
07 May 2024

Repository Istituzionale dei Prodotti della Ricerca del Politecnico di Bari

Measuring the Quality of Experience of Web users / Bocchi, E.; DE CICCO, Luca; Rossi, D.. - In: COMPUTER
COMMUNICATION REVIEW. - ISSN 0146-4833. - 46:4(2016), pp. 8-13. [10.1145/3027947.3027949]

This is a post print of the following article

Original Citation:

Measuring the Quality of Experience of Web users

Published version
DOI:10.1145/3027947.3027949

Terms of use:

(Article begins on next page)

Availability:
This version is available at http://hdl.handle.net/11589/100558 since: 2021-03-12

Publisher:

Measuring the Quality of Experience of Web users

Enrico Bocchi
Telecom ParisTech

enrico.bocchi@polito.it

Luca De Cicco
Politecnico di Bari

luca.decicco@poliba.it

Dario Rossi
ENST

dario.rossi@enst.fr

ABSTRACT
Measuring quality of Web users experience (WebQoE) faces
the following trade-off. On the one hand, current practice is
to resort to metrics, such as the document completion time
(onLoad), that are simple to measure though knowingly in-
accurate. On the other hand, there are metrics, like Google’s
SpeedIndex, that are better correlated with the actual user
experience, but are however quite complex to evaluate and,
as such, relegated to lab experiments.

In this paper, we first provide a comprehensive state of
the art on the metrics and tools available for WebQoE as-
sessment. We then apply these metrics to a representative
dataset (the Alexa top-100 webpages) to better illustrate their
similarity, differences, advantages and limitations. We next
introduce novel metrics, inspired by Google’s SpeedIndex,
that (i) offer significant advantage in terms of computational
complexity, (ii) while maintaining a high correlation with
the SpeedIndex at the same time. These properties makes
our proposed metrics highly relevant, and of practical use.

Keywords
Quality of Experience; DOM; onLoad; TTFB; TTFP; Above-
the-fold; SpeedIndex; ByteIndex; ObjectIndex; MOS

1. INTRODUCTION
In the Internet, Web is still King. The browser has indeed

become the preferential platform through which a plethora
of services can be accessed, including but not limited to
search, entertainment, productivity, business, social and per-
sonal communication, etc. At times of important evolutions
–from HTTP/1 protocol family to HTTP/2, SPDY and QUIC–
having reliable ways to compare protocol performance be-
comes crucial before massive deployments can take place [18].

A number of studies have pointed out the importance of
delay, and their direct relationship to the value of these busi-
ness – for example, Amazon [2] and Google [12] report
losses in the 0.6-1.2% range for delay increasing by 0.4-1 sec,
whereas Shopzilla [12] reported an +12% revenue increase
for a 5 sec reduction of onLoad after a major site redesing.
The hidden correlation between these factors is of course
the impact that the delay has on the Quality of Experience
of Web users (WebQoE): the higher the delay, the lower the

WebQoE, the worse the experience, the higher the likelihood
of user disengagement, the larger the economic losses.

While the existence of a relationship between delay and
WebQoE is beyond any doubt, it is however more difficult
to precisely pinpoint the delay of “which” event is the most
important during the lifetime of a Webpage, and to further-
more map it to a quantized quality level (≈MOS). Indeed,
Webpages have grown to quite complex entities including
hundreds of objects hosted, which are fetched opening sev-
eral tens of connections directed to multiple domains. Re-
quests for such objects are often dynamically generated by
JavaScripts (or related technologies) executed as part of the
page construction process.

It thus appears obvious that no single event –from the time
at which the first byte is received (TTFB), to time at which
the first object is painted on the browser (TTFP), to the pars-
ing of the Document Object Model (DOM), to the comple-
tion of the full page (onLoad)– can express all sort of intri-
cate dependencies [22] between the rendering process and
the user experience. As such, there have been proposals for
new metrics that are better suited to capture the actual quality
of experience of Web users, such as for instance Above-the-
fold [14] and SpeedIndex [1], which have both been recently
proposed by Google (in 2011 and 2012 respectively). The
SpeedIndex is particularly interesting as it explicitly consid-
ers delay of all events in a Webpage lifetime, but have so far
been limitedly used due to its computational complexity.

As a result, the (regrettable) state of the art in today Web-
QoE evaluation, both in the research sphere [16, 22, 21, 23]
as well as in industry practice [3, 4, 5], is still to express QoE
via the page completion time, i.e., onLoad. For instance,
Alexa [5] reports the onLoad and directly exposes quantiles
of the delay, while Google uses onLoad delay to rank search
results [3], although with a small weight [6].

Our contributions in this paper are as follows. We first
provide a complete taxonomy of the existing WebQoE met-
rics and tools, and introduce our proposed generalization
of the SpeedIndex (Sec.2). We next present a comprehen-
sive illustration of all WebQoE metrics on the top-100 Alexa
webpages, further elucidating relationships among metrics
and experimental methodologies. Notably, we show that (i)
an indetermination principle emerges when computing the

1

© ACM 2016. This is the author's version of the work. It is posted here for your personal use.
 Not for redistribution. The definitive Version of Record was published in ACM SIGCOMM Computer Communication Review,
https://doi.org/10.1145/3027947.3027949

Table 1: Metrics to express user perceived quality
Metric Layer Unit/ Description
name 3 4 7 Range

Ti
m

e
In

st
an

t
TTFB ≈ � � sec Time at which the first byte of payload is received
DOM - - � sec Time at which the Document Object Model (DOM) is loaded
TTFP - - � sec Time at which the first object is painted
OnLoad - - � sec Time at which all bytes of payload have been received
ATF [14] - - � sec Time at which the content “above the fold” has been rendered

Ti
m

e
In

te
gr

al ObjectIndex - - � sec Integral of complementary object-level completion
ByteIndex ≈ ≈ � sec Integral of complementary byte-level completion
SpeedIndex [1] - - � sec Integral of complementary visual progress

C
om

p.
Sc

or
e YSlow [13] - - � [0,100] Yahoo’s compound score (23 weighted heuristics)

PageSpeed [11] - - � [0,100] Google’s PageSpeed Insight heuristics
dynaTrace [10] - - � [0,100] dynaTrace’s compound score
MOS - - - [1,5] User rating

SpeedIndex as its computation alters the nature of the ex-
periment, and that (ii) our proposed metrics remains highly
correlated to the SpeedIndex despite their simplicity (Sec.3).
We finally discuss further generalization of these metrics that
would allow one to embed psycho-behavioral models of user
spatio-temporal perception at limited cost (Sec.4).

2. WebQoE METRICS
Tab. 1 reports the most prominent metrics to measure Web

user QoE (WebQoE). In particular, the table groups met-
rics in four categories: 1 Time-instant metrics, which are
computed by measuring the time instant a particular event
occurs. 2 Time-integral metrics, that are computed by in-
tegrating over all events of a given type tracked during the
evolution of a page progress; in this category fall the two
metrics proposed in this paper, namely the ByteIndex and the
ObjectIndex, which generalize the SpeedIndex proposed by
Google. 3 Compound scores, weighting altogether sev-
eral domain-expert heuristics, to yield a score in the range
[0,100]. For the sake of completeness, the table also reports
the 4 Mean Opinion Score (MOS), computed by aver-
aging users’ subjective ratings. MOS can be regarded as a
benchmark for the other metrics, but it is admittedly hard to
collect MOS points. For this reason, we disregard it in what
follows, leaving it as future work.

2.1 Time-instant metrics
Metrics belonging to this category have the clear advan-

tage of being easily measurable, since they only track the
occurrence of a specific event. As a consequence, metrics
in this category are widely used nowadays. Nonetheless,
they are arguably simplistic since they disregard the com-
plex chain of events that triggered the measured event. In a
nutshell, such metrics compress the whole waterfall chart 1

1
http://chimera.labs.oreilly.com/books/1230000000545/

ch10.html#RESOURCE_WATERFALL

to a single time instant. Intuitively, two different experi-
ments having the same time-instant metric could be associ-
ated to significantly different user experiences. Despite this,
the onLoad (also known as Page Load Time, PLT), which
measures the time taken to completely load all the objects of
a page, is still considered as the main KPI in the vast major-
ity of recent scientific work, from both the industrial [3, 4, 5]
and the academic [16, 22, 21, 23] perspectives.

Other interesting metrics in this category include the TTFB,
i.e., the time instant at which the first byte of payload is
received (that expresses the page reactivity) and the DOM
event, i.e., the time at which the Document Object Model is
completely downloaded and parsed (after which the render-
ing can start). Simple tracking of the visual progress is ex-
pressed by the TTFP which measures the time at which the
first object is rendered. To further refine the tracking of vi-
sual progress, Google proposed the Above-The-Fold (ATF)
metric, which is defined as the time the content shown in the
visible part of the webpage is completely rendered.

It is important to notice that only few of these metrics,
such as the TTFB and onLoad, can be measured at the net-
work (L3) or transport (L4) layers, whereas the vast major-
ity –for instance all those related to render events– mandates
the instrumentation of the web browser (L7) for their mea-
surement. Additionally, it is worth to notice that while most
of the metrics in this category require few computation (if
any), ATF is significantly more complex as it requires to
take screenshots during the rendering process, as well as a
post-processing stage of the captured frames.

2.2 Time-integral metrics
Metrics in this category are characterized by the explicit

use of all events in the webpage waterfall. In particular,
Google introduced the SpeedIndex in 2012, in order to con-
sider the whole process leading to the visual completion of
a webpage to better account for user experience.

2

In this paper, we generalize such metric and we introduce
the family of time-integral metrics, defined as follows:

X =

� tend

0

(1− x(t))dt (1)

where X is the value of the metric, tend is the time the last
event is triggered, and x(t) ∈ [0, 1] is the time evolution of
the progress to reach such event. Fig. 1 illustrates computa-
tion of a time-integral metric, where the blue line represents
x(t), and the gray-shaded area represents the result of the
integral (1). Trivially, the smaller the area above the curve
x(t), the lower the score X , the better the user experience.

In order to make a concrete example, let us consider the
SpeedIndex [1]. In such a case x(t) = painted(t)/total is
the progress of the rendering process, and tend corresponds
to the ATF time-instant metric that marks the completion of
the rendering. Under this light, the rationale of (1) is simple:
not all the sub-events, i.e., the rendering of specific objects,
are considered equally important. In particular, (1) gives
more weight to objects being rendered at the beginning and
vanishingly less weight to the objects rendered towards the
end. In other words, such metric assigns a lower score to
pages (or web browsers) rendering as much content as pos-
sible in the beginning with respect to pages (or browsers)
rendering all the objects near t ≈ tend = ATF.

Bounds of time-integral metrics. It is immediate to no-
tice that the time-integral metric X defined by (1) is lower-
bounded by tTTFB and upper-bounded by tend.

Consider indeed Fig. 1, and observe that x(t) is a mono-
tonically increasing function 0 at t = 0 and equal to 1 at
t = tend. Hence, the worst case time-integral metric is ob-
tained when x(t) = �t≥tend

where � is the indicator func-
tion: with such a progress function, all the work is done in
correspondence to the event of interest tend. In this case X
is the area of the rectangle of base tend and height 1, i.e.
X = tend, which implies X ≤ tend.

Conversely, the best case is obtained when all the work is
done at the beginning. Notice that in practice, regardless of
the considered time-integral metric, no progress whatsoever
can be done before the first byte of payload (TTFB) is re-
ceived by the web browser. Thus, the best case scenario is
obtained when x(t) = �t≥tTTFB

, which corresponds to the
area of the rectangle with base TTFB and height 1, which
implies X ≥ tTTFB.

Relationship to time-instant metrics. Extending the above
reasoning, it follows that any time-instant metric tX can be
considered as the upper bound of the time-integral metric
having tend = tX , or in other words time-instant metrics
can be considered as projections of the corresponding time-
integral metric. Particularizing this observation to Google’s
ATF and SpeedIndex proposals, we have that tTTFB ≤ SI =� ATF

0
(1 − x(t))dt ≤ ATF, which shows that time-integral

metrics allow for a much more fine grained measure.

P
ro
g
re
ss

1
B W

tTTFB tend t

X

x(t)

Figure 1: Time-integral metrics computation

Proposed metrics. The way the SpeedIndex metric is actu-
ally computed [7] is to take snapshots, by default at a frame
rate equal to 10fps, of a web browsing session. Such video
frames compose a filmstrip which is analyzed in order to
produce the visual completion fraction x(t). More specif-
ically, the color histogram of each frame is computed and
compared to the histogram of the last frame, which repre-
sents the webpage at rendering completion.

We however show in Sec. 3 that performing such opera-
tions burdens computational resources, significantly inflat-
ing the time needed to run the experiment, thus distorting it.
To overcome such a limitation, we propose two metrics:

ByteIndex =

� onLoad

0

(1− xB(t))dt

ObjectIndex =

� onLoad

0

(1− xO(t))dt

where xB(t) and xO(t) is the percentage of the objects and
bytes retrieved at time t, respectively. Observe that both met-
rics require a negligible computational cost, as they can be
computed by simply taking into account the time instants
in which objects are fully downloaded. Finally, both the
ByteIndex and the ObjectIndex can be considered as gen-
eralizations of the onLoad time-instant metrics.

The rationale of these metrics is to avoid complex visual
rendering, and leverage the fact that objects received are di-
rectly (e.g., images) or indirectly (e.g., CSS) rendered by the
browser. Second, as the SpeedIndex, these metrics take into
account all webpage events, with a temporal-bias towards
earlier events. Finally, ObjectIndex treats all objects equally,
whereas ByteIndex introduces a spatial-bias as it implicitly
states the size of an object to be correlates with its impor-
tance for the user (e.g, image vs CSS).

2.3 Compound metrics
Finally, compound scores such as Yahoo’s YSlow [13],

Google’s PageSpeed Insights [11] and dynaTrace [10] en-
code expert knowledge, usually expressed as a set of heuris-
tics (e.g., 23 in YSlow), combined with heterogeneous weights
(e.g., 2% to 30% in YSlow). Such heuristics assess the effec-
tiveness of a webpage design to: reduce computation (e.g.,

3

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 100 1000 10000

C
D

F

Time [ms]

Time-instant metrics

TTFB

on
L
oa

d
T
T
L
P

TTFB (*)
TTFP
DOM (*)

startRender
onLoad (*)

TTLB (*)
fullLoad

TTLP

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 100 1000 10000

C
D

F

{Speed,Byte,Object}Index [ms]

Time-integral metrics

Low
er

 b
ou

nd

U
pp

er
 b

ou
nd

Suggested
SpeedIndex

range

SpeedIndex
ByteIndex (*)

ObjectIndex (*)

(b)

Figure 2: Characterization of (a) time-instant and (b) time-integral metrics (Alexa top-100, WPT)

avoid CSS expressions, Alpha image load, avoid image scal-
ing), speedup rendering (e.g., limit DOM elements, CSS at
top, javascript at bottom), reduce data volume (e.g., com-
press data, minify javascripts and CSS, use small cookies),
reduce delay (e.g., reduce DNS lookups, avoid redirect).

As such, while relevant to assess the effectiveness of the
adopted webpage design –and indeed, generally used to mea-
sure progress/regression of webpages– these heuristics are
unrelated to events timing, and hard to map to WebQoE. on-
load

3. WebQoE EXPERIMENTS

3.1 Methodology
We illustrate WebQoE metrics with an experimental method-

ology. We consider the top-100 Alexa webpages as this
is a widely used benchmark in the industry [8] as well as
academia [15]. Given that we perform experiments over the
wild Internet, we expect variability across experiments due
to load balancing, transient congestion, etc. Hence, we re-
peat the experiments 10 times for each page.

For the sake of simplicity, we consider a single browser.
Since differences in rendering and processing engines across
browsers can play a determinant role, we argue that this
would also unnecessarily introduce complexity in the anal-
ysis. As such, we consider Google Chrome that has be-
come by far the most popular browser, representing about
half of the browser market share. We use both (i) and un-
modified Google Chrome (CHR) browser, as well as the
popular WebPageTest (WPT) that we have deployed on a
local machine to orchestrate experiments. Notice that sev-
eral metrics, including the SpeedIndex, are available only
under WPT; conversely, {Object,Byte}Index can be com-
puted over both WPT and CHR.

We run experiments from a single vantage point located
in Paris, which corresponds to the case where CDN nodes
are close. Additionally, we consider only the “desktop” ver-
sion of each website. While the methodology, definition

and metrics would apply to the mobile Web world as well,
we believe that interactivity of the webpage plays an even
greater importance in the mobile Web – which can be quite
easy to convince of by considering that mobile webpages are
designed to minimize the visual cluttering and reducing the
time to perform a useful action. As such, putting mobile and
desktop versions within the same basket would introduce bi-
modal behaviors in the metrics of interest, which we prefer
to avoid.

3.2 Results at a glance
We start by showing in Fig. 2 (a) time-instant and (b) time-

integral metrics early defined, of which we report their em-
pirical cumulative distribution function, gathered with WPT.
In the legend, a star symbol (*) denotes metrics that can be
computed under both WPT and CHR.

Considering the time-instant first, it can be seen that, as
expected [9], events have an order relationship: e.g., no paint
(TTFP) can happen before the first byte is received (TTFB),
parsing of the DOM is necessary for the rendering process
to start and the reception of the full data (onLoad) can hap-
pen well before the last paint event (TTLP). It can also be
seen that the TTFB and TTLP curves constitute the enve-
lope of the process, and are separated by over two orders of
magnitude, as they pertain to rather different activities. For
each metric, it can also be noted a significant variance: the
median DOM (onLoad) is about 1.5 (3) seconds, while the
90th percentile is above 5 (13) seconds. Finally, it can be
observed that some groups of metrics appear to quite closely
clustered (e.g., DOM, TTFP and startRender; TTLB and ful-
lLoad) implying that there is some redundancy between the
events definition and reporting.

Moving to the time-integral next, it can be seen that, as ex-
pected SpeedIndex, ByteIndex and ObjectIndex fall between
the TTFB and TTLB envelopes. Additionally, these metrics
are quite clustered, hinting to the fact that our simpler pro-
posals have intrinsic similarities with the original SpeedIn-
dex proposal. The dark-shaded region in the plot highlights

4

Figure 3: Arc diagram representing the correlation ma-
trix between metrics pairs.

the zone of advised [17] SpeedIndex values for responsive
websites: this hints to the fact that WPT slows down the
whole rendering process (see Sec.3.4). A closer look reveals
that ByteIndex and ObjectIndex climb faster than SpeedIn-
dex in the short-time frame regime. This is due to the fact
that (i) the completion ratio for {Byte,Object}Index increases
even before the DOM event, and that (ii) {Byte,Object}Index
neglect computational and render time, i.e., they consider
byte/objects useful for the user experience as soon as they
are received by the browser. Conversely, ByteIndex and Ob-
jectIndex climb slower than SpeedIndex in the tail, as they
consider objects that are possibly not painted (i.e., those that
are below-the-fold). While in Sec.4 we discuss how it would
be possible to fine-tune ByteIndex and ObjectIndex to even
more closely approximate the SpeedIndex, we believe that
the main takeway is instead their remarkable proximity.

3.3 Relationship among metrics
To further assess the relationship among metrics, we re-

port in Fig. 3 the Pearson correlation matrix between metrics
pairs, represented as an arc diagram. For completeness, we
additionally consider scores that are popular in the industry
such as Yahoo’s YSlow, dynaTrace and Google’s PageSpeed
Insights (recall that these are compound scores weighting al-
together a number of heuristics defined by domain experts)
computed by [8] on the Alexa top-100.

In the plot, metrics are arranged into time-instant (left),
time-integrals (middle), and compound scores (right). Cor-
relations within group are reported in gray below the la-
bel name, while inter-group correlations are reported above.
Correlations of the time integral group are highlighted in
red (SpeedIndex), green (ObjetIndex) and blue (ByteIndex).
For the ease of visualization, we only report correlations
larger than 0.4, with actual correlation values annotated in
the plot. To let the strongest correlation emerge, we quan-
tize line width, doubling it every 0.1 correlation steps.

The picture reinforces the soundness of our proposal as it
clearly appears that: (i) our proposed byte-level and object-

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0% 50% 100% 150% 200%

C
D

F

Relative Inflation (XWPT-XCHR)/XCHR

TTFB
onLoad

D
O

M

B
yt

eI
nd

ex
O

bj
ec

tI
nd

ex
T

T
L

B

TTFB (+23%)
DOM (+41%)
onLoad (+22%)
TTLB (+66%)
ByteIndex (+42%)
ObjectIndex (+55%)

 0.01

 0.1

 1

0% 50% 100% 150% 200%

1
-C

D
F

Figure 4: Relative inflation of time-instant & time-
integral metrics under WebpageTest vs plain Chrome.

level replacements do exhibit correlation with several time-
events, similarly to the SpeedIndex – and as a results, our
proposals are highly correlated with the SpeedIndex as well;
(ii) the YSlow, dynaTrace and PageSpeed heuristics are poorly
correlated among them (and with any other WebQoE metric)
and thus do not represent valid alternatives.

3.4 Relationship among experiments
We finally contrast the same metrics gathered in Web-

PageTest (WPT) vs Chrome (CHR). Specifically, WPT com-
putes a larger basket of metrics, notably including those re-
lated to rendering (TTFP, ATF, SpeedIndex, etc.). At the
same time, computing such metrics affects the very same
experiment: indeed, as recognized in the community [23],
they require cumbersome screen captures and significantly
slow-down2 the rendering process.

To quantify the extent of the distortion in WPT vs CHR,
we consider the subset of 6 metrics that can be computed in
both, and define as (XWPT − XCHR)/XCHR the relative
inflation of a generic metric X in the set. The cumulative
distribution function of the relative inflation is depicted in
Fig.4, annotating the average inflation for each metric in the
label. A zoomed inset shows the complementary CDF, to
better assess distortion in the tail. It can be seen that (i) in-
flation is non-linear (ii) average inflation ranges from +20%
to +66%, (iii) in the worst 10% of the cases, the ObjectIndex
is doubled (and so is the TTLB). Otherwise stated, distortion
in the experiment introduced by computational complexity
makes the SpeedIndex of little practical relevance.

4. DISCUSSION
In this paper we have provided a comprehensive view of

the metrics available for WebQoE assessment, highlighting
their merits, limits and dependencies by conducting experi-
ments over the top-100 Alexa webpages. Our main contribu-
2The problem is that even if the SpeedIndex can be computed a posteriori, the screen
capture process itself constitutes a significant CPU bottleneck

5

tion is to introduce a generalization of Google’s SpeedIndex,
which we instantiate into two very simple indexes, ObjectIn-
dex and ByteIndex, having negligible computational com-
plexity. Experimental results show that ByteIndex and Ob-
jectIndex retain perceptual properties of SpeedIndex, with-
out incurring its prohibitive computational complexity. This
work opens a number of interesting future directions, which
we now briefly discuss.

Closer SpeedIndex approximation. {Object, Byte}Index
provides optimistic lower bounds to the SpeedIndex: this
happens because {Object,Bytes}Index completion increase
upon reception of any objects, including (i) those that are
not painted (e.g., scripts) as well as (ii) those that take time
to render (e.g., alpha images, complex CSS). Conditioning
over content type (e.g., setting a null weight for scripts) would
cope with (i), while taking into account execution times (e.g.,
no completion increase before DOM, estimation of time from
reception to paint) could address (ii).

Psycho-behavioral model: content bias. Extending the
above reasoning, it could be argued that taking explicitly into
account object type or size could be worth investigating. For
instance, for some object types a logarithmic reward can be
expected from their byte-wise size (e.g., size of a JPG im-
age encoded with higher quality may significantly increase,
but the added value is likely sub-linear). Similarly, it may
be argued that users perceive advertisement with a different
value than content, which could be factored in by define a
weight function wi = 1 − �Adblock(i) with �Adblock(i) = 1
whenever the domain name of object i belongs to the Ad-
block list. Finally, position of objects in the page (e.g., cen-
ter vs corners) is likely to have an impact, so that geometry
of the object/paint could be valuable to explicitly accounted
for (unlike WebpageTest SpeedIndex, since it is based on
histograms).

Psycho-behavioral model: time bias. The {Speed, Ob-
ject, Byte}Index metrics do take into account the fact that
not all paints/objects/bytes are equally useful, and thus give
implicitly larger weight to those happening early in the Web-
page lifetime. However, we believe that it would be inter-
esting to explicitly controlling time dependence in reason of
classic psycho-behavioral studies [19] (later adapted to the
computer network domain [20]), which show a logarithmic
separation of human perception timescales. This could be
accounted for by integrating over tα in (1): notice that, im-
plicitly, the current SpeedIndex definition assumes α = 0,
and is thus a particular case of this larger family of metrics.

{Object,Byte}Index in-browser computation. Computa-
tion of our proposed metrics has been done offline from HAR
archives. A useful addition of practical relevance would be
to develope an in-browser version – of which we have a pre-
liminary prototype which is however (i) limited to chrome

and (ii) requires the NetDeveloper extension (in reason of
HAR access). Extensions to other frameworks/browsers would
be of course very useful to gather a more complete evalua-
tion of the proposed metrics.

Correlation with MOS. Mean Opinion Score (MOS), ob-
tained by experiments involving real users is an obviously
missing, and utterly important, piece of this puzzle. Albeit
challenging in nature, obtaining a corpus of HAR files anno-
tated with user MOS would be an important contribution for
the whole QoE community.

Large scale study. An obvious improvement of this work
could then be to extend the characterization we conduct over
the Alexa-100 dataset by either (i) considering pages beyond
the top-100, or (ii) performing the same experiment by con-
sidering geographically-dispersed vantage points (e.g., Mlab
nodes, PlanetLab nodes, Amazon EC2 nodes, etc.)

Acknowledgments
This work has been carried out at LINCS (http://www.
lincs.fr). This work benefited from support of NewNet@Paris,
Cisco’s Chair “NETWORKS FOR THE FUTURE” at Telecom
ParisTech (http://newnet.telecom-paristech.fr).
Any opinion, findings or recommendations expressed in this
material are those of the author(s) and do not necessarily re-
flect the views of partners of the Chair.

5. REFERENCES
[1] https://sites.google.com/a/webpagetest.org/docs/

using-webpagetest/metrics/speed-index.
[2] http://www.fastcompany.com/1825005/

how-one-second-could-cost-amazon-16-billion-sales.
[3] https://googlewebmastercentral.blogspot.fr/2010/04/

using-site-speed-in-web-search-ranking.html.
[4] http://googleresearch.blogspot.fr/2009/06/

speed-matters.html.
[5] http://www.alexa.com.
[6] https://www.youtube.com/watch?v=muSIzHurn4U.
[7] http://webpagetest.org.
[8] http://www.showslow.com.
[9] https:

//www.w3.org/TR/2012/REC-navigation-timing-20121217.
[10] dynatrace. http://dynatrace.com/.
[11] Pagespeed insights. https:

//developers.google.com/speed/docs/insights/rules.
[12] Velocity and the bottom line. http://radar.oreilly.com/2009/07/

velocity-making-your-site-fast.html.
[13] Yslow ruleset matrix. http://yslow.org/ruleset-matrix/.
[14] J. Brutlag. Above the fold time: Measuring web page performance visually,

2011.
[15] M. Butkiewicz, D. Wang, et al. Klotski: Reprioritizing web content to improve

user experience on mobile devices. In USENIX NSDI. 2015.
[16] J. Erman, V. Gopalakrishnan, et al. Towards a spdy’ier mobile web? In ACM

CoNEXT. 2013.
[17] P. Irish. Delivering the goods, 2014.
[18] M. Varvello, K. Schomp, D. Naylor, J. Blackburn, A. Finamore, and K.

Papagiannaki. Is The Web HTTP/2 Yet? In Passive and Active Measurement
(PAM). 2016.

[19] R. B. Miller. Response time in man-computer conversational transactions. In
Proc. AFIPS Fall Joint Computer Conference, pages 267–277. ACM, 1968.

[20] J. Nielsen. Response times: The 3 important limits, 1993.
[21] F. Qian, V. Gopalakrishnan, et al. Tm3: Flexible transport-layer multi-pipe

multiplexing middlebox without head-of-line blocking. In ACM CoNEXT. 2015.
[22] X. S. Wang, A. Balasubramanian, et al. How speedy is spdy? In USENIX NSDI.

Seattle, WA, 2014.
[23] Wang, Xiao Sophia and Krishnamurthy, Arvind and Wetherall, David. Speeding

up web page loads with shandian. In USENIX NSDI.

6

