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11

12 Abstract

13 In this paper a new numerical approach for determining admissible thrust curves for masonry 

14 arches is proposed. Arbitrary loading conditions, including distributed loads applied to the 

15 extrados and intrados of the arch, but also horizontal inertial forces simulating the effects of 

16 seismic actions are considered for arches characterized by any geometry. The admissible solutions, 

17 corresponding to equilibrium thrust curves entirely contained in the thickness of the arch, are 

18 consistent with the lower bound theorem of Limit Analysis and, thus, are “safe” solutions from a 

19 structural point of view. The well-established Milankovitch's theory for the equilibrium of masonry 

20 arches is reviewed and generalized. Then, a specific formulation of the theory is presented, 

21 allowing the construction of an effective and efficient numerical procedure based on the Point 

22 Collocation Method and enriched by a constrained optimization routine. The latter is aimed at 

23 determining, among all the admissible equilibrium solutions, the optimal solution matching specific 

24 requirements of interest for applications, as the solution corresponding to the maximum or 

25 minimum thrust. The proposed procedure is discussed and validated with reference to the cases of 

26 circular, parabolic and pointed arches. In particular, maximum and minimum thrust solutions have 

27 been determined for all the examined cases.

28

29 Keywords: Masonry arch; Thrust curve; Collocation Method.

30

31 1. Introduction

32 Masonry arches are very important and iconic structural elements of masonry constructions. Despite 

33 the large diffusion and the age-old history of masonry arches, the analysis of the structural response 

34 and the development of suitable theories for their design and for the determination of the structural 
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1 safety of masonry arches became a subject of study for researchers only in the XVII Century. From 

2 that moment on, the researches on the statics of masonry arches (and vaults) gave birth to a debate 

3 that intertwined and benefited from the development of the elastic theory in the XIX century, 

4 sometimes in a contradictory way (Benvenuto, 1981).

5 Among the cornerstones in the story of the research on the statics of masonry arches, it is worth to 

6 recall the seminal contribution by Robert Hooke who stated in 1675, in the form of an anagram, that 

7 "As hangs the flexible line, so but inverted will stand the rigid arch"1. In other words, he stated that 

8 if a cable fixed at both the extremities is left hanging under its self-weight, the cable takes the shape 

9 that, once inverted, an arch should have in order to withstand its self-weight (Hooke, 1676). This 

10 shape is called catenary and its mathematical expression was determined in the 1704 by Jacques 

11 Bernoulli, by imposing the equilibrium of infinitesimal part of the arch. Twenty years after Hooke's 

12 discovery, David Gregory (Gregory, 1698) stated that also the converse proposition is true: "an 

13 arch of any form can only be in equilibrium if we can draw a catenary curve which passes through 

14 it". This concept is very important as it provides a way for evaluating the safety of a masonry arch 

15 (under the self-weight); moreover, Gregory gives indications for determining the horizontal thrust 

16 of the arch on its abutments.

17 These first attempts were based only on equilibrium, assuming only the action of the self-weight 

18 and that the material can sustain only compressive stresses. Moreover, the major result of the first 

19 studies was, generally, the determination of the thrust line, defined as the locus of points at which 

20 the resultant of the forces acting on the arch are applied. The thrust line is still today a key concept 

21 for the understanding of the mechanics of masonry arches. However, there is no a unique thrust line 

22 for a masonry arch under certain external loads, since the problem is statically indeterminate. Thus, 

23 suitable boundary conditions have to be prescribed.

24 Many authors, such as (de La Hire, 1695)(de La Hire, 1720)(Couplet, 1731)(Couplet, 1732) and 

25 (Méry, 1840) provided criteria for identifying the required boundary conditions, that is, for fixing 

26 points at which the thrust line must pass through or initial values of the horizontal component of the 

27 thrust. The approach could be static, see (Coulomb, 1776), or kinematic, as the one proposed by 

28 (Mascheroni, 1785), who determined the load bearing capacity of a masonry arch by applying the 

29 principle of virtual work in the condition of impending collapse of the arch. Up to that moment it 

30 was clear that an arch for which it was possible to draw different equilibrium thrust lines contained 

31 in its thickness was in any case “stable”, that is, capable of sustaining safely the applied loads 

32 (Block et al., 2006).

33 In XIX century the emerging Elasticity Theory drove researchers towards the problem of 

1Ut pendet continuum flexible sic stabit contigiuum rigidum inversum.
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1 determining the actual thrust line under assigned loads; this corresponds to the evaluation of the 

2 actual stress distribution in the arch, viewed as a statically indeterminate structure (Navier, 1826). 

3 Nevertheless, engineers were somehow reluctant to apply to masonry arches a theory that assumed 

4 the material to be isotropic, homogeneous and with well-defined elastic properties, since the 

5 knowledge of the building technique of masonry arches and vaults clearly show that those 

6 hypotheses actually do not apply. Anyway, until the beginning of the XX century, Elasticity Theory 

7 was considered the most suitable approach for studying the response of masonry arches, so that the 

8 need of determining the actual thrust line for assessing the equilibrium of an arch was considered an 

9 indisputable fact (Huerta, 2004). 

10 In this context, the work of the Serbian engineer M. Milankovitch2 is an exception, since 

11 Milankovitch turned again to the static approach, based only on the equilibrium, for the structural 

12 analysis of masonry arches. His work  1904) and  1907) provided for the 

13 first time a general and rigorous treatment of the problem of the equilibrium of masonry arches 

14 from a physical and mathematical point of view (Foce, 2007). But, in the history of structural 

15 analysis of masonry arches Milankovitch's contribution has been somehow kept in the shadow. 

16 Milankovitch himself, after publishing his doctoral thesis and two papers on this subject, left aside 

17 the problem of the equilibrium of masonry arches to deal with completely different issues. 

18 Nevertheless, Milankovitch's work is valuable for the mathematical treatment and worthy of 

19 attention. Notice that in Milankovitch's theory also external loads applied to the extrados and 

20 intrados are considered in addition to the self-weight. This makes the approach versatile, as the 

21 author himself demonstrated by analyzing special cases (e.g. the design of a retaining wall) and 

22 providing analytical solutions, when available. However, no method or indications are given to 

23 solve the equilibrium differential equations, somewhat complex, for more general cases.

24 After a period of lower interest, the subject of the mechanics of masonry structures has 

25 progressively gained more and more relevance during the last decades, since a new concern toward 

26 the preservation and the strengthening of historical construction arise, driven also by severe 

27 damages observed in masonry constructions after earthquakes (Roca et al., 2010). New studies have 

28 focalized the fact that in order to understand the actual mechanical response of masonry structures 

29 complex models considering plasticity, damage, fracture and contact, studied trough advanced 

30 numerical methods, are needed (Luciano and Sacco, 1998)(Addessi et al., 2010)(Milani and 

2 Milutin  (1879-1958) was a figure characterized by a wide spectrum of scientific interests for his time: 
he was a mathematician, astronomer, climatologist, geophysicist, civil engineer and popularizer of science. Beside the 
work about the equilibrium of masonry arches, here discussed, and the contributions in the field of Civil Engineering, 
he gave major contributions in the nascent science of Climatology. Among them, he characterized the climates of all the 
planets of the Solar system, and studied Earth's long-term climate changes caused by changes in the position of the 
Earth in comparison to the Sun.
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1 Lourenço, 2012)(Addessi and Sacco, 2014)(Tralli et al., 2014)(Drougkas et al., 2016)(Lucchesi et 

2 al., 2018). Beside Finite Element Method (FEM) implementations, also the Discrete Element 

3 Method (DEM) was extensively studied for investigating the mechanical behavior of masonry 

4 constructions, especially for what concerns the response to dynamical loads (Livesley, 

5 1978)(Lemos, 2007)(Sarhosis et al., 2014)(Baraldi et al., 2015)(Baraldi and Cecchi, 2016). 

6 Moreover, specific approaches have been recently developed for the analysis of masonry arches and 

7 vaults reinforced by FRP and FRCM composite materials (Fabbrocino et al., 2015)(Pintucchi and 

8 Zani, 2016)(Bertolesi et al., 2018a, 2018b)(Alecci et al., 2017, 2016a, 2016b).

9 At the same time, starting from the pioneering work by J. Heyman (Heyman, 1966) a very 

10 interesting point of view on the structural analysis of masonry constructions opened the way to a 

11 broad application of the Limit Analysis theory (Lubliner, 1990) for determining the load bearing 

12 capacity of masonry constructions and specifically of masonry arches. In particular, according to 

13 Heyman approach it is possible to reread the classical equilibrium theories for masonry arches in 

14 the rational framework of the well-known safe theorem of Limit Analysis (O’Dwyer, 1999) 

15 (Gilbert, 2007) (Block and Ochsendorf, 2008). 

16 In recent years several studies have widely extended the capability of Limit Analysis for masonry 

17 structures both by new theoretical developments (Angelillo et al., 2014; Fortunato et al., 2017, 

18 2016) and by revisiting old theories in the light of the current theoretical knowledge. In particular, 

19 several research contributions have focalized on the determination of collapse loads for masonry 

20 arches (Pintucchi and Zani, 2009) (Oliveira et al., 2010) (D’Altri et al., 2018) and on the 

21 determination of the thrust line for masonry arches (Huerta, 2006) (Varma et al., 2010) (Sacco, 

22 2015).

23 In this vein, also Milankovitch’s approach has been recently rediscovered and reconsidered (Ageno 

24 et al., 2004) (Foce, 2007)  2016), also as the theoretical base for new and efficient 

25 numerical methods aimed at determining optimal thrust lines for masonry arches (Ricci et al., 

26 2016).

27 In this paper, the Milankovitch's theory for the equilibrium of masonry arches is generalized by 

28 considering also inertial forces simulating the maximum effects of seismic actions, in addition to 

29 the already general load conditions considered by Milankovitch. Moreover, a suitable formulation 

30 of equilibrium equations is proposed allowing for constructing a numerical method for determining 

31 optimal admissible thrust line solutions for arches characterized by any geometry.

32 In particular, in Section 2 Milankovitch's theory is generalized for what concerns the geometrical 

33 description and the loading conditions: indeed, the geometrical description is referred to the mid-

34 line of the arch, and horizontal inertial forces proportional to the self-weight, representative of 
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1 seismic actions, are added. In Section 3, a new formulation of the equilibrium equations in 

2 Cartesian coordinates is provided; the use of the Cartesian coordinates reveals to be very convenient 

3 for applications at least for two reasons: the geometry of the arch is usually determined by a survey, 

4 and, then, known in terms of Cartesian coordinates, and the proposed numerical implementation of 

5 the equilibrium equations becomes clearer and simpler.

6 Anyway, the complexity of the obtained differential equilibrium problem renders analytical 

7 solutions infeasible, except for very simple and basic cases. Therefore, in Section 4 a numerical 

8 method has been formulated for the determination of particular thrust lines, of interest for 

9 applications. This method is based on a suitable implementation of the Point Collocation Method 

10 (PCM) (Iserles, 1996) and on a constrained optimization procedure; the latter is aimed at 

11 determining particular admissible solutions like the maximum and minimum thrust lines, the 

12 geometric safety factor, etc.. In Section 5, the effectiveness of the proposed procedure has been 

13 verified considering the case of a circular arch subjected to self-weight; the maximum and 

14 minimum thrust lines have been studied and a comparison between the numerical solution and the 

15 available analytical one has been performed. Then, the proposed method has been applied for 

16 determining the maximum and minimum thrust lines for a parabolic arch. For this case, not usually 

17 taken into consideration in the literature, no analytical solutions are available; in particular, the 

18 proposed procedure is validated by comparing the results with those obtained by a FEM routine 

19 based on the Timoshenko's beam theory for elastic no-tension materials. Finally, the determination 

20 of the maximum and minimum thrust lines for a pointed arch is studied; also in this case, the 

21 validation of the procedure has been performed by the comparison with the results obtained by the 

22 above FEM routine. 

23 In all the examined cases the results determined by the proposed approach are practically coincident 

24 with those considered for the validation: this shows the effectiveness of the innovative approach 

25 here presented; moreover, the case of the parabolic arch shows the versatility of the method in 

26 solving also problems of arches characterized by variable curvature.

27

28 2. A generalization of Milankovitch's equilibrium theory

29 Here Milankovitch's theory for the equilibrium of masonry arches is revisited in order to provide a 

30 more general formulation of the problem; equilibrium equations are expressed in local polar 

31 coordinates as originally proposed by Milankovitch. The generalization involves the geometrical 

32 description and the loading conditions; moreover, it also aimed to frame the Milankovitch's 

33 equations in the theory of Limit Analysis applied to masonry structures. In fact, according to 
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1 (Heyman, 1966), Limit Analysis may be applied to masonry structures under the following 

2 assumptions: a) masonry has no tensile strength; b) masonry has infinite compressive strength; c) 

3 sliding between masonry units cannot occur. In particular, the Lower Bound theorem of Limit 

4 Analysis states that a masonry structure subjected to assigned external loads does not collapse (or, 

5 eventually, is in incipient collapse condition) if it is possible to find a statically admissible stress 

6 field, that is, a stress field in equilibrium with the applied loads and obeying the above assumptions.

7 In particular, for the assumptions a) and b) a statically admissible stress field can be represented by 

8 a thrust line in equilibrium with the applied loads and entirely contained within the thickness of the 

9 arch (Como, 2016). Thus, the definition of such a statically admissible thrust line is independent of 

10 the actual position and direction of the joints in the masonry. In order to satisfy also assumption c), 

11 the check that the friction is sufficient to prevent the joint from sliding has to be performed. This 

12 check it is generally verified for thin arches subjected only to vertical loads with the joints having 

13 pseudo-radial directions, but could be not satisfied when the thrust line results very inclined with 

14 respect to the normal direction to an actual joint.

15 Let a masonry arch of generic shape and constant width3  be considered, as schematically t

16 represented in Error! Reference source not found.1. While in Milankovitch's work (Milankovitch, 

17 1907) the attention is focused on a voussoir defined by joints inclined according to the stereotomy 

18 of the arch, herein an infinitesimal element of arch delimited by cross-sections, orthogonal to the 

19 mid-line, is considered. The typical cross-section is inclined with respect to the vertical direction (y 

20 direction) by an angle . By assigning the mid-line function  and the thickness of the cross-my

21 section , the arch geometry is completely defined. Since the arch shape is generic, the center d

22 of curvature C(xC,yC) and the radius of curvature may vary as the cross-section varies; the mR

23 distances of the extrados line and of the intrados line from C along the direction of the radius of 

24 curvature are  and , respectively. Finally, the denotes the distance of 
1

2ex mR R d
1

2in mR R d R

25 the thrust line from C for the considered cross-section.

26 The thrust line can be represented in the “local” polar reference system C( ) or in a global polar 

27 reference system O , with  representing the inclination of OE on the vertical axis y, where E ˆ,R

28 is the point of the thrust line belonging to the considered cross-section and  is the distance of E R̂

29 from the origin O (see Error! Reference source not found.1).

3 In what follows it is assumed that the width t of the arch orthogonally to its mid plane is constant, but it is easy to 
further generalize the formulation by removing this hypothesis.
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1

2 Fig. 1. Geometry and loading conditions of an infinitesimal voussoir of the arch.

3

4 Notice that from now on, when not necessary in terms of understanding, the dependence on  is 

5 omitted in the expressions.

6 With reference to Fig. 2 an infinitesimal arch voussoir around the generic cross-section AB is a 

7 neighborhood of AB with amplitude d . A crucial observation for subsequent developments is that 

8 the center of mass G of the infinitesimal arch voussoir is different from the middle point M of the 

9 cross-section AB. In order to determine the position of G it is possible to consider the difference 

10 between the first moment of areaof the infinitesimal triangles CB1B2 and CA1A2 with respect to the 

11 axis passing through C and orthogonal to the radius of curvature. In particular, the first moment of 

12 area S1 of CB1B2 is given by the area  multiplied by the distance  of its center of mass 
1 2CB BA

1 2CB BR

13 from C:

14 (1)
1 2 1 2 1 21

2
   .

3 2CB B CB B CB B m

d
S A R A R
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1

2 Fig. 2. Determination of the center of mass of an infinitesimal voussoir of the arch.

3

4

5 Similarly, the first moment of area S2 of CA1A2 is given by the area  multiplied by the 
1 2CA AA

6 distance  of its center of mass from C:
1 2CA AR

7 (2)
1 2 1 2 1 22

2
   .

3 2CA A CA A CA A m

d
S A R A R

8 Finally, the first moment of area of the infinitesimal voussoir A1B1A2B2 is:

9 , (3)
1 2 1 2 1 2 1 2

2 2

3 2 3 2CB B CA A CB BG CA Am m

d d
A A R A R A R

10 with  the distance of G from C. The ratio between the areas  and  is proportional to GR
1 2CB BA

1 2CA AA

11 the ratio between the squares of the distances  and ; therefore, it results:
2

3 2m

d
R

2

3 2m

d
R

12 (4)
1 221

2

2

2

2

CB B C

m

m

A A

d
R

A A
d

R

13 By substituting formula (4) in equation (3) and by solving with respect to , it results:GR
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1 . (5)
2

12G m
m

d
R R

R

2 Thus, the distance of the center of mass G of an infinitesimal voussoir with respect to its mid-line 

3 point M is obtained as:

4 (6)
2

.
12 m

d

R

5 For what concerns the loading conditions, the infinitesimal voussoir is assumed to be subjected to 

6 the self-weight, dg, applied to the center of mass G, and to arbitrary external loads acting at the 

7 extrados and the intrados of the arch. Similarly to Milankovitch, the latter loads are continuous 

8 regular functions of ; in particular, the horizontal and vertical components of the external loads 

9 acting at the extrados of the arch are described by the functions  and , respectively, ep ef

10 whereas the horizontal and vertical components of the external loads acting at the intrados of the 

11 arch are described by the functions  and , respectively. The self-weight can be ip if

12 expressed as:

13 (7)2 21
d     d ,

2 ex ing t R R

14 with  is the specific weight and  the area of the infinitesimal voussoir.2 21
  d

2 ex inR R

15 In addition with respect to the Milankovitch’s formulation the infinitesimal voussoir can be 

16 subjected also to horizontal inertial forces, , applied to the center of mass G. In particular, the dm

17 inertial force  is supposed to be proportional to the self-weight according to the following dm

18 expression:

19 (8)2 21
d     d

2h ex inm t R R

20 where an apparent density  proportional to  is introduced. Notice that in the spirit of the h

21 conventional static analysis method for structures under seismic loads, the ratio h/  represents the 

22 maximum horizontal acceleration expected on the arch, according to the design seismic actions to 

23 be considered.

24 Let  and  be the horizontal and the vertical components of the resultant force acting on the H V

25 right section of the considered infinitesimal voussoir, respectively, and let  and  be dH H dV V

26 the horizontal and the vertical components of the resultant force applied on the left section of the 

27 infinitesimal voussoir, respectively. The translational equilibrium of the considered infinitesimal 

28 voussoir in the horizontal direction provides the following equation:
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1 (9)( d ) d  d  d 0.e e i iH H H m p s p s

2 Taking into account that the lengths of the extrados and intrados arches may be expressed as:

3 , (10)d  d ,         d  de ex i ins R s R

4 equation (9) takes the form:

5 . (11)2 2d 1
     0

d 2 h ex in e ex i in

H
t R R p R p R

6 In a similar way, the translational equilibrium of the infinitesimal voussoir along the vertical 

7 direction y yields:

8 (12)d d  d  d 0;e e i iV V V g f s f s

9 that, accounting for equations (7) and (10), becomes:

10 . (13)2 2d 1
     0

d 2 ex in e ex i in

V
t R R f R f R

11 The rotational equilibrium of the infinitesimal voussoir about the point E, belonging to the thrust 

12 line (see Fig. 1), gives:

13 (14)

 d  d d   sin d   cos

 d   sin  d   cos
2 2

 d   sin  d   cos 0,
2 2

e e e e

i i i i

V x H y g m

d d
f s p s

d d
f s p s

14 with  and  the coordinates of the thrust line point E in the Cartesian reference system, x y

15 and 

16 , (15)mR R

17 the eccentricity of the thrust line, i.e., the distance of the thrust line from the mid-line along the 

18 curvature radius, to be determined; with reference to Fig. 1,  is positive when the thrust line lies 

19 below the mid-curve. Because of equations (6), (8) and (10), the rotational equilibrium differential 

20 equation takes the form:

21 (16)

2
2 2

2
2 2

1
  t    sin

2 12

1
  t    cos    sin

2 12 2

   cos    sin    cos 0,
2 2 2

ex in
m

h ex in e ex
m

e ex i in i in

dx dy d
V H R R

d d R

d d
R R f R

R

d d d
p R f R p R
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1 The thrust line coordinates  and  may be expressed as functions of R and  as:x y

2 , (17) sin ,              cosC Cx R x y R y

3 and then their first derivative with respect to  can be determined as:

4 . (18)
d d d d

 cos  sin ,           sin  cos
d d d d

x R y R
R R

5 Taking into account formulae (17) and (18), equations (11), (12) and (14) form a system of three 

6 nonlinear differential equations in the variable  whose unknowns are the thrust components , H

7  and the radius ; the latter determines the position of the thrust line. Solutions can be V R

8 found by integrating these equations together with suitable boundary conditions. 

9 The complexity of this differential problem makes it possible to find closed form solutions only in 

10 some special and simplified cases. Indeed, in his PhD thesis (Milankovitch, 1904) Milankovitch 

11 provided closed form solutions for some representative cases for specific geometries and loading 

12 conditions.

13 The equilibrium equations derived above are written in terms of the angle  defined in the “local” 

14 polar reference system C(R, ), whose center is the curvature center C. For switching from the local 

15 reference system to the global one O , the following relations hold:ˆ,R

16 (19)
ˆ sin  sin

ˆ cos  cos .

m m C

m m C

R R x

R R y

17 From (19) it is possible to determine  and  as function of the angle  and of :mR ˆ
mR

18 , (20)
ˆ ˆ sin  cos

arctan  
ˆ cos cos

m C m C
m

m C

R x R y
R

R y

19 provided that  and . Equations (20) are very useful when dealing with ˆ  cos 0m CR y cos 0

20 polycentric arches whose curvature centers are known a priori, as those represented in Fig. 3.

21
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1

2 Fig. 3. One-centered arch (circular arch); (b) two-centered arch (pointed arch); (c) three-centered arch (basket-handle arch); 
3 four-centered arch (Tudor arch).

4

5 On the other hand, if a parabolic arch is considered, the curvature continuously varies from section 

6 to section; therefore, a formulation of the equilibrium equations in Cartesian coordinates may be 

7 more convenient for applications. The latter formulation is provided in the next Section.

8

9 3. Formulation of the equilibrium equations in a Cartesian reference system

10 In a Cartesian reference system O  the typical point of the mid-line of an arbitrary masonry ,x y

11 arch is denoted by  with ; thus, the geometry of the arch is defined by M ,m mx y mx x x

12 assigning the mid-curve function,  and the thickness , see Fig. 1. The extrados and the my x d x

13 intrados functions,  and  can be determined by the function  by simple exy x iny x d x

14 geometrical calculations.

15 The curvature  at the point M may be determined as:mk x

16 , (21)
''

3
2 2'1

m
m

m

y x
k x

y x

17 with 

18 (22)
2

' ''
2

,            m m
m m

dy x d y x
y x y x

dx dx

19 where the prime indicates the derivative with respect to . x

20 Once the curvature is known, the mid-line radius (radius of curvature)  can be easily mR x

21 determined as the absolute value of the reciprocal of the curvature, i.e.:
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1 . (23)

3
2 2'

''

11 m

m
m m

y x
R x

k x y x

2 The center of curvature C  of the considered cross-section is the point having the ,C Cx x y x

3 following coordinates:

4 (24)
 sin

 cos ,

C m

C m m

x x x R x x

y x y x R x x

5 where:

6 . (25)'arctan mx y x

7 With reference to Fig. 1, the position of the center of mass G is given by its distance  from M GR x

8 along the radius of curvature  according to equation (5). For the next developments it is also mR x

9 useful to observe that:

10 , (26)
''

2'

d

d 1

m

m

y

x y

11 and that:

12 . (27)
'

2 2' '

1
sin ,       cos

1 1

m

m m

y x
x x

y x y x

13 A crucial matter concerns the determination of the eccentricity  of the thrust line from the x

14 mid-line, measured along the radius of curvature, as a function of the independent variable x. 

15 Indeed, as shown in Fig. 1, once the angle  is assigned the point E of the thrust line is determined 

16 by its distance  from the point M belonging to the mid-line. It results:x

17 . (28)
sin cos

mx x x y x y x
x

x x

18 Hence, the parametric equation of the thrust line is given by assigning, for each x, the pair of 

19 coordinates  of the point E of the thrust line belonging to the cross-section centered in ,x x y x

20 :M , mx y
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1 (29)

'

1
,

m

m

y x
x x x x

x

y x y x x
x

2 with

3 . (30)
2'1 mx y x

4 From now on, the dependence on x, when non-essential in terms of understanding, it is omitted for 

5 lightening the expressions.

6 Let the considered infinitesimal voussoir be subjected to self-weight, dg, to inertial forces, dm, to 

7 horizontal and vertical loads applied to the extrados,  and , and intrados,  and , de ep s de ef s di ip s di if s

8 respectively. Since 

9 (31)2 21
d ,

2 ex in mR R R

10 from (8), (9) and (10) the translational equilibrium of the considered infinitesimal voussoir along x 

11 gives:

12 . (32)
d d d d

     0
d d d de ex i ih m n

H
t d R

x x
p p R

x
R

x

13 By (23), (26) and (30) equation (32) becomes:

14 . (33)
''d

d 2e ih e
m

i

H d
p p p

y
t d p

x

15 Similarly, by (9), (10) and (13) the translational equilibrium of the infinitesimal voussoir along y 

16 provides the following equation:

17 , (34)
d d d d

0
d d d de exm i in

V
t d R

x x x
f R

x
f R

18 that may be written as:

19 . (35)
''d

d 2e i e
m

if f
V

t f
d y

d
x

f

20 From the rotational equilibrium of the infinitesimal voussoir about E, it results:

21 (36)

2 2

2 1 2 2 1 2d d d cos d sin
12 12

 d cos  d sin  d cos  d sin 0 ,
2 2 2 2

m m

e e e e i i i i

d d
H y y H y y V x x V x x m g

R R

d d d d
p s f s p s f s
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1 where  and  are the coordinates of the intersections of the left cross-1 1,x x y x 2 2,x x y x

2 section and the right cross-section of the considered infinitesimal voussoir with the thrust line. It 

3 can be observed that:

4 (37)

1

2

1

2

d d
sin ,

2 2

d d
sin ,

2 2

d d
cos ,

2 2

d d
cos

2 2

C m

C m

C m

C m

x x R

x x R

y y R

y y R

5 and that

6 (38)

d d d d
sin sin  cos cos  sin sin cos ,

2 2 2 2

d d d d
sin sin  cos cos  sin sin cos ,

2 2 2 2

d d d d
cos cos  cos sin  sin cos sin ,

2 2 2 2

d d d
cos cos  cos sin  sin cos

2 2 2

d
sin .

2

7 Therefore, after some calculations, it follows:

8 (39)
2 1

2 1

d  cos d  sin ,

d  sin d  cos

m

m

x x R

y y R

9 while

10 . (40)2

d d
sin cos

2 2C mx x x R x

11 From Fig. 1, it can be observed that:

12 (41)sinC mx x R

13 since the quantity  is negligible. Thus, equation (49) becomes:d  d

14 . (42)2

d d
cos sin

2 2mx x R

15 In a similar way, the quantity  can be determined, resulting:2y y
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1 (43)
2

d d
cos sin

2 2

d d
         sin cos .

2 2

C m

m

y y y R y

R

2 Thus, equation (36) can be written as follows:

3 (44)
2 2

d d
d  sin d  cos d sin cos

2 2

d d
d  cos d  sin d cos sin

2 2

d sin d cos  d cos
12 12 2

 d sin  d
2

m m

m m

e e
m m

e e i i

H R H R

V R V R

d d d
g p p s

R R

d d
f s p s cos  d sin 0.

2 2i i

d
f s

4 The terms  and  in equation 
d d

d cos sin
2 2mV R

d d
d sin cos

2 2mH R

5 (44) can be neglected since infinitesimal of higher order with respect to the other terms. By taking 

6 into account formula (31), the following differential equilibrium equation is obtained:

7 (45)

d
 cos  sin

d

     sin

d
     cos

d

       sin
2

d
       cos 0.

2 d

m e ex i in

h m e ex i in

m m e ex i in

m h m e ex i in

H V
x

H R t d f R f R

V R t d p R p R
x

d
H R R t d f R f R

d
V R R t d p R p R

x

8 Substituting formulae (23), (26), (27) and (30) into (45), it results:

9 (46)

'' ' '' ''
'

3 3

'' ''
' ' '

3 3

'' '' ''3
' ' '

3 3 3

1 d

d

 1  1  
2 2

  1  1
12 2 2 2 2

m m m m
h m

m m
e m e i m i m

m m m
h m e m e i m i

y y y y
H V H V t d t d y

x

y d y d
f y p f y p H y V

y y d y dt d d d
y f y p f y p 0.

10 In conclusion, the equilibrium of the arch is described by the following system of three non-linear 

11 first order Ordinary Differential Equations (ODE):
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1 (47)

''

''

'' ' '' ''
'

3 3

'' ''
' ' '

3 3

d

d 2

d

d 2

1 d

d

 1  1  
2 2

e i
m

h

m

m m m m
h m

m m
e m e i m i m

h m

e i

e i e i

yH d
t d

x

yV d
t d

x

y y y y
H V H V t d t d y

x

y d y d
f y p f y p H

p p p p

f

y

f f

V

y

f

'' '' ''3
' ' '

3 3 3
 1  1 0,

12 2 2 2 2
m m m

e m e i m i

y y d y dt d d d
f y p f y p

2 where the unknowns are the eccentricity of the thrust line, , the horizontal and vertical x

3 components of the resultant force,  and , respectively. All the other terms in (47) are H x V x

4 known functions (or derivative of known functions).

5 Analytical solutions of ODE system (47) are prohibitive to be determined; thus, the development of 

6 suitable numerical methods is needed.

7

8 4. Numerical procedure for the determination of the thrust line

9 Herein, a suitable implementation of the Point Collocation Method (PCM) (Iserles, 1996) is adopted 

10 for the determination of numerical solutions of the ODE system (47).

11 The Point Collocation Method is a numerical approach particularly effective for solving ODE 

12 boundary value problems (BVP). Basically, it consists in approximating each unknown function 

13 with a polynomial of a certain degree, and in requiring that the polynomial approximation exactly 

14 satisfies the differential equations at a finite number  of discrete points, called collocation points, pn

15 chosen within the domain of definition of the problem. It is readily seen that PCM is conceptually 

16 simple, which makes this method handy and versatile. The literature (e.g. Asher et at., 1995) 

17 provides also the optimal position of the collocation points in the domain, according to the degree 

18 of the approximating polynomial.

19 In the proposed implementation, the domain of definition of the problem is discretized in 

20 subdomains, and in each of them PCM is applied; thus, in addition to boundary conditions, 

21 continuity conditions between subdomains have to be imposed. By variating the number of the 

22 subdomains and the degree of the approximating polynomials it is possible to find an optimal 

23 balance between the accuracy of the numerical results and the computational effort.

24 In particular, the numerical procedure consists in the steps reported below.
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1 1- The domain of definition of the ODE system (47) is discretized in  intervals en

2 , , through the introduction of  points; in Fig. 4 the 1 2,i i
i x x 1,..., ei n 1d en n

3 typical interval of the discretization is depicted. 

4

5

6 Fig. 4. The i-th interval subdividing the domain for the application of the point collocation method.

7

8 2- Within each interval  the unknown functions ,  and  are approximated i H x V x x

9 by polynomials, ,  and ; different degrees of the polynomial can be ( )iH x ( )iV x ( )i x

10 considered for each of the three unknown functions. In particular, it appears to be 

11 convenient to choose a polynomial of higher degree for approximating the eccentricity of 

12 the thrust line with respect to the mid-line, , and of lower degree for approximating the x

13 horizontal and vertical components of the thrust,  and . In particular, for the H x V x

14 following case-studies polynomials of degree 2 are adopted for approximating  and H x

15 :V x

16 (48)
( ) ( ) ( ) ( ) 2

1 2 3
( ) ( ) ( ) ( ) 2

1 2 3

1,...,
i i i i

ei i i i

H x h h x h x
i n

V x v v x v x

17 with  and , , coefficients of the polynomials. On the other hand, the ( )i
jh ( )i

jv 1,...,3j

18 function  is approximated by a polynomials of degree 4:x

19 (49)( ) ( ) ( ) ( ) 2 ( ) 3 ( ) 4
1 2 3 4 5+ + + +          1,...,i i i i i i

ex r r x r x r x r x i n

20 with ,  coefficients of the polynomial.( )i
jr 1,...,5j

21 In such a way, a total number of unknown coefficients equal to  is introduced.3 3 5 en
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1 3- A suitable number of collocation points are defined within each interval . In particular, i

2 for equations (47)1 and (47)2, involving only the unknown functions  and  that H x V x

3 are approximated by polynomials of degree 2, the following two collocation points are 

4 considered:

5 . (50)1 1 2 1 2 1 2 1

1 3 1 3

2 6 2 6
i i i i i i i i

cp cpx x x x x x x x

6 For what concerns equation (47)3, involving also the unknown function  that is x

7 approximated by polynomials of degree 4, the following four collocation points are adopted:

8 (51)

1 1 2 1

2 1 2 1

3 1 2 1

4 1 2 1

1 3 1 6

2 28 14 5

1 3 1 6

2 28 14 5

1 3 1 6

2 28 14 5

1 3 1 6
.

2 28 14 5

i i i i
cp

i i i i
cp

i i i i
cp

i i i i
cp

x x x x

x x x x

x x x x

x x x x

9 4- For the i-th interval , the ODE system (47) have to be exactly satisfied at the j-th i

10 collocation point, which means that the residual has to be zero at that point. Notice that 

11 equations (47)1 and (47)2 are uncoupled and involve only the unknown functions  and H x

12 , respectively. In particular, once for each interval the two collocation conditions are V x

13 imposed at the points specified in (50),  algebraic equations are obtained. Moreover, 2 2 en

14 by requiring that the differential equation (47)3 is exactly satisfied by the polynomials at the 

15 4 collocation points defined by formulae (51), further  algebraic equations are obtained. 4 en

16 In conclusion, the collocation conditions lead to write  algebraic equations.8 en

17 5- Continuity conditions are set at the nodes representing the connection between intervals:

18 (52)

( 1) ( )

( 1) ( )

( 1) ( )

i i
i i

i i
i i

i i
i i

H x H x

V x V x

x x  

19 with i=1,...,ne-1. In such a way, further  are written.3 1en
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1 6- By the above steps, a system of  equations in  unknowns is obtained. As 11 3en 11 en

2 consequence, the equilibrium problem results to be three times undetermined. A solution can 

3 be then determined in two different ways:

4 by imposing three boundary conditions on the three unknown functions,

5 by using suitable constrained optimization procedures aimed at determining specific 

6 solutions, among the possible 3, having special relevance for applications. 

7 For what concerns the latter approach, a possible constrained optimization problem may aims at 

8 determining the solution corresponding to the minimum or maximum value of the thrust force. To 

9 this end, it is required to minimize or maximize , that is the thrust at the left impost, (1)
0 1H H x

10 and to impose, for the sake of the admissibility, that the thrust line lies inside the thickness of the 

11 arch:

12 (53)0 0
2min / max      with

.
2

d
x

H H
d

x

13 Also the problem of the determination of the Geometric Safety Factor (GSF), i.e. the ratio between 

14 the actual thickness of the arch and the minimum thickness of a homothetic arch enveloping an 

15 equilibrium thrust line (O’Dwyer, 1999), can be faced. Analogously, by the optimization approach 

16 the study of arches with limited compressive strength or, vice-versa, with non-zero tensile strength 

17 due to reinforcements (e.g., FRP or FRCM reinforcements) can be addressed. In particular, from a 

18 geometrical point of view a limited compressive strength implies a narrowing of the domain in 

19 which a statically admissible thrust line should be contained (Nobile and Bartolomeo, 2014), 

20 whereas a non-zero tensile strength due to reinforcements implies that the above domain has to be 

21 conveniently extended (Alecci et al., 2016a). Finally, a constrained optimization routine may be 

22 employed for determining the maximum value of variable loads such that a statically admissible 

23 thrust line can be found, and then the value of the collapse load multiplier. Among possible variable 

24 loads, it is of paramount interest for applications the case of horizontal inertia loads: in this case, the 

25 seismic acceleration capable of determining the collapse of the arch may be determined (Block et al., 

26 2006).

27 The procedure above described has been conveniently implemented by a code in Matlab© 

28 environment; the code allows for assigning all the functions required for determining the 

29 coefficients of the polynomials approximating the solutions of the ODE system (47); moreover, it is 

30 possible to choose the number of intervals in which the domain has to be subdivided and the degree 

31 of the polynomials approximating the unknown functions. Then, the code allows for choosing 
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1 between the assignment of explicit boundary conditions or the use of one of the optimization 

2 procedures above described. In the first case, the code assesses whether the thrust line actually lies 

3 inside the thickness of the arch. At the end, the code gives in correspondence of the found solution 

4 the values of the horizontal thrust and of the vertical action at the imposts, and it plots the related 

5 thrust line.

6

7 5. Numerical applications

8 In this Section numerical applications are developed to assess the effectiveness of the proposed 

9 procedure. In particular, these applications concern:

10 the case of a circular arch, for which the solution determined by applying the proposed 

11 approach is compared with the analytical solution;

12 the case of a parabolic arch, for which the solution determined by applying the proposed 

13 approach is compared with the solution determined by using a specific no-tension Finite 

14 Element Method (FEM) procedure;

15 the case of a pointed arch, for which again the solution determined by applying the proposed 

16 approach is compared with the solution obtained by the above cited FEM procedure.

17 In all the above listed numerical applications, the problem of the minimum and maximum value of 

18 the thrust force is addressed.

19

20 5.1. Circular arch 

21 Here, the classical case of a circular masonry arch is studied by applying the innovative approach 

22 proposed in this paper.

23 A circular arch characterized by the geometrical data reported in Table 1, is considered. The arch is 

24 subjected to only to the self-weight, so that the following positions are made:

25 (54)cost ,              0h e e i if p f p

26 In the examined case of a circular arch under the self-weight also analytical solutions can be 

27 determined, so that a comparison between the analytical solution and the numerical solution 

28 obtained by the proposed approach can be accomplished.

29

30 Table 1. Geometrical data of the circular arch.

C mR d t exR inR



22

[mm] [mm] [mm] [mm] [mm] [mm] [daN/mm3]

(0,0) 1200 300 500 1350 1050 2000

1

2 For the specific geometry and loading condition, the system of equilibrium equations (47) becomes:

3 (55)

' '' '' ''3
'' ' ' '

3 3 3

0

1  
      0.

12

m

m m m m
m m m m

dH

dx
dV d

t d R
dx dx

y y y yd t d
H V y H V t d y H y V y

dx

4 From (55)1 it follows that the horizontal component of the thrust is constant:

5 . (56)0H H

6 Moreover, by integrating equation (55)2, it results: 

7 (57)mV  t  d  R  k

8 with k an integration constant. Because of the symmetry of the problem, the vertical force V is zero 

9 on the symmetry axis, that is:

10 . (58)0 0 0V x V

11 This imply that in (57) k=0. Furthermore, by recalling formula (25), it results:

12 . (59)'    arctanm mV t d R y

13 Substituting expressions (58) and (59) in equation (55)3, the following differential equation in  x

14 is obtained:

15 , (60)
' '' '' ''3

'' ' ' '
0 0 03 3 3

1  
      0

12
m m m m

m m m m

y y y yd t d
H V y H V t d y H y V y

dx

16 with

17 . (61)
2

2 2 ' ''

2 2 3 2 22 2

1
100 1200

1200 12001200
m m m

x x
y x y y

x xx

18 Since the solutions of (55)1 and (55)2 have been already determined analytically, the numerical 

19 method described in Section 5 is applied only for solving equation (55)3. To this aim, the domain 

20  is divided into  intervals of the same length, and for each of them the 1200,1200x 16en

21 eccentricity  is approximated by a polynomial of the fourth degree. In each interval, four x

22 collocation conditions are imposed; these conditions, together with the continuity conditions (52)3 

23 yields a system of  equations in  unknowns, i.e., the coefficients , 5 1en 5 1en ( )i
jr 1,..., ei n
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1 and . 1,...,4j

2 In order to get a solution, the above conditions are completed with two suitable boundary 

3 conditions. In particular, the boundary conditions corresponding to the maximum horizontal thrust 

4 are straightforward: the maximum thrust is attained when the thrust line is tangent to the intrados in 

5 correspondence of the key section of the arch and to the extrados at the imposts, that is:

6 . (62)0 ,    1200
2 2

d d
x x

7 On the other hand, at the minimum horizontal thrust solution the thrust line is tangent to the 

8 extrados in correspondence of the key section of the arch, while it is not known a priori the position 

9 of the tangency points at the intrados near the imposts. Thus, the optimization procedure described 

10 in Section 5 is employed for determining the minimum thrust solution, and it is found that the 

11 tangency points at the intrados near the imposts are attained in correspondence of the cross-sections 

12 inclined of  about the vertical axis.0 63

13 The numerical solutions obtained by the proposed innovative approach are now validated by the 

14 comparison with analytical solutions. Given that the solutions of (55)1 and (55)2 have been already 

15 determined in closed form, again only equation (55)3 have to be solved. To this aim, since for 

16 circular arches the center of curvature of the mid-line is fixed, it is convenient to transform equation 

17 (55)3 in polar coordinates; in particular, by applying the relations in Section 3, it results:

18 (63)
2

   sin 0
12m

m

dx dy d
V H t d R

d d R

19 (see also (Ricci et al., 2017)). Then, by setting , the following analytical solution is mq t d R

20 obtained:

21 (64)

2

cos
12

  sin  cos

m
m

o

d
c q R

R
R

q H

22 where c is an integration constant. Notice that (64) determines the position of the thrust line through 

23 its distance from the center of curvature R( ), instead of its eccentricity  with respect to the x

24 mid-line; but, these quantities are related by (23). Named Ro the radius of the thrust line at , 0

25 that is , it is: 0 oR R

26 ; (65)
2

12o o m
m

d
c H R q R

R

27 thus, the solution (64) takes the form:
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1 , (66)

2

 1 cos
12

  sin  cos

o o m
m

o

d
H R q R

R
R

q H

2 and it is expressed in terms of two parameters, the radius of the thrust line at  and the 0

3 horizontal thrust . The latter parameters can be determined by imposing suitable boundary 0H

4 conditions. In particular, for obtaining the maximum thrust solution the boundary conditions to be 

5 considered for (66) are:

6 . (67)0 ,        
2in exR R R R

7 The corresponding values of the parameters  and  are:0R 0H

8 (68)

2

0 0
0

2 12
,                

ex m
m

in

d
q R R

R
H R R

R

9 On the other hand, the boundary conditions for obtaining the minimum thrust solution are:

10 (69)00 ,       ex inR R R R

11 where  is the angle of the tangency points of the thrust line at the intrados near the imposts 0 63

12 before numerically determined. By substituting (69) in (66), it results:

13 . (70)

2

0 0 0

0 0
0 0

1 cos    sin
12

,         
 cos

m in
m

ex
in

d
q R R q

R
H R R

R R

14 Now, the numerical solutions corresponding to the minimum and maximum thrust at the imposts 

15 obtained by applying the proposed numerical approach are compared with those analytically 

16 determined.

17 In particular, for what concerns the maximum thrust solution, the value of the thrust at the imposts 

18 determined by the numerical procedure is 344.0 kN; this value is practically the same of the value 

19 analytically determined by (67)1, that is, H0=341.9 kN. Moreover, in Fig.  a comparison between the 

20 analytically determined thrust line (dotted line), obtained from (65) and (67), and the thrust line 

21 obtained from the numerical results (solid line) is presented. It can be remarked that the two curves 

22 are almost identical.



25

1

2 Fig. 5. Maximum thrust solution: analytical (dotted line) and numerical (solid line) results; distances in mm.

3

4 For what concerns the minimum thrust solution, the value of the thrust at the imposts determined by 

5 the numerical procedure is 155.0 kN; this value is very close to the value analytically determined by 

6 (69)1, that is, H0=152.5 kN. Furthermore, Fig.  compares the analytically determined thrust line 

7 (dotted line), obtained from (65) and (69), and the thrust line obtained from the numerical results 

8 (solid line). Also in this case the two curves are almost identical.

9

10 Fig. 6. Minimum thrust solution: analytical (dotted line) and numerical (solid line) results; distances in mm.

11

12 The very good match between analytical and numerical solutions proves the effectiveness of the 

13 proposed procedure in determining approximated solutions for the differential equation (55)3.
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1

2 5.2. Parabolic arch

3 The parabolic arch characterized by the geometric properties reported in Table 2 and subjected to 

4 the self-weight is analyzed. 

5 For a parabolic arch the center of curvature is not unique and does not coincide with the center of 

6 the global reference system. This complicates the problem of the determination of the thrust line, 

7 and no analytical solutions for the this case are available. Then, in order to validate the proposed 

8 numerical approach, a comparison between the obtained results and those determined by a FEM 

9 code based on the application of the Timoshenko's beam theory for no-tension materials is 

10 performed.

11

12 Table 2. Geometric data of the parabolic arch.

Mid-line Extrados Intrados

Rise

[mm]

Span

[mm]

Rise

[mm]

Span

[mm]

Rise

[mm]

Span

[mm]

d

[mm]

t

[mm] [daN/mm3]

1600 3200 1750 3500 1450 2900 300 500 2000

13

14 For the considered case-study, the equation of the mid-line curve is: 

15 (71)2
my ax bx c

16 with  (from now on the distances are expressed in mm). The curvature 1/ ,  0,  1600a c b c

17 and the mid-line radius can be determined by (21) and (23), respectively, resulting:

18 . (72)

3

2
2

3

22

1 1
,         800 1

6400001
800 1

640000

m mk R x

x

19 The domain on which the independent variable x is defined is ; this domain is 1600,1600

20 divided in  intervals of the same length . 5en 640x

21 As the only load is the self-weight, the following positions are made:

22 . (73)cost ,              0h e e i if p f p

23 Therefore, the ODE system (47), taking into account the symmetry of the scheme, gives:
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1 (74)

0

'

' '' '' ''3
'' ' ' '

0 0 03 3 3

    arctan

1  
      0

12

m m

m m m m
m m m m

H H

V t d R y

y y y yd t d
H V y H V t d y H y V y

dx

2 with  the horizontal thrust, which is constant and unknown, and:0H

3 (75)2
2'

5

3
2

7 2
5

' 2  
800
1

'' 2
800

1 1
6.4 10

1
2.4 10 1 arctan .

6.4 10 800

m

m

m

x
y a x

y a

x
y

x
V x

4

5
6 Fig. 7. Thrust line corresponding to the maximum value of the thrust H for a parabolic arch; distances in mm.

7

8 For numerically solving (74)3, the unknown function (x) is approximated with a polynomial of 

9 fourth degree (see (49)) in each of the 5 intervals. Then, it is required that equation (74)3 is exactly 

10 satisfied by the approximating polynomials at the collocation points (51). Moreover, the continuity 

11 conditions (52) are imposed. This way, a system of 24 equations in 26 unknowns is obtained. 

12 Particular solutions can be determined by imposing two suitable boundary conditions. Among them, 

13 the maximum thrust solutions are of interest for applications, corresponding to the following 
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1 boundary conditions, expressing the requirements that the thrust line is tangent to the intrados at the 

2 crown and intersects the extrados at the imposts:

3 . (76)0 ,                  1600
2 2

d d
x x

4 This way, a horizontal thrust 404.9 kN is obtained along with the thrust line shown in Fig. .0H

5 For the minimum thrust solution, the following boundary conditions:

6 (77)0 ,         1600 ,
2 2

d d
x x

7 expressing the requirements that the thrust line is tangent to the extrados at the crown and intersects 

8 the intrados at the imposts, are imposed. In this case, a horizontal thrust 220.1·104 kN and the 0H

9 thrust line shown in Fig.  are obtained.

10 Now, for validating the obtained numerical solutions, a comparison with the solutions recovered by 

11 a FEM implementation of the Timoshenko's beam theory for no-tension materials has been used. 

12 Notice that the finite element method considers not only the equilibrium (like the approach here 

13 proposed), but also the constitutive equation and the compatibility between displacements and 

14 deformations. Thus, in order to make possible a comparison, the following strategy is adopted. 

15 Arbitrary constraint conditions are prescribed at the imposts and, consequently, the corresponding 

16 thrust line and value of the horizontal thrust at the imposts are determined by the FEM code. Then, 

17 the proposed numerical approach is applied by imposing as the boundary conditions exactly the 

18 horizontal thrust at the imposts and the eccentricity of the thrust line in two convenient cross-

19 sections evaluated by the FEM analysis. Finally, the two numerical solutions in terms of line of 

20 thrust are compared.

21
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1

2 Fig. 8. Thrust line corresponding to the minimum value of the thrust H for a parabolic arch; distances in mm.

3 In particular, by using the no-tension FEM code a parabolic arch having the features in Table 2 has 

4 been solved with the kinematical constraints of clamped imposts. The results given by the FEM 

5 code consist not only in the thrust line, but also in the value of the constraints reactions; the 

6 horizontal component of these reactions is the thrust at the imposts.

7 Then, the proposed innovative numerical approach has been applied for determining the thrust line 

8 by imposing the following two boundary conditions: 1) the thrust at the imposts is the same of that 

9 determined by the Timoshenko's beam no-tension FEM code, that is, 290.1 kN; 2) the eccentricity 

10 of the thrust line at the left impost is the same of that determined by the FEM code.

11 In Fig.  the thrust lines determined by the FEM code and by the proposed innovative numerical 

12 approach are compared. It is seen that the two curves are practically superimposed: this validate the 

13 proposed approach.

14
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1

2 Fig. 9. Comparison between the solutions determined with the FEM (red dotted line) and the PCM (blue solid 
3 line); distances in mm.

4

5 5.3. Pointed arch subjected to self-weight

6 A pointed arch subjected to the self-weight, with daN/mm3 and having the geometrical 2000

7 features in Table 3 is considered.

8

9 Table 3. Geometric data of the pointed arch.

Mid-line Extrados Intrados

Rise

[mm]

Span

[mm]

Rm

[mm]

Rise

[mm]

Span

[mm]

Rex

[mm]

Rise

[mm]

Span

[mm]

Rin

[mm]

C

[mm]

d

[mm]

t

[mm]

1632 1995 2000 1803 2295 2150 1456 1695 1850 1000, 100 300 500

10

11 In this case the mid-line equation is piece-wise defined; in particular, each half of the arch is a 

12 circular arch whose center does not coincide with the center of the global reference system. 

13 Specifically, it results:

14 (78)22
m C m Cy y R x x

15 with 
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1 (79)
1000,100         0

1000,100         0.

C if x

C if x

2 Notice that from now on the distances are expressed in mm. Therefore, the equation of the mid-line 

3 is:

4 (80)

22

22

100 2000 1000           0

100 2000 1000           0,
m

x x
y

x x

5 and it results:

6 (81)
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8 (82)

2
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xx
y
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9 Since also in this case only the action of the self-weight it is considered, positions (73) hold and the 

10 ODE system (47) reduces again to (74).

11
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1

2 Fig. 10. Thrust line corresponding to the maximum value of the thrust H for a pointed arch; distances in mm.

3

4 From the geometry it is possible to infer that the domain of the independent variable x is [-997.5, 

5 997.5]; for the numerical calculations this domain is divided in ne = 8 intervals. For each interval 

6 the function (x) has been approximated with the fourth degree polynomial (49). Then, it is required 

7 that equation (74)3 is exactly satisfied by the approximating polynomials at the collocation points 

8 (51). Moreover, the continuity conditions (52) are imposed. In this way, accounting for the 

9 symmetry of the scheme, a system of 39 equations in 41 unknowns it is obtained. Particular 

10 solutions can be determined by imposing two suitable boundary conditions. 

11 Indeed, in order to determine the maximum value of the horizontal thrust the conditions that the 

12 thrust line is tangent to the intrados at the crown and to the extrados at the imposts are imposed, that 

13 is:

14 . (83)81.5 ,                  997.5
2 2

d d
x x

15 For what concerns (83)1, it is worth recalling that the independent variable x is referred to the mid-

16 line: thus, condition (83)1 refers to the point of the mid line from which passes the cross-section 

17 corresponding to the point of the intrados at the crown of the arch (see Fig. ). This way, it is 
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1 determined a maximum value of the thrust 210.2 kN. In Fig.  the thrust line corresponding to 0H

2 this solution it is plotted.

3

4 Fig. 11. Thrust line corresponding to the minimum value of the thrust H for a pointed arch; distances in mm.

5

6 For determining the minimum thrust solution, the thrust line must be tangent to the extrados in two 

7 points near the crown and to the intrados near the imposts. Nevertheless, the position of the 

8 tangency points near the imposts and the crown are not known in advance. Thus, the optimization 

9 procedure described in Section 4 has been employed for the determination of the minimum thrust 

10 solution. In particular, the minimum value of the horizontal thrust has been found to be H0 = 112.9 

11 kN. In Fig.  the curve corresponding to the minimum value of  has been plotted.0H
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1

2 Fig. 12. Comparison between the FEM solution and the PCM solution; distances in mm.

3

4 In order to validate the obtained numerical solutions a comparison with the solution obtained by the 

5 Timoshenko's beam no-tension FEM code has been determined. In particular, by following the 

6 same approach discussed in previous section for the parabolic arch, a pointed arch having the 

7 geometrical data in Table 3 and clamped at the imposts has been analyzed by the FEM code. Then, 

8 the proposed innovative numerical approach has been applied by imposing the following boundary 

9 conditions: 1) the thrust at the imposts is the same of that determined by the FEM code, that is, 

10 140.5 kN; 2) eccentricity of the thrust line at the left impost is the same of that determined by the 

11 FEM code.
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1 In Fig.  the thrust lines determined by the Timoshenko's beam no-tension FEM code and by the 

2 proposed innovative numerical approach are compared. Also in this case, it is clear that the two 

3 curves practically coincide: this further validate the approach here proposed. 

4

5 6. Conclusions

6 The Milankovitch's theory of equilibrium of masonry arches is revisited and generalized within the 

7 framework of Limit Analysis applied to masonry structures. The generalization involves the 

8 geometrical description of the problem, more consistent with the data obtainable from a field 

9 survey, and the loading condition: indeed, also horizontal inertial forces representing seismic loads 

10 have been considered. Moreover, a numerical procedure based on a suitable implementation of the 

11 Point Collocation Method for determining solutions of the equilibrium problem has been developed, 

12 as solutions are often analytically infeasible. A key aspect of the proposed numerical procedure is a 

13 constrained optimization routine that may be used for determining, among the infinity of 

14 equilibrium solutions, those of special interest for applications. For example, maximum and 

15 minimum thrust solutions can be determined, but also the geometric safety factor, or the collapse 

16 load multiplier for variable loads, even in the case of horizontal seismic loads.

17 This innovative formulation aims at making available the most advanced and accurate theory of 

18 equilibrium for masonry arches for determining optimal Limit Analysis solutions from the “safe” 

19 side (Lower-Bound theorem of Limit Analysis). 

20 The proposed approach is applied for studying masonry arches under the self-weight, and the 

21 attention is focused on maximum and minimum thrust solutions. The obtained solutions are 

22 validated both by the comparison with analytical solutions (for the circular arch) and by the 

23 comparison with numerical solutions obtained by using a Timoshenko's beam no-tension FEM code. 

24 The results of the comparisons show the effectiveness of the proposed approach: the thrust lines 

25 obtained by the latter are substantially superimposed to the reference thrust lines.

26 This encourages further studies on the application of the proposed approach to masonry arches 

27 under more general load conditions, including also horizontal seismic loads, and on reinforced 

28 masonry arches.
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30 7. References

31 Addessi, D., Sacco, E., 2014. A kinematic enriched plane state formulation for the analysis of 

32 masonry panels. Eur. J. Mech. A/Solids 44, 188–200.



36

1 Addessi, D., Sacco, E., Paolone, A., 2010. Cosserat model for periodic masonry deduced by 

2 nonlinear homogenization. Eur. J. Mech. A/Solids. 

3 https://doi.org/10.1016/j.euromechsol.2010.03.001

4 Ageno, A., Bernabo, A., Foce, F., Sinopoli, A., 2004. Theory and History of the Thrust Line for 

5 Masonry Arches. A Brief Account. Proc. 4th Int. Conf. Arch Bridg. 1–10.

6 Alecci, V., Focacci, F., Rovero, L., Stipo, G., de Stefano, M., 2016a. Extrados strengthening of 

7 brick masonry arches with PBO-FRCM composites: Experimental and analytical 

8 investigations. Compos. Struct. https://doi.org/10.1016/j.compstruct.2016.04.030

9 Alecci, V., Focacci, F., Rovero, L., Stipo, G., De Stefano, M., 2017. Intrados strengthening of brick 

10 masonry arches with different FRCM composites: Experimental and analytical investigations. 

11 Compos. Struct. https://doi.org/10.1016/j.compstruct.2017.06.023

12 Alecci, V., Misseri, G., Rovero, L., Stipo, G., De Stefano, M., Feo, L., Luciano, R., 2016b. 

13 Experimental investigation on masonry arches strengthened with PBO-FRCM composite. 

14 Compos. Part B Eng. https://doi.org/10.1016/j.compositesb.2016.05.063

15 Angelillo, M., Fortunato, A., Montanino, A., Lippiello, M., 2014. Singular stress fields in masonry 

16 structures: Derand was right. Meccanica. https://doi.org/10.1007/s11012-014-9880-6

17 Baraldi, D., Cecchi, A., 2016. Discrete approaches for the nonlinear analysis of in plane loaded 

18 masonry walls: Molecular dynamic and static algorithm solutions. Eur. J. Mech. A/Solids. 

19 https://doi.org/10.1016/j.euromechsol.2015.12.008

20 Baraldi, D., Cecchi, A., Tralli, A., 2015. Continuous and discrete models for masonry like material: 

21 A critical comparative study. Eur. J. Mech. A/Solids. 

22 https://doi.org/10.1016/j.euromechsol.2014.10.007

23 Benvenuto, E., 1981. La scienza delle costruzioni e il suo sviluppo storico. Sansoni, Firenze.

24 Bertolesi, E., Milani, G., Carozzi, F.G., Poggi, C., 2018a. Ancient masonry arches and vaults 

25 strengthened with TRM, SRG and FRP composites: Experimental evaluation. Compos. Struct. 

26 187, 466–480. https://doi.org/10.1016/j.compstruct.2017.12.075

27 Bertolesi, E., Milani, G., Carozzi, F.G., Poggi, C., 2018b. Ancient masonry arches and vaults 

28 strengthened with TRM, SRG and FRP composites: Numerical analyses. Compos. Struct. 187, 

29 385–402. https://doi.org/10.1016/j.compstruct.2017.12.021



37

1 Block, P., Dejong, M., Ochsendorf, J., 2006. As hangs the flexible line: Equilibrium of masonry 

2 arches. Nexus Netw. J. 8, 13–24. https://doi.org/10.1007/s00004-006-0015-9

3 Block, P., Ochsendorf, J.A., 2008. Lower-bound Analysis of Masonry Vaults, in: Structural 

4 Analysis of Historic Construction: Preserving Safety and Significance. 

5 https://doi.org/10.1201/9781439828229.ch67

6 Coulomb, C., 1776. Essai sur une application des règles de maximis &amp; minimis à quelques 

7 problèmes de statique, relatifs à l’architecture. De l’Imprimerie Royale, Paris.

8 Couplet, P., 1732. Seconde partie de l’éxamen de la poussée des voûtes, in: Mémoires de 

9 l’Académie Royale Des Sciences, Année 1730. pp. 117–141.

10 Couplet, P., 1731. De la poussée des voûtes, in: Mémoires de l’Académie Royale Des Sciences, 

11 Année 1729. pp. 79–117.

12 D’Altri, A.M., Castellazzi, G., de Miranda, S., 2018. Collapse investigation of the Arquata del 

13 Tronto medieval fortress after the 2016 Central Italy seismic sequence. J. Build. Eng. 

14 https://doi.org/10.1016/j.jobe.2018.03.021

15 de La Hire, P., 1720. Sur la construction des voûtes dans les édifices, in: Mémoires de l’Académie 

16 Royale Des Sciences, Année 1702. pp. 100–103.

17 de La Hire, P., 1695. Traité de mécanique, où l’on explique tout ce qui est nécessaire dans la 

18 pratique des Arts, et les proprietés des corps pesants lesquelles ont eu plus grand usage dans la 

19 Physique. Imprimerie Royale, Paris.

20 Drougkas, A., Roca, P., Molins, C., 2016. Nonlinear micro-mechanical analysis of masonry 

21 periodic unit cells. Int. J. Solids Struct. https://doi.org/10.1016/j.ijsolstr.2015.11.004

22 Fabbrocino, F., Farina, I., Berardi, V.P., Ferreira, A.J.M., Fraternali, F., 2015. On the thrust surface 

23 of unreinforced and FRP-/FRCM-reinforced masonry domes. Compos. Part B Eng. 

24 https://doi.org/10.1016/j.compositesb.2015.08.061

25 Foce, F., 2007. Milankovitch’s Theorie der Druckkurven: Good mechanics for masonry 

26 architecture. Nexus Netw. J. 9, 185–210. https://doi.org/10.1007/s00004-007-0039-9

27 Fortunato, A., Babilio, E., Lippiello, M., Gesualdo, A., Angelillo, M., 2016. Limit Analysis for 

28 Unilateral Masonry-like Structures. Open Constr. Build. Technol. J. 10, 346–362. 



38

1 https://doi.org/10.2174/1874836801610010346

2 Fortunato, A., Fabbrocino, F., Angelillo, M., Fraternali, F., 2017. Limit analysis of masonry 

3 structures with free discontinuities. Meccanica 1–10. https://doi.org/10.1007/s11012-017-

4 0663-8

5 Gilbert, M., 2007. Limit analysis applied to masonry arch bridges: state-of-the-art and recent 

6 developments. Proc. 5th Int. Conf. Arch Bridg.

7 Gregory, D., 1698. Catenaria. Philos. Trans. 19, 637–652.

8 Heyman, J., 1966. The stone skeleton. Int. J. Solids Struct. https://doi.org/10.1016/0020-

9 7683(66)90018-7

10 Hooke, R., 1676. A description of helioscopes, and some other instruments. London.

11 Huerta, S., 2006. Galileo was wrong: The geometrical design of masonry arches. Nexus Netw. J. 8, 

12 25–52. https://doi.org/10.1007/s00004-006-0016-8

13 Huerta, S., 2004. Arcos, bóvedas y cúpulas : geometría y equilibrio en el cálculo tradicional de 

14 estructuras de fábrica. Instituto Juan de Herrera.

15 Lemos, J. V., 2007. Discrete element modeling of masonry structures. Int. J. Archit. Herit. 

16 https://doi.org/10.1080/15583050601176868

17 Livesley, R.K., 1978. Limit analysis of structures formed from rigid blocks. Int. J. Numer. Methods 

18 Eng. https://doi.org/10.1002/nme.1620121207

19 Lubliner, J., 1990. Plasticity Theory. Macmillan Publishing Company, New York.

20 Lucchesi, M., Pintucchi, B., Zani, N., 2018. Masonry-like material with bounded shear stress. Eur. 

21 J. Mech. / A Solids 72, 329–340. https://doi.org/10.1016/j.euromechsol.2018.05.001

22 Luciano, R., Sacco, E., 1998. A damage model for masonry structures. Eur. J. Mech. - A/Solids. 

23 https://doi.org/10.1016/S0997-7538(98)80087-9

24 Mascheroni, L., 1785. Nuove ricerche sull’equilibrio delle volte. Locatelli, Bergamo.

25 Méry, É., 1840. Sur l’équilibre des voûtes en berceau,. Ann. des Ponts Chaussées 19, 50–70.

26 Milani, G., Lourenço, P.B., 2012. 3D non-linear behavior of masonry arch bridges. Comput. Struct. 



39

1 https://doi.org/10.1016/j.compstruc.2012.07.008

2  M., 1907. Theorie der Druckkurven. Zeitschrift für Math. und Phys. 55, 1–27.

3  M., 1904. Beitrag zur Theorie der Druckkurven. K.K. technische Hochschule, Wien.

4 Navier, C.-L., 1826. Résumé des leçons données à l’École des Ponts et Chaussées sur l’application 

5 de la mécanique à l’établissement des constructions et des machines. F. Didot père et fils, 

6 Paris.

7  D., 2016. A note on Milankovitch’s theory of thrust line applied to gothic masonry arches, 

8 in: 4th International Conference Contemporary Achievements in Civil Engineering 22. April 

9 2016. Subotica, SERBIA. https://doi.org/DOI:10.14415/konferencijaGFS 2016.018

10 Nobile, L., Bartolomeo, V., 2014. Methods for the Assessment of Historical Masonry Arches. Proc. 

11 5th Eur. Conf. Civ. Eng. (ECCIE ’14) 160–167.

12 O’Dwyer, D., 1999. Funicular analysis of masonry vaults. Comput. Struct. 

13 https://doi.org/10.1016/S0045-7949(98)00279-X

14 Oliveira, D. V., Lourenço, P.B., Lemos, C., 2010. Geometric issues and ultimate load capacity of 

15 masonry arch bridges from the northwest Iberian Peninsula. Eng. Struct. 

16 https://doi.org/10.1016/j.engstruct.2010.09.006

17 Pintucchi, B., Zani, N., 2016. A simple model for performing nonlinear static and dynamic analyses 

18 of unreinforced and FRP-strengthened masonry arches. Eur. J. Mech. A/Solids. 

19 https://doi.org/10.1016/j.euromechsol.2016.03.013

20 Pintucchi, B., Zani, N., 2009. Effects of material and geometric non-linearities on the collapse load 

21 of masonry arches. Eur. J. Mech. A/Solids. https://doi.org/10.1016/j.euromechsol.2008.02.007

22 Ricci, E., Fraddosio, A., Piccioni, M.D., Sacco, E., 2017. Numerical methods for the lower bound 

23 limit analysis of masonry arches. AIMETA 2017 - Proc. 23rd Conf. Ital. Assoc. Theor. Appl. 

24 Mech. 2.

25 Ricci, E., Sacco, E., Piccioni, M.D., 2016. A method for the analysis of masonry arches, in: 

26 Structural Analysis of Historical Constructions: Anamnesis, Diagnosis, Therapy, Controls - 

27 Proceedings of the 10th International Conference on Structural Analysis of Historical 

28 Constructions, SAHC 2016. Leuven; Belgium, pp. 1239–1245.



40

1 Roca, P., Cervera, M., Gariup, G., Pela’, L., 2010. Structural analysis of masonry historical 

2 constructions. Classical and advanced approaches. Arch. Comput. Methods Eng. 

3 https://doi.org/10.1007/s11831-010-9046-1

4 Sacco, E., 2015. Some Aspects on the Statics of Masonry Arches, in: Masonry Structures: Between 

5 Mechanics and Architecture. Springer International Publishing, Cham, pp. 265–290. 

6 https://doi.org/10.1007/978-3-319-13003-3_10

7 Sarhosis, V., Oliveira, D. V., Lemos, J. V., Lourenco, P.B., 2014. The effect of skew angle on the 

8 mechanical behaviour of masonry arches. Mech. Res. Commun. 

9 https://doi.org/10.1016/j.mechrescom.2014.07.008

10 Tralli, A., Alessandri, C., Milani, G., 2014. Computational methods for masonry vaults: A review 

11 of recent results. Open Civ. Eng. J. https://doi.org/10.2174/1874149501408010272

12 Varma, M., Jangid, R.S., Ghosh, S., 2010. Thrust Line Using Linear Elastic Finite Element 

13 Analysis for Masonry Structures. Adv. Mater. Res. 

14 https://doi.org/10.4028/www.scientific.net/AMR.133-134.503

15


