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Abstract 

This paper develops a multi-criteria decision making tool to support the public decision maker in optimizing 

energy retrofit interventions on existing public street lighting systems. The related literature analysis clearly 

highlights that, to date, only a few number of studies deal with the definition of optimal decision strategies 

complying with multiple and conflicting objectives in the planning of street lighting refurbishment. To fill 

this gap, we propose a decision making tool that allows deciding, in an integrated way, the optimal energy 

retrofit plan in order to simultaneously reduce energy consumption, maintain comfort, protect the 

environment, and optimize the distribution of actions in subsystems, while ensuring an efficient use of public 

funds. The presented tool is applied to a real street lighting system of a wide urban area in Bari, Italy. The 

obtained results highlight that the approach effectively supports the city energy manager in the refurbishment 

of the street lighting systems. 

 

Keywords: Energy efficiency management, public street lighting, multi-criteria optimization. 

 

1. Introduction 

Pursuing energy-efficient improvements has become mandatory at all levels of the public administration, not 

only for environmental sustainability reasons, but also since the prediction of energy consumption accounts 

for a global increase of almost 40% by the year 2030 [1]. Not surprisingly, the improvement of energy 

efficiency is at the basis of the worldwide significant trend towards smart city researches and projects [2-5]. 

Referring to the actions that can be undertaken, the recommendations for energy efficiency by the 

International Energy Agency (IEA) cover seven different priority areas: buildings, appliances, lighting, 

transport, industry, energy utilities and cross-sectorial issues [6-7]. Within these areas, public (predominantly 

street) lighting contributes to about 2.3% to the global electricity consumption. Hence, energy-efficient 

programmes in this field are very welcome, since the possibilities for energy savings in street lighting are 

numerous and some of them even enable reductions in electricity consumption of more than 50%. This 

explains the growing attention reserved by policy makers to energy consumption for urban street lighting in 

the energy and economic balance of many cities, as the increasing commitment of city authorities towards 

energy efficiency and green energy for public lighting systems demonstrates [8]. Municipal planners and 
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engineers search for opportunities for effective energy-efficient street lighting management [9-10]. In 

response to this need, several researchers have investigated tools to support administrations in finding 

optimal street lighting solutions that minimize energy consumption. 

The literature on energy efficiency and consumption reduction for street lighting installations may be divided 

into three main streams of studies. The first refers to the optimization of the street lighting system design, 

aiming at finding the best combination of design parameters (e.g., height of lighting units, inclination of the 

same units, overhang of lighting poles, inter-distance between poles, etc.) [11], so as to maximize the overall 

illuminance uniformity and installation efficiency [12-14], etc. The second stream includes studies focusing 

on the technological development of lamps and luminaires, as mentioned in [15-20]. The third one includes 

the study and development of systems for the control of lamps and luminaires that, under the project 

conditions, allow the reduction of power consumption, e.g., the optimal use of equipment that allows the 

variation in the luminous flux as a function of time and traffic conditions on the roads [21-28]. 

Although the recalled studies solve several important issues related to the energy-efficient street lighting 

management, they lack on two main aspects. First, focusing on the solution of a specific issue, they do not 

support the decision-maker in defining an optimal retrofit strategy comprising a mix of interventions on 

existing street lighting systems. Second, studies already developed in the fields are mainly mono-objective. 

Instead, the interventions on public street lighting has by definition multiple and conflicting objectives: 

reducing energy consumption while maintaining the same energy services, keeping the comfort and quality 

of life, protecting the environment, ensuring the energy supply and promoting sustainability in its use, and 

minimizing the necessary public resources. The overall aim of road lighting, in fact, is to reproduce lighting 

conditions that provide a safe and comfortable environment for the driver and pedestrians during the night 

hours. The effective use of road lighting helps protecting drivers/pedestrians and improving traffic, while 

providing economic benefits. When lighting levels are optimal, the system provides enough illumination to 

minimize the number of accidents, maintaining at the same time minimum energy consumption [13]. 

With the aim of filling the highlighted gap in the literature on street lighting decision-making, this paper 

develops a multi-criteria optimization tool able to support the public decision maker in selecting the proper 

mix of retrofit interventions to be taken on an existing street lighting system in order to reduce energy 

consumption, maintain the required comfort and quality of life, protect the environment, and simultaneously 

optimize the distribution of actions in subsystems, while ensuring an efficient use of public funds. 

The authors of this paper have previously addressed in a hierarchical way the overall problem of energy 

governance of smart cities, which includes several decision panels at the same time (e.g., buildings and 

public street lighting). We proposed the general architecture of an urban control center, to be used by policy 

makers for the smart city energy governance in [29-30], based on a bi-level programming architecture. The 

urban control center proposed in [29-30] includes two levels: an upper decision unit takes care of the overall 

smart city manager preferences and guidelines, while several lower level decision units or panels are related 

to the different urban subsystems that may be affected by specific energy efficiency and retrofit policies. 

Moreover, in [31] we presented a preliminary work on the overall structure of the decision panel for the 

public street lighting. Our work in [31] considers the street lighting decision panel in the wider hierarchical 
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architecture of the urban control center, with a focus on the overall energy governance of the smart city. 

Contrarily, in this paper the perspective is that of the energy manager of the street lighting system, rather 

than that of the city policy maker. Hence, in this paper we detail and extend the problem statement provided 

in [31]. In [31] a limited set of specific decision criteria and retrofit actions are addressed and a customized 

formulation of few performance indicators is presented, resulting in a contingent optimization model that 

cannot comply with diverse situations and general needs encountered by energy managers. Moreover, the 

model proposed in [31] does not take into account any metric concerning the allocation of the optimal 

retrofit actions among the various street lighting subsystems. To address such issues, in this paper we define 

a more comprehensive optimization model considering different categories of generalizable decision criteria 

(including criteria associated to the implementation and mode of intervention) and providing a general 

formulation for performance indicators in terms of parameterized sets of retrofit actions (whose amount 

could be eventually enlarged in accordance with decision maker choice). This new perspective has the 

advantage of providing the street lighting manager with a decision making model that is compatible with 

different street lighting contexts, namely to contexts characterized by diverse objectives, constraints, and 

performance as well as implementation criteria. Therefore the contributions of this paper may be 

summarized as follows: 

• From a theoretical point of view, this paper contributes to the literature on energy-efficient street 

lighting management, which lacks multi-objective studies for identifying the optimal retrofit strategy 

comprising a mix of interventions on existing street lighting systems.  

• We define a comprehensive optimization model considering different categories of objectives, 

constraints, and performance as well as implementation criteria. 

• Finally, from a practical point of view, the proposed tool, addressing a multi-criteria optimization 

problem, provides the decision maker with an effective tool for screening optimal solutions. 

The rest of the paper is organized as follows. Section 2 formulates the problem statement and describes the 

scheme of the proposed multi-criteria decision tool for selecting the optimal actions to pursue the energy 

efficiency optimization of a given street lighting system. The decision model and the optimization algorithms 

are also presented. Then, Section 3 presents the case study and results of the application of the proposed 

decision-making tool. Finally, Section 4 provides some conclusions along with the future research directions. 

 

2. The problem formulation 

The proposed decision making tool aims at helping Decision Makers (DMs) select the optimal actions to take 

in order to improve the performance of a given street lighting system against a set of conflicting criteria 

within a given budget. Hence, the problem statement may be described as follows. 

A scheme of the multi-criteria decision process is shown in Fig. 1. Following [5], [32], all activities in the 

decision process are divided into two macro-phases: a first part (the decision design at the top of Fig. 1) that 

comprises in turn the diagnosis (i.e., the subsystems’ status acquisition activities) as well as the so-called 

identification of criteria (i.e., the choice of characteristics or qualities that the DM intends to pursue in the 
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street lighting retrofit) as the so-called characterization of retrofit actions (i.e., the identification of 

convenient retrofitting measures activities), and a second phase which implements the actual multi-criteria 

analysis of the possible actions (the decision making at the bottom of Fig. 1). While the high-level 

structuring of the decision making into multi-objective optimization and retrofit alternatives ranking is 

common to [5], [32], where we define a multi-criteria decision making tool to determine an optimal energy 

retrofit plan for a portfolio of buildings, we highlight that distinctive and unique features differentiate the 

decision making for the retrofit of a street lighting system from the decision making for the retrofit of a 

buildings stock. 

Before introducing the mathematical formulation of the problem, we highlight that Table I provides the basic 

notation used in the paper. 

 

Table I The adopted notation 

Parameters 

and indices 
Description 

𝑁 Number of lighting units totally deployed in the street lighting system 

𝑛 Generic lighting unit  

𝒯 Set of lighting unit type 

𝑇 Number of lighting unit types 

𝑡 Generic lighting unit type in 𝒯 

𝜏𝑛 Type related to the 𝑛th lighting unit 

𝒮 Set of zone lighting subsystems 

𝑆 Number of zone lighting subsystems  

 

Table I The adopted notation (continued) 

 

Fig. 1 Scheme of the proposed decision-making process.  
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Parameters 

and indices 
Description 

𝑠 Generic zone lighting subsystemin 𝒮 

𝑁𝑠𝑡 Number of lighting units of the 𝑡th type deployed in the 𝑠th subsystem 

𝑁𝑠 Number of lighting units totally deployed in the 𝑠th subsystem 

𝒫 Set of performance criteria 

𝑃 Number of performance criteria 

𝑝 Generic performance criterion in 𝒫 

𝒬 Set of implementation criteria 

𝑄 Number of implementation criteria 

𝑞 Generic implementation criterion in 𝒬 

𝑖𝑝𝑡 Ex-ante performance indicator of the 𝑡th type of lighting unit with respect to the 𝑝th criterion 

𝐼𝑝𝑠𝑛 Ex-ante performance indicator of the 𝑛th lighting unit in the 𝑠th subsystem with respect to the 𝑝th criterion 

𝐼𝑝𝑠 Ex-ante performance indicator of the 𝑠th street lighting subsystem with respect to the 𝑝th criterion 

𝐼𝑝  Ex-ante performance indicators of the whole street lighting system with respect to the 𝑝th criterion 

ℋ Set of actions at individual lighting unit level 

𝐻 Number of actions at individual lighting unit level 

ℎ Generic action at individual lighting unit level in ℋ 

𝒦 Set of actions at subsystem level 

𝐾 Number of actions at subsystem level 

𝑘 Generic action at subsystem level in 𝒦 

𝛾𝑝𝑡ℎ Multiplicative unitary payoff of the ℎth action on the 𝑡th type lighting units with respect to the 𝑝th criterion  

𝛿𝑝𝑡ℎ Additive unitary payoff of the ℎth action on the 𝑡th type lighting units with respect to the 𝑝th criterion 

𝑈𝑠𝑛ℎ  Application potential of the ℎth action related to the 𝑛th lighting unit in the 𝑠th subsystem 

𝑊𝑠𝑡ℎ Application potential of the ℎth action related to lighting units of the 𝑡th type in the 𝑠th subsystem 

𝑏𝑡ℎ Unitary cost for implementing the ℎth action on lighting units of the 𝑡th type 

𝛼𝑝𝑠𝑘 Multiplicative unitary payoff that the 𝑘th action produces on the 𝑠th subsystemwith respect to the 𝑝th criterion  

𝛽𝑝𝑠𝑘 Additive unitary payoff that the 𝑘th action produces on the 𝑠th subsystemwith respect to the 𝑝th criterion  

𝑉𝑠𝑘 Application potential of the 𝑘th action in the 𝑠th subsystem 

𝑐𝑘 Unitary cost for implementing the 𝑘th action 

𝐸 Budget allocated to the retrofit actions plan of the whole street lighting system 

𝛤 Set of Pareto optimal solutions 

𝐺 Number of Pareto optimal solutions 

𝑋𝑔
∗ Generic Pareto optimal solution in 𝛤 

𝑔 Index of the generic Pareto optimal solution in 𝛤 

𝑀 Number of ranking criteria 

𝑚 Generic ranking criterion 

𝜗𝑚 Weight of the 𝑚th ranking criteria in TOPSIS method 

𝛤 ̃ Ranked set of alternatives 

𝑗𝑔 Index of the generic Pareto optimal solution in 𝛤 ̃ 

Decision 
variables 

Description 

𝑢𝑠𝑛ℎ  quantity of the ℎth action to be applied to the 𝑛th lighting unit in the 𝑠th subsystem 

𝑤𝑠𝑡ℎ quantity of the ℎth action to be applied to the overall set of the 𝑡th type lighting units in the 𝑠th subsystem 

𝑣𝑠𝑘  quantity of 𝑘th action to be applied to the 𝑠th subsystem 

𝑋𝑔
∗ Generic Pareto optimal solution in 𝛤 

Indicators 
functions  

Description 

𝐼𝑝𝑠𝑛
′  Post-retrofit performance indicator of the 𝑛th lighting unit in the 𝑠th subsystem with respect to the 𝑝th criterion 

𝐼𝑝𝑠
′  Post-retrofit performance indicator of the 𝑠th subsystem with respect to the 𝑝th criterion 

𝐼𝑝
′  Post-retrofit performance indicator related to the whole street lighting system with respect to the 𝑝th criterion 

𝐽𝑞
′  Indicator related to the 𝑞th implementation criterion 

𝐼𝑝
′∗ Utopia point related to the 𝑝th performance criterion 

𝐽𝑞
′∗ Utopia point related to the 𝑞th implementation criterion 
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2.1 The system model 

We refer to a generic urban area street lighting system that includes several lighting units, a power 

distribution system (composed by electric lines and power substations), and a command and control system 

(composed by communication links and control base stations). We assume that the number of deployed 

lighting units is 𝑁 and their types belong to the set 𝒯 = {1, … , 𝑡, … , 𝑇} whose cardinality is 𝑇 = |𝒯|. Of 

course, the lighting units of the 𝑡 th type are characterized by the same electric features (e.g., energy 

consumption) and photometric quantities (e.g., luminous flux). Street lighting systems are commonly 

widespread, with a large number of lighting points and an extensive power and communication network. 

Hence, given the geographic distribution of lighting equipment over an urban area, we assume that the street 

lighting system is subdivided in a certain number of subsystems (Fig. 2). Each of these, denoted as zone 

lighting subsystems (named simply subsystems in the remainder), is responsible for reproducing lighting 

conditions in the set of neighboring road or street segments pertaining to the related urban zone. We denote 

the set of zone lighting subsystems in the given urban area as 𝒮 = {1, … , 𝑠, … , 𝑆} whose cardinality is 𝑆 =

|𝒮|. The lighting units of a given zone lighting subsystem are energized by their own power substation that is 

also provided with a control unit aimed at automatically turn lights on or off by a timer switch. Finally, we 

denote by 𝑁𝑠𝑡 (∀𝑠 = 1, … , 𝑆, ∀𝑡 = 1, … , 𝑇) the number of lighting units of the 𝑡th type deployed in the 𝑠th 

subsystem and with 𝑁𝑠 = ∑ 𝑁𝑠𝑡
𝑇
𝑡=1  the number of lighting units totally deployed in the 𝑠th subsystem.  

 

2.2 The decision design phase 

The decision design phase (see Fig. 1) is performed by the decision analyst in conjunction with street 

lighting operators. This phase of the decision process includes various steps of data collection, analysis, and 

modeling: basically, it aims at understanding and defining metrics and models that can be used to 

preventively estimate the impacts of potential modifications on the street lighting system performance. 

 

 

Fig. 2 Example of street lighting system composed by two zone lighting subsystems. 
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2.2.1 Identification of criteria 

Primarily, having in mind the energy efficiency and environmental sustainability as overall goals of the 

decision making, the identification of specific performance criteria is required. After a joint analysis and 

walk-through surveys, street lighting managers together with technical experts identify a set 𝒫 =

{1, … , 𝑝, … , 𝑃}  of 𝑃 = |𝒫| criteria aiming at the assessment of the performance of the given street lighting 

system. For instance, the related literature commonly used performance criteria include: energy consumption, 

lighting pollution, and the so-called color rendering index [33-35]. These performance criteria are employed 

to carry out both the ex-ante and ex-post assessments of a retrofit plan. Consequently, they provide metrics 

on the basis of which decision makers can judge the value of the design and establishment of actions having 

multi-sectorial impacts. 

Furthermore, the decision maker may require other type of criteria that are neither related to the performance 

and energy behavior of the given street lighting system not to the specific nature of candidate retrofit actions, 

but are only associated to their implementation and mode of intervention. For instance, one of these so-called 

implementation criteria may be the optimal allocation of retrofit actions among the various street lighting 

subsystems in accordance with a homogeneity or priority order metric. These implementation criteria are 

denoted as a set 𝒬 = {1, … , 𝑞, … , 𝑄}  whose cardinality is 𝑄 = |𝒬|. 

Once all criteria have been identified, the next steps of the decision design phase are the street lighting 

diagnosis and the evaluation of renovation and energy efficiency actions. Since both these steps are devoted 

to analyzing the current (ex-ante) state of the system and the (ex-post) effect that the retrofit plan may 

potentially have on it, they are addressed only with respect to the performance criteria in set 𝒫, as detailed in 

the following subsections. 

 

2.2.2 Diagnosis with respect to performance criteria 

The street lighting diagnosis aims at evaluating the general state of the street lighting system with respect to 

the performance criteria in set 𝒫 selected in the first part of the Diagnosis phase, e.g., energy consumption, 

light pollution, drivers comfort, etc. In particular, the diagnosis is conducted for all the subsystems and on a 

lighting unit per lighting unit basis. Thus, let 𝐼𝑝𝑠𝑛 be the performance indicator of the 𝑛th lighting unit in the 

𝑠th subsystem with respect to the 𝑝th criterion. The performance indicator of the 𝑠th street lighting subsystem 

with respect to the 𝑝th criterion, denoted as 𝐼𝑝𝑠, is consequently determined as follows: 

𝐼𝑝𝑠  = ∑ 𝐼𝑝𝑠𝑛

𝑁𝑠

𝑛=1

, ∀𝑝 = 1, … , 𝑃, ∀𝑠 = 1, … , 𝑆. (1) 

Clustering the lighting units into types, (1) could be equivalently written as:   

𝐼𝑝𝑠  = ∑ 𝑖𝑝𝜏𝑛

𝑁𝑠

𝑛=1

= ∑ 𝑁𝑠𝑡𝑖𝑝𝑡

𝑇

𝑡=1

, ∀𝑝 = 1, … , 𝑃, ∀𝑠 = 1, … , 𝑆 (2) 

where 𝜏𝑛 indicates the type of the of the 𝑛th lighting unit and 𝑖𝑝𝑡 denotes the performance indicator of the 𝑡th 

type of lighting unit with respect to the 𝑝th criterion. 
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Having evaluated the performance indicators related to all the subsystems, the resulting value of the 𝑝th 

criterion on the whole street lighting system, denoted as 𝐼𝑝 , is computed as follows: 

𝐼𝑝  = ∑ 𝐼𝑝𝑠

𝑆

𝑠=1

, ∀𝑝 = 1, … , 𝑃. (3) 

 

2.2.3 Characterization of retrofit actions with respect to performance criteria 

Subsequently, the preventive evaluation of the renovation and energy efficiency actions is performed with 

respect to the performance criteria selected in the first phase. This step requires an applicability and 

feasibility study that is conducted specifically for each subsystem. In fact, each of these may exhibit unique 

technical, architectural, and structural characteristics, and customized retrofit options must be individually 

investigated. The considered retrofit measures may be either structural or equipment changes. We remark 

that operational changes (e.g., set-point optimization, etc.) are hereby not taken into account because they are 

beyond the scope of the paper. The outcome of the evaluation of renovation and energy efficiency actions is 

the actual list of possible actions that may be implemented in the given urban area lighting system. Each 

determined action is successively characterized from three perspectives: its application potential (i.e., the 

estimation of a metric related to the action implementation), unitary cost (since the cost of each action is here 

simply modeled in accordance with a linear pricing model, as the product between the unitary cost and the 

related implemented action quantity), and retrofit payoff parameters (i.e., parameters related to the post-

retrofit value of indicator for each performance criterion). 

In particular, we identify the following two categories of retrofitting actions:  

• Actions at individual lighting unit level – ℋ-type: this set includes all actions that have impact on an 

individual lighting unit and we denote it by ℋ = {1, … , ℎ, … , 𝐻} whose cardinality is 𝐻 = |ℋ|. An 

example of action of this category is the replacement of a lamp (or of a whole luminaire) of a given 

lighting unit. 

For a unitary implementation of the ℎth action of ℋ-type, the post-retrofit value of the performance 

indicator of the 𝑛th lighting unit of 𝜏𝑛 type with respect to the 𝑝th criterion is defined in accordance 

with a linear model as follows: 

𝐼𝑝𝑠𝑛
′  = (1 − 𝛾𝑝𝜏𝑛ℎ)𝑖𝑝𝜏𝑛

− (𝛿𝑝𝜏𝑛ℎ), 

 ∀𝑝 = 1, … , 𝑃, ∀𝑠 = 1, … , 𝑆, ∀𝑛 = 1, … , 𝑁𝑠. 
(4) 

 where 𝛾𝑝𝜏𝑛ℎ and 𝛿𝑝𝜏𝑛ℎ denote the multiplicative and additive unitary payoffs, respectively. Note that, 

throughout this paper, the apex symbol in variable superscript denotes that the indicator value is 

relative to the ex-post status (i.e., after the implementation of the retrofit actions). In case a 

performance indicator has a range whose upper (lower) level stands for poor (excellent) performance, 

we assume that 𝛾𝑝𝑛ℎ and 𝛿𝑝𝑛ℎ are positive (negative) if the ℎth action produces benefit (detriment) on 

the beneficiary lighting unit, respectively. For instance, assume that the 𝑝th criterion indicates the 

energy consumption and the ℎth action consists in replacing the lamp of the 𝑡th type by a new one that 
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fulfills the same requirements about road surface luminance while its consumption is less than 𝛿𝑝𝑡ℎ 

[kWh]. In this case, 𝛿𝑝𝑡ℎ and 𝛾𝑝𝑡ℎ = 0 define the retrofit payoff parameters that characterize the ℎth 

action applied to the 𝑛th beneficiary lighting unit (i.e., 𝐼𝑝𝑠𝑛
′ = 𝑖𝑝𝑡 −  𝛿𝑝𝑡ℎ). 

The application potential of the ℎth action of ℋ-type related to the 𝑛th lighting unit in the 𝑠th subsystem 

is denoted 𝑈𝑠𝑛ℎ. The unitary cost for implementing the ℎth action of ℋ-type related to the 𝑛th lighting 

unit of 𝜏𝑛 type is denoted by 𝑏𝜏𝑛ℎ.  

• Actions at subsystem level - 𝒦-type: this set includes actions that have impact on a whole subsystem 

and is denoted by 𝒦 = {1, … , 𝑘, … , 𝐾} whose cardinality is 𝐾 = |𝒦|. An example of action of this 

type is the installation of a remote control station for dimming all the lighting units in a given 

subsystem.  

For a unitary implementation of the 𝑘th action of 𝒦-type, the post-retrofit value of the performance 

indicator of the 𝑠th subsystem with respect to the 𝑝th criterion is defined in accordance with a linear 

model as follows: 

𝐼𝑝𝑠
′  = (1 − 𝛼𝑝𝑠𝑘)𝐼𝑝𝑠 − (𝛽𝑝𝑠𝑘), ∀𝑝 = 1, … , 𝑃, ∀𝑠 = 1, … , 𝑆. (5) 

where 𝛼𝑝𝑠𝑘  and 𝛽𝑝𝑠𝑘  denote the multiplicative and additive unitary payoffs, respectively. In case a 

performance indicator has a range whose upper (lower) level stands for poor (excellent) performance, 

we assume that 𝛼𝑝𝑠𝑘 and 𝛽𝑝𝑠𝑘 are positive (negative) if the 𝑘th action produce benefit (detriment) on 

the beneficiary subsystem. For instance, assume that the 𝑝th criterion indicates the uplight luminous 

flux and the 𝑘th action consists in installing a dimming device that reduces the power level by 15%. In 

this case, 𝛼𝑝𝑠𝑘=0.15 and 𝛽𝑝𝑠𝑘 = 0 define the retrofit payoff parameters that characterize the 𝑘th action 

applied to the 𝑠th beneficiary subsystem (i.e., 𝐼𝑝𝑠
′ = 0.85𝐼𝑝𝑠). 

The application potential of the 𝑘 th action of 𝒦-type in the 𝑠 th subsystem is denoted by 𝑉𝑠𝑘 . The 

unitary cost for implementing the 𝑘th action of 𝒦-type is denoted as 𝑐𝑘.  

 

2.3 The Decision making phase 

The second phase of the decision process consists in the actual decision making and is a responsibility of the 

decision maker, i.e., the public administration planner or street lighting manager. This phase comprises two 

subsequent steps. The first one consists in the definition of the Multi-Objective Optimization (MOO) 

problem. The solution of such a problem provides a set of Pareto-optimal strategies, also called non-

dominated solutions, constituting the so-called Pareto frontier [36]. In order to choose the best alternative 

among the determined non-dominated solutions, different approaches may be followed. Traditional methods 

base the choice on experts’ intuition or preference. Alternatively, a second step optimization procedure is 

applied, based on the use of one the well-known Multi-Attribute Decision Making (MADM) procedures that 

provide a ranking of the obtained retrofit strategies (see for instance [37]).  
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2.3.1 The Multi-Objective Optimization model 

A MOO problem is defined in order to determine the Pareto frontier, i.e., the set of all the possible optimal 

retrofit strategies. The decision model relies on several decision variables representing the choices on actions. 

For this purpose, the following types of decision variables are considered.  

• Decision variables that reflect the choices regarding the retrofit actions of ℋ-type. Let 𝑢𝑠𝑛ℎ  be a 

variable representing the quantity of the ℎth action to be applied to the 𝑛 th lighting unit in the 𝑠 th 

subsystem. This is a non-negative integer variable that is upper bounded by the related application 

potential 𝑈𝑠𝑛ℎ as follows: 

𝑢𝑠𝑛ℎ ∈ {ℕ}, 0 ≤ 𝑢𝑠𝑛ℎ ≤ 𝑈𝑠𝑛ℎ, ∀𝑠 = 1, … , 𝑆, ∀𝑛 = 1, … , 𝑁𝑠, ∀ℎ = 1, … , 𝐻. (6) 

• Decision variables that reflect the choices regarding the retrofit actions of 𝒦 -type. Let 𝑣𝑠𝑘  be a 

variable representing the quantity of 𝑘th action to be implemented in the 𝑠th subsystem. This is a non-

negative integer variable that is upper bounded by the related application potential 𝑉𝑠𝑘 as follows:    

𝑣𝑠𝑘 ∈ {ℕ}, 0 ≤ 𝑣𝑠𝑘 ≤ 𝑉𝑠𝑘, ∀𝑠 = 1, … , 𝑆, ∀𝑘 = 1, … , 𝐾. (7) 

The application of retrofit actions to the street lighting system impacts both on the indicators related to 

performance criteria in set 𝒫 and on the indicators related to implementation criteria in set 𝒬. We assume 

that all these indicators have a range whose upper level stands for poor performance, while its lower level 

indicates excellent performance. 

Further, while the indicators related to performance criteria in set 𝒫 may be formulated in a similar way as 

functions of decision variables and retrofit action parameters, this is not possible for the indicators related to 

implementation criteria in set 𝒬. These may have a different formulation depending on their meaning, which 

is specified by the DM on a case-by-case basis.  

In the sequel we provide a general model for the estimate of ex-post indicators related to performance 

criteria 𝒫, formulated as a function of decision variables and retrofit action parameters.  

The application of retrofit actions of ℋ -type to the 𝑛 th beneficiary lighting unit of 𝜏𝑛  type in the 𝑠 th 

subsystem provides the 𝑝th criterion index with a decrease equal to the cumulated estimated payoffs, i.e.: 

𝐼𝑝𝑠𝑛
′  ({𝑢𝑠𝑛ℎ}) = (1 − ∑ 𝛾𝑝𝜏𝑛ℎ𝑢𝑠𝑛ℎ

𝐻

ℎ=1

) 𝑖𝑝𝜏𝑛
− (∑ 𝛿𝑝𝜏𝑛ℎ

𝐻

ℎ=1

𝑢𝑠𝑛ℎ), 

∀𝑝 = 1, … , 𝑃, ∀𝑠 = 1, … , 𝑆, ∀𝑛 = 1, … , 𝑁𝑠. 

(8) 

Subsequently, the overlapping application of retrofit actions in 𝒦 to the 𝑠 th subsystem together with the 

application of the retrofit actions of ℋ-type to the 𝑛th beneficiary lighting unit of 𝜏𝑛 type in that subsystem 

provides the 𝑝th criterion index with a decrease equal to the cumulated estimated payoffs, i.e.: 

𝐼𝑝𝑠
′ ({𝑢𝑠𝑛ℎ}, {𝑣𝑠𝑘}) = (1 − ∑ 𝛼𝑝𝑠𝑘𝑣𝑠𝑘

𝐾

𝑘=1

) (∑ 𝐼𝑝𝑠𝑛
′

𝑁𝑠

𝑛=1

) − (∑ 𝛽𝑝𝑠𝑘𝑣𝑠𝑘

𝐾

𝑘=1

), 

∀𝑝 = 1, … , 𝑃, ∀𝑠 = 1, … , 𝑆. 

(9) 

Combining (8) and (9), we obtain the formulation of ex-post indicators related to the 𝑠th subsystem: 
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𝐼𝑝𝑠
′  ({𝑢𝑠𝑛ℎ}, {𝑣𝑠𝑘}) = 

= (1 − ∑ 𝛼𝑝𝑠𝑘𝑣𝑠𝑘

𝐾

𝑘=1

) (∑ (1 − ∑ 𝛾𝑝𝜏𝑛ℎ

𝐻

ℎ=1

𝑢𝑠𝑛ℎ) 𝑖𝑝𝜏𝑛
− (∑ 𝛿𝑝𝜏𝑛ℎ𝑢𝑠𝑛ℎ

𝐻

ℎ=1

)

𝑁𝑠

𝑛=1

) − (∑ 𝛽𝑝𝑠𝑘𝑣𝑠𝑘

𝐾

𝑘=1

), 

∀𝑝 = 1, … , 𝑃, ∀𝑠 = 1, … , 𝑆. 

(10) 

In each subsystem, it is possible to combine choices related to lighting units of the same type into clusters. 

This allows replacing the large set of 𝑁𝑠𝐻 non-negative integer decision variables {𝑢𝑠𝑛ℎ}, one for each 

lighting unit, with a smaller set of 𝑇𝐻 non-negative integer decision variables {𝑤𝑠𝑡ℎ}, one for each cluster 

identified by index 𝑡:: 

𝑤𝑠𝑡ℎ ∈ {ℕ}, 0 ≤ 𝑤𝑠𝑡ℎ ≤ 𝑊𝑠𝑡ℎ, ∀𝑠 = 1, … , 𝑆, ∀𝑗 = 1, … , 𝑇, ∀ℎ = 1, … , 𝐻. (11) 

where 𝑊𝑠𝑡ℎ = ∑ 𝑈𝑠𝑛ℎ
𝑁𝑠
𝑛=1  denotes the application potential of the ℎth action to be applied to the lighting units 

of the 𝑡th type in the 𝑠th subsystem. Decision variable 𝑤𝑠𝑡ℎ represents the quantity of the ℎth action to be 

applied to the overall set of lighting units of the 𝑡th type in the 𝑠th subsystem. From a computational point of 

view, the integer variables 𝑤𝑠𝑡ℎ provide a structure that both reduces the dimensionality of and guides the 

search through the combinatorial lighting unit actions state space. In addition, clustering reduces the number 

of equations and variables since all relations now apply over the smaller number of clusters rather than the 

full set of individual units.  

Clustering by the lighting unit type, the formulation of (10) changes as follows: 

𝐼𝑝𝑠
′  ({𝑤𝑠𝑡ℎ}, {𝑣𝑠𝑘}) = 

= (1 − ∑ 𝛼𝑝𝑠𝑘𝑣𝑠𝑘

𝐾

𝑘=1

) (∑ (1 − ∑ 𝛾𝑝𝑡ℎ

𝐻

ℎ=1

𝑤𝑠𝑡ℎ) 𝑁𝑠𝑡𝑖𝑝𝑡 − (∑ 𝛿𝑝𝑡ℎ𝑤𝑠𝑡ℎ

𝐻

ℎ=1

)

𝑇

𝑡=1

) − (∑ 𝛽𝑝𝑠𝑘𝑣𝑠𝑘

𝐾

𝑘=1

), 

∀𝑝 = 1, … , 𝑃, ∀𝑠 = 1, … , 𝑆. 

(12) 

Finally, the ex-post estimate of the 𝑝th indicators related to the whole street lighting system is given by the 

following formula: 

𝐼𝑝
′ ({𝑤𝑠𝑡ℎ}, {𝑣𝑠𝑘})  = ∑ 𝐼𝑝𝑠

′

𝑆

𝑠=1

({𝑤𝑠𝑡ℎ}, {𝑣𝑠𝑘}), ∀𝑝 = 1, … , 𝑃. (13) 

Regarding the indicators related to implementation criteria in set 𝒬, as previously discussed, we do not 

provide any specific formulation for them, but we denote the indicator related to the 𝑞th implementation 

criterion as a generic function of the decision variables {𝑤𝑠𝑛ℎ} and {𝑣𝑠𝑘} characterizing the retrofit plan, 

namely 𝐽𝑞
′ ({𝑤𝑠𝑛ℎ}, {𝑣𝑠𝑘}). 

The main constraint in the choice of the decision variables is the financial resources limitation. Hence, 

calling 𝐸 the overall budget allocated to the retrofit actions plan of the whole street lighting system, the 

following inequality must be verified: 

∑ (∑ ∑ 𝑏𝑡ℎ 𝑤𝑠𝑡ℎ

𝐻

ℎ=1

𝑇

𝑡=1

+ ∑ 𝑐𝑘  𝑣𝑠𝑘

𝐾

𝑘=1

) 

𝑆

𝑠=1

≤  𝐸. (14) 
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Finally, the MOO problem is defined as the problem of determining the 𝑆(𝑇𝐻 + 𝐾) decision variables 

{𝑤𝑠𝑡ℎ}  and {𝑣𝑠𝑘}  that minimize the indicators related to the 𝑃 + 𝑄  criteria not exceeding the limited 

resource: 

min
{𝑤𝑠𝑡ℎ},{𝑣𝑠𝑘}

(𝐼1
′({𝑤𝑠𝑡ℎ}, {𝑣𝑠𝑘}), … , 𝐼𝑃

′ ({𝑤𝑠𝑡ℎ}, {𝑣𝑠𝑘}), 𝐽1
′ ({𝑤𝑠𝑡ℎ}, {𝑣𝑠𝑘}), … , 𝐽𝑄

′ ({𝑤𝑠𝑡ℎ}, {𝑣𝑠𝑘})) 

               s.t. (7)-(11)-(14) 

(15) 

The decision problem (15) is a multi-objective combinatorial optimization problem. It is generally a non-

linear integer MOO problem since at least the products of two variables such as 𝑤𝑠𝑡ℎ𝑣𝑠𝑘 in the objective 

functions 𝐼𝑝
′   (∀𝑝 = 1, … , 𝑃) are present due to (12). Hence, depending on the actual formulation of indices 

𝐽𝑞
′  (∀𝑞 = 1, … , 𝑄), problem (15) could fall within a well-defined class of non-linear problems. For instance, 

if 𝐽𝑞
′  (∀𝑞 = 1, … , 𝑄) are linear functions, (15) would reduce to be a bilinear MOO problem. Finally, we 

remark that the overall problem in (15) has generally 𝑃 + 𝑄 objective functions, a number of 𝑆(𝐾 + 𝑇𝐻) 

integer variables, 1 inequality constraint, and 2𝑆(𝐾 + 𝑇𝐻) bounding constraints. Designating 𝑋𝑔
∗ as one of 

the determined Pareto optimal solutions, the Pareto solutions set is denoted as follows: 

 𝛤 = {𝑋𝑔
∗}, ∀𝑔 =  1, … , 𝐺 (16) 

where 𝐺 is the cardinality of the set of Pareto optimal solutions 𝛤. 

 

2.3.2 The Multi-Attribute Optimization  

After the solution of the MOO problem (15), the best retrofit alternative has to be selected among the 

determined Pareto optimal solutions set (16). The choice of the best alternative among the determined 

solutions may be done by different approaches. Among these, methods based on expert knowledge or 

preference are preferred when the dimension of the solutions’ set is small. Contrarily, when the set size is 

very large, a MADM technique is preferred in order to determine a ranking of the obtained retrofit strategies 

[38-41]. MADM is an approach that allows for choosing an option from a set of alternatives, which are 

characterized in terms of their attributes [38], [42]. The DM may express or define a ranking of the attributes 

in terms of importance/weights. MADM aims at obtaining the optimum alternative that has the highest 

degree of satisfaction for all of the relevant attributes [43]. 

In this paper, to solve the MADM problem, one of the most classical MADM methods and widely accepted 

for identifying a solution from a finite large set of alternatives is used, namely the Technique for Order of 

Preference by Similarity to Ideal Solution (TOPSIS). It is based on the assumption that the best alternative is 

the one with the shortest distance from the so-called Ideal Solution (IS) and consequently the farthest 

distance from the so-called Negative Ideal Solution (NIS). 

The TOPSIS method requires in input a 𝐺 × 𝑀 decision matrix 𝐷, where 𝑀 is the number of criteria upon 

which the solution ranking has to be based. Note that the ranking may be performed on the basis of all or part 

of the 𝑃 + 𝑄 indicators considered in the first part of optimization model or by way of different criteria from 

the ones considered to solve the MOO problem. Hence, the generic element 𝑑𝑔𝑚 of the decision matrix 𝐷, 

with 𝑔 =  1, … , 𝐺  and 𝑚 =  1, … , 𝑀 , represents the 𝑚 th indicator value of the 𝑔 th MOO solution 𝑋𝑔
∗  of 
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problem (15). The method also requires some cardinal attribute importance weights of the alternatives with 

respect to the criteria. Thus, a weight 𝜗𝑚, with 𝑚 =  1, … , 𝑀, is associated by the DM to each of the ranking 

criteria in order to model the importance degree of the 𝑚th criterion in the ranking of the different retrofit 

alternatives. The ranking criteria weights are assigned so that the sum of all such weights is unitary. TOPSIS 

consists of the following steps [44]. 

Step 1. Constructing the normalized decision matrix. Determine each element 𝛿𝑔𝑚 of the 𝐺 × 𝑀 normalized 

decision matrix 𝛥 as follows: 

   
𝛿𝑔𝑚 =

𝑑𝑔𝑚

√∑ 𝑑𝑔𝑚
2𝐺

𝑔=1

, ∀𝑔 =  1, … , 𝐺,   ∀𝑚 =  1, … , 𝑀. 
(17) 

Step 2. Constructing the weighted normalized decision matrix. Determine the 𝐺 × 𝑀 weighted normalized 

decision matrix Ω, whose element is computed as follows: 

   𝜔𝑔𝑚 =  𝛿𝑔𝑚𝜗𝑚 , ∀𝑔 =  1, … , 𝐺,   ∀𝑚 =  1, … , 𝑀. (18) 

Step 3. Determining the ideal and negative ideal solutions. Define the ideal solution (IS) as the solution with 

performance indicators given by the row vector 𝛺𝑚𝑎𝑥 = (𝜔𝑚𝑎𝑥,1, … , 𝜔𝑚𝑎𝑥,𝑚, … , 𝜔𝑚𝑎𝑥,𝑀), where  𝜔𝑚𝑎𝑥,𝑚 = 

max(𝜔1𝑚, … , ωgm, … , ω𝐺𝑚) with 𝑚 =  1, … , 𝑀. Moreover, define the NIS as the ideal solution associated to 

performance indicators of the row vector 𝛺𝑚𝑖𝑛 = (𝜔𝑚𝑖𝑛,1, … , 𝜔𝑚𝑖𝑛,𝑚, … , 𝜔𝑚𝑖𝑛,𝑀) , where   𝜔𝑚𝑖𝑛,𝑚  = 

min(𝜔1𝑚, … , ωgm, … , ω𝐺𝑚) with 𝑚 =  1, … , 𝑀. 

Step 4. Calculating the separation distances. Calculate the separation distance 𝜎𝑚𝑎𝑥,𝑔 from the IS of each 

alternative 𝑋𝑔
∗ with 𝑔 =  1, … , 𝐺 as follows: 

 𝜎𝑚𝑎𝑥,𝑔  =  √ ∑ (𝜔𝑔𝑚 − 𝜔𝑚𝑎𝑥,𝑚)
2

𝑀

𝑚=1

, ∀𝑔 =  1, … , 𝐺 (19) 

Moreover, determine the separation distance 𝜎𝑚𝑖𝑛,𝑔  of 𝑋𝑔
∗ with 𝑔 =  1, … , 𝐺 from the NIS as follows: 

 𝜎𝑚𝑖𝑛,𝑔  =  √ ∑ (𝜔𝑔𝑚 − 𝜔𝑚𝑖𝑛,𝑚)
2

𝑀

𝑚=1

, ∀𝑔 =  1, … , 𝐺 (20) 

Step 5. Calculating the relative closeness of alternatives to the ideal solution. Determine the closeness 𝐶𝑙𝑔 to 

the NIS of each alternative 𝑋𝑔
∗ with 𝑔 =  1, … , 𝐺 as follows: 

 𝐶𝑙𝑔  =  
𝜎𝑚𝑖𝑛,𝑔 

𝜎𝑚𝑎𝑥,𝑔 + 𝜎𝑚𝑖𝑛,𝑔 
, ∀𝑔 =  1, … , 𝐺 (21) 

Step 6. Ranking alternatives. The ranked set of alternatives is represented by the ordered set 𝛤 ̃defined as: 

 𝛤 ̃ =  {𝑋𝑗1

∗ , … , 𝑋𝑗𝑔

∗ , … , 𝑋𝑗𝐺

∗  } , (22) 

where all the elements of the set 𝛤 ̃ are arranged according to the decreasing order of the closeness value 𝐶𝑙𝑔 

associated to the 𝑔th solution for 𝑔 =  1, … , 𝐺. Hence, 𝑋𝑗1

∗  is the best retrofit alternative and 𝑋𝑗𝐺

∗   is the worst 

one. 
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Table II Enumeration of lighting units 

Description Parameter Unit Value 

Subsystem 𝑠 - 1 2 3 4 5 6 7 8 9 10 

Number of lighting units – type 𝑡 = 1  𝑁𝑠1 - 0 0 0 0 0 1 5 52 5 27 

Number of lighting units – type 𝑡 = 2 𝑁𝑠2 - 44 33 29 26 30 3 23 54 29 45 

 

Table III Ex-ante values of performance indicators 

Description Parameter Unit Value 

Lighting unit type 𝑡 - 1 2 

Lighting unit performance indicator – criterion 𝑝 = 1 𝑖1𝑡 [kWh/yr] 660 1,100 

Lighting unit performance indicator – criterion 𝑝 = 2 𝑖2𝑡 [lm] 10 10 

Lighting unit performance indicator – criterion 𝑝 = 3 𝑖3𝑡 - 35 40 

 

3. Case study 

In this section, we use a case study from the street lighting system of Bari, the capital city of the Apulia region 

(southern Italy), to test the developed model and to show its applicability using real-world data. Moreover, 

various experiments in different scenarios of analysis are conducted to demonstrate the usefulness and 

flexibility of our proposed approach.  

 

3.1 Setup of experiments 

The proposed decision-making tool is applied to the energy retrofit of the street lighting system of a wide area 

of Bari. Bari is currently engaged in implementing a series of actions targeted at the reduction of CO2 and the 

increase of energy efficiency, characterized by the use of smart city enabling technologies [5]. In this context, 

we describe the application of the proposed optimization model in supporting the city energy manager to solve 

the following decision problem: identifying a set of optimal retrofit actions for improving the street lighting in 

a given urban area (energy retrofitting actions planning) given a pre-defined budget 𝐸 = €100,000.00.  

In the given urban area, the lighting system is composed by 𝑆 = 10 lighting subsystems that make use of 𝑁 =

316 lighting units of 𝑇 = 2 types: Table II enumerates the lighting units for each type in each subsystem. 

 

3.1.1 Decision design 

After a joint analysis and walk-through surveys conducted with street lighting managers and technical experts, 

we identify the following 𝑃 = 3 performance criteria:  

• 𝑝 = 1 - Energy Consumption. This criterion provides a measurement of the annual amount of energy 

required for supplying with energy the whole street lighting system.  

• 𝑝 = 2 - Uplight Luminous Flux – This criterion provides a measurement of the direct sky glow caused 

by the entire street lighting system.  

• 𝑝 = 3 - Color Rendering Index – This criterion provides a measurement of the color rendering of 

electric lights in the entire street lighting system.  

We assume that the set 𝒬  of implementation criteria include only one criterion ( 𝑄 = 1 ) aimed at 

characterizing the optimal allocation of actions on different subsystems. 
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• 𝑞 = 1 - Retrofit Actions Allocation Index - This criterion provides a measurement of the distribution 

degree of actions in subsystems, namely, the number of retrofit actions allocated to a subsystem. In 

cases of urban infrastructure refurbishment, the distribution of actions is usually concentrated in few 

subsystems, either for esthetic reasons (e.g., avoiding to have simultaneously new and old lighting 

units in the same road) or operational reasons (e.g., spread interventions would complicate the action 

plan, by increasing time and costs in the implementation phase and reducing the service level to road 

users) [45]. 

Hence, an on-site audit activity follows. Each of the lighting subsystems undergoes a diagnosis phase in 

order to assess the specific characteristics of interest. Having assessed the performance indicators of each 

type of lighting units (i.e., 𝑖𝑝𝑡,  ∀t = 1, … , T), the diagnosis phase ends the assessment of the ex-ante status 

of the entire street lighting system through the application of (2) and (3). Table III reports the outcomes of 

the diagnosis phase conducted for each subsystem and each lighting unit type (i.e., the ex-ante values of 

performance indicators). 

Subsequently, the evaluation of renovation and energy efficiency measures is performed. We identify three 

retrofitting actions, which we successively characterize as regards application potential, cost and payoffs. 

The first one has an impact on an individual lighting unit (i.e., it is of ℋ-type) and the other two actions have 

an impact on the whole subsystem (i.e., they are of 𝒦-type). 

• ℎ = 1 - Replacement of luminaires - We assume that the luminaire of each 𝑡th type lighting unit may 

be replaced by a new one that fulfills the same requirements of the old one about road surface 

luminance while being more efficient (i.e., reducing the energy consumption), more environmentally 

respectful (i.e., limiting the luminous flux above the horizon), and more comfortable (i.e., accurately 

reproducing colors). The decision variables that reflect the choices regarding this retrofit action are 

non-negative integer variables denoted as {𝑤𝑠𝑡1}: 

𝑤𝑠𝑡1 ∈ {ℕ}, 0 ≤ 𝑤𝑠𝑡1 ≤ 𝑁𝑠𝑡, ∀𝑠 = 1, … , 𝑆, ∀𝑗 = 1, … , 𝑇. (23) 

The application potential 𝑊𝑠𝑡1 for luminaire replacement action simply coincides with the number of 

lighting units of 𝑡th type in the 𝑠th subsystem (i.e., 𝑊𝑠𝑡1 = 𝑁𝑠𝑡). The unitary cost of replacement of 𝑡th 

type lighting unit is indicated as 𝑏𝑡1  [€/pc]. Let 𝛿1𝑡1 , 𝛿2𝑡1  and 𝛿3𝑡1  be the reduction of energy 

consumption [kWh/yr], the reduction of uplight luminous flux [lm] and the improvement of the color 

index of the replacing lamp, respectively; we assume that there are no multiplicative payoffs for this 

action (𝛾𝑝𝑡1 = 0, ∀𝑝 = 1, … , 𝑃, ∀𝑡 = 1, … , 𝑇). 

• 𝑘 = 1  - Installation of energy harvesting modules - We assume that each lighting unit may be 

equipped with a system by which energy is derived from external natural sources, captured, stored and 

used at a convenient time. For instance, solar-powered lighting may be obtained by installing a solar 

panel or photovoltaic cell that collects the sun energy during the day, stores it in a rechargeable gel 

cell battery, and energizes the lamp during the night using the stored energy in the rechargeable 

battery [33]. Depending both on the renewable source production volume and on the battery storage 

capacity, the energy harvesting module reduces the energy demand from the grid distribution. The 
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decision variables that reflect the choices regarding this retrofit action are non-negative integer 

variables denoted as {𝑣𝑠1}.  

𝑣𝑠1 ∈ {ℕ}, 0 ≤ 𝑣𝑠1 ≤ 𝑁𝑠, ∀𝑠 = 1, … , 𝑆. (24) 

Hence, the application potential 𝑉𝑠1  of installing energy harvesting modules in the 𝑠 th subsystem 

coincides with the number of lighting units in the 𝑠th subsystem (i.e., 𝑉𝑠1 = 𝑁𝑠). The unitary cost of an 

energy harvesting modules is indicated as 𝑐1  [€/pc]. Let 𝛽1𝑠1  be the estimated annual amount of 

energy provided by the single energy harvesting module [kWh/yr] and let 𝛽2𝑠1 =  𝛽3𝑠1 = 0 be the 

reduction of uplight luminous flux [lm] and the improvement of the color index; we assume that there 

are no multiplicative payoffs for this action (𝛼𝑝𝑠1 = 0, ∀𝑝 = 1, … , 𝑃). 

• 𝑘 = 2 - Installation of dimming devices - We assume that all the lamps already deployed or to be 

installed in each lighting subsystem are dimmable and thus the related control station of may be 

equipped with a dimming device to reduce the luminous output of the lamp to more suitable levels 

when traffic flows are low or at off peak times. Note that lamps equipped with such a dimming device 

can be turned up to full power when needed. Based on an evaluation of vehicular traffic flow 

conditions in the street segments pertaining to each lighting subsystem, light dimming levels are 

determined for the different time slots in the operating periods. The decision variables that reflect the 

choices regarding this retrofit action are binary variables denoted as {𝑣𝑠2}.  

𝑣𝑠1 ∈ {ℕ}, 0 ≤ 𝑣𝑠1 ≤ 𝑉𝑠2, ∀𝑠 = 1, … , 𝑆. (25) 

The application potential 𝑉𝑠2 is unitary (i.e., 𝑉𝑠2 = 1). The cost of the installation of a dimming device 

is 𝑐2 [€/pc]. The application of this action produces a multiplicative payoff only on the performance 

indicators related to the energy consumption and light pollution (𝛼1𝑠2 = 𝛼2𝑠2  is the relative total 

annual energy saving factor of the 𝑠th subsystem equipped with a dimming device with respect to the 

original deployment; 𝛼3𝑠2 = 0); we assume that there are no additive payoffs for this action (𝛽𝑝𝑠2 =

0, ∀𝑝 = 1, … , 𝑃). 

Tables IV to VI report the payoffs and costs referred to the three considered retrofitting actions. 

 

Table IV Payoffs and costs for action ℎ = 1 at individual lighting unit level 

Description Parameter Unit Value 

Lighting unit type 𝑡 - 1 2 

Additive payoff – criterion 𝑝 = 1 𝛿1𝑡1,  [kWh/yr] 260 380 

Additive payoff – criterion 𝑝 = 2 𝛿2𝑡1,  [lm] 5 5 

Additive payoff – criterion 𝑝 = 3 𝛿3𝑡1,  - -25 -20 

Multiplicative payoff – for criterion 𝑝 = 1,2,3 𝛾𝑝𝑡1 - 0 

Unitary cost  𝑏𝑡1 [€/pc] 1,300.00 1,500.00 

 

Table V Payoffs and costs for action 𝑘 = 1 at subsystem level 

Description Parameter Unit Value 

Additive payoff – criterion 𝑝 = 1, for each subsystem 𝑠 = 1, … ,10 𝛼1𝑠1 [kWh/yr] 240 

Additive payoff – criterion 𝑝 = 2, for each subsystem 𝑠 = 1, … ,10 𝛼2𝑠1 [lm] 0 

Additive payoff – criterion 𝑝 = 3, for each subsystem 𝑠 = 1, … ,10 𝛼3𝑠1 - 0 

Multiplicative payoff – for criterion 𝑝 = 1,2,3, for each subsystem 𝑠 = 1, … ,10 𝛽𝑝𝑠1 - 0 

Unitary cost  𝑐1 [€/pc] 500.00 
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Table VI Payoffs and costs for action 𝑘 = 2 at subsystem level 

Description Parameter Unit Value 

Subsystem 𝑠 - 1 2 3 4 5 6 7 8 9 10 

Multiplicative payoff – criterion 𝑝 = 1 𝛼1𝑠2 - 0.25 0.25 0.25 0.25 0.25 0.2 0.2 0.2 0.2 0.2 

Multiplicative payoff – criterion 𝑝 = 2 𝛼2𝑠2 - 0.25 0.25 0.25 0.25 0.25 0.2 0.2 0.2 0.2 0.2 

Multiplicative payoff – criterion 𝑝 = 3 𝛼3𝑠2 - 0 

Additive payoff – for criterion 𝑝 = 1,2,3 𝛽𝑝𝑠2 [kWh/yr] 0 

Unitary cost  𝑐2 [€/pc] 800.00 

 

From (12) and (13) we get the formulation of ex-post value of indicators related to the previously defined 

performance criteria 𝑝 = 1,2,3, noting that 𝐼1
′  and 𝐼2

′  must be minimized and 𝐼3
′  must be maximized: 

𝐼1
′  ({𝑤𝑠𝑡1}, {𝑣𝑠1}, {𝑣𝑠2}) = ∑(1 − 𝛼1𝑠2𝑣𝑠2) (∑ 𝑁𝑠𝑡𝑖1𝑡 − 𝛿1𝑡1𝑤𝑠𝑡1

𝑇

𝑡=1

) − 𝛽1𝑠1𝑣𝑠1

𝑆

𝑠=1

 

𝐼2
′  ({𝑤𝑠𝑡1}, {𝑣𝑠1}, {𝑣𝑠2}) = ∑(1 − 𝛼2𝑠2𝑣𝑠2) (∑ 𝑁𝑠𝑡𝑖2𝑡 − 𝛿2𝑡1𝑤𝑠𝑡1

𝑇

𝑡=1

)

𝑆

𝑠=1

 

𝐼3
′  ({𝑤𝑠𝑡1}, {𝑣𝑠1}, {𝑣𝑠2}) = ∑ ∑ 𝑁𝑠𝑡𝑖3𝑡 − 𝛿3𝑡1𝑤𝑠𝑡1

𝑇

𝑡=1

𝑆

𝑠=1

 

(26) 

Finally, the indicator related to the previously defined implementation criterion 𝑞 = 1, i.e., the Retrofit 

Actions Allocation Index, is defined as the variance between the level of intervention on subsystems and a 

constant target level of intervention. The level of intervention on subsystems is defined as the ratio of the 

number of actual planned actions and the number actions that can be potentially implemented, weighted by 

the actions costs. For the sake of simplicity, the level of intervention on subsystems that we assume is a 

constant target level refers to the case when no actions are planned on all subsystems (i.e., non-intervention). 

This indicator must be maximized in order to concentrate the distribution of actions in few subsystems.  

The formulation is the following: 

𝐽1
′ ({𝑤𝑠𝑡1}, {𝑣𝑠1}, {𝑣𝑠2}) =

1

𝑆
∑ (

∑ (𝑤𝑠𝑡1𝑏𝑡1)𝑇
𝑡=1 + 𝑣𝑠1𝑐1 + 𝑣𝑠2𝑐2

∑ (𝑊𝑠𝑡1𝑏𝑡1)𝑇
𝑡=1 + 𝑉𝑠1𝑐1 + 𝑉𝑠1𝑐2

− 0)

2𝑆

𝑠=1

 . (27) 

 

3.1.2 Decision making  

Having defined the performance and implementation indicators in (26) and in (27), respectively, the MOO 

problem may be defined as follows: 

 

min
{𝑤𝑠𝑡1},{𝑣𝑠𝑘}

( 𝐼1
′  ({𝑤𝑠𝑡1}, {𝑣𝑠1}, {𝑣𝑠2}), 𝐼2

′  ({𝑤𝑠𝑡1}, {𝑣𝑠1}, {𝑣𝑠2}), 

−𝐼3
′  ({𝑤𝑠𝑡1}, {𝑣𝑠1}, {𝑣𝑠2}), −𝐽1

′ ({𝑤𝑠𝑡1}, {𝑣𝑠1}, {𝑣𝑠2}) ) 

s.t. (23), (24), (25), and 

(28) 

∑ (∑ 𝑏𝑡1 𝑤𝑠𝑡1

𝑇

𝑡=1

+ 𝑐1 𝑣𝑠1 + 𝑐2 𝑣𝑠2) 

𝑆

𝑠=1

≤  𝐸. 
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We note that 𝐽1
′  is a quadratic function, 𝐼3

′  is a linear function, and 𝐼1
′  and 𝐼2

′  are bilinear functions. 

Consequently, (28) is a quadratic integer MOO problem [46]. Note that, in accordance with the scenario 

previously described in the section, the MOO problem presents 4 objective functions, 30 integer variables 

and 10 binary variables, 60 bounding constraints and 1 inequality constraint.  

The Pareto optimal solutions obtained solving (28) may be subsequently ranked. To show the flexibility of 

the proposed technique, we consider two alternative rankings, with the DM using two different sets of 

ranking criteria according to the following cases: 

• case A: the ranking is based on 𝑀 = 4 criteria that are exactly coincident with the criteria adopted in 

the multi-objective optimization, i.e. 1) energy consumption (𝐼1
′), 2) uplight luminous flux (𝐼2

′ ), 3) 

color rendering index (𝐼3
′ ), and 4) allocation index of retrofit actions (𝐽1

′). 

• case B: the ranking is based on 𝑀 = 3 criteria that ignore the implementation criterion (𝐽1
′) and include 

only the performance criteria (𝐼1
′ , 𝐼2

′ , and 𝐼3
′ ). 

In both cases, the DM assigns the same importance to the ranking criteria, i.e., values of weights assigned to 

the ranking criteria are equal to 𝜗1 = 𝜗2 = 𝜗3 = 𝜗4 = 1/4 for case (a) and 𝜗1 = 𝜗2 = 𝜗3 = 1/3 for case 

(b). 

 

3.2 Solution approach and model implementation 

The proposed decision-making tool is implemented in the MATLAB environment making use of a graphical 

user interface (GUI) to allow the interaction of the DM. The GUI asks DM to fill in the decision design 

parameters (e.g., total budget, decision criteria, number of retrofit actions, costs, payoffs, application 

potentials, etc.) as well as to define the set of ranking criteria and their associated importance. Hence, the 

ranking and optimization results of the proposed decision-making tool are displayed in the GUI and stored in 

a spreadsheet file. Finally, the GUI enables the run of the core part of decision-making tool, consisting in 

two sequentially-called algorithms –both of them implemented in the MATLAB environment- for computing 

the Pareto optimal solutions of (28) and determining the ranking results (22). 

As for the ranking of the Pareto optimal solutions, the MATLAB implementation straightforwardly follows 

the TOPSIS steps described in subsection 2.3.2.  As for the MOO problem (28), we describe the resolution 

approach in the sequel. In fact, since (28) is a multi-objective integer quadratic knapsack optimization, it 

may be solved by means of several techniques [47]. Classical solution approaches to multi-objective 

optimization problems such as (28) can be characterized by high time complexity when they are used for 

finding multiple solutions, since they have to be applied many times to determine the Pareto frontier. Since 

our problem is to be solved off-line, the time complexity and computing efficiency are not real issues in this 

kind of evaluation. Hence, we use a classical approach. In particular, we choose a simple augmented 휀-

constraint (SAUGMECON) method [48], a variant of the well-known ε-constraint method that can be 

properly used to produce the complete Pareto set of multi-objective integer programing problems. With the 

SAUGMECON method, all the nondominated solutions can be efficiently found. Differently from traditional 

휀 -constraint method, no weakly Pareto optimal solutions are generated. Furthermore, thanks to several 
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innovative acceleration mechanisms, the SAUGMECON speeds up the whole process by avoiding redundant 

iterations [48]. The MOO problem is thus implemented in the MATLAB environment with the Optimization 

Toolbox and using the SCIP (Solving Constraint Integer Programs) solver [49], supplied with the OPTI 

Toolbox [50].  

 

3.3 Numerical analysis and discussion 

As a first outcome, Table VII reports the utopia points related to the MOO problem (28). These values - 

obtained optimizing single objectives individually and independently from the others - concisely demonstrate 

the competitiveness of the decision criteria and the effectiveness of the proposed approach in providing the 

decision maker with a set of alternative solutions that present an optimal trade-off between the various 

competing criteria. 

In the considered case study, the Pareto frontier contains more than 1,000 optimal solutions. For the sake of 

brevity, we report the results about the objective functions of the top ten ranked solutions. In particular, for 

the top ten ranked solutions, Figs. 3a and 3b illustrate the indicators improvement (measured in terms of 

absolute difference between ex-ante and ex-post indicators value) normalized with respect to utopia points in 

case A and B, respectively. It is apparent that a higher improvement of a criterion typically corresponds to a 

lower improvement achieved by the other ones. Comparing action plans in Figs. 3a and 3b, we highlight that 

the Retrofit Actions Allocation Index is clearly higher in case A (where the retrofit actions distribution 

criteria is taken into account) than in case B (where this criteria is neglected). Consequently, this implies that 

the optimal solutions are composed by actions whose distribution is concentrated in fewer subsystems in 

case A than in case B. To show this, in Figs. 4a and 4b we illustrate in detail the allocation of the planned 

retrofit actions (as a ratio between the number of planned actions and the number of actions that can be 

potentially implemented, for all the four retrofitting action types) on the subsystems in the top three ranked 

solutions, in case A and B, respectively. Moreover, from Figs. 4a and 4b we note that both in cases A and B 

the most frequent optimal action plan concerns the dimming installation, approximately for all the 

subsystems, while the luminaries replacement and the energy harvesting module installation are applied in 

fewer subsystems. Furthermore, in no action plan of case B any subsystem is completely refurbished; on the 

contrary, in all the shown solutions of case A a couple of subsystems are about totally retrofitted. This 

evident remark is present also in the subsequently ranked solutions but these further results are omitted for 

the sake of brevity. 

 

Table VII Utopia points 

  Ex-post lighting system 

energy consumption 

Ex-post Lighting system 
uplight luminous flux 

Ex-post Lighting system 
color rendering index 

Retrofit actions allocation 

index 

  [kWh/year] [lm] [-] [-] 

T
y

p
es

 o
f 

so
lu

ti
o
n

 min 𝐼1
′  𝐼1

′∗=193,330 2,447 12,190 0.0358 

min 𝐼2
′  222,930 𝐼2

′∗=2,167 13,940 0.0628 

max 𝐼3
′  288,240 2,780 𝐼3

′∗=14,090 0.0510 

max 𝐽1
′  277,440 2,874 13,260 𝐽1

′∗=0.2677 
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As a side finding about the overall two-step decision making tool, we observe that in all presented 

simulations the total run time to determine the Pareto optimal solutions set and rank them is around 1 hour, 

on a PC equipped with a 2.4 GHz Intel Core 2 Duo CPU and 4 GB RAM. 

Finally, we wish to highlight that the proposed tool is effective in concurrently obtaining the optimization of 

the defined criteria and the optimal allocation of resources among the street lighting subsystems. To 

demonstrate this, a further analysis of the case study is conducted. As a reference scenario, a simplistic 

strategy for determining actions plan is considered:  

• case C: sorting the subsystems on the basis of the number of actions that can be potentially 

implemented from the smallest to the largest one, planning from the highest to the lowest cost 

actions in the smallest subsystem and going to the subsequent larger ones until all actions are 

covered by the budget. 

Table VIII reports the values of indicators under this simplistic strategy (third column) and the best ranked 

solution obtained in case A and B (first and second column, respectively). 

As expected, since the simplistic strategy basically aims at completely retrofitting the smallest subsystems, in 

case C the Retrofit Actions Allocation Index reaches a high value (tending towards the utopia point). At the 

same time, the results’ comparison demonstrates that the indicators related to the performance criteria in case 

A and B are better than those achieved by the simplistic strategy. Obviously, a similar study may be 

conducted for any other a-priori retrofit action planning among the subsystems and for any other choice of 

the criteria and actions. 

 

 

 
Figure 3 – Top ten ranked Pareto optimal solutions - Indicators value improvement normalized with respect to utopia points: a) 
TOPSIS based on both performance and implementation criteria (case A);  b) TOPSIS based only on performance criteria (case B). 
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Figure 4 - Top three ranked Pareto optimal solutions - Distribution of planned retrofit actions among subsystems: a) TOPSIS based on 
both performance and implementation criteria (case A);  b) TOPSIS based only on performance criteria (case B). 

 

Table VIII Ex-post values of performance indicators in case A, B, and C 

Description Parameter Unit 
Value 

Case A  Case B Case C 

Ex-post Lighting system energy consumption  𝐼1
′  [kWh/yr] 217,682 223,002 270,435 

Ex-post Lighting system uplight luminous flux 𝐼2
′  [lm] 2,223 2,168 2,868 

Ex-post Lighting system color rendering index 𝐼3
′  - 13,490 13,965 13,120 

Retrofit actions allocation index 𝐽1
′  - 0.2176 0.0629 0,2636 
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4. Conclusions 

This paper develops a multi-criteria decision making tool supporting the public decision maker in optimally 

selecting a set of retrofit interventions to be taken in an integrated way on an existing street lighting system 

of a wide urban area in order to reduce energy consumption, maintain the required comfort and quality of life, 

protect the environment, and simultaneously optimize the distribution of actions in subsystems, while 

ensuring an efficient use of public funds. 

The contribution of the research is twofold. From a theoretical point of view, it contributes to the literature 

on energy-efficient street lighting management, which lacks multi-objective studies for identifying the 

optimal retrofit strategy comprising a mix of interventions on existing street lighting systems. In this sense, 

the model, defining and solving a multi-criteria optimization problem, may be applied to different street 

lighting contexts, namely to contexts characterized by diverse objectives, constraints, and performance as 

well as implementation criteria. It is able to easily include new and competing objectives, which can descend 

from new strategies formulated by the energy managers. From a practical point of view, the tool, addressing 

a multi-criteria optimization problem, provides the decision maker with an effective tool for screening 

optimal solutions. 

The main limitation of the presented approach is related to the assessment of the impact of each action on the 

selected criteria, whose outcome may be not deterministic as we assume in this paper. In order to overcome 

this limitation, future research will be devoted to modeling uncertainties that affect the estimation of 

optimization model parameters.  
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