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Abstract In real water distribution networks (WDNs) are present thousands nodes and optimal place-
ment of pressure and flow observations is a relevant issue for different management tasks. The planning of
pressure observations in terms of spatial distribution and number is named sampling design and it was faced
considering model calibration. Nowadays, the design of system monitoring is a relevant issue for water utili-
ties e.g., in order to manage background leakages, to detect anomalies and bursts, to guarantee service
quality, etc. In recent years, the optimal location of flow observations related to design of optimal district
metering areas (DMAs) and leakage management purposes has been faced considering optimal network
segmentation and the modularity index using a multiobjective strategy. Optimal network segmentation is
the basis to identify network modules by means of optimal conceptual cuts, which are the candidate loca-
tions of closed gates or flow meters creating the DMAs. Starting from the WDN-oriented modularity index,
as a metric for WDN segmentation, this paper proposes a new way to perform the sampling design, i.e., the
optimal location of pressure meters, using newly developed sampling-oriented modularity index. The strategy
optimizes the pressure monitoring system mainly based on network topology and weights assigned to
pipes according to the specific technical tasks. A multiobjective optimization minimizes the cost of pressure
meters while maximizing the sampling-oriented modularity index. The methodology is presented and dis-
cussed using the Apulian and Exnet networks.

1. Introduction

Infrastructural, information and technological systems can be described as complex networks, defined by
nodes and arcs to label their topology. The analysis and management of large networks has always pre-
sented many problems related with nonhomogeneous behaviour of the network. Over time, several solu-
tions have been proposed to manage this problem, and the most commonly used and studied is the
community detection strategy, i.e., the division of the network into smaller modules.

Complex network theory (CNT) classify water distribution networks (WDNs) as infrastructures networks.
Community detection strategies of CNT allow dividing WDNs in modules/segments, which can facilitate the
hydraulic system analysis and management. In fact, the application of the segmentation (also named parti-
tioning) to WDNs divides the system in a number of smaller portions (named districts, segments or mod-
ules) bounded by installed devices (flow meters and closed valves), allowing to define district metering
areas (DMAs), which are useful for different technical purposes: demand and background leakages manage-
ment, burst detections, rehabilitation works, model calibration, etc.

The effectiveness of a WDN segmentation is then a relevant issue for water utilities to ensure adequate ser-
vice for customers, increasing the benefits of the planned investments [Heskett, 1986]. Moreover, the advan-
ces of information communication technology (ICT) in the water sector are motivating water utilities and
researchers to exploit the available information for the WDN management purposes, ranging from the con-
ceptual segmentation of networks to the actual DMAs through the installation of devices.

Therefore, over time, the research community proposed several approaches to segmentation [Jacobs and
Goulter, 1988; Yang et al., 1996; Walski, 1983; Davidson et al., 2005; Deuerlein, 2008; Perelman and Ostfeld,
2011; Alvisi and Franchini, 2014; Yazdani and Jeffrey, 2012; Scibetta et al., 2013; Diao et al., 2013; Albert and
Barabasi, 2002; Newman, 2004, 2006a Di Nardo et al., 2015], i.e., algorithms and metrics to identify the opti-
mal division of the network with respect to topology and WDN characteristics, such as pipes length and
diameter, nodal elevations, leakages, etc.
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CNT studies proposed several metrics for network segmentation, each of them showing various advantages
and drawbacks [Steinhaeuser and Chawla, 2010]. The modularity index [Newman, 2004] is the most widely
accepted and used metric to measure the propensity of the network division into modules (actually named
communities, consistently with the earliest applications of the index). The modularity is a descriptive mea-
sure of topology and relies strictly on the network structure. The advantage of the modularity is the fact
that it can be computed using only the adjacency matrix of the network, without requiring other informa-
tion [Steinhaeuser and Chawla, 2010]. For a given network, a higher value of the maximum modularity index
indicates a better identification of communities; therefore, the maximum value of the modularity corre-
sponds to the maximum degree of segmentation. Many heuristic approaches were introduced to find the
maximum value of the modularity in order to identify the community structure [Chen et al., 2014]. These
approaches include greedy algorithms [Newman, 2004, 2006a], spectral methods [Newman, 2006b],
extremal optimization [Duch and Arenas, 2005], simulated annealing [Medus et al., 2005], sampling tech-
nique [Sales-Pardo et al., 2007], but also nonheuristic approaches such as mathematical programming was
proposed [Agarwal and Kempe, 2008].

The greedy algorithms allow detecting the community structure of very large networks in a reasonable
time [Newman, 2004; Newman and Girvan, 2004; Newman, 2006a; Clauset et al., 2004; Wakita and Tsurumi,
2007; Blondel et al., 2008]. They solve the community detection problem using heuristic rules such as divi-
sive (i.e., dividing the network in modules based on inter-community links), and agglomerative (i.e., merging
similar nodes/communities recursively). The application of the heuristic rules at each stage is a locally opti-
mal choice, which does not guarantee a global optimal solution.

Several researchers [e.g., Scibetta et al., 2013; Diao et al., 2013, Fortunato, 2010] used the maximization of
modularity index for segmentation of WDNs, i.e., infrastructure networks, although its original formulation
[Barth�elemy, 2011] was proposed for immaterial networks. For this reason, Giustolisi and Ridolfi [2014a] tai-
lored the original modularity index in order to obtain a WDN-oriented modularity index. They (i) considered
the ‘‘conceptual cuts’’ segmenting the network close to nodes instead of the middle of pipes; (ii) introduced
the pipe weights in the WDN-oriented modularity index and (iii) defined a different modularity index aimed
at dividing the network in modules having an internal similarity of an assumed pipe attribute. The modified
modularity index allows the division into module having internal similar attribute such as diameters or ele-
vations, as opposite to the original formulation dividing the network in modules that are similar to each oth-
er with respect to a specific weight.

Afterward, Giustolisi and Ridolfi [2014b] proposed the infrastructure modularity index to overcome the resolu-
tion limit of the original modularity [Fortunato and Barth�elemy, 2007] inherited by the WDN-oriented modu-
larity. The segmentation problem [Giustolisi and Ridolfi, 2014a,b] was solved using a specific multiobjective
evolutionary optimization strategy, based on the use of genetic algorithms (MOGA). The approach proved
to be effective because WDNs are not large size networks (if compared with other typical immaterial net-
works studied in complex network theory) and the division into modules needs to be performed just few
times in WDN service life. In addition, the MOGA strategy allows searching for the optimal trade-off
between the minimization of the segmentation cost versus its effectiveness (i.e., the maximization of value
of the WDN-oriented or infrastructure modularity indexes), which is the Pareto front of solutions useful as
decision support system in order to select the best solution according, for example, to the available budget
for devices to be installed. In fact, the modularity index represents ultimately a driver to divide a WDN into
modules by means of ‘‘conceptual cuts,’’ while, in DMA design problem, such cuts are the candidate loca-
tions of closed gates or flow measurement devices. Nonetheless, system observations include also pressure
measurements and the design of the spatial distribution and number of pressure gauges is named sampling
design.

Several approaches to sampling design exists in technical-scientific literature, mostly driven by the need for
model calibration. For instance, Walski [1983] proposed the location of pressure measurements near the
high-demand locations and on the perimeter of the network. Bhave [1988] started from the number of avail-
able pressure sensors and divided the network into the corresponding number of portions. Others works
based the analysis upon simulation methods, highlighting the importance of the sensitivity matrix and the
coefficient of roughness in the network, in order to ensure a good WDN model calibration [Shamir and How-
ard, 1968; Rahal et al., 1980; Gofman and Rodeh, 1981; Ormsbee and Wood, 1986; Boulos and Wood, 1991].
About multiobjective optimization methods for sampling design, Carrera et al. [1984] proposed a method
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for selecting optimal locations from a discrete set of possible measurement points, based on nonlinear pro-
gramming. Yu and Powell [1994] proposed a method maximizing the estimated accuracy and minimizing
the total metering cost. Piller et al. [1999] formulated the sampling design problem using a greedy algo-
rithm, minimizing the influence of measurement errors in the state vector estimation with the constraint
that the Jacobian matrix should be of maximum rank. De Schaetzen et al. [2000] suggested three new sam-
pling design approaches, the first two are based on the shortest path algorithm and rank potential mea-
surement locations, and the third solves the optimization problem based on maximization of Shannon’s
entropy. Kapelan et al. [2003, 2005] formulated a two-objective optimization problem, maximizing the cali-
brated model accuracy versus the minimization of the relevant uncertainties and of the total cost. Behzadian
et al. [2008] formulated a multiobjective optimization problem under calibration parameter uncertainty,
maximizing the calibrated model accuracy versus the minimization of the number of sampling devices as a
surrogate of sampling design cost.

This work proposes a novel multiobjective optimal sampling design method based on a topological analy-
sis, which is not mainly intended for model calibration, but it can be integrated with the model calibration
strategies in an effective way as reported in the text. The novelty of the strategy stems from using a new
metric obtained by tailoring the WDN-oriented modularity index and infrastructure modularity index for
sampling design, i.e., sampling-oriented modularity index and the consequent division of the WDN in mod-
ules bounded by pressure meters, named ‘‘pressure DMAs.’’ For clarity, the WDN-oriented modularity and
infrastructure modularity will be here named segmentation-oriented modularity.

To the purpose of defining sampling-oriented modularity, the segmentation-oriented modularity is modified
to consider the positioning of nodal pressure measurements introducing the concept of ‘‘conceptual remov-
al of nodes’’ which is consistent with the idea of ‘‘conceptual cuts’’ of the classic segmentation procedure.
Consequently, the optimization strategy finds the best trade-offs between sampling-oriented modularity
and cost of new devices to be installed.

The originality of such approach relates to the fact that the ‘‘conceptual removal of nodes’’ divides the net-
works into ‘‘pressure DMAs.’’ This way, each ‘‘pressure DMA’’ results bounded by a sub-set of nodal pressure
gauges. This fact guarantees the information about pressure status at the boundary nodes of each pressure
district of the network. In other words, ‘‘pressure DMAs’’ are connected each other by nodes where pressure
devices are installed. The pressure readings on those nodes, which are the boundary conditions for internal
pressures, are similar to flow measurements of classic DMAs for internal demand components.

The proposed approach, based on topological analysis of the network and, possibly, on pipe weights used
in the modularity strategy [Giustolisi and Ridolfi, 2014a], is reliable with respect to the uncertainty of the
hydraulic behavior of the WDN. In fact, the WDN topology and the pipe weights generally relate to the asset
characteristics and are easy available information. Furthermore, the network topology has a relevant influ-
ence on the hydraulic behavior of the system, although other hydraulic objectives (e.g., related to accuracy
of the calibration or burst detection) could be integrated into the proposed approach as additional drivers
for sampling design.

The novel approach allows positioning other pressure gauges at central node of each ‘‘pressure DMA’’ in
order to increase the information collected by the pressure monitoring system. The central node within the
various modules is that with the maximum value of the betweenness centrality [Freeman, 1977] of the spe-
cific ‘‘pressure DMA.’’ The use of betweenness centrality allows the selection of nodes which are character-
ized by the maximum number of shortest paths (possibly assuming pipe weights for the specific technical
task) passing through it. This makes the selected nodes relevant with respect to the hydraulic behavior of
the WDN.

Finally, the proposed approach using a modularity-based strategy of dividing the WDN in ‘‘pressure DMAs’’
is consistent with the recent approaches [Giustolisi and Ridolfi, 2014a] to design DMAs allowing for mass bal-
ance control. This fact hints an easy and effective integration of the two design strategies for the location of
flow and pressure observations, i.e., the integrated planning of the monitoring system.

A small size test case, the Apulian network, will allow presenting the newly developed sampling-oriented
modularity metrics for sampling design and clarifying the concept of ‘‘pressure DMA.’’ A real medium size
test case, the Exnet network, will allow testing and discussing the proposed strategy for sampling design.
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2. Brief on Segmentation-Oriented Modularity-Based Metrics

Newman and Girvan [2004] firstly proposed the network segmentation through the maximization of the
modularity index, i.e., the identification of networks communities (modules).

As mentioned in the introduction, the original modularity index is conceived for immaterial networks
[Barth�elemy, 2011], and the use of its formulation in WDNs is not advisable because they are infrastructure
networks [Giustolisi and Ridolfi, 2014a]. For this reason, the original formulation of the modularity index was
tailored for WDNs using the general topological incidence matrix, commonly adopted in hydraulic model-
ing, and developing a cut position-sensitive metric [Giustolisi and Ridolfi, 2014a].

The formulation of the WDN-oriented (here named segmentation-oriented) modularity index is:
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where nc is the number of pipes linking modules of the infrastructure, namely the number of ‘‘conceptual
cuts’’ in the network (i.e., the decision variables of the WDN segmentation problem) and nm is the number
of network modules. The summation inside the square brackets is related to pipe weights stored in the vec-
tor wp, whose sum is W, and Kronecker’s d function makes that the sum refers only to the weights of pipes
belonging to the m-th module (i.e., d 5 1 if Mm5Mk and d 5 0 otherwise).

It is worth to note that the term Q1 of equation (1) decreases with the number of cuts, while Q2 generally
increases with the number of modules. For a given number of modules, Q2 increases with the similarity of
modules to each other with respect to the assigned weights.

Both original and WDN-oriented modularity indexes present a resolution limit [Fortunato and Barth�elemy,
2007], increasing with network size, which prevents to further increasing of the metric value when Q1 starts
dominating Q2. In other words, a number of modules exists for which a further single cut decreases Q1

more than any optimal identification of a further module, i.e., smaller modules cannot be identified.

Giustolisi and Ridolfi [2014b] analyzed the resolution limit of the segmentation-oriented modularity and pro-
posed a new infrastructure modularity index to overcome such limit:
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where nact is the actual number of modules satisfying given constraints (e.g., the minimum length of the
modules, the minimum number of pipes, etc.). Accordingly, the same authors demonstrated that the infra-
structure modularity resolves the resolution limit, but might require the definition of technical constraints
to avoid a resolution of the segmentation beyond the required by specific technical tasks.

Giustolisi and Ridolfi [2014a] also proposed a segmentation-oriented metric, called attribute–based segmen-
tation index, measuring the similarity into each module with respect to a specified attribute, which is not
length-based:
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where ap is the vector of pipe attributes, �a(N) is the mean value of the pipe attributes of the network N, i.e.,
of ap, and �a(Mm) is the mean value of the pipe attributes in Mm. Function d limits the summation of the pipe
attributes to the elements belonging to the same module.

Giustolisi et al. [2015] extended the infrastructure modularity index to attribute–based infrastructure segmen-
tation index:
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Equation (4) solves the resolution limit that might occur also for the attribute-based metric.
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3. Tailoring the Segmentation-Oriented Modularity to Sampling Design

This paper proposes a novel optimal sampling design approach, based on a multiobjective optimization
including novel metrics tailored for WDN sampling design and inspired by the segmentation-oriented modular-
ity (class comprising the attribute-oriented and the infrastructure modularity solving the resolution limit) of
the segmentation design. The proposed metrics for sampling design is named sampling-oriented modularity.

The segmentation-oriented and sampling-oriented modularity metrics differ for the approach of identifying
modules in WDNs. The first segments the network considering pipes, i.e., by means of ‘‘conceptual cuts,’’
the second considering nodes, i.e., by means of ‘‘conceptual removal of nodes.’’

Therefore, the sampling-oriented modularity can be seen as a dual way for the segmentation, allowing using
the connectivity matrix of the edges/pipes L [Brualdi and Ryser, 1991] instead of the adjacency matrix A of
equation (1).

The identification of the modules, for a given set of nodal observations, can be achieved constructing the
matrix L from the arc-node incidence matrix reduced to junction nodes Apn (also known in hydraulic model-
ing as general topological matrix of the network) by nulling the values in the columns corresponding to
observation nodes and performing the matrix product L 5 Apn x Anp. The connectivity analysis of L allows
the identification of the modules.

Once the modules related to ‘‘conceptual removal of the nodes’’ are identified, the segmentation-oriented
modularity formulations in equations (1–4) are extended to achieve the sampling-oriented modularity indi-
ces due to the similar conceptual basis:
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where the number of pipes connecting modules of the network, i.e., the number of ‘‘conceptual cuts’’ nc in
equations (1–4), is replaced by the number of removed nodes nobs (where pressure gauges will be installed)
and the number of pipes np is replaced by the number of nodes nn. The number of modules nm, identified
by removing nodes, has the same meaning of the segmentation-oriented formulations, as well as the actual
number of modules matching the technical constraints to avoid excessive resolution of the segmentation,
nact, of the ‘‘infrastructure’’ version. Note that the term Q2 of equation (5) is unchanged with respect to equa-
tions (1–4) because it refers to the characteristics of modules, which are now created by removed nodes.

Therefore, the equation (5) define respectively the sampling-oriented modularity Qs, sampling-oriented infra-
structure modularity IQs, sampling-oriented attribute–based modularity Qa-s and sampling-oriented infrastruc-
ture attribute–based modularity IQa-s.

It is worth to note that equation (5) have the same properties of equations (1–4) with respect to modules,
i.e., the first two of equation (5) divide the network in modules similar to each other with respect to the
assumed pipe weights, while the last two of equation (5) divide the network in modules having similar
internal characteristics with respect to the assumed pipe weights.

4. Technical Perspective of Pressure DMAs

The proposed optimal sampling design recalls classic segmentation because of the partition of the hydrau-
lic network in districts, in the first case having pressure meters at the boundary nodes of ‘‘pressure DMAs’’ in
the latter case flow meters or closed gate valves at the boundary pipes of ‘‘classic DMAs.’’
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From a technical point of view, the pressure DMAs are conceived to allow checking the network pressure sta-
tus by partitioning the hydraulic system, while classic DMAs are conceived to allow the same for mass bal-
ance. They refer to the two aspects of the hydraulics of the networks, head losses (momentum equations)
and pipe flows (mass balance equations).

However, it is worth noting that the implementation of the pressure DMAs does not involve the modifica-
tion of the network topology, i.e., the hydraulic status of the WDN, while the implementation of classic
DMAs alters the network topology because of the installation of closed gate valves, i.e., the hydraulic status
of the WDN results modified. Consequently, the number of classic DMAs implemented in a WDN is generally
lower than the number of pressure DMAs for two main reasons: the cost of flow meters is greater than pres-
sure meters and the initial hydraulic capacity with respect to service requirements of the WDN influences
the possibility of installing closed gate valves.

Therefore, the integration of pressure DMAs with classic ones is not a trivial task because it depends on
many characteristics of the WDN such as network size, initial hydraulic capacity with respect to service
requirements, level of background leakages, available budget, etc. Furthermore, the simple installation of
pressure meters in the nodes close to the ‘‘conceptual cuts’’ of the segmentation is a starting simplification,
which does not solve some technical aspects: (i) the positioning of pressure meters is not optimal from a
topological perspective; (ii) closed gate valves locally disconnect the network and consequently local pres-
sure meters are not observations at the boundary of districts; (iii) for large size WDNs, it is possible to con-
ceive pressure DMAs internal to larger classic DMAs; and (iv) sometimes in medium/small size WDNs, classic
districtualization is not planned, while a network of pressure meters is.

However, independently on previous notes, the proposed optimal sampling can have practical and techni-
cal effectiveness, since it is related to the network topology, and thus conceived independently on the
hydraulic of the WDN, whilst a useful integration for the model calibration procedures in medium and large
size WDNs as will be reported later. In fact, network of pressure meters, placed into the network based on
topology using the paradigm of complex network theory, should be effective for zooning the detection of
burst leakages and other anomalies, because the pressure meters are rationally located at the boundary
among pressure DMAs. Furthermore, the pressure status checking using such a network of sensors is easy
to plan because based on the network topology, which is the first information available for a WDN.

Finally, about the possibility of integrating the pressure DMA concept with the classic model calibration pro-
cedures for medium and large size WDNs, the starting point is the first equation of the global gradient algo-
rithm [Todini and Pilati, 1988; Giustolisi et al., 2008]
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where Qp is the [np,1] column vector of pipe flows, Hn is the [nn,1] column vector of unknown nodal heads, H0

is the [n0,1] column vector of known nodal heads, dn is the [nn,1] column vector of nodal demands, Apn5Anp

and Ap0 are topological incidence sub-matrices of size [np,nn] and [np,n0], respectively, and Dpp is a diagonal
matrix whose elements are the derivatives of the head loss function (having exponent n) with respect to Qp.

The matrix Ann is the Jacobian reduced to nodes, i.e., the sensitivity matrix of the WDN model. It is the same
matrix that Sanz and P�erez [2015] adopted for a demand calibration methodology using the singular value
decomposition in order to better condition the inverse problem. They named Ann complete sensitivity
matrix and wrote the following equations linking the variation D of the hydraulic variables (Hn and Qp) to
the variation of the nodal demands (dn),

DHn5 Annð Þ21Ddn

DQp5 Dpp
� �21

Apn Annð Þ21Ddn

(7)

It is to note that the condition number of Ann increases with network size, i.e., the inverse problem related
to calibration becomes worse and worse conditioned. The readings at the pressure meters in the boundary
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positions of pressure DMAs, plus the nodal elevations, can be considered as known heads. From a hydraulic
modeling point of view, this means to move those nodal heads in the column of known terms and resize
the incident matrix (Apn) removing the columns related to the nodal pressure observations. Assuming x
nodal observations dividing the network in y districts (pressure DMAs), it can be stated that the number of
columns of the incident matrix is reduced by x. Furthermore, the incidence matrix results divided into y
components, each one corresponding to a pressure DMA. Consequently, the Jacobian matrix Ann has a
reduced order by x and can be divided into y components. This way, the model calibration can be faced
considering the sub-models having a lower size, which makes better conditioned the inverse problem.

Therefore, the proposed sampling design strategy is connected with model calibration of large-medium
size WDNs, for which the network can be divided in ‘‘calibration districts,’’ i.e., pressure DMAs. Then, it is pos-
sible to apply the classic optimal sampling designs for calibration to each districts.

5. Multiobjective Strategy for Optimal Sampling Design Using Sampling-Oriented
Modularity

The problem of optimal sampling design, which is related to the definition of ‘‘pressure DMAs,’’ is here
solved as multiobjective optimization using the novel sampling-oriented modularity metrics.

Therefore, the two-objective optimization problem can be formulated as follows:
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where L is the edge/pipe adjacency matrix, Ic is the set of nobs conceptually removed nodes in the network,
the decision variables, corresponding to the new pressure meters to be installed [Giustolisi and Ridolfi,
2014a, 2015b] in order to obtain ‘‘pressure DMAs,’’ and connectivity(L, Ic) stands for component analysis of
the graph with respect to edge as reported in previous section. Note that being the decision variables relat-
ed to new pressure meters to be installed, the already existing pressure measurements, corresponding to
control valves, pumps, tank levels and reservoir levels, could be considered as constraints.

The optimization problem of equation (8) assumes as f1 the sampling-oriented infrastructure modularity,
although any of sampling-oriented metrics of equation (5) can be used. Therefore, the strategy optimizes the
pressure monitoring system mainly based on network topology, also considering weights wp assigned to
pipes according to the specific technical tasks. For example, pipe lengths are general purpose weights,
because they significantly influence the hydraulic behavior having a technical meaning also with respect to
background leakages [Giustolisi et al., 2008] of the system and probability of pipe bursts [Berardi et al.,
2008]. Consequently, the use of pipe length could be effective for sampling design related to the burst
detection task, but also model calibration as reported in the previous section.

The infrastructure modularity metrics allow identifying very small modules because the resolution limit is
solved. Nonetheless, this poses some problems when the resolution is too high for supporting WDN man-
agement tasks. For this reason, nact is here defined considering the following constraint C1:

C15

Xnp

k51
Lp
� �

kd Mm;Mkð Þ
L

� x% (9)

where L is the sum of pipes lengths; the numerator is the module length (i.e., sum of length of module
pipes Lp) and x% is a threshold percentage to be assumed. C1 is then a sort of ‘‘pressure’’ for the optimiza-
tion to search for solutions characterized by modules having length larger than x% of the total network
length L.

The sampling design is a WDN management activity that needs to be performed few times during the life-
time of the hydraulic system; therefore, it is effective to solve the problem of equation (8) using a MOGA
optimization strategy, as above specified. In fact, MOGA optimization strategies are efficient and flexible for
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combinatorial multiobjective problems, able to ensure a good sub-optimal Pareto set of solutions. Further-
more, the multiobjective approach provides a Pareto set of solutions which is a decision making support for
water utilities, e.g., considering the available budget for pressure meters.

6. From Conceptual Division into Modules to Classic and Pressure DMAs

The previous two sections introduced sampling-oriented modularity based metrics and a multiobjective
optimization in order to divide the network in modules with respect to nodes similarly to segmentation-ori-
ented aiming at dividing the network with cuts close to nodes. The similarity of the two approaches allowed
tailoring the segmentation-oriented metrics to sampling-oriented metrics.

It is worth to note that the optimal ‘‘conceptual cuts’’ close to ending nodes of pipes is conceptually, com-
putationally and practically different from ‘‘conceptual removal’’ of nodes generating ‘‘pressure DMAs.’’ In
fact, for optimal sampling design (which excludes terminal nodes) each pressure observation node, i.e.,
‘‘conceptual node removal,’’ can be at the boundary of two or more modules/segments, while for optimal
segmentation design (which excludes terminal pipes) each pipe cut, i.e., ‘‘conceptual cuts,’’ always is at the
boundary of two modules/segments. Obviously, nodes having high centrality are more candidate to divide
in modules with respect to cuts close to those nodes.

In both cases, the segmentation is conceptual, i.e., the network is conceived as immaterial. In fact, the
‘‘conceptual removing of nodes’’ identifies the modules and the sampling-oriented modularity metrics
allow the optimal division in modules. In the same way the ‘‘conceptual cuts’’ identify the modules and the
segmentation-oriented modularity metrics allow the optimal division in modules [Giustolisi and Ridolfi,
2014a,b].

It is important to clarify that the multiobjective optimization, minimizing the number of ‘‘conceptual cuts’’
or ‘‘conceptual removed nodes’’ versus the maximization of the segmentation-oriented or sampling-oriented
metrics, aims at providing ‘‘conceptual scenarios’’ of network division, which are the basis for the design of
actual metering areas.

In the case of segmentation by cuts, these are the candidate positions (of the assumed ‘‘conceptual scenari-
os’’) for closed valves or flow meters. Therefore, a classic DMA design process consists in (i) selecting one
segmentation scenario and (ii) deciding which pipes to close, as paths for water transmission, or where to
locate the flow measurements in order to achieve the control of the mass balance internal to the specific
DMA. Consequently, there is a (i) conceptual and a (ii) practical step, moving from selected segmentation
scenario to DMAs. The steps involve considerations on hydraulic capacity and background leakages reduc-
tion [Ferrari and Savic, 2015] related to closed valves, installation and management costs related to the spe-
cific type of device and its location (e.g., pipe diameter).

In the case of the segmentation by nodal removal, they are the candidate position for pressure meters. Dif-
ferently from the classic DMA, a ‘‘pressure DMA’’ directly descends from the selected ‘‘conceptual scenario’’
of segmentation, because the installation of pressure measurements does not alter the hydraulic behavior
of the network, not altering its topology. Furthermore, the number of removed nodes to obtain the mod-
ules can surrogate the total cost of ‘‘pressure DMA’’ design, because the cost of the single pressure meter
does not generally depend on its location through the asset characteristics. Consequently, only the practical
step, i.e., the installation of devices, for passing from a segmentation scenario to a ‘‘pressure DMA’’ does
exist.

7. Apulian Case Study

In the present work, the first case study relates to a small network, named Apulian [Giustolisi et al., 2008],
having one reservoir feeding by gravity all nodes, 23 nodes and 34 pipes, whose layout is in Figure 1.

This simple network is helpful to show and discuss the main features of the proposed sampling design
strategy, where the ‘‘pressure DMAs’’ are easily visible. The analysis considers the pipe length as weight
(attributes) and the segmentation solutions descend from the two-objective optimization, where the select-
ed sampling-oriented modularity is maximized with the minimum number of pressure meters
(observations).
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The strategy uses the first met-
ric of equation (5), i.e., the sam-
pling-oriented modularity Qs,
allowing identifying modules
similar to each other with
respect to their total length. The
resolution limit affects the
selected modularity, although,
as previously said, it is not sig-
nificant for small networks.

The optimization problem pro-
vides the Pareto set of solutions
reported in Figure 2. The seven
black circles represent the opti-
mal tradeoffs between the mini-
mization of the number of
installed pressure meters (x-
axis) on the border of each
‘‘pressure DMA’’ versus the max-

imization of the sampling-oriented modularity (y-axis). All optimal ‘‘conceptual segmentation’’ configura-
tions, based on the objective functions in equation (8) with f1 5max{Qs}, are characterized by a number of
‘‘conceptual removing of nodes,’’ i.e., the number of pressure meters on x-axis, which are located in nodal
positions maximizing the value of the sampling-oriented modularity.

Therefore, Figure 3 shows the sampling design configurations starting from the trivial configuration (a), i.e.,
the original network without pressure meters. The pressure measure close to the reservoir is actually
assumed by the procedure supposing the existence of level observations for water storages.

Then, Figures 3b–3g show the nontrivial configurations where the black squares represent the locations of
pressure meters while the pipes with different grey scale represent the modules, i.e., the ‘‘pressure DMA’’
designed by each solution of the Pareto set (Figure 2). The number of ‘‘pressure DMA’’ increases with the
number of observations and the meters are located in the peripheral of the modules. For instance, the first
sampling-oriented modularity of equation (5) allows obtaining a maximum number of modules equal to 7
with 8 pressure meters because of the resolution limit. Each solution is the best considering the number of
pressure observations and the specific pipe length-based sampling-oriented modularity, and the fact that in
same solutions two or more pressure observations are close to each other is related to the fact that in small
networks not many solution are provided. Finally, all solutions are characterized by a pressure observation
in node 1, which is significant being the entrance of the network.

8. Exnet Case Study

The optimal sampling design
strategy based on sampling-ori-
ented modularity has been fur-
ther performed for the Exnet
network [Farmani et al., 2004;
Giustolisi et al., 2008] a real infra-
structure network of a medium
size hydraulic system, whose
layout is reported in Figure 4.

The network is composed of
1,894 nodes (reservoir com-
prised) and 2,471 pipes. It is a
powerful test for the proposed
sampling design strategy using

Figure 1. Apulian Layout.

Figure 2. Pareto set of optimal solutions, i.e., optimal sampling configurations.
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the first two metrics of
equation (5) i.e., classic ver-
sus infrastructure to solve
the resolution limit. As for
the Apulian network case,
the optimization is con-
ceived to identify modules
similar each other with
respect their total lengths,
which are assumed as pipe
weights, see equation (9).
The two-objective optimiza-
tion problem of equation
(8) using for f1 the sam-
pling-oriented modularity in
the classic (Qs) and infra-
structure (IQs) versions, was
solved using the MOGA
optimization strategy as
implemented in a specific
function of WDNetXL [Gius-
tolisi et al., 2011]. Note that
a single optimization run
takes about 3 h, which is an
acceptable computational
time from a technical stand-
point, since it has to be per-
formed in planning phase
only. Figure 5 reports the
two Pareto sets correspond-
ing to the solution of
the two-optimization proce-

dures. The circles represent the optimal tradeoffs between the number of installed pressure meters (x-axis) on
the border of each ‘‘pressure DMA’’ versus the maximization of the classic (grey circles) and infrastructure (black
circles) sampling-oriented metrics (y-axis).

From a practical standpoint,
water utilities can decide the
best trade-off resolution of
‘‘pressure DMA’’ versus budget.
It is to bear in mind that for
example the active leakage
detection and the natural
decreasing of the pressure
meter cost and management
will move the trade-off toward
a higher number of ‘‘pressure
DMAs.’’

Figure 5 shows the maximum
value of pressure meters for
the sampling-oriented modu-
larity. The number is equal
to 44 and 101 for the classic
and infrastructure modularity,

Figure 3. Sampling design configurations corresponding to the Pareto set. The black squares rep-
resent the locations of pressure meters.

Figure 4. Layout of Exnet network.
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respectively. Figures 6 and 7
report the configurations of
pressure meters (black squares)
corresponding to the maximum
value of the sampling-oriented
metrics. Note that the 44 pres-
sure meters determine 45 mod-
ules, i.e., ‘‘pressure DMAs,’’ while
the 101 pressure meters deter-
mine 205 ‘‘pressure DMAs.’’

Therefore, Figures 5–7 demon-
strate using a medium-size net-
work that the infrastructure
modularity is helpful to over-

come the resolution limit, allowing determining a number of modules more than four time greater than clas-
sic metric case and about doubling the number of pressure meters. Note that being the decision variables
related to new pressure meters to be installed, the already existing pressure measurements corresponding to
control valves, pumps, tanks and reservoirs could be considered as constraints. The bias due to the existence
of those nonoptimal constraints is a further reason of introducing the infrastructure modularity index, which
solving the resolution limits is not sensitive to constraints as better reported in Giustolisi and Ridolfi [2014b].

This was achieved assuming the minimum module length as using x% 5 0.05% of the total Exnet pipeline
length, i.e., see equation (9). It is important to remark that although the sampling-oriented infrastructure metric
solving the resolution limit is much powerful, it does not necessary mean that the configuration corresponding
to the maximum number of ‘‘pressure DMAs’’ should be selected. Nevertheless, the number of solutions
obtained by using the sampling-oriented infrastructure metric are much greater (see Figure 5) than the
sampling-oriented classic metric; therefore, it is preferable from a decision-making support standpoint.

9. Refining the Sampling Design

The proposed sampling design strategy locates nodal pressure meters creating ‘‘pressure DMAs,’’ which can
be the basis of a positioning of further meters internal to modules.

For instance, a specific technical task can ask for locating a pressure meter in the central node of ‘‘pressure
DMAs’’ in order to select the ‘‘most relevant’’ position with respect to the hydraulic behavior. In Figure 8, the
grey circles represent the ‘‘candidate positioning’’ for central nodes. The proposed metric to determine the
positions is the betweenness centrality, measuring how much the node is central with respect to water paths.
In fact, betweenness centrality is maximum for the node that is central because located between many other
nodes, i.e., many shortest paths connecting couples of nodes pass through it. It is important to note that this

is a refinement, based on graph theory,
for the proposed sampling design strat-
egy. This means that other measures of
centrality can be used [Wang et al.,
2008] to support the proposed strategy.

The option of selecting the central node
of one specific module can depend on
the technical task (e.g., monitoring of
head losses, demands, background lea-
kages, or burst detections, rehabilitation
works, model calibration, etc.) or other
topologic characteristics such as size,
connectivity, etc.

In the same line of the selection of
central nodes, the proposed strategy

Figure 5. Pareto set of optimal solutions, i.e., optimal sampling configurations, correspond-
ing to the use of the first and second sampling-oriented modularity of equation (5).

Figure 6. Sampling design configuration corresponding to the maximum value of
the sampling-oriented modularity. The black squares represent the locations of
pressure meters.
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allows considering nodes with high
demands and/or nodes on the perime-
ter of the network [Walski, 1983] for
the peripheral pressure DMAs. It is
worth noting that the proposed strate-
gy is helpful to locate further pressure
meters [Walski, 1983] based on engi-
neering judgment because the deci-
sion is simplified from WDN dimension
to the ‘‘pressure DMA’’ level.

9.1. Additional Remarks
It is worth to remark now that equation
(5) assume that nobs stays for concep-
tually ‘‘removed nodes’’ and consis-
tently the denominator is the number
of nodes nn. This fact means that one

node can generate more than one district and the maximum value of the sampling-oriented metrics is great-
er than one and depends on the network topology, as showed in Figure 5 for the infrastructure modularity.

Therefore, a slightly different formulation for sampling-oriented metrics can be proposed:
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(10)

where, ndeg is summation of the
degrees of the ‘‘removed nodes’’ and
consistently 2np is summation of nodal
degrees. Consequently, the same tests
on Exnet network were performed
using the first two metrics of equation
(10). Figures 9 and 10 show the sam-
pling configurations related to the
maximum value of the sampling-
oriented modularity, classic and infra-
structure respectively.

Comparing Figures 6 and 9 concerning
to the DMA configurations using the
two sampling-oriented classic modulari-
ty, first metric of equations (5) and (10)
respectively, it is possible to state that
they work similarly. In fact, the number

Figure 7. Sampling design configuration corresponding to the maximum value of
the sampling-oriented infrastructure modularity. The black squares represent the
locations of pressure meters.

Figure 8. Sampling design configuration corresponding to the maximum value of
the sampling-oriented modularity. The grey circles represent the locations of pres-
sure meters positioned by means of betweenness centrality.
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of pressure meters is 44 and 39 respec-
tively, and the number of ‘‘pressure
DMAs’’ is 45 and 43 respectively.

Comparing Figure 7 and 10 concerning
to the DMA configurations using the
two sampling-oriented infrastructure
modularity, second metric of equations
(5) and (10) respectively, it is evident
that the formulation with nobs is much
more powerful than the formulation
with ndeg, even though, Figure 7 shows
a high number of the ‘‘pressure DMA’’
composed by a few pipes. In fact, the
number of pressure meters is 103 and
58 respectively, and the number of
‘‘pressure DMAs’’ is 203 and 67
respectively.

The assumption that one removed node counts its degree with respect to 2np (or similarly half of its degree
with respect to np) causes the fact that the infrastructure modularity of equation (10) is less powerful than
that of equation (5). Indeed, Giustolisi and Ridolfi [2014b] introduced the infrastructure modularity in order
to solve the dominance (given one cut with respect to np) of the decreasing of Q1 with respect to the
increasing of Q2 when a limit number of modules (depending on the network size) is reached, see the
reported discussion after equation (1). The second and forth modularity of equation (10) cannot solve the
resolution limit because one removed node now counts half of its nodal degree (with respect to np) which
is greater or equal than unit for internal nodes.

10. Conclusions

Sampling design is of key importance for various WDN analysis and management tasks by means of analysis
and monitoring of pressure status. Therefore, the present work proposes a novel methodology for design-
ing a pressure sampling system, based on WDN topological analysis. The pressure sampling design is formu-
lated as a multiobjective optimization problem, where a new segmentation metric, suited for sampling
design, is maximized while minimizing the number of ‘‘conceptual removed nodes.’’

The multiobjective strategy provides optimal solutions, which are ‘‘conceptual scenarios’’ of pressure gauges
locations into the network. Each conceptual scenario is related to a different ‘‘pressure DMAs’’ configuration,
i.e., DMAs bounded by a sub-set of nodal pressure gauges. Moreover, the proposed sampling design strate-
gy is based on WDN topology and asset characteristics, which are generally available information.

It is worth noting that the proposed
strategy is helpful to locate further
pressure meters based on engineering
judgment, e.g., high demands and/or
nodes on the perimeter of the network
[Walski, 1983], because the decision is
simplified from WDN dimension to the
‘‘pressure DMA’’ level.

The novel approach allows also posi-
tioning other pressure gauges at cen-
tral node of each ‘‘pressure DMA,’’
using the maximum value of the
betweenness centrality [Freeman, 1977]
of the specific ‘‘pressure DMA,’’ in order
to increase the information collected

Figure 9. Sampling design configuration corresponding to the maximum value of
the sampling-oriented modularity. The black squares represent the locations of
pressure meters.

Figure 10. Sampling design configuration corresponding to the maximum value
of the sampling-oriented infrastructure modularity. The black squares represent
the locations of pressure meters.
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by the pressure monitoring system. This makes the selected nodes relevant with respect to the hydraulic
behavior of the WDN.

Notation

Apn general topological matrix of the network (Apn 5 Anp
T).

ap, vector of pipe attributes.
�a(N) mean value of the pipe attributes in N.
C1 constraint.
fi objective function.
Ic set of nobs conceptually removed nodes in the network.
ki node degree of the i-th node.
L connectivity matrix of the edges/pipes.
(Lp)k vector of pipe length values in module k.
L sum of pipes length values.
Mi identifier of network modules.
N network.
nact actual number of modules satisfying the constraints.
nc number of pipes linking modules of the infrastructure.
nm number of network modules.
np number of network links/pipes.
Q WDN-oriented modularity index.
IQ infrastructure modularity index.
Qa attribute–based modularity index.
IQa attribute–based infrastructure modularity index
Qs sampling-oriented modularity index.
IQs sampling infrastructure modularity index.
Qa-s sampling-oriented attribute–based modularity index.
IQa-s sampling infrastructure attribute–based modularity index
wp, vector of pipe weights.
W sum of pipe weights.
x% threshold percentage of total network length for a module to be technically useful.
d Kronecker’s delta function.
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