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Remote Neuro-Cognitive Impairment Sensing Based
on P300 Spatio-Temporal Monitoring

Daniela De Venuto, Valerio Francesco Annese and Giovanni Mezzina

Abstract—A novel mobile healthcare solution for remotely
monitoring neuro-cognitive efficiency is here presented. The
method is based on the spatio-temporal characterization of a
specific event-related potential, called P300, induced in our brain
by a target stimulus. P300 analysis is used as a biomarker: the
amplitude and latency of the signal are quality indexes of the
brain activity. Up to now, the P300 characterization has been
performed in hospital through EEG analysis and it has not been
experimented an algorithm that can work remotely and learn
from the subject performance. The proposed m-health service
allows remote EEG monitoring of P300 through a “plug and
play” system based on the video game reaction of the subject
under test. The signal processing is achieved by tuned residue
iteration decomposition (t-RIDE). The methodology has been
tested on the parietal-cortex area (Pz, Fz, and Cz) of 12 sub-
jects involved in three different cognitive tasks with increasing
difficulty. For the set of considered subjects, a P300 deviation
has been detected: the amplitude ranges around 2.8−8 µV and
latency around 300−410 ms. To demonstrate the improvement
achieved by the proposed algorithm respect the state of the art,
a comparison between t-RIDE, RIDE, independent component
analysis (ICA) approaches, and grand average method is here
reported. t-RIDE and ICA analyses report the same results
(0.1% deviation) using the same data set (game with a detection
of 40 targets). Nevertheless, t-RIDE is 1.6 times faster than
ICA since converges in 79 iterations (i.e., t-RIDE: 1.95s against
ICA: 3.1s). Furthermore, t-RIDE reaches 80% of accuracy after
only 13 targets (task time can be reduced to 65s); differently
from ICA, t-RIDE can be performed even on a single channel.
The procedure shows fast diagnosis capability in cognitive deficit,
including mild and heavy cognitive impairment.

Index Terms—Mobile health-care, P300, t-RIDE, EEG, ERP.

I. INTRODUCTION

NEUROLOGICAL disorder is a heavy cause of mortal-
ity. Among the neurological disorders Alzheimer dis-

ease (AD), Parkinson’s disease (PD), Amyotrophic Lateral
Sclerosis (ALS), Epilepsy, Mild Cognitive Impairment (MCI)
and other dementias are estimated to constitute the 11.67%
of total worldwide deaths (in 2005), and projections show an
increment of 0.55% in the next 15 years, despite of drugs
and specialized treatments [1]. Only in the US, 5.4 million
people are affected by AD, with one new case appearing
every 33 seconds [2]. The cost for providing care only
for AD patients in the US was $200 billion in the 2012
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and it is projected to grow to $1.1 trillion per year
by 2050 [2].
Nowadays, the P300 analysis, which is a particular Event-

Related brain Potentials (ERPs), is a widely used diagnos-
tic tool for diagnosing and monitoring neuro-degenerative
pathologies. It has been demonstrated that P300 latency and
amplitude reflect the degree of cognitive decline [3]. The main
problems related to the methods currently in use are: i) they
are performed only in specialized centers scattered only in
large urban centers; ii) the protocol to derive the P300 is time
consuming (> 10 min) and when performed by electroen-
cephalography (EEG) it requires the processing of at least 16
EEG channels (although recently some studies using 8 elec-
trodes have been proposed [4], [5]). ERPs are usually analyzed
using EEG and functional near-infrared spectroscopy (fNIRS)
which are the leading non-invasive neuro-imaging solutions in
terms of cost and portability [6]. While EEG offers a temporal
resolution of about 0.05s and spatial resolution of ∼10 mm,
fNIRS provides worst temporal resolution (∼1s) but higher
spatial resolution (∼5mm) [7]. Many solutions have been
already proposed in literature [8] for a correct and fast P300
extraction and detection starting from EEG raw data, in partic-
ular in Brain Computer Interface (BCI) applications [9]–[12].
Remarkable solutions involve the use of fNIRS for drowsiness
detection while driving [6], EEG-based BCI experiment using
Bayesian Spatio-Spectral Filter Optimization (BSSFO) [14].
Hybrid systems combining EEG and fNIRS have also been
implemented to control a four directions mechanical arm
in BCI applications [7]. However, since all these methods
[6]–[13] are based on machine learning algorithms and on
classification, they are not suitable as a diagnostic tool since
their aim is only the detection of the P300 pattern but they are
not oriented to P300 characterization in terms of amplitude,
latency and brain area involved. For this reason, the most
commonly used approach to measure and characterize the
P300 in clinical environment are the Independent Component
Analysis (ICA) [15], the Principal Component Analysis (PCA)
[16] and the ‘grand average’. Nevertheless, these approaches
start their computations from some “a priori” assumptions
that very often are not at all verified and valid for the P300.
The application of mobile technologies for these analysis
opens very interesting scenarios for new kind of approaches
and investigations. The constant advances in personal elec-
tronic devices (PDAs) in terms of computational resources,
mobile communication (3G, 4G, etc.) and cloud computing,
together with the new wearable solutions, the fast decrease
of the costs in consumer electronics, offer a number of
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opportunities to create efficient mobile health-care (m-Health)
solutions. M-Health is the new edge on healthcare innova-
tion delivering health-care anytime and anywhere, surpass-
ing geographical, temporal, and even organizational barriers
with low and affordable costs [17]–[19], [21], [22], [29].
All the mentioned solutions can be successfully integrated into
m-health systems favoring elderly care [20].
In this paper we present a novel EEG-based m-Health
solution for neuro-cognitive impairment diagnosis. The tool
is based on P300 spatio-temporal characterization, which is
directly connected to the cognitive capability of the patient.
The characterization is based on a tuned Residue Iteration
DEcomposition (t-RIDE) approach optimized for P300 analy-
sis which allows to extract spatial (topography, source of ERP,
etc.) and temporal (latency, peak, etc.) parameters in order to
detect neuro-cognitive impairment.
The solution represents the first implementation of a com-
plete ‘plug and play’ automatic m-Health service, which
allows remote data analysis. To the best of our knowledge,
no EEG-based m-health system performing the remote cogni-
tive impairment monitoring has been implemented in a single
wearable tool. The main advantages of this m-health solution
are: i) improved diagnosis results since the new algorithm for
P300 characterization allows the tracking of subject clinical
history; ii) the architecture knocks down geographical limits
since the physician has access to data from everywhere and
every time; iii) costs reduction for both the patient and the
government, supporting domestic healthcare; iv) improvement
in the life quality of the patients, which can be tested and
treated at home (beneficial for people affected by PD, AD,
ALS). Summarizing, the novel test procedure takes just few
minutes (i.e.: the response is almost in real time), and the
analysis equipment is non-invasive and just needs few EEG
channels. The paper structure is outlined in the following:
Section II provides basic knowledge on the P300 features
and briefly outlines the state of the art for its automatic
detection; Section III describes the novel m-Health architecture
and details the t-RIDE algorithm. Section IV presents the
experimental results coming from in vivo measurements on
12 subjects (age 26.5±3.5), focusing on both the algorithm
performance and the P300 spatio-temporal characterization.
Section V concludes with final observations.

II. EVOKED RELATED POTENTIALS

A. Evoked Related Potential: The P300

The P300 is a positive deflection in the human brain event-
related potentials (ERPs) evoked when a subject is actively
and cognitively engaged in the discrimination of one target
stimulus by not-target ones (Fig 1) [23], [24]. In literature [24],
‘stimulus’ is a single external event (audio, visual, tactile,
etc.) delivered to the subject under test. The target stimulus is
the event to be recognized among different ones (not-target).
A game/task is an assemble of stimuli (target and not-target
ones). The nature of the external event to the P300 occurrence
is irrelevant (we used visual stimuli), but, in a single task,
the probability of target occurrence has to be lower than the
not-target one. This well-consolidated procedure is generally

Fig. 1. Evidence of P300 experimentally obtained from an healty subject
on PZ.

TABLE I

CLINICAL P300 REFERENCE FOR DIAGNONIS

known as the “oddball” paradigm [23], [24]. The P300 charac-
terization is mainly based on: the latency, the amplitude of the
detected pulse, the location and the source. The P300 latency is
heavily affected by trial-to-trial variability (P300 jitter) within
a given experimental condition and, according to [25], ranges
from 290ms to 447.5ms depending on the cognitive difficulty
of the discrimination. The P300 amplitude is considered as
the peak-to-peak amplitude between the previous deflection
(N200) and the P300 maximum value (see Fig. 1). According
to [25], P300 amplitudes can reach even 37.7µV depending
on the age and on the rarity of the target stimulus. The
intracerebral origin of the P300 wave is not known and its
role in cognition not clearly understood. Generally, the P300
is more clearly detectable in the central parietal cortex [23].
The brain mapping of P300 is computed by a topography.

B. P300 as Biomarker for Cognitve Impairment Diagnosis

P300 latency and amplitude reflect the degree of cogni-
tive decline in dementing illness [3]. A single P300 pulse
is anticipated by further ERPs (i.e. P100, N100, P200 and
N200 – see Fig. 1) which classify the cognitive process. The
P300 characterization as biomarker for cognitive impairment is
based on the simultaneous evaluation of amplitude and latency.
For this aim, the proposed m-Health tool identifies a newfigure
of merit (FoM), defined as:

FoM = Peak–to–Peak(P300–N200)
Latency [µVms ]

(1)

where the relative peak distance between P300 and N200
potentials are considered. According to [26], it is possible
to extract threshold values for amplitude and latency for
26 healthy subjects (aged 64.9 ± 10.9 years), the P300
amplitude is > 5.3µV, the latency < 349ms [26]. From
these clinical values, we estimated that for healthy sub-
ject the FoM is > 0.01 µV/ms. FoM ranging between
0.008µV/ms<FoM<0.01 µV/ms, defines potentially healthy
subjects. Table I reports threshold values according to [26].
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C. Brief Review of the Automatic P300 Detection Methods

Plenty of methods have been presented in literature for
P300 detection in single-trial and averaged-trials environments
[4]–[13], [27], [28]. Nevertheless, the use of conventional
ERP averaging (grand average) is inappropriate since the
intrinsic variability of the ERP leads to distortions of latencies,
reduction in maximum amplitude (peak) and a broadening of
the component.
Woody in [27] suggested a method for single-trial ERPs,
based on an iterative strategy. At first, the latencies are esti-
mated from the cross-correlation between the grand average
(first template) and each trial. Then, all single-trials are aligned
to the estimated latency and averaged again, leading to a
second template. Finally, those steps are re-iterated until the
templates convergence. The main limitation of this approach
is the hypothesis that the ERP is monolithic (only latency
jitter without shape distortion) which is not verified in the
reality. Other latency detection methods (i.e. peak-detection)
face the same problem. Different approaches such as indepen-
dent component analysis (ICA) [15] and principal component
analysis (PCA) [16] need a starting assumptions on the
amplitude and latency value and need to monitor a high
number of EEG electrodes. ICA assumes that there are inde-
pendent sources generating signals, which are projected to the
scalp [15]. Nevertheless, the source of P300 is not known
a priori resulting in the impossibility to apply this method
for this particular ERP. PCA, instead, separates the signal
into orthogonal components but the limitation of this methods
leads into the assumption of amplitude variation within trials
excluding latency jitter [16]. A further class of methods
are based on deconvolution. Those approaches attempt to
separate stimulus-locked and response-locked ERP component
assuming a linear model of ERP interaction. Specifically, the
ERP is de-convoluted into – at least – two ERP components,
one stimulus-locked s(t) and one response-locked r(t). The
main limitation of this model is the undesired amplification
of slow noise components (≈1Hz). Since the ERP alignment
is performed by using the physical response of the subject (go-
tasks) to the target as the time-base, de-convolutive methods
fail to find latency jittered components in tasks with no exter-
nal response (no-go tasks), which is our situation. The method
adopted in this work is a tuned version of the residue iteration
decomposition (RIDE) which is a hybrid approach based on
linear superposition and iterative residual calculation [29]. The
RIDE allows to detect spatio-temporal ERP characteristics
with no limitations in terms of number of electrodes and
number of target stimuli.RIDE considers a linear superpo-
sition model of single-trial ERPs. Except for the noise ε,
the single-trial EEG is decomposed into two components:
stimulus-locked (S) and cognitive-locked (C) components. In
go-task, i.e. task in which the subject is asked to perform
a motor action, a third component response locked (R) has
to be considered (but this is not our case). A single-trial
EEG, including EEG background activity and noise, can be
expressed as:

EEGi (t) = S (t)+ C (t + τi )+ ε(t) (2)

Where τi is the latency of component C in the i-th trial and
is characterized by a distribution ρ(t) assumed to be Gaussian
(but this is not a limitative hypothesis). A conventional average
over N trials would result in:

ERP

= S (t)+
1

N

N

i

C (t+ τi )+
ε(t)
√
N
= S (t)+ C (t+τ ) ρ(τ)dτ

+ ε(t)√
N
= S (t)+ C ∗ ρ +

ε(t)
√
N

(3)

Equation 3 shows that, although noise is reduced, the average
creates a broadening of the C component which is convolved
with its distribution. Neglecting ε, it is possible to consider
the residues in single-trial:

Resi (t) = EEGi − ERP = C (t + τi )− C ∗ ρ (4)

If the residues are aligned to their τi through cross-correlation
jitter-latency estimation and averaged again, the distortion are
reduced and a first estimation of C is computed as:

C1 (t) =< Res >= C (t)− (C ∗ ρ) ∗ ρ (5)

By replacing C1 in (3), it is possible to obtain a first estimation
of S1. The procedure is then iterated using a first ERP
estimation [ERP1 = S1(t)+C1 (t + τ1)] leading at the end
to a more precise S and C estimation. After the n-th iteration,
the components Cn and Sn are given by:

Cn (t) = C − C ∗ ρ0 ∗ ρ1 . . . .. ∗ ρn → C (6)

Sn (t) = S − S ∗ ρ0 ∗ ρ1 . . . .. ∗ ρn → S (7)

After n iterations, Cn and Sn converge to C and S since
the iterative convolution by ρ approaches to zero. Differently
from similar iterative methods (i.e. Takeda et al. [28]), the
RIDE method does not introduce systematic artifacts and its
convergence is fast (≈ 10 iterations). The RIDE algorithm has
been tested for different trends of ρ and it has been verified
to be robust and accurate [29]. Due to RIDE advantages
which comprise low number of target stimuli, no-go task
applicability, few electrodes needed, good accuracy, informa-
tion regarding single-trial, etc., the RIDE method was selected
as core for our diagnostically tool but has been fine tuned for
P300 detection (t-RIDE).

III. SYSTEM ARCHITECTURE

The system is made up by two sides: the patient and
the medical ones, which communicate each other by cloud
technology using TCP/IP connection. Fig. 2 summarizes the
overall architecture. In the implemented solution, the patient
wearing a wireless EEG headset, can perform autonomously
at home three different oddball tasks of increasing cognitive
difficulty on a PC, tablet or smartphone. The tests are com-
pletely driven by the software, which is totally ‘plug and
play’ and no user intervention is needed. The oddball protocol
(described in detail in the next sections) and the t-RIDE
parameters are based on a configuration file (.txt) which is
cloud-shared with the medical center in order to be eventually

Authorized licensed use limited to: Politecnico di Bari. Downloaded on March 10,2021 at 17:42:20 UTC from IEEE Xplore.  Restrictions apply. 



DE VENUTO et al.: REMOTE NEURO-COGNITIVE IMPAIRMENT SENSING BASED ON P300 SPATIO-TEMPORAL MONITORING 8351

Fig. 2. Overall architecture of the m-Health service proposed.

modified by the physician. EEG data are immediately in-loco
processed by t-RIDE and the consequent medical report (in
pdf format) is created and, in real time, cloud-shared with
the physician. The report contains the spatio-temporal P300
characterization. The physician, then, basing on the data and
on the clinical history of the patient (the previous output
files are never deleted) performs a personal diagnosis. In case
of cognitive impairment monitoring, the physician can, for
instance, remotely verify the effectiveness of a drug treat-
ment. In case of periodical analysis for predisposed subject,
the physician can detect the early presence of neuro-
impairment. It should be pointed out that the m-Health system
only performs accurate measurements and data processing but
the final diagnosis is left to the human component of the m-
Health service (medical center, physician, etc.).

A. The Hardware

The patient side equipment is: i) the EEG wireless headset
(sensors and gateway), ii) the PC or tablet, etc. with TCP/IP
connection, iii) the test game (stimuli delivering) defined
with the medical center and iv) a user-friendly software,
which collects data, analyzes (by t-RIDE) and uploads them
on the cloud. The patient side performs data collection and
P300 detection: EEG data collected by the wireless EEG
headset are sent to the gateway (i.e. PC) which delivers
the video game/test and performs EEG processing. Once
processed, the results are uploaded on the cloud and made
available for the medical center. In our experiments, the
EEG headset is a 32-channels wireless recording system
exploiting active electrodes (conditioning integrated circuit are
embedded in the electrode performing amplification, filter-
ing and digitalization). The EEG headset is the g.Nautilus
commercial device by g.Tec. According to the international
10-20 system for the EEG, eight channels are considered
(Fz, Cz, Pz, Oz, P7, P3, P4, P8 – in red in Fig. 3.a)
referenced to AFz (in yellow) while the right ear lobe (A2) is
used as ground (in green). EEG signals are recorded during
the test and are synchronized with the delivered stimuli by
the gateway, which drives the test. The gateway is a PC
with proper wireless communication interfaces for the BLE
link and an efficient wide-area communication interface (i.e.
TCP/IP). We used a PC (Intel i5, RAM 8 GB, 64 bit)
[23], [30], [31]. EEG data collection, the game/stimuli gen-
eration and subsequent data processing are performed by

Fig. 3. a) Channels of interest (in red) according to the international system
10-20. In yellow the nasion reference and in green the ear-lobe ground.
b) Demontrative picture of the EEG wireless headset. c) Time diagram of
task A.

Simulink. Once the P300 processing is completed, output files
are delivered both to the patient (immediate response) and
to the physician, which constitutes the decision-maker and,
by visual inspection, can perform a remote diagnosis basing
on t-RIDE measures. The medical side of the m-health consists
of: i) the personal electronic device (PC, tablet, etc.), ii) the
configuration file for the signal processing to be loaded on
the cloud and iii) the clinical database stores all datasets
describing the medical history of the patient. The physician has
a two possibility of interaction with the system: on one hand,
he can modify the cloud-shared parameter file (.txt) which is
loaded by the gateway before each test and contains directives
both for tasks both for signal processing (i.e. window of
interest, channels, etc.); on the other hand, the physician can
consult the results of the test. The results are the spatial
(topography i.e. brain mapping) and temporal (latency, peak,
etc.) characterization of the occurred P300. Those are cloud-
stored and the physician has always access to clinical records
of the patient in order to evaluate his medical history. In this
way, the evaluation of the evolution of the neuro-cognitive
impairment can be evaluated. Data security will be guaranteed
by proper-compounded authentication systems (i.e. fingerprint
or double password).

B. The Cognitive Tasks (Oddball Test)

The remotely performed cognitive tasks are based on the
oddball paradigm [24] and are delivered by the gateway
through visual stimuli (videogame). The patient performs three
different no-go cognitive tasks (task A, B and C) of increasing
difficulty, where he has to recognize the rare target stimuli
among the not-target ones. Before each task, for a 20s slot no
stimuli are presented in order to allow the run out of the filter
effect.
Task A. On a black screen (15”), a red circle and a green

triangle are repeatedly and randomly flashed. The subject is
asked to count in mind the occurrence of the less frequent
target stimulus, which is the green triangle. The flashing
stimuli are randomly presented with non-uniform probability:
the target stimulus probability is 20%. The inter-stimuli time
is randomized and has a uniform distribution ranging from
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1 to 2 seconds. Each visual stimulus persist on the screen
for 200ms. The subject distance to the screen is approxi-
mately 1.5m.
The time length of task A is 127s (approx. 25 target
stimuli presented). Since task A involves both chromatic and
geometrical mental classification, the P300 is expected to be
more evident. In Fig. 3.c a time-diagram of task A is presented.
Task B. The protocol of task B is the same as task A but the
flashed visual stimuli are different. There is no more chromatic
classification: a red triangle (target stimulus with 20% proba-
bility of occurrence) and a red circle (not-target stimulus) are
randomly delivered to the subject. The cognitive difficulty for
task B is increased since the human brain classification is only
based on the geometrical shape.
Task C. Task C preserve all the configuration of task B but
the classification based on the geometrical shape is made more
difficult by the presence of stimuli with very similar shapes
(not-target: red circle; target: red ellipse).
Task A has been developed according to medical standard
protocols and aims to verify that t-RIDE results match the
literature reference [24], [26]. Task B and C have been
developed to verify and quantify the degradation of P300 [3].

C. The Software: Spatio-Temporal P300 Characterization

The main software driving the m-Health system, managing
data collection, delivering the test, processing the data and
providing the cloud-communication is a Simulink-based appli-
cation.
1) Data Collection: A dedicated Simulink block for data
collection managing the API of the headset has been devel-
oped. Data are sent to the gateway trough Bluetooth low
energy (BLE) protocol. The above mentioned eight EEG
electrodes (Fz, Cz, Pz, Oz, P7, P3, P4, P8) are recorded
at 500Hz, with 24-bit resolution, input range ±187.5mV and
filtered using a bandpass (Butterworth, 8th order 0.5-100Hz)
and a notch (Butterworth, 4th order 48-52Hz) filters. Those
filters are embedded into the signal conditioning circuit of the
EEG electrodes. The recording scheme is monopolar and the
frame length is 8 [23], [30]–[33].
2) Cognitive Test: As soon as the test is lunched (the
software is ‘plug and play’ i.e. the subject just have to wear
the EEG headset, select the task and press ‘play’), after a 20 s
wait time, the visual test/game is delivered on the monitor.
The stimuli are controlled by a numeric signal, which
controls a multiplexer and provides to the video device the
selected image. EEG data and the numeric signal driving the
test/game are stored. At the end of the task, t-RIDE starts
automatically.
3) Signal Processing: The automatic P300 spatio-temporal
characterization is based on a tuned version of the RIDE
approach (t-RIDE) optimized for P300 analysis. The signal
processing, schematically outlined in Fig. 4, is a three stage
approach which involves pre-processing, t-RIDE application
for P300 characterization, output preparation and sending. The
signal processing is performed for each monitored channels
and derivative channels obtained by averaging different elec-
trodes. In the following, a single-channel processing chain is
outlined.

Fig. 4. Schematic flow-chart of the signal processing. The signal processing
is applied to each channel monitored and derived signals.

4) Pre-Processing: The signal collected by the gate-
way is further low-pass filtered (Butterworth, 6th order,
fstop = 15Hz) and aligned to the stimulus signal. This is
a further numeric filter and (different from the previous men-
tioned ones). Subsequently, EEG signal is decomposed into
epochs of 1s: each epoch starts 100ms before the rising edge
of the stimulus (target and not-target) and ends 900ms after
it. Epochs are fitted into a 6th order polynomial curve. The
selected polynomial order is the highest one able to eliminate
of the slow bias drift without modify the ERP patterns. The
resulting curve fitting is subtracted to the EEG signal, which
is then centered (offset cancellation) and normalized. Thus,
the pre-processing is completed and signals are ready to be
processed.
5) t-RIDE: The t-RIDE algorithm is made up by two

phases: i) window optimization and ii) results extraction.
RIDE algorithm is a generic approach for ERP extraction
but it needs to be tuned for P300 calculation. In order to
reduce the computational effort and since it is not known
‘a priori’ the source of P300, at first only one signal derived
from the average of Pz and Cz is considered for the window
optimization. A first default rectangular window is set to
250 ms – 400ms after the target stimulus. The first window siz-
ing can be customized by the physician. A starting estimation
of the latency C is performed using the Woody’s Method and a
first characterization of the P300 is performed [27]. Based on
template matching, the cross-correlation between the template
of P300 and a single trial EEG is performed and residuals are
calculated separating the S and C components. The procedure
is iterated until the latency C in single trials stops changing
monotonically. When the C latency convergence is reached,
the results are stored and the procedure is iterated again
with a different windowed EEG signal. The start of the
window is iteratively 4ms right shifted while the end of the
window performs 8ms right shift. Seven different windows are
considered in order to cover the full time range in which the
P300 can occur [25]: the last computation is performed on
the rectangular window of 278 – 456ms after target stimulus.
At each iteration, the evaluated P300 maximum amplitude
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related to the particular used window is stored. At the end
of the window definition cycle, the window that has led to
the highest P300 peak is considered the optimized window.
After the window optimization phase, the procedure for results
extraction is performed on all the pre-processed channels.
The results extraction phase involves the application of the
RIDE method on the optimized window previously computed.
For each channel, the P300 is totally reconstructed in the
window hooking the S component to rising edge of the target
stimulus, while the C component is appended to S using the
estimated value of its latency.
6) Outcomes: For each channel, information about latency
and peak are presented. The presented approach needs to
estimate the latency of the C component (which coincides with
the P300) for each single-trial so information about latency
and peak variation trial-by-trial can be estimated. A statistical
analysis of the data informs the physician of the medium
latency and peak. The P300 characterizing output files are
automatically stored on the cloud and consists of:
i) Diagrams showing the time-domain waveforms of target
stimuli compared to no-target for each channel and task;
ii) Maps showing information on the P300 generation and
propagation for each task (topography);
iii) An automatically generated table that expresses
presence/absence of P300, peak values and latency values for
each channel and task.
The software contextually presents the same data in loco to
the care-givers and to the patient, but does not express any
formal diagnosis, which will be performed by the specialized
physician.

IV. RESULTS

The dataset is based on recordings for ethical reason, on
12 healthy subjects (aged between 23 and 30) acquired with
a wireless equipment and supported by highly specialized
medical staff. The group was selected in consideration of
a certain degree of homogeneity in terms of age and level
of education. Recordings were performed in a controlled
environment. Subject were asked to perform task A, B and C
minimizing eye movements, blinking, head and body move-
ments, jaw contraction, etc. in order to reduce artifacts.

A. P300 Spatio-Temporal Characterization

In the upper part of table II, the results on the com-
plete dataset for each task are presented. For task A, the
P300 amplitude range was 3 - 8 µV with a mean value of
4.7µV ± 0.61µV; the P300 latency in task A was included in
the range 300 – 403ms, with a mean value of 349.25ms ±
35.52ms. For task B, the amplitude mean value was
4.4µV ± 1.28µV ranging in 3 - 6.2µV; the latency range
was 340-410ms and its mean value was 363.3ms ± 14.91ms.
For task C, the mean amplitude was 3.7µV ± 0.98µV in
the 2.8-4.9µV range; the mean latency was 378.46 ms ±
14.91ms. The average latency increases from task A to C was
+7.7%; the average P300 peak decreases from task A to C
was -21.28%. P300 amplitude and latency for each subject
performing all the tasks are reported in figure 5, which shows

TABLE II

RESULTS OF t-RIDE COMPARED TO RELATED WORKS

Fig. 5. P300 amplitude (top) and latency (bottom) evaluated using t-RIDE
on 12 subjects performing three tasks of increasing difficulty. Increasing the
cognitive difficulty of the task, latency increases while amplitude decreases.

Fig. 6. Averaged P300 (task A on Pz) of all the 12 subjects (in blue),
upper (blue) and lower (black) bounds depicting one standard deviation.

also the P300 degradation: increasing the task complexity
P300 amplitudes decrease while latency times increase, as
already presented in table II. The latency increment from task
A to C was +7.7%; the average P300 peak decrement from
task A to C was −21.28%. In the 100% of the recordings,
P300 had a higher amplitude in presence of the target than
for the not-target one (average V = 2.95 µV ± 1 µV
on Pz). Figure 6 shows the subject-to-subject P300 variability
by averaging 12 P300 pulses from the subjects under test
on Pz during task A (in red). The upper and lower boundary
layers depicting a standard deviation are shown, respectively,
in blue and black. This analysis confirms that, for all subjects
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Fig. 7. t-RIDE results for each task for 3 different subject performing good,
typical and critical response. Clockwise, starting from the top left corner of
each cell we present the target, not-target, FoM and latency topographies.
P300 was P300 is more evident in the central-parietal electrodes.

Fig. 8. FoM behavior with increased difficulty of the cognitive task.

the P300 peak occurs around 300ms. Figure 7 shows the
topographies of the amplitudes (for both target and not-target
stimuli), latencies and FoM for 3 different subject performing
task A, B and C. The results shown in the figure have been
selected in order to highlight three different P300 responses:
good response (high FoM, sub. no. 3), typical response (aver-
age FoM, sub no. 2) and critical response (low FoM, sub
no. 6). The P300 highest voltage levels (in the target amplitude
topography) are concentrated in the center-parietal region (Cz,
Pz, P3, P4). From the latency topography it is shown that
the P300 is detected from the lateral mid-line electrodes
(200-250ms on P3 and P4) and the central electrodes
(Fz, Cz, Pz) 300-400 ms after stimulus. The FoM analysis
allows characterizing the subject from both amplitude and
latency at the same time. The highest values of FoM are
recorded in the parietal cortex (Pz, P3, P4, P7 and P8).
As shown in Fig. 8, the 100% of the subject showed FoM
reduction with the increased difficulty of the task. In particular
FoM decreases (in average) from 0.0135 µ V/ms ± 0.005
(task A) to 0.012 µV/ms ± 0.004 (task B) until 0.011 ±
0.003 (task C).

B. t-RIDE Results and Method Validation Respect
the State of the Art Methods

In Table II, reference analysis are reported. The
authors in [25] describe that on 75 healthy subjects (age
27.17 ± 19.16, covering the lifespan) the P300 amplitude
varies between 2.6µV and 37.7µV with a mean value of
10.4µV, while the P300 latency ranges from 290ms to 447ms

Fig. 9. P300 amplitude calculated using: t-RIDE (in blue) RIDE (in black),
GA (in green), ICA (in red). The analysis is referred to identical dataset and
on a single channel Pz.

Fig. 10. P300 latency calculated using: t-RIDE(in blue), RIDE (in black),
GA (in green), ICA (in red). The analysis is referred to identical data and on
a single channel Pz.

Fig. 11. P300 extraction from subject 1 during task A using t-RIDE (in
blue), RIDE (in black), Grand average (in geen), ICA (in red). To simplify
the plot only Pz is shown. 25 targets were considered.

with a mean value of 316.5ms. Note that [25] is a review of
75 different papers, which implement several P300 extraction
methodologies. For each task and subject, the 100% of t-RIDE
results were consistent with the reference, confirming the
validity of the approach. By comparison between RIDE and
t-RIDE results it is possible to observe (table II) that t-RIDE
calculated P300 peak is, in average, +0.6 µV (+12.76%)
higher than the one calculated by RIDE. Comparing the
standard deviations, t-RIDE performs +57.34% higher accu-
racy: σt−RIDE = 0.61, σRIDE = 1.43. Concerning latency
estimation, the two methods reports very similar results.
In figures 9, 10 and 11, a comparison between t-RIDE,
RIDE, ICA and Grand Average (GA) is presented. ICA
and GA are the most commonly used methods nowadays in
specialized medical centers for P300 extraction. The above
mentioned methods were applied on identical data stream
(subject 1, Task A; 8 channels). In figure 9 and 10 the
amplitude and latency were normalized according to the
eq. (8):

εn,% =
|xN− xn |
xN

· 100; xn = xN− x̂n (8)

Where xN is the P300 amplitude/latency evaluated with t-RIDE
using a task with N = 40 target stimuli, x̂n is estimated over n
target stimuli, with n< N. xN is the convergence of the method
(steady state value), and can be used as a reference value to
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evaluate the accuracy of the calculation, when n < N targets
are used. Notice that, under this assumption, εn is also the
accuracy of the measurement. Figure 9 shows the convergence
of P300 amplitude achieved by the considered methods with
increasing the number of target stimuli within the same task.
The amplitude has been normalized to the “steady state” value
achieved by t-RIDE using 40 targets, according to eq. (8).
Figure 9 shows that:
i) t-RIDE and ICA converge to the same results for the
amplitude with an error of 0.1%;
ii) t-RIDE is, in average, +12.3% more accurate than
RIDE although they exhibit the same converge trend;
iii) The GA converge value was 67% lower than t-RIDE;
iv) For amplitude, t-RIDE is more accurate than the
competitors. t-RIDE showed the highest accuracy using
25 targets: t-RIDE = 96.05%; RIDE = 78%; ICA = 75.9%;
GA = 51.6%;
v) t-RIDE needs less targets to reach 90% amplitude
accuracy if compared to the existing methods. The number
of target stimuli to reach 90% accuracy are: t-RIDE = 18;
RIDE = 38; ICA = 30; GA = n.d. (GA never reaches 90%
accuracy). Notice that for task A, the probability of target
occurrence was 20%. Considering 1s inter-stimulus time,
rough conversion between number of targets and time
duration of the task can be done: 1 target ≈ 5s.
That means, in order to extract the P300 amplitude with
a 90% accuracy, the time duration of the task has to be:
t-RIDE = 90s; ICA = 150s; RIDE = 190s. Clearly,
an oddball task design to be used with t-RIDE has a shorter
duration. This heavily reduces the habit phenomenon (which
degrades the P300), improving the comfort for the patient.
Figure 10 shows the convergence of P300 latency achieved
by the considered methods with increasing the number of
target stimuli within the same task. The latency has been
normalized according to eq. (8). Figure 10 shows that:
i) t-RIDE, ICA and RIDE converge to the same results
for the latency;
ii) For latency, t-RIDE is, in average, +1%more accurate
than RIDE +3%more accurate than ICA and although they
exhibit the same converge trend;
iii) The GA converge value was 12% lower than the t-RIDE;
iv) For latency, t-RIDE needs the same number of targets
to reach 90% accuracy if compared to ICA and RIDE:
t-RIDE = 6; RIDE = 6; ICA = 6. The number of targets
to reach 90% accuracy for latency calculation with GA is 18.
t-RIDE analyzes the EEG channels individually: the minimum
EEG channels for t-RIDE is 1. Contrariwise, ICA requires
a great number of electrodes: more than 32 channels are
suggested [15]. The minimum EEG channels for ICA is 6.
t-RIDE adoption allows to wear a more comfortably headset
since there is no minimum required number of channels and
90% accuracy is reachable even with a single channel.
Computationally speaking, t-RIDE is 1.6 times faster than
ICA. t-RIDE convergence is reached in 79 iteration (i.e.
1.95s) on a single EEG channel. With the same dataset, ICA
convergence to the same result is reached in 216 iteration
(i.e. 3.1s) giving 80% accuracy with 28 targets. Fig. 11
presents the time-domain P300 waveform on Pz calculated

using the above mentioned methods using subject 1, task A,
25 targets.

C. Discussion on Cognitive Impairment Detection

t-RIDE results of task A are compared to clinical reference
values in table I (because the control groups defined in [26]
were measured using a paradigm very similar to task A).
Task B and C have been developed to demonstrate and
quantify the P300 degradation increasing the task difficulty.
However, the diagnosis and decision is always left to the
human component of the m-Health service i.e. the physician,
especially for critical situations i.e. subject 6 which performed
for task A, a FoM = 0.008 µV/ms (on the edge of the clinical
groups). According to fig. 10 and 11, the FoM calculation
by ICA or RIDE reports the same results but with higher
number of target to reach 90% of accuracy (t-RIDE: 18; ICA:
30; RIDE: 38) resulting in a longer game/test (t-RIDE: 90s;
ICA: 150s; RIDE: 190s). Furthermore, t-RIDE can be per-
formed even on a single channel.

V. CONCLUSION

A novel m-health solution for neuro-cognitive impairment
monitoring based on P300 spatio-temporal characterization
achieved by tuned Residue Iteration Decomposition (t-RIDE)
has been presented. To the best of our knowledge, this is
the first solution performing this kind analysis and repre-
sents a breakthrough in the field of cognitive diagnosis and
monitoring. The architecture is supported by a new method
for P300 analysis which overcomes the limitations of the
previous approaches (ICA; PCA; grand average; etc.). The
developed t-RIDE method has been here validated on a dataset
of 12 subjects performing three different cognitive tasks of
increasing difficulty. The algorithm is very efficient: the con-
vergence is reached in 79 iterations in 1.5s and its robustness
has been tested also decreasing the number of trials taken
into account. The m-health service proposed, allows remote
monitoring of neuro-cognitive impairment through a ‘plug
and play’ application, while physician customization and data
collection are allowed by cloud bridging.
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