

Qa-s and sampling-oriented infrastructure attribute–based modularity IQa-s, 
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where nobs is the number of removed nodes, i.e., where pressure meters will be installed, nn 

is the number of nodes, nm is the number of modules nm identified by removing nodes and nact 

is the actual number of modules matching the technical constraints to avoid excessive resolution 

of the segmentation. The term Q2 of Eqs. (49) refers to the characteristics of modules, which 

are now created by removed nodes. 

The strategy is based on a two-objective optimization that, on the one hand, maximize the 

sampling-oriented modularity index and, on the other, minimizes the cost of pressure meters. 

The strategy has several analogies with the optimal segmentation design for district monitoring 

areas (DMAs) and integrates the need of dividing a WDN considering pressure meters in order 

to know the pressure status. Therefore, with respect to the previous metrics the sampling-

oriented modularity index segments the network using conceptual removal of nodes and not 

conceptual cuts positioned on pipes and for segment identification it uses the connectivity 

matrix of the edges/pipes L= Apn x Anp, and not the classic adjacency matrix A.  

Furthermore, pressure DMAs do not involve the modification of the network topology, 

which also affects the hydraulic status of the WDN, differently from the classic DMAs, that 

modifies both the network topology and hydraulic status installing closed valves. I.e., for the 

sampling design strategy, the network division is conceptual.  

 

4.4.1 Optimal DMA Design 

The division of WDNs into districts is a common practice for multiple technical purposes, 

generally aiming at planning and management problems. With the aim of finding effective 

solutions to relevant management problems, we proposed the Optimal Design of District 
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Metering Areas (Optimal DMA Design) strategy. The strategy includes a first topological phase 

that focuses on the network structure, in order to segment the hydraulic domain, and a second 

phase that focuses on the hydraulic behaviour, in order to define the location of flow 

measurement and closed valves to create operative districts. Therefore, once again, the network 

connectivity structure represents the main driver of the hydraulic behaviour, i.e., the network 

connectivity structure of the hydraulic system dominates the district design with respect to the 

hydraulic behavior.  

 

Optimal network segmentation. The two-objective optimization of the first phase minimizes 

the number of conceptual cuts and maximizes the WDN-oriented modularity index, 
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where Anp is the incidence matrix, Ic is the set of nc cuts in the network, decision variables of the 

optimization, the Connectivity (Ic,|Anp|) stands for component analysis of the undirected graph for 

the given cuts, L is the sum of pipes lengths, stored in the vector Lp, and nact indicate the cuts that 

are actually used to separate modules. The modularity index measures the similarity of the segments 

with respect to selected pipe weights (e.g., in the case of lengths the similarity of segment lengths) 

for a given number of conceptual cuts dividing the network in nm segments. Therefore, its 

maximization provides the maximum number of modules, which are similar with respect to pipe 

weights, obtained with the minimum number of cuts. The already existing devices (e.g., control 

valves, pumps, closed valves, and reservoir) represent priors and can be considered as already 

existing conceptual cuts. The optimization problem in Eq. (50) returns a Pareto front of optimal 

segmentation solutions generating modules that are similar to each other in terms of total length for 

a given number of cuts, i.e., each segmentation solution consists of a set of conceptual cuts dividing 

the network structure of the WDN into modules.   

The optimal segmentation is constrained to search for nested solutions, i.e., solutions with higher 

resolution (with more conceptual cuts) are nested in the more parsimonious segmentations (with 

less conceptual cuts). This fact provides flexibility to the segmentation design because it is possible 

to start from any optimal scenario, depending on the preferred resolution of the districts, which is 

generally driven by the budget uncertainty and the growing knowledge of the system (Laucelli et 
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al., 2017). One solution is selected among the optimal segmentation solutions as the basis for the 

actual DMA design. 

 

Optimal design of the network DMAs. The three-objectives optimization of the second phase 

minimizes the number of flow observations and the unsupplied customer demand and maximizes 

the reduction of leakages, 
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where nfm is the number of flow meters; VT
cust and VT

leak are namely the total customer demand 

and leakages over T-steps extended period simulation (EPS), in the original WDN configuration 

(i.e., without accounting for devices); VT
cust (v) and VT

leak(v) are the same figures but referred to the 

set v of closed gate valves located at “conceptual cuts” (i.e., representing the implementation of the 

DMAs). dn and dn
leaks are the vectors of water demand and background leakages (lumped at nodes) 

which depend on time and current pressure status. In order to account for the emptying/filling 

process of tanks during optimal DMA design the following constraints have been added to the 

formulation (50), 
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where s is the subscript of the sth tank node; Hs
min is the minimum head level at the sth tank 

node; Hs
ini is the initial head level at the sth tank node varying over time t and Hs

final is the final 

level at the sth tank node. The constraints in (52) guarantee system reliability because the first 

equation states that the initial level (i.e., volume) in each tank should be lower than the final of 

the EPS, while the second states that the tank level cannot be lower than the minimum during 
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the extended period simulation (EPS). It is important noting that the strategy imposes a pressure-

driven analysis (Giustolisi et al., 2008; Giustolisi and Walski, 2012).  

This phase is performed using as basis one of the optimal segmentation solutions. The procedure 

aims at determining the position of flow meters and closed valves in the conceptual cuts dividing 

the network structure of the WDN in segments. The installation of closed valves allows the design 

of actual districts in the hydraulic systems and the reduction of leakages thanks to the 

reconfiguration of flows and to the consequent reduction of the pressure status within the system. 

A connectivity analysis between the first and second phase is performed in order to verify that 

the closure of any candidate closed valve in the conceptual cuts does not cause the disconnection of 

portions of the network. In this case the valve is automatically removed from the conceptual cuts 

by replacing it with a flow meter.  

 

Case study: Exnet WDN 

Exnet network has been used to show the effectiveness of the Optimal DMA strategy (Laucelli 

et al., 2017). The network has a real medium size and is composed of 1,894 nodes, 2,471 pipes 

and 7 reservoirs, whose layout is reported in Figure 76. It is important noting that in both phases, 

the presence of existing devices is considered as a prior information in the analysis. 

 

Figure 76. Layout of Exnet network. 

 

The first optimization procedure returned a Pareto front of optimal segmentations solutions by 

solving the problem of Eqs. (50). The optimal solutions are reported in Figure 77. In fact, the first 

optimal solution contains the minimum number of conceptual cuts, i.e., those constrained by the 

pipes delivering water from the seven reservoirs, while the last optimal solution contains ninety-

nine conceptual cuts that divide the network in 32 modules. 
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Figure 77. Pareto set of optimal segmentation solution for Exnet network. Source: Laucelli et al., 2017. 

This last solution, with the maximum number of cuts is reported in Figure 78 and corresponds 

to the maximum value of the WDN-oriented modularity index. It is important noting that two 

constraints have been assigned to the analysis: (i) flow meters are mandatory close to reservoirs and 

branched portions of the network; (ii) high diameter (>500 mm) are not considered as potential 

position for closed valves, because their closure could result into massive reduction of system 

hydraulic capacity for which the WDN was originally designed. The technical constraints result 

into 31 mandatory flow meters and, therefore, the problem concerns the decision about installing 

closed valves or flow metering for 68 out of 99 conceptual cuts. 

 

Figure 78. Optimal segmentation for Exnet with 32 modules and 99 cuts, corresponding to maximum value 

of modularity index. Source: Laucelli et al., 2017. 

 

The optimal segmentation solution, with the maximum value of the WDN-oriented modularity 

index, is selected as the basis for the second phase. The second optimization procedure returned a 

Pareto front of 12 optimal DMA solutions (Figure 79), all characterized by null unsupplied demand. 
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The solutions present a number of flow meters ranging from 16 to 27, in addition to those already 

defined above, corresponding to closed valves ranging between 52 and 41, respectively.  

 

Figure 79. Twelve DMA design solutions with null unsupplied water. Source: Laucelli et al., 2017. 

In terms of leakage, the solutions guarantee a reduction between about 11% and 15 % with 

respect to the original configuration. Each solution generates a different distribution of flow paths 

with respect to the original ones of the hydraulic system (i.e., without DMAs definition) since 

number and position of closed valves changes between the various configurations. This fact also 

affects the pressure conditions for each of them. Figures 80 and 81 report the different pressure 

conditions for solutions 1 and 12, which are obtained with a different number of flow meters, 27 

and 16 respectively (corresponding to 41 and 52 closed valves).  

 

Figure 80. Pressure drop of Solution 1 causing a leakage reduction of 15.4% using 27 m and 41 valves. 

Source: Laucelli et al., 2017. 
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Figure 81. Pressure drop of Solution 12 causing a leakage reduction of 11.2% using 16 m and 52 valves. 

Source: Laucelli et al., 2017. 

The importance of certain pipes in the network is highlighted by their presence in almost all 

optimal configurations. I.e., installing a closed valve on such pipes almost always corresponds to 

prompting a reconfiguration of the flows which brings advantages both in terms of pressure and 

leakages reduction. Obviously, this analysis is local and must be inserted in the wider context of the 

water network. Figure 82 reports the percentage of times that each candidate conceptual cuts is 

selected for installing a closed valve, over the twelve optimal DMA design solutions.  

 

Figure 82. Average use of closed valves in the 68 candidate positions versus diameter. Source: Laucelli et 

al., 2017. 

A comparison between solution 1 and 12, in terms of the number of valves installed in the 

network, highlights the fact that installing a few closed valves on large diameters (solution 1) is 

more effective than installing many valves on small diameters (solution 12). Therefore, the trend 

indicates a greater leakage reduction for solutions with a lower number of closed valves because 

they are installed in strategic topologic positions (i.e., more important flow paths) with respect to 

the original flow paths of the hydraulic system, which is not the case when many valves are installed 

aiming only at the need of topological division of the network structure without significantly 

changing the original system configuration.  
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4.4.2 Optimal Sampling Design 

Sampling design is of key importance for various WDN analysis and management tasks by 

means of analysis and monitoring of pressure status. The present optimal sampling design 

strategy extends the concept of WDN-oriented modularity metrics (Giustolisi and Ridolfi, 

2014) defining the sampling-oriented modularity indexes, i.e., the metrics are modified in order 

to consider the positioning of nodal pressure meters and introducing the "conceptual removal 

of nodes" that divides the networks into "pressure DMAs".  

The strategy includes a multi-objective optimization based on a topological analysis that 

minimizes the cost of pressure meters and maximizes the sampling-oriented modularity index.  

The two-objective optimization of the problem, that minimizes the number of conceptual 

removal of nodes and maximizes the sampling-oriented infrastructure modularity index, are 

( )

( ) 
( ) ( ) ( )

 

( )

( ) ( )

( ) ( )

2

1

1 1

2

1

1 1

1
1

[ , , ] ,

,1
max max 1

min

,

%

pm

c

p

obs act c

nn
p m kobs act k

p

m kn

obs

I

n nn n

p pp pn nn n

n

p m kk
k

M n n connectivity I

n n
f IQ

n W

f n

considering

and

C x
L





= =

−

− −

=


=


    − −  

 = = − −  
     

 =


 = 

 = 

 

= 

 



L

w
w

H A d

Q D A A d

L

 (53) 

where L is the edge/pipe adjacency matrix, Ic is the set of nobs conceptually removed nodes in the 

network, the decision variables, and connectivity (L, Ic) stands for component analysis of the graph 

with respect to edge, x% is a threshold percentage to be assumed. C1 is a sort of “pressure” for the 

optimization to search for solutions characterized by modules having length larger than x% of the 

total network length L. The already existing pressure meters are considered as constraints.  
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Case study: Exnet WDN 

The optimization procedure returns a Pareto front of optimal solutions by solving the problem 

of Eqs. (53). Figure 83 reports the two Pareto sets corresponding to the solution of the two-

optimization procedures using the classical and the infrastructural version of the metric. The 

solutions present a number of flow meters ranging from 2 to 41 for the first version of the metric 

and from 2 to 101 for the second one.  

 

Figure 83. Pareto set of optimal solutions, i.e., optimal sampling configurations, corresponding to the use of 

the classic and infrastructural sampling-oriented modularity. Source: Simone et al., 2016. 

 

The last solutions corresponding to the maximum value of the sampling-oriented metrics are 

reported in Figure 84 and 85, where the 44 pressure meters determine 45 “pressure DMAs” and 

101 pressure meters determine 205 “pressure DMAs”. 

 

Figure 84. Sampling design configuration corresponding to the maximum value of the sampling-oriented 

modularity. The bleu squares represent the locations of pressure meters. Source: Simone et al., 

2016. 
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Figure 85. Sampling design configuration corresponding to the maximum value of the sampling-oriented 

infrastructure modularity. The bleu squares represent the locations of pressure meters. Source: 

Simone et al., 2016. 

 

The sampling design strategy is refined implementing further meters internal to the pressure 

DMAs, in order to increase the information collected by the pressure monitoring system (see 

Figure 86). The betweenness centrality is used as topological metric to identify the position of 

the most relevant nodes within each pressure DMA. The node with the maximum value of 

betweenness centrality represent the most central within each pressure DMA. 

  

Figure 86. Sampling design configuration corresponding to the maximum value of the classic (left) and 

infrastructure (right) sampling-oriented modularity. The bleu squares represent the locations of 

pressure meters and the yellow circles represent the locations of pressure meters positioned by 

means of betweenness centrality. Source: Simone et al., 2016. 

 

A greater number of meters, and therefore of pressure DMAs, is recommended for management 

intervention that focuses on leakages detection. 
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Future Perspectives 
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Complex Network Theory (CNT) centrality metrics represent one of the most used tools for 

network classification, whose reliability increases as more data becomes available. This is valid 

for most real complex systems, but not for infrastructural networks (e.g., WDNs). In fact, for 

WDNs the situation is different, because even if many topological data about position of nodes 

(coordinates) and connectivity between pipes are available, the classification of these systems 

using the classic CNT tools cannot, however, be reliable. This because, due to the spatial limits 

that affect them, WDNs have quite a uniform degree distribution, and regardless of the number 

of nodes that characterize the system, its distribution presents a range of low nodal degree 

values, which prevents the identification of a reliable curve to classify such networks (Giustolisi 

et al., 2017; Yadzany and Jeffrey, 2011).  

We took a first step towards solving this problem by introducing the neighborhood nodal 

degree (Giustolisi et al., 2017). We demonstrated that WDNs network connectivity structure 

generally follows a Poisson-like distribution, typical of random networks, with low 

vulnerability with respect to any kind of failure event. However, the classification findings only 

referred to the network topology, neglecting the hydraulic component, i.e., the different role of 

nodes in the analysis. Each node, including the sources, had the same intrinsic relevance. 

To go one step further in the classification of WDNs, our future perspectives concern the 

possibility of using the Relevance-embedding degree, instead of the standard degree and of the 

neighborhood nodal degree, as metric for the WDNs classification. In fact, information about 

the intrinsic relevance of nodes can enhance the WDNs classification because while from a 

topological point of view they are very homogeneous systems, from a hydraulic point of view 

there is a wide heterogeneity that arises from the fact that each node has a specific role in the 

network (i.e., source nodes, nodes feeding strategic buildings, demand nodes, etc.), and, 

therefore, a specific intrinsic relevance, as we deepened in this thesis. 

Again, using the Apulian network (Figure 34), we report a simple example to show how the 

values obtained by the extended degree (Figure 87 -right) are very different and at the same 

time much more realistic than those obtained using the standard metric (Figure 87-left). In 

particular: 

- the final values of the metric reflect the high hydraulic heterogeneity. This means having 

a range of values large enough to guarantee the definition of a reliable curve to classify 

such networks; 

- increasing the intrinsic relevance of the reservoir (source nodes in general), its 

Relevance-embedding degree increases. This way, the reservoir becomes a hub, and the 

importance of the nodes close to it increases; 
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- associating information on intrinsic relevance and connective structure generates hubs 

and leads to networks more and more scale free. 

 

Figure 87. Classic (left) and extended degree (right) for Apulian network. In the left panel the most part of 

the nodes (17/24) has the same degree value (d=3), five nodes have degree 2, two nodes have 

degree 4 and only the reservoir has a degree equal to 1. The network is highly homogeneous with 

a scarcity of values (4) for the identification of a reliable classification curve. Furthermore, the 

most important node is not the one corresponding to the reservoir (N24) but nodes N6 and N1, 

due to their greater number of connections. In the right panel we used the Relevance-embedding 

degree, using as intrinsic relevance the demand node for each demand nodes and the sum of the 

demands for the reservoir. Demands are reported close to each node. The network is less 

homogeneous in the degree of connection and each node assumes a different degree value. 

Furthermore, the most important node is now the reservoir, i.e., the hub, consistently with the 

hydraulic engineering knowledge.  
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Conclusions 
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Complex Network Theory (CNT) is a very large and attractive world both from a historical 

and scientific point of view. Many events over time characterized and embellished this theory 

laying the foundations for the development and use of tools that today may seem to be 

immediately applicable. Each event represented an important step forward in discovering 

complex systems that surround us. In fact, the analyses that such theory allows are often 

exhaustive in determining the behaviour of a large percentage of complex systems.  

The choice of resorting to the CNT for the WDNs analysis was linked to the need to find 

increasingly sophisticated tools to solve new and critical tasks. However, after various studies, 

we realized that classic CNT tools do not represent a usable tool for WDNs. For several years, 

many researchers employed CNT tools unconditionally and passively to WDNs, as simple 

applications, with too high expectations for such a new sector. Generally, they did not consider 

the peculiarities of these infrastructural systems. The analyses were unrealistic and the results, 

which evidently differed from their actual behaviour, not very encouraging.  

There were beliefs that confronted us with a twofold problem: 

-  it was common to think that CNT was characterized by tools unconditionally applicable 

to all real complex systems to know their behaviour and obtain reliable analyses; 

- it was common to think that WDNs were well-known systems, having been the subject 

of study for decades, and that nothing else about their characteristics and their 

limitations could be useful before introducing them into the world of the CNT.  

In reality, (i) the CNT tools had always given excellent results as they were applied to 

systems (e.g., immaterial networks) that did not have the limits of infrastructural ones, such as 

WDNs, and (ii) knowledge of WDNs should not be taken for granted, since they represent 

extremely current systems, with a dynamic behaviour that vary their characteristics, 

performances and needs, both in space and in time. Hence the importance of the spatial as well 

as the temporal component in the analysis of WDNs. 

 

Accordingly, in this thesis, with the aim to contribute to the study of Water Distribution 

Networks (WDNs) using CNT tools, we proposed a tailoring process that involved the most 

suitable CNT metrics for WDNs also considering the peculiarities of these hydraulic systems.  

Starting from previous research that privileged the node-based approach, we proposed a 

change of perspective: pipes play a fundamental role in the study of such systems. Later, we 

constructed a tailored topology, embedded the intrinsic relevance of nodes in the analyses, 

captured the emergent hydraulic domain of these systems and proposed the optimal division in 

segments for planning and management purposes.  
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The first three chapters of the thesis are dedicated to the presentation of the basic tools of 

the CNT, to their inapplicability to WDNs and to the need to create a new framework that tailors 

them accordingly to the WDNs peculiarities. We initially clarified the usefulness/ relevance 

that the CNT tools have in the study and analysis of complex systems, highlighting, at the same 

time, their limits when applied to infrastructural networks, such as WDNs. In the second chapter 

we recalled the birth of the CNT and its basic concepts. In the third chapter we (i) proposed a 

review of the previous applications of the classic CNT tools to WDNs, (ii) explained the 

concepts of hydraulic model and hydraulic domain and (iii) highlighted the importance of 

spatial and temporal components for these systems. Finally, we highlighted the need of a 

tailoring after applying the classic CNT metrics to WDNs. 

In the fourth chapter we concretized the need to adapt CNT metrics for WDNs presenting 

two strategies of tailoring referred to the most suitable centrality metrics for spatial network 

(betweenness, closeness, harmonic closeness, and degree). Both strategies arose from the need 

to develop a tool capable of identifying the emerging hydraulic behavior of the WDNs, that is, 

the domain of the system. The first strategy based on the WDN-tailored edge betweenness, 

when developed, showed to respond very well to this need, managing to detect the main paths/ 

pipes in the system, as identified by the flow, with high correlation. The second strategy based 

on Relevance-embedding centralities, considering the information about the intrinsic relevance 

of nodes into the analysis represents a real added value to the study of all complex real systems. 

The identification of the main paths/ pipes in the network is much more reliable, the behavior 

of the new topological metric almost mirrors that of the hydraulic metric, with a very high 

correlation. The comparison between the two metrics by analyzing six real WDNs showed that 

the Relevance-embedding edge betweenness better identifies the emergent hydraulic behaviour 

of WDNs compared to WDN-tailored edge betweenness.  

Finally, we briefly recalled the tailoring process adopted for the modularity index. We used 

the tailored metric to perform the optimal DMA design strategy of WDNs and extended it to 

define the Sampling-oriented modularity index in order to perform the optimal Sampling design 

strategy aimed at the optimal location of pressure meters in WDNs.  

 

We think that this thesis represents only the first step towards the study of WDNs using tools 

borrowed from the CNT, as the sector is still very young and with a long and prosperous future 

ahead. At the same time, precisely for what has been said, carrying out this work has been 

extremely useful, training and interesting because (i) it was possible to clarify some points that 

have remained obscure until now on the application of the CNT to the WDNs; (ii) it was 
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possible to know in an ever more in-depth way the WDNs behavior; (iii) it was possible to put 

the foundations for a new framework and to develop new ad-hoc strategies and metrics for 

WDNs analysis starting from a framework full of possibilities and tools. Furthermore, we 

highlighted the importance of topology in the study of WDNs and how the real behavior of such 

systems is the result of the interplay between network topological structure and intrinsic 

relevance of nodes. 
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