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This paper investigates several network-assisted streaming approaches which rely on active cooperation
between video streaming applications and the network. We build a Video Control Plane which enforces
Video Quality Fairness among concurrent video �ows generated by heterogeneous client devices. To this
purpose, a max-min fairness optimization problem is solved at run-time. We compare two approaches to
actuate the optimal solution in an SDN network: the �rst one allocating network bandwidth slices to video
�ows, the second one guiding video players in the video bitrate selection. We assess performance through
several QoE-related metrics, such as Video Quality Fairness, video quality, and switching frequency. The
impact of client-side adaptation algorithms is also investigated.
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1 INTRODUCTION
The amount of video content that is being distributed over the Internet is increasing thanks to the
wide di�usion of Smart TVs, tablets, and smartphones. Today, video providers leverage the HTTP
infrastructure made of servers and CDNs to scale their video delivery system and reach their users.
However, scalability is not the only concern for video providers. User-centric objectives such as
service costs or Quality of Experience (QoE) signi�cantly impact user engagement. Accordingly,
video providers have to satisfy user expectations to avoid user abandonment and the resulting
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(a) Bandwidth Reservation (b) Bitrate Guidance

Fig. 1. Network-assisted approaches for adaptive video streaming

revenues losses [27]. One of the main in�uence factors, which thus has to be improved, is the
QoE [4, 27, 33].
Video providers currently rely on the HTTP adaptive streaming (HAS) approach, a technique

allowing video quality adaptation on short time scales, to deliver videos to the users. Video clients
are equipped with controllers allowing to autonomously change the video bitrate to improve the
QoE. These HTTP adaptive streaming algorithms are designed to avoid playback interruptions
due to bu�er underruns and to maximize the video bitrate – possibly matching the end-to-end
bandwidth – while containing the video bitrate switching frequency [4].
The simultaneous presence of several adaptive video streaming �ows transmitted via a shared

bottleneck link results in a fair bandwidth distribution among the involved �ows. However, QoE-
relevant in�uence factors such as the device capabilities or the user context are not taken into
account by QoS-based distribution. For instance, users with small screens are served with the same
video bitrate as users with large screens, resulting either in bad QoE for users with large screens
or in wasted network resources due to the over provisioning of video quality. The resources are
fairly shared with respect to the QoS parameters, but not with respect to the user’s QoE [14]. To
overcome this problem, an interaction between video and network provider may prove bene�cial.
A video control plane can leverage the exchanged information to enforce network-assisted

streaming strategies. A standard signaling plane is required to enable active cooperation between
network elements, such as, f.i., the one proposed by Server And Network Assisted DASH (SAND
DASH)1. Such architectures allow a network element to trigger a control mechanism such as quality
adaptation, �ow prioritization or bandwidth reservation, based on network state and client context.
Software De�ned Networking (SDN) is a viable technology to implement such mechanisms due to
the presence of a centralized control element, which is particularly bene�cial in the presence of
complex topologies [40].

Our work provides a broad investigation of the design space of video control planes by studying
and experimentally comparing the performance of three classes of network-assisted strategies.
The Bandwidth Reservation assigns a bandwidth slice to a video �ow (or a group of video �ows).
Two nested control loops are established as shown in Fig. 1 (a): the outer control loop is executed
in the network and sets the bandwidth slice, whereas the inner control loop, running at the client,
autonomously selects the video bitrate based on video client feedback and bandwidth estimates. In
this paper, we consider several bandwidth reservation strategies and several client-side adaptation
algorithms to assess interactions between the two control loops. Additionally, we take into account
the constraints imposed by the capabilities of the current hardware (i.e. limited number of con-
�gurable bandwidth slices) by proposing mechanisms to address this issue. The second category,
shown in Fig. 1 (b), is named Bitrate Guidance: when this approach is employed, a centralized

1https://tools.ietf.org/id/draft-begen-webpush-dash-reqs-00.txt
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algorithm running in a network element computes the video bitrate that is then enforced by the
video client. Finally, we take into account hybrid strategies combining Bandwidth Reservation and
Bitrate Guidance.

To experimentally compare the performances obtainable with these approaches, we have imple-
mented a testbed in which network-assisted strategies enforce a management policy to maximize
Video Quality Fairness (VQF). The testbed is built using an SDN controller and several concurrent
video sessions are generated using TAPAS [11]. In the considered network scenario the bottleneck
is located at the SDN switch where the VCP enforces the management policy. The bottleneck link
can be the one connecting the ISP Access Network to the Home Router or the egress congested
link of a CDN. Moreover, since this is the �rst paper comparing network-assisted approaches for
video delivery, the results obtained in this paper can serve as a starting point to further study
network-assisted strategies over general topologies.

2 RELATEDWORK
In the following, we separately review related work on (i) Quality of Experience for adaptive video
streaming, (ii) the use of network-assisted approaches for the delivery of video content.

2.1 QoE of Video Streaming
The concept of Quality of Experience (QoE) explicitly refers to the user-perceived quality by relying
on subjective criteria. For classical HTTP video streaming, the essential in�uence factors on QoE
are initial delay and stalling due to bu�ering [15, 17]. HAS introduces quality adaptations during
video playback as additional in�uence factors and allows to trade-o� waiting times and quality
switching frequency. The main perceptual QoE in�uence factors for HAS can be grouped in waiting
times, video quality adaptation, and video quality switching frequency.

Waiting Times. According to [15], waiting times can be classi�ed into waiting times before the
video playback is started and interruptions during video playback. It is also shown that, in general,
initial delays are perceived less disturbing than playback interruptions. Furthermore, subjective
evaluation results in [19] showed that, on equal terms of the overall stalling time, the larger the
number of stalling events the more detrimental the e�ect on the QoE. Accordingly, the number of
playback interruptions, as well as the total stalling time, should be reduced, even at the expense of
other factors such as initial delays or video quality adaptation [33].

Video �ality Adaptation. Video quality adaptation can be performed in three dimensions,
namely in the temporal, spatial, and quality dimension. Authors of [33] point out that reducing
the video quality too much in any of these dimensions leads to a bad QoE. Further, an adaptation
in multiple dimensions is perceived better than a single dimension adaptation. The dimensions
to adapt, however, depend on the content type and its characteristics. The video service provider
performs the selection of content representations when preparing the content. It is worth noting
that current HAS systems typically rely on adaptations in the quality dimension and tend to neglect
the other dimensions.

Video �ality Switches. Besides waiting times, another factor in�uencing the QoE are the video
quality switches during playback. In particular, the e�ect of quality switches can be characterized
based on the period, amplitude, and the type of video content [30]. The e�ect of the switching
period is perceived as annoying in the case switching periods are lower than 1 s. Although the
e�ect of the video quality switching period is the dominating one, it has been shown that small
amplitudes are not detectable by users. Finally, content plays a signi�cant role in the case the
quality switch involves either the temporal or the spatial dimension.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 1, No. 1, Article 1. Publication date:
April 2017.



1:4 PREPRINT

Authors of [18] investigate the in�uence factors of the adaptation parameters for HTTP adaptive
streaming with two quality layers. The results con�rm the high impact of the switching amplitude
between two played back representations, and that recency e�ects are negligible if more than two
switches occur. The time on highest video quality layer has a signi�cant impact on the QoE, and
the number of quality switches can be neglected. These investigations are further extended in [34]
by introducing an intermediate layer and highlighting its impact on the QoE. Thereby, the position
of the intermediate layer has no signi�cant impact on the QoE. Further, a positive e�ect of the
intermediate layer and a negative e�ect of the low layer on the QoE were visible. Hence, the quality
of each layer and the playback time spent on each layer are essential QoE parameters. The authors
show that the average SSIM value for the played back video quality has a high correlation with the
MOS values of constant pro�les, i.e., SSIM is a good predictor for the MOS.

Summary. Based on the discussed work, the following conclusions can be derived: (i) video
stallings, either initial or during playback, have a high impact on the overall video quality and
should be avoided; (ii) as long as no �ickering e�ects occur (switches between qualities on short
timescales) the number of quality switches has a minor impact on the overall QoE; (iii) in the
absence of �ickering, averaging the SSIM values for the played back qualities on a per-frame basis
yields to a good QoE estimation.

2.2 Network-assisted Approaches
Bandwidth Reservation. The virtualization of the ISPs access infrastructure using open APIs

supported through SDN is proposed in [35]. Content providers can programmatically provision
capacity to user devices to guarantee QoE by employing network resources slicing. Moreover,
an algorithm is proposed for optimally allocating network resources, leveraging bulk transfer
time elasticity and access path space diversity. In [22] an SDN-based application-aware bandwidth
allocation approach is used to maximize the QoE of YouTube �ows. In [7] a control architecture
and a reference implementation of a network control plane for video �ows are proposed. The
reference implementation is evaluated through numerical simulations. In [28] a new QoE metric is
introduced, which takes into account the video resolution and the distance of the user from the
screen. Based on this metric, a QoE max-min fairness problem is formulated to enforce a per-�ow
bandwidth allocation in the Home Network.
Bitrate Guidance. In [14] an OpenFlow-assisted QoE Fairness Framework is proposed to fairly

maximize the QoE of multiple competing video clients in a Home Access Network. Authors provide
a proof-of-concept implementation considering a small number of concurrent �ows. In [26] authors
propose to place a HTTP proxy server between client and server (in the gateway or any other
network device) to drive the bitrate adaptation of the players by using the URL rewriting technique.
An analytical model in the form of a Markov process is employed at the proxy to compute the bitrate
for each player. In [31] a rate adaptation algorithm is proposed with the goal of providing fairness
in a multi-client setting. To the purpose, authors propose to employ an in-network system of
coordination proxies to facilitate fair resource sharing among clients. The in-network components
provide the clients with feedback, whereas clients perform the bitrate adaptation. The performance
evaluation is carried out through ns-2 simulations.
Other Network-Assisted Approaches . Authors of [25] propose two bitrate adaptation assistance

mechanisms to overcome performance losses due to ON-OFF patterns: the �rst, explicitly signaling
target bitrates to DASH players and the second performing dynamic tra�c control in the network.
The paper shows that both the mechanisms improve the streaming performances, but users experi-
ence a high and stable video quality only when they are used simultaneously. In [23] a data-driven
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Fig. 2. A block diagram of the control system

prediction model is designed to improve bitrate selection mechanisms. Combining a real-world
pilot deployment with a trace-driven analysis, authors show that the proposed prediction model
leads to signi�cant improvements, both in terms of stalling due to bu�ering and average video
bitrate. Authors of [13] propose C3, a centralized control platform designed to optimize video
delivery. The platform enables (i) per-CDN real-time monitoring of the delivered video QoE, (ii) the
prediction of expected performance and (iii) the selection of the CDN and the video bitrate. C3
enforces the bitrate selection by using a centralized Decision Layer, which is made aware of the
transport networks performance by a prediction algorithm located in an upper layer.

3 THE VIDEO CONTROL PLANE
This Section describes the Video Control Plane (VCP) that we employ to enforce a Video Quality
management policy. We have considered a single bottleneck scenario in which resource allocation
is enforced at the bottleneck link. The VCP can be used in any of the networks involved in the
video delivery, f.i., the link connecting the ISP Access Network to the Home Router or the egress
congested link of a CDN [29].

3.1 Control System Architecture
Fig. 2 shows a block diagram of the overall control system that builds on two components: the
Network Controller (NC) and the video clients.

The Network Controller. The NC runs on top of the SDN controller and undertakes the following
tasks: 1) it creates and manages bandwidth slices implemented through dedicated queues on the
network interfaces; 2) it handles a bidirectional communication pipe with the video clients. The
NC consists of three components: the Active Flows Table, the Optimization Module, and the Network
Actuator. The Active Flows Table stores information of the currently active video sessions. Each
video client provides such information at the beginning of the video session. The Optimization
Module takes as input the information provided by the table and periodically computes, each Ts
seconds, the bitrate assignment according to the Video Quality management policy. Speci�cally,
the algorithm assigns a bitrate (or bandwidth) to each active video session. Finally, the Network
Actuator is the component enforcing the computed bitrates (or bandwidth). The actuation mode
depends on the adopted network-assisted approach as described in Section 3.2.

Video Client. The clients undertake the following tasks: 1) set-up/teardown of the video session
by sending messages to the NC; 2) download the corresponding segments for the bitrate computed
by the bitrate adaptation algorithm.

3.2 Network-assisted Streaming Approaches
In this work we consider three network-assisted strategies to provide service di�erentiation to
concurrent video �ows: 1) the Bandwidth Reservation approach (BR), the Bitrate Guidance approach
(BG) and the approach combining Bitrate Guidance, and Bandwidth Reservation (BG+BR). The
control system shown in Fig. 2 can implement such approaches by combining two parallel and
independent threads, as depicted in Fig. 3: the Client thread and the NC thread.
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(a) Bandwidth Reservation (b) Bitrate Guidance (c) Bitrate Guidance and Band-
width Reservation

Fig. 3. The considered network-assisted approaches

Bandwidth Reservation (BR). When this approach is used, the NC reserves dedicated bandwidth
slices to the video �ows. The NC does not send any explicit information to the video client which
independently selects the video bitrate according to its client-side adaptation algorithm. Fig. 3 (a)
shows how to implement this approach. The NC thread is composed of three actions repeated
in a cycle: ❶ the Optimization Module computes the bandwidth slice assignment based on the
management policy; ❷ the Network Actuator receives the computed bandwidth slice and ❸ creates
or updates the dedicated slice for the �ow (or the group of �ows). The Client thread is made of two
actions consecutively run on each video segment download: ① the video bitrate is selected by the
client according to its adaptation algorithm; ② the segment is retrieved from the Content Provider.

Bitrate Guidance (BG). In this case, the NC computes the optimal video bitrate according to the
Video Quality management policy. Then, the NC sends the computed values to the video clients
that download the corresponding video segments. It is important to notice that, when using this
approach, all the video �ows share the same bandwidth slice. The client shapes the download
rate to match the selected bitrate, thus providing service di�erentiation to the �ows sharing the
slice. Fig. 3 (b) shows the implementation of this approach. The �rst two actions of the NC thread
❶ and ❷ are exactly equivalent to the ones executed in the BR approach. The third action ❸ is
di�erent: instead of creating bandwidth slices on the network interfaces, the Network Actuator
communicates the computed bitrates to the video clients. The Client thread only runs action ①,
i.e. it downloads the next video segment based on the video bitrate set by the NC. Accordingly,
Fig. 3 (b) labels such a video client as a Thin Client. To make this approach scalable, clients do not
send any feedback information to the NC. As a consequence, the NC is not aware if the playout
bu�er is draining and the client is required to download a lower bitrate to �ll it again quickly. For
this reason, when the playout bu�er gets below a threshold, a safety mechanism is activated and
the video bitrate is selected by the client ignoring the guidance of the NC.

Bitrate Guidance and Bandwidth Reservation (BG + BR). This approach is enforced by combining
the two strategies described above. In particular, the third action of the NC thread is split into two
sub-actions: 1) the bandwidth reservation in the network and 2) the bitrate guidance. The client
thread is again limited to performing segment downloads, i.e. the client can be considered as a
Thin Client exactly as in the case of the BG approach.

3.3 Client-side Adaptation
Client-side algorithms select the video bitrate from a discrete set at each segment download based
on parameters such as the estimated bandwidth and the playout bu�er length. Such algorithms aim
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at improving the QoE by: 1) avoiding rebu�ering events; 2) maximizing the video bitrate; 3) keeping
the number of video bitrate switches as low as possible.

In general, it is di�cult to achieve these goals simultaneously and some trade-o�s have to be made.
An appropriate classi�cation to our investigation is the following, which makes the distinction
between rate-based and level-based approaches [8]. The �rst one requires the algorithm to insert
pauses (OFF periods) between the downloads of consecutive segments to make the download rate
match the selected video bitrate on average. As a consequence, this approach sacri�ces bandwidth
utilization to reduce video level switches. The second approach downloads the segments back-to-
back and the playout bu�er is prevented from growing by throttling the video bitrate according to
a control law. This approach achieves the full link utilization at the price of a higher number of
video level switches [8].

This paper investigates the interactions between the client-side control loop and the network
control loop in the case of three algorithms: Conventional [39], PANDA [39], and Elastic [10]. We
have decided to consider these algorithms to cover both control approaches.

Conventional. It is a simple rate-based algorithm selecting the video bitrate based on bandwidth
estimates [39]. In a nutshell, the k-th controller output is equal to a �ltered version yk of the
estimated bandwidth xk . In particular, the k-th estimated bandwidth sample is computed as xk =
τrk−1/Tk−1 where rk−1 is the video level rate of the last downloaded segment, τ is the segment
duration, andTk−1 is the download time. Then, xk passes through a �rst-order low-pass �lter giving
the �ltered bandwidth sample yk computed as yk = yk−1 −Tk−1α (yk−1 − xk ) where α > 0 is the
�lter parameter. The video level index of the next video segment to be downloaded is a quantized
version of yk (see [39] for more details). Finally, when the system is in steady state, i.e., the bu�ering
phase is completed, the controller sets the OFF period length equal to max(τ −Tk−1, 0). We have
considered this algorithm to check if the Bandwidth Reservation strategy performs well even when
users employ a very simple client-side adaptation algorithm.

PANDA. It is a rate-based algorithm designed to cope with the fairness issues a�ecting several
HAS algorithms [39]. It follows a probe-and-adapt approach, incrementing the bitrate to probe
the available bandwidth. In particular, PANDA employs a control mechanism to regulate the OFF
periods duration and another control law to adapt the video bitrate. The control law to regulate
the OFF periods takes into account the current level of the playout bu�er: in a nutshell, when the
current playout bu�er level is below the playout bu�er target, OFF periods are shrunk; conversely
OFF periods are increased. Concerning the video bitrate control law, PANDA employs an AIMD
probing mechanism similar to the TCP congestion control. The output of the controller yk , i.e.,
the video level rate, is additively increased when the last segment download rate xk−1 is larger
then the previous controller output yk−1. Otherwise, if xk−1 < yk−1 holds, i.e., the selected video
bitrate is higher than the measured download rate, the output is decreased proportionally to
yk−1 − xk−1. Similarly to the Conventional controller, PANDA selects the video level index of the
next video segment to be downloaded as the output of a quantization functionQ (·) having as input
yk (see [39]).

Elastic. It is a level-based algorithm employing a feedback control technique known as feedback
linearization to control the playout bu�er length by varying the video bitrate [10]. The algorithm
downloads video segments back to back and sets the video level according to the following control
law:

lk = Q ��
bk

1 − k1qk − k2qIk
��
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where: 1) lk ∈ L is the video level chosen by the controller for the download of the k-th segment,
2) qk is the measured queue level, 3) qIk is the integral of the error qT − qk , 4) qT is the queue
target, 5) bk is the bandwidth estimate, 6) Q : R→ L is the quantization function returning the
maximum video level l ∈ L lower than its input value. To prevent the playout bu�er from growing
inde�nitely, Elastic uses an ON-OFF pattern similar to the one employed by Conventional only
when the following conditions hold simultaneously: 1) the selected video level lk is equal to the
maximum available level in L ; 2) the queue has already grown to a maximum value qmax � qT .
The OFF periods are inhibited again when at least one of the two conditions above does not hold
anymore. It has been shown that Elastic is able to overcome fairness issues a�ecting the rate-based
algorithms. Moreover, since Elastic behaves as a long-lived TCP �ow, it avoids the “downward
spiral” phenomenon that a�ects other rate-based algorithms when in the presence of other TCP
�ows [21].

3.4 The Management Policy
Video distribution platforms require di�erent management policies depending on the application
scenario and the employed monetization process. Di�erent policies could consider, for instance,
service di�erentiation based on user classes (premium versus unsubscribed users) or on QoE-related
parameters. Before introducing the proposed management policy, it is important to make a clear
distinction between video quality and QoE. The �rst term refers to metrics only related to the visual
quality of the video; the video quality can be assessed with metrics such as SSIM, PSNR, VQM,
PEVQ, or MSE (see [32] for a comparison of video quality metrics). On the other hand, the category
of QoE-related metrics comprises all the parameters a�ecting the user experience, including the
video quality; other important QoE-related metrics in the case of video streaming are rebu�ering
ratio, video level switching frequency, start-up latency [33].

Video�ality Fair Allocation. Several papers focusing on the design of video control planes have
considered the use of resource allocation based on either video quality [14] or QoE [31], which is
indeed more appropriate than fair bandwidth allocation (i.e. QoS fairness) in the context of video
delivery.
This work considers, as an example, a management policy aiming at providing fairness to

concurrent video streams in terms of video quality. A more sophisticated policy could be designed
by also taking into account other QoE-related parameters such as rebu�ering ratio and video level
switches. However, we argue that using only video quality is motivated by two reasons. First,
video quality can be computed o�-line in the case of VoD. This means that client feedback is not
required, which improves scalability. Second, QoE-related metrics are already taken into account by
client-side adaptation algorithms. This approach has the merit of decoupling the overall problem
in two subproblems, one handled centrally and one handled at the end-points. The interactions
between these subproblems are described in detail in [7].

The Optimization Problem. We have considered a simple network composed of a single node,
whose egress link is the bottleneck link on which the network-assisted approaches are implemented.

We consider the following scenario using the following notation. N video sessions are active over
a channel with capacity C . Each video session n ∈ {1, . . . ,N } streams the video vn with a client
device whose screen resolution is rn . The videovn is encoded in several video representations. Each
representation is characterized by its bitrate l̄i ∈ Ln and its resolution r i ∈ Rn . We assume that
users do not request video representations with a resolution higher than their screen resolution rn .
For each video session a utility function Un (·) can be de�ned, which associates to each video

bitrate in Ln the corresponding perceived video quality. The next paragraph shows how such
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functions are computed. It is worth noting that the utility function depends on the client screen
resolution.

We are now ready to formulate the Video Quality Fairness policy as a max-min fairness problem.
The issue here is to compute, at each sampling interval and for each active session n, the video
bitrate ln to stream in order to maximize the minimum measured Video Quality over all the video
sessions.
Depending on the particular scenario and network-assisted strategy, one of the following opti-

mization problems will be solved. The �rst, named Discrete Video Quality fair assignment, requires
the optimal bitrate for each video session to belong to its video level set. This problem can be used
to both compute bandwidth slices in the case of the BR approach and to compute video bitrates to
guide video clients in the case of the BG approach. The second, the Continuous Video Quality fair
assignment, in which the bandwidth slice size bn allocated to the n-th video session can assume
any real value between the minimum bitrate and the maximum bitrate of the video level set, i.e.,
bn ∈ [min{Ln },max{Ln }]. This optimization problem will be used only in the case of the BR
approach to compute bandwidth slices size. In the following, we formulate and brie�y discuss the
two optimization problems.

P������ 3.1 (D������� V���������� ���� ����������).
Maximize �minln ∈Ln Un (ln )

�

Subject to �N

n=1
ln ≤ C . (1)

For each active video session n, a bitrate ln belonging to the video level set Ln is computed. The
constraint imposes that the sum of the bitrates cannot exceed the link capacity.

P������ 3.2 (C��������� V���������� ���� ����������).

Maximize
�
minbn ∈RU n (bn )

�
Subject to �N

n=1
bn ≤ C,

min{Ln } ≤ bn ≤ max{Ln }
(2)

Here, the utility function U n (·) is a continuous function mapping the allocated bandwidth bn to
the corresponding video quality.
Both the optimization problems (1) and (2) can be solved with a progressive �lling approach [5],

by starting with all the components in the solution vector being equal to the lowest bitrates and
growing all solutions together at the same pace, until either the link capacity limit is hit or all the
video sessions have been assigned with the maximum bitrate. In the case of (1), one of the active
video sessions is selected at each step and its video level is increased by 1. This procedure requires a
criterion to select the next video session to increase at each step. We have resorted to the heuristic
of selecting the video session whose level increase maximizes the video quality increment. In the
case of (2), instead, a much more e�cient approach can be taken due to the fact that the utility
functions are strictly monotonically increasing and thus can be inverted: it can be shown that the
problem corresponds to �nding the root of a univariate equation that can be solved e�ciently.

Video�ality Measurement. To solve the optimization problems (1) and (2) we need the mappings
Un (·) and U n (·) for each video session n. To the purpose, a metric to estimate the video quality is
needed. We have decided to employ the Structural SIMilarity (SSIM) index, an objective reference-
based method, to compute the estimate of video quality o�-line [37]. Similarly to other metrics
available in the literature, the SSIM re�ects the subjective user experience only to a certain extent
and provides an approximate estimate of the QoE. However, the SSIM has been shown to be a
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valuable tool to obtain an approximation of the user-perceived video quality (see Section 2.1). Notice
that, if on one hand the results obtained in this paper depend on the employed QoE metric, on the
other hand the described methodology can be applied easily to other QoE metrics.
In the case of videos the SSIM is computed as the average SSIM over all the video frames of a

segment.
We de�ne the reference video as the best available video representation of that video clip at the

client screen resolution [36]. Thus, given the client resolution, the reference video is chosen from
the video level set as the representation with the same resolution and the highest bitrate. Let us
consider a video clip encoded into several representations, each of them characterized by a bitrate
l i and a resolution r i . We denote with r̂ the reference resolution. The SSIM of each representation
is computed by comparison with the reference video. If the representation to be evaluated has a
resolution r i lower than r̂ , it is upscaled to r̂ before being compared. The upscaling is motivated
by the fact that the video player also upscales the decoded video to the device resolution2 when
rendering the video during playback.
In the problem (2), where a continuous utility function U n (·) is required, we have employed

a linear interpolation between consecutive bitrates to generate a continuous mapping from the
discrete one.

4 IMPLEMENTATION
4.1 Video Session Management
Fig. 4 shows the work�ow of a video session. A client starts the video session by retrieving the
playlist from the video server. We suppose that, in addition to the video level set, the playlist also
carries the SSIM values for each video representation computed as shown in Section 3.4. When a
video session starts, the client sends the set-up message to the NC, which carries the information
employed to compute the optimal bitrate distribution. Fig. 4 also shows the information carried by
the set-up message: the video content URL, the video level set and its corresponding SSIM extracted
from the playlist. The NC stores this information in the Active Flows Table.

The video client starts to download video segments as soon as the set-up message is sent. Since
the NC periodically executes the Optimization Module with a sampling time Ts , the video �ow
cannot be served with di�erentiated service until the next execution of the Optimization Module.

2Our Video Quality Fairness policy di�ers in this aspect from the one proposed in [14] that makes the restrictive assumption
that several representations with di�erent resolutions are available for each bitrate.
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To avoid a delayed start-up, the NC assigns the �ow to the Arrival Slice, which is reserved for newly
arrived video sessions. Then, at most after Ts seconds, the Optimization Module is executed, the
video �ow is removed from the Arrival Slice and served with the di�erentiated service according to
the adopted network-assisted approach.

Finally, when the client decides to terminate the session, it sends a tear-down message to the NC,
which removes it from the Active Flows Table at the next iteration of the Optimization Module.

4.2 The Flows Aggregation Strategy for BR
The Bandwidth Reservation (BR) approach ideally assigns to each �ow one slice whose size is
computed by the Optimization Module. However, the number K of available QoS queues on a
network interface is usually limited between 4 and 10 [38], which is, in general, much lower than
the number N of concurrent video sessions.
Hence, if K < N , it is necessary to use a �ow aggregation strategy grouping the N video �ows

into K slices to implement the BR approach with some approximation.
It has to be noticed that rate-based HAS clients employing the ON-OFF tra�c pattern [3] may

su�er from fairness issues when sharing a bottleneck (or slice) [1]. Unfairness issues a�ecting this
class of HAS clients can be coped in di�erent ways: 1) in the HAS client, by appropriately controlling
the idle phases as shown in [39] or by randomizing the scheduling of segment downloads [24]; 2)
in the switch or at the server, by means of rate shaping techniques [2, 12, 20]. On the other hand,
level-based algorithms, such as f.i. ELASTIC [10], do not insert idle periods between consecutive
segment downloads and, as a consequence, are not a�ected by fairness issues. In any case, we argue
that well-designed HAS clients should provide fairness among users sharing a bottleneck. Based
on the above, we can make the reasonable assumption that HAS clients are able to fairly share a
slice. In such conditions, if �ows with similar video bitrate are assigned to the same slice, each
of these �ows will obtain a bandwidth share close to the one set by the Optimization Module. In
the following we describe the two proposed strategies and Section 5 evaluates the impact of the
approximation induced by such strategies on the actuation of the optimal solution.

�antized strategy. A quantization process maps each �ow to one of the K slices. Then, each
group of �ows is assigned with a slice whose size is equal to the sum of the video bitrates belonging
to the group.
To explain the proposed strategy, we give an example, shown in Fig. 5. Let us consider the

case of N = 6 concurrent video �ows accessing a network with only K = 3 available queues (i.e.,
slices). First, the ideal slice allocation is computed by solving the optimization problem (1) (or
(2)). Let us suppose that the optimal solution is l̄ = [500, 600, 1000, 1200, 1300, 2000] kbps (�rst
row in Fig. 5). The �ows are then aggregated based on the following quantization thresholds:
{800, 1400}. According to such quantization, three groups of �ows are created: д1 = {500, 600},
д2 = {1000, 1200, 1300} and д3 = {2000} (second row in Fig. 5). Finally, three slices equal to,
respectively, 1100 kbps, 3500 kbps, and 2000 kbps are created (third row in Fig. 5). Thanks to the
TCP fairness, the �ows in the �rst slice are expected to obtain on average a bandwidth share equal
to 550 kbps, the �ows in the second slice 1166 kbps, and the �ow in the third slice 2000 kbps, thus
achieving an approximation of the optimal solution l̄ .

Weighted Proportional strategy. In this case, all the video sessions having the same resolution
r ∈ R are assigned to the same slice. This approach has the advantage of not requiring to solve the
optimization problem. The channel capacity C is split based on the following equation:
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C =
�

r ∈R
αrNrb (3)

where Nr is the number of clients having a screen resolution equal to r , αr is the weighting
coe�cient for the resolution r , and b is the unknown variable. Once b is computed by solving (3),
the slices sizes are set equal to αrNrb.

The weighting coe�cients αr are computed according to the following procedure. For each video
clip v in the video catalog V we compute a linear regression of the video quality functions Ur,v (b)
relative to clients with screen resolution r . With this procedure the video quality functionsUr,v (b)
are approximated with the following linear functionUr,v (b) = b/αr,v . The value of αr is computed
by taking the average of αr,v with v ∈ V .

A safety mechanism is used to ensure that in the case of a large number of sessions, all the �ows
are provided with at least their lowest bitrates. Compared to Quantized, this strategy is expected to
be less accurate, but it is cheaper to be implemented and allows for a higher scalability. In particular,
since this approach does not require the solution of an optimization problem, the allocation has a
very low complexity. The next Section quanti�es the performance impact due to the approximation
introduced by the Weighted Proportional strategy compared to the Quantization strategy.

4.3 The Testbed Setup
The Video Control Plane has been implemented in the testbed shown in Fig. 6, where three Intel
Core Duo machines running Ubuntu 14.04 are connected through a Quanta SDN switch. The client
machine generates a con�gurable number of DASH video �ows by means of the TAPAS tool [11].
The server machine hosts the Lighttpd HTTP server to send the video segments to the clients.
The controller machine hosts the Opendaylight Hydrogen Release SDN Controller and the NC. The
switch is a Quanta T1048-LB9, with PicOS v2.6 OS and Open vSwitch 2.3.0 as software switching
stack. The bottleneck link is the GbE cable between the switch and the client machine. Its capacity
is shaped by means of the tc Linux tool. In the following we focus on the implementation of: 1) the
NC; 2) the TAPAS clients; 3) the video content encoding and the SSIM evaluation.

Network Controller. The NC has been implemented through two communicating HTTP servers,
one hosted by the controller machine and one hosted by the switch, as shown in Fig. 6. Both the
servers have been written in Python. The HTTP server hosted at the controller maintains the Active
Flows Table, executes the Optimization Module in a Python thread, and establishes communication
pipes through JSON APIs. In particular, two pipes are handled by the HTTP server: 1) the �rst
with the video clients, which has the task of receiving the set-up and tear-down messages from the
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Fig. 7. Measured SSIM for the considered videos and client resolutions

clients and send them the selected bitrates; 2) the second with the HTTP server at the SDN switch
to create, manage, and delete QoS queues. The HTTP server running on the switch maintains
the Queue Table and manages the QoS queues through the Open vSwitch 2.3.0 APIs. A slice is
generated by creating a dedicated queue on the network interface. The slice bitrate computed by
the Optimization Module is set on the corresponding queue as the minimum guaranteed rate for the
�ows assigned to it. The employed switch allows to create 8 queues on the Ethernet interface, 7 of
which dedicated to the video slices and one to the Arrival Slice. The Optimization thread employs
the communication pipes to perform three actions: 1) in the case BG or BG+BR strategies are used,
it communicates the selected bitrates to the clients; 2) it handles Open�ow rules; 3) it manages the
slices size.

The Arrival Slice size is dynamically set at each execution of the Optimization Module based on
a periodically updated measure of the video tra�c arrival statistics. In particular, at each sampling
time kTs the arrival rate of video �ows λ̂(kTs ) is estimated with an EWMA �lter and the Arrival
Slice is set equal to Tsbmin λ̂(kTs ), where bmin is the minimum bandwidth we want to guarantee to
each video �ow during the start-up phase.

TAPAS clients. The client machine employs TAPAS (Tool for rApid Prototyping of Adaptive
Streaming control algorithms) [11] to generate the video sessions. TAPAS is an open-source video
client supporting DASH and HLS written in Python that allows to easily design and carry out
experimental performance evaluations of adaptive streaming controllers. The following client-
side algorithms, described in Section 3.3, have been implemented using TAPAS: Elastic, PANDA,
Conventional, and the Thin Client for the Bitrate Guidance case. In order to run several (up to 50)
concurrent video clients on the same client machine, we employ a TAPAS feature that allows to
disable video segments decoding. When this feature is used, the obtained playout bu�er dynamics
is exactly the same that would be obtained if the video segment had been decoded, but with the
advantage of remarkably decreasing the CPU and memory usage [11].

Video Content. The video content has been encoded with the H.264 codec with a frame rate
equal to 30 fps and a segment size equal to 4 seconds. The video levels are encoded in VBR with
two-passes and by specifying the target bitrate. The SSIM has been computed through the Matlab
script released by the SSIM authors.
Finally, we have added a safety margin of 15% to the nominal bitrates when running the opti-

mization in order to take into account the mismatch between the nominal bitrate reported in the
video playlists and the real encoded bitrate.
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5 EXPERIMENTAL RESULTS
5.1 The Scenario
In this Section, we describe the scenario considered in our experimental evaluation. The video cata-
log is composed of three videos: Big Buck Bunny3, Sintel4 and Tears of Steel5. We have considered
three classes of client devices, whose screen resolutions are 720p, 1080p, and 2160p. Fig. 7 shows
the measured SSIMs.
Each run is identi�ed by a workload and has a duration of 900s. A workload de�nes for each

video session of the run: 1) the starting time, which is generated by a Poisson arrival process with
parameter λ; 2) the video, which is chosen from the video catalog according to a discrete uniform
distribution; 3) the device resolution, which is chosen from the set of client resolutions according
to a discrete uniform distribution. Background non-video tra�c has not been considered in our
investigation, since we assume that at least one bandwidth slice is dedicated to best-e�ort tra�c.
In fact, we have experimentally evaluated6 that when best-e�ort background tra�c is assigned to
a low priority bandwidth slice it does not interfere with video tra�c assigned to the video slices
managed by the VCP. As such, we denote with C the quota of the link capacity available for video
�ows.

To generate a con�gurable link load, we have employed the following approach. The duration of
all the video sessions has been set to D = 300s. As a consequence, the run is split into two phases.
In the �rst one, lasting D seconds, there are only �ow arrivals and no departures; in this phase,
the number of active sessions grows with an average pace of λ. Then, during the second phase,
the average arrival rate matches the average departure rate and – as a consequence – the average
number of active sessions keeps to N = λD. During this phase, the average bandwidth fair share
for each �ow is C/(λD)Mbps. By keeping C �xed and setting di�erent values of λ, we can set the
link load for each workload.
Throughout all the experimental evaluation we have set the link capacity C equal to 50Mbps,

a propagation round trip time of 50ms and a queue size equal to the bandwidth delay product.
The minimum guaranteed bandwidth bmin of the Arrival Slice has been set equal to 1000 kbps. The
Optimization Module sampling timeTs , unless otherwise speci�ed, has been set to 30 s. The e�ect of
Ts on performance has been evaluated in [9] and not shown in this paper due to space constraints.

We have employed the following quantization thresholds for theQuantized Bandwidth Reservation
{1200, 1500, 1800, 2100, 2500, 5000} kbps. Finally, in theWeighted Proportional Bandwidth Reservation
strategy we have computed the following weighting coe�cients α720p = 1, α1080p = 1.4, and
α2160p = 4.7 based on the procedure described in Section 4.2.

5.2 The Metrics
In each run, we evaluate the following metrics to compare the performance of the investigated
strategies.

RMSE. The Root Mean Squared Error is computed as the root of the average squared error
between the optimal SSIM for the n-th user SSIM�

n , which is set by the Optimization Module, and

3http://distribution.bbb3d.renderfarming.net/video/mp4/bbb_sun�ower_2160p_30fps_normal.mp4
4https://download.blender.org/durian/movies/Sintel.2010.4k.mkv
5http://ftp.nluug.nl/pub/graphics/blender/demo/movies/ToS/tearsofsteel_4k.mov
6Results are not reported due to space constraints.
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Table 1. Considered network-assisted approaches

Symbol Network-assisted approach
BRQ Quantized Bandwidth Reservation
BRWP Weighted Proportional Bandwidth Reservation
BG Bitrate Guidance
BG + BR Hybrid Bitrate Guidance and Bandwidth Reservation

the corresponding measured SSIM, SSIMn .

RMSE =

���
1
N

N�

n=1
(SSIMn − SSIM�

n )
2

This metric is proportional, through 1
√
N , to the �2 distance between the optimum SSIM allo-

cation vector [ SSIM�
1 · · · SSIM�

N ]
T computed by the VCP and the measured SSIM vector

[ SSIM1 · · · SSIMN ]T . Thus, by de�nition the RMSE measures the accuracy of a network-
assisted approach in actuating the optimal allocation according to the management policy. This
allows an unbiased comparison of the mechanisms regardless of the functional being used in the
optimization problem. We stress that, since in this paper the Optimization Module enforces QoE
fairness, a lower RMSE indicates a higher QoE fairness, in the sense de�ned by the functional being
optimized.

Switching Frequency. It is computed as the average number of video bitrate switches in a second
(measured in Hz). The switching frequency negatively a�ects the QoE only when it is higher than
a threshold, which is on the scale of 0.1 Hz [18, 30].

Download Rate. The client measures it as the downloaded bytes in a given time interval.
We do not report the rebu�ering ratio in the results since it was negligible (lower than 0.5%) in all

the experiments. This is arguably due to the fact that the lowest bandwidth fair share tested in the
experiments is about 1.4Mbps, which is much higher than the lowest bitrate for each video [16].

5.3 Results
In this section, we describe the results obtained by the considered network-assisted approaches
shown in Table 1.

5.3.1 General performance. We start our analysis by comparing the overall performance achieved
by the considered strategies. The case in which no Video Control Plane is used is labeled as
baseline and is employed as a term of comparison. In the case of baseline and BR the client-side
algorithm Elastic has been used (the impact of the client-side algorithm is separately investigated
in Section 5.3.2).
First of all, we evaluate the e�ectiveness of the considered network-assisted strategies in en-

forcing the Video Quality Fairness management policy. Towards this end, we consider a single
run corresponding to an arrival rate λ = 0.08 (runs with a di�erent arrival rate exhibit similar
qualitative behavior). Fig. 8 (a) and (b) show the complementary CDFs (CCDF) of the download rate
and SSIM broken down by video client resolution. Let us consider the CCDFs of the download rate,
shown in Fig. 8 (a). In the baseline case, the median value is roughly equal to 1.7Mbps regardless
of the client resolution. On the contrary, all the considered network-assisted approaches provide
a median download rate that depends on the resolution. In particular, the 2160p �ows obtain a
higher median bandwidth share compared to the baseline case which does not provide service
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Fig. 8. Complementary CDFs of the per-resolution download rate and SSIM when λ = 0.08
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Fig. 9. RMSE and SW obtained by the considered network-assisted approaches as the link load varies.

di�erentiation. The expected consequence is that �ows with smaller resolutions are assigned with a
lower bandwidth share. Let us now consider Fig. 8 (b) to check the impact of service di�erentiation
on the obtained SSIM. In the baseline case, users with 720p screen resolution achieve an SSIM with
a median higher than 0.99. However, the baseline case heavily penalizes 2160p users who obtain a
median SSIM of around 0.905. On the other hand, all the considered network-assisted approaches
provide a fair Video Quality across di�erent users. Moreover, Fig. 8 (b) shows that the BR approach
provides the best SSIM compared to the other considered strategies. In particular, 40% of the 2160p
�ows experience an SSIM higher than 0.95 in the case of BR whereas BG and BG+BR obtain an
SSIM greater than 0.925. This improvement is due to the higher download rate achieved by BR.

Let us now consider Fig. 9 that shows the measured RMSE for several arrival rates λ. The �gure
shows that all the network-assisted approaches achieve a lower RMSE compared to the baseline case.
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The baseline provides an RMSE higher than 0.045 for all the considered link loads, whereas all the
network-assisted strategies are in general able to keep the RMSE below 0.025. The BG and BG+BR
approaches outperform both the BR approaches. Adding bandwidth reservation to bitrate guidance
(BG+BR) does not o�er a distinct advantage compared to the BG strategy. The BRQ is slightly more
accurate in actuating the Video Control Plane decisions compared to the BRWP strategy due to
the higher granularity of its slicing mechanism. BRWP balances the loss of accuracy with its lower
implementation costs. Finally, the performances of all the investigated strategies are insensitive to
the link load.
Fig. 9 shows the measured Switching Frequency as a function of the arrival rate λ. The �gure

con�rms that Bandwidth Reservation increases the Switching Frequency. In particular, both the
bandwidth reservation strategies provide Switching Frequencies up to three times higher than
the ones of BG and BG+BR. However, it is important to notice that even the highest measured
Switching Frequency, i.e. 0.03Hz, does not signi�cantly a�ect the perceived QoE [30].
Fig. 10 shows a scatter plot which clearly represents the existing trade-o� between the Video

Quality Fairness, measured through the RMSE, and the video quality expressed in terms of SSIM.
The higher RMSE shown by the baseline corresponds to an SSIM between 0.95 and 0.97, whereas

the SSIM of the network-assisted approaches is in the range between 0.93 and 0.96. Thus, we can
conclude that the proposed management policy trades the Video Quality Fairness for the average
Video Quality. This trade-o� is unavoidable in resource allocation problems and goes under the
name of the “price of fairness” [6].
Summary: All the considered network-assisted approaches provide a fair Video Quality across

the video sessions compared to the baseline case in which no VCP is used. Moreover, VCP trades o�
a higher Video Quality Fairness for lower average video quality. Regarding Video Quality Fairness,
Bitrate Guidance provides the best results, whereas Bandwidth Reservation slightly improves the
video quality but with a higher Switching Frequency.

5.3.2 The impact of the client-side algorithm on the Bandwidth Reservation approach. We now
investigate the impact of the considered client-side algorithms, namely Conventional, PANDA,
and Elastic, on the performance of the BR approach. To this purpose, we investigate two types
of scenarios. In the �rst one, that we name the homogeneous case, all the clients employ the same
bitrate selection algorithm. In the second type of scenario, called the heterogeneous case, the three
algorithms are concurrently used. In such a case, we assign each video client with a bitrate selection
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Fig. 11. The impact of client-side algorithms in the homogeneous clients scenario (first three columns groups)
and in the heterogeneous clients scenario (last columns group) in the case of the baseline and the BR strategy
(λ = 0.08)

algorithm drawn from a discrete uniform distribution. We consider the case where the VCP is not
employed as the baseline term of comparison for the performance of the client-side algorithms.
Fig. 11 (a) shows the RMSE when the arrival rate λ is set to 0.08. We now focus on the three

homogeneous scenarios whose results are represented by the �rst three bar groups labeled “Con-
ventional,” “PANDA,” and “Elastic.” The RMSE is roughly insensitive to the employed client-side
algorithm regardless the VCP is used or not. We now consider the CCDFs of the download rate
and the SSIM video sessions (λ = 0.08). In Fig. 12 we show only 2160p sessions since performance
di�erences are more remarkable for these clients. In this �gure, BG is the term of comparison since
it does not employ a client-side bitrate adaptation (see Section 3). Let us focus on Fig. 12 (a). The
�rst important di�erence is that Conventional and Elastic always provide a higher bandwidth share
to 2160p video sessions with the BR strategy compared to the case in which BG is used. In particular,
the median bandwidth share for Elastic, Conventional, and BG are roughly 3Mbps, 2.8Mbps, and
2.3Mbps respectively. On the other hand, PANDA does not exploit the advantage provided by BR
and provides a lower bandwidth share to 2160p users compared to BG. This issue is due to the
PANDA’s sluggishness in tracking the time-varying available bandwidth [10]. As a consequence,
Fig. 12 (b) shows that PANDA obtains a lower SSIM. Despite the fact that SSIM medians are roughly
equal since the measured RMSE are similar (Fig. 11 (a)), Elastic clearly provides the best results
whereas PANDA obtains the same SSIM as BG.

We now consider the heterogeneous scenario. Fig. 13 (a) shows the complementary CDFs of the
download rates grouped by client-side algorithm. In general, with both baseline (i.e., no control
plane is used) and BR, Elastic obtains higher download rates, followed in order by Conventional and
PANDA. Authors of [10] have shown that, compared to Conventional and PANDA, Elastic provides
a better bandwidth utilization when several video �ows share a channel. The slice aggregation
mechanism used by BR further increases this performance di�erence. Elastic obtains a larger
bandwidth share when BR is used (Fig. 13 (a) on the left) compared to the baseline case (Fig. 13 (a)
on the right). In particular, the 80-th percentile of the download rate obtained with BR and baseline
are equal to 4Mbps and 2.4Mbps, respectively. The higher bandwidth utilization results in a higher
SSIM, especially for Elastic. We now turn our attention to the video quality fairness measured
through the RMSE and shown in Fig. 11 (a). Compared to the homogeneous scenarios, the RMSE
is larger in the heterogeneous case con�rming that fairness worsens in this last scenario. The
QoE fairness worsens due to the slice aggregation mechanism that bases on the assumption that
video �ows fairly share the bandwidth. However, BR improves the RMSE compared to the baseline.
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Fig. 12. Complementary CDFs of download rate and SSIM with di�erent client-side algorithms
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Fig. 13. Complementary CDFs of 2160p users with heterogeneous client-side algorithms: Download Rate (a)
and SSIM (b)

These results suggest that con�ning video �ows using the same client-side algorithm to the same
slice is bene�cial for fairness. In heterogeneous scenarios, we argue that per-�ow rate-shaping
performed either at the video server or at the switch could be used to alleviate fairness issues [2, 12].
The performance evaluation and the scalability issues due to the deployment of such an approach
require a separate study and are outside the scope of this paper.
To conclude, we analyze the performance regarding the Switching Frequency obtained by the

considered client-side algorithm. Fig. 11 (b) shows that Conventional exhibits the worst performance
both with the baseline and the BR due to its very aggressive bitrate adaptation strategy. With the
BR it reaches 0.08Hz, i.e. roughly one switch each three video segments. PANDA and Elastic,
instead, provide similar results and show a slight increase of the switching frequency due to the BR
compared to the baseline case. In the heterogeneous scenario, the Switching Frequency is below
0.04Hz both with baseline and BR.
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Fig. 14. Impact of selfish clients on the video quality perceived by the video clients, which are grouped by
resolutions: BR (a) and BG (b)

Summary: The Video Quality Fairness, measured through the RMSE, is insensitive to the client-
side algorithm employed in conjunction with the BR strategy. However, Elastic and Conventional
provide higher SSIM values compared to PANDA. Conventional provokes a high switching fre-
quency that might be detrimental to QoE. VQF performance worsens when di�erent client-side
algorithms share the same bandwidth slice.

5.3.3 The impact of selfish clients. In this Section, we investigate the robustness of the proposed
network-assisted approaches to the presence of sel�sh clients, which advertise a false (higher) screen
resolution to the Control Plane with the intent of obtaining a higher bandwidth share. This is a
relevant scenario to be considered since the bitrate selection control logic typically runs in the web
browser in a Javascript application. Thus, even authenticated clients could advertise a false screen
resolution and behave sel�shly.
To the purpose, we have considered a scenario in which we allow a fraction α of the clients

with 720p screen resolution to advertise a screen resolution equal to 2160p. We have investigated
the performances of the BR and BG strategies as α varies in {0.33, 0.66, 1}. Clients that advertise
their true screen resolution are de�ned as legitimate users to distinguish them from sel�sh users.
Fig. 14 shows the SSIM percentage variation compared to the case without sel�sh clients function
of α . Users are grouped by screen resolution. Fig. 14 (a) depicts the percentage variation for the BR
strategy. The sel�sh clients obtain an SSIM that is roughly 4% higher than in the scenario without
sel�sh clients regardless of α . At the same time, the legitimate clients su�er from SSIM losses
between 1% and 2%. Fig. 14 (b) shows the percentage variation in the case of the BG strategy. In
this case, the video quality gain for the sel�sh clients is more pronounced, namely higher than
6%. As a consequence, legitimate clients incur in a higher SSIM percentage loss: when α = 1, both
1080p and 2160p legitimate clients lose more than 2%. It is worth to notice that BG is more sensitive
than BR to the presence of sel�sh clients.
Summary: The presence of sel�sh clients advertising a false resolution to obtain a larger band-

width share, and consequently a higher quality, worsens the performances of the proposed network-
assisted strategies. BG is more sensitive compared to the BR approach.

5.3.4 The impact of per-flow queuing. In this paragraph, we investigate the impact of the
grouping strategy to implement the slicing in the BR approach. Since the number of queues is
limited to 8 in our testbed, the only way to do it is to consider a di�erent scenario where a number
of �ows lower than 8 is generated. In this way, we can dedicate a single slice to each �ow, without
using the �ow aggregation strategies presented in Section 4 in the case of the BR and the BG+BR
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approaches. In this scenario, we generate 5 �ows according to a Poisson arrival process. To consider
several link loads, the link capacity has been set to 8, 9 and 10Mbps, corresponding to a bandwidth
fair share of 1.6, 1.8, and 2Mbps respectively.
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Fig. 15. RMSE and Switching Frequency in the case of 5 video flows with per-flow queuing

Fig. 15 (a) and (b) show respectively the RMSE and the Switching Frequency. If on one hand, the
RMSE in the baseline case is comparable to the one obtained in the other scenario, on the other
hand, all the network-assisted approaches remarkably improve the RMSE compared to the case
where �ow aggregation strategies are used to implement bandwidth slicing. In particular, the RMSE
obtained by BG and the BG+BR is close to 0, whereas BR provides an RMSE below 0.01.
Similar considerations hold for the Switching Frequency. The baseline shows similar behavior

compared to the other scenario (around 0.01 Hz), whereas BG and BG+BR are able to keep it below
0.005 Hz. Although BR obtains the worst performance, it provides an improvement compared to
the other scenario. This improvement is due to the per-�ow queuing that avoids video sessions to
share the same slice.

Summary: The experimental results show that Video Quality Fairness and Switching Frequency
are improved when per-�ow queuing is used by network-assisted strategies.

5.3.5 Discussion. We conclude this Section with a brief discussion of the overall features of the
considered strategies in the light of the experimental results presented above.

The Bandwidth Reservation approach requires no control communication after the video session
is established, which is bene�cial for scalability to support a large number of concurrent clients.
Moreover, no information on the network state is exposed to the clients, which independently
select the video bitrate according to the client-side adaptation algorithm. At the same time, a
modest control e�ort due to bandwidth slices management has to be taken into account. The main
drawback of this strategy is its sensitivity to the client-side algorithm employed to select the bitrate.
In fact, experimental results have shown that both the Video Quality and the Switching Frequency
depend on the employed client-side control algorithm. Moreover, VQF worsens when di�erent
client-side bitrate selection algorithms are used on the same slice.This issue is due to the di�erent
client-side control algorithms performance concerning bandwidth utilization. A way to tackle this
problem would be to con�ne �ows employing the same client-side algorithm to the same slice,
with the added complexity of increasing the number of bandwidth slices. Finally, BR is moderately
sensitive to the presence of sel�sh clients advertising a false screen resolution.
On the other side, the Bitrate Guidance approach provides the best accuracy in enforcing the

management policy at the expense of a higher amount of communication (the VCP sends a message
to each active video client eachTs seconds) and exposure of information re�ecting the network state
(i.e., the suggested bitrate). Furthermore, BG requires mutual trust between network and clients
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and, as such, is sensitive to the presence of sel�sh clients which can obtain a higher bandwidth
share by advertising a false (higher) screen resolution. Finally, our experimental results indicate
that combining the two strategies does not provide a clear performance advantage compared to the
BG strategy despite the higher control e�ort involved.

6 CONCLUSIONS
In this work, we have experimentally investigated several network-assisted strategies to actuate
the decisions of a centralized Video Control Plane (VCP) whose goal is to provide Video Quality
Fairness (VQF) to concurrent video streaming sessions sharing a common bottleneck. As a general
result, we have found that all the considered network-assisted approaches provide a remarkable
improvement in terms of obtained VQF compared to the case in which no VCP is employed.
Concerning the VQF, the Bitrate Guidance approach provides the best results, whereas Bandwidth
Reservation (BR) might improve the average video quality depending on the client-side algorithm.
Regarding the impact of the client-side adaptation algorithm, we have found that the VQF is
roughly insensitive to the employed client-side algorithm in the homogeneous clients case. However,
Elastic and Conventional provide higher SSIM compared to PANDA. Conventional provokes a high
switching frequency that might be detrimental to QoE. VQF worsens in the heterogeneous clients
case, i.e., when di�erent client-side algorithms are concurrently used on the same slice. Finally, we
have investigated the sensitivity of the considered network-assisted approaches to the presence
of sel�sh clients advertising false screen resolution to obtain a larger bandwidth share. Results
indicate that the BG strategy is more sensitive compared to BR which better protects the legitimate
clients from sel�sh clients. Finally, we have shown that VQF and switching frequency improve
when BR employs per-�ow queuing.
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